計量・計測システム分野

計測技術は、製品やサービスの質及び量を定量化するものであるが、これを社会・産業活動に適用する上では、測定対象、測定する量、測定器、測定の環境、測定結果の表示、測定結果の信頼性など、広く情報化のための社会システムとして捉まえる必要があり、また、国全体として戦略を練る上では、計量・計測システム分野として扱う必要がある。製品やサービスに関する最もフレッシュで確実な情報はこの計測の結果によってのみ得られるため、我が国社会の安全安心を確保するための規制や品質管理はこの確実な情報に基づくことが重要である。また、ナノ・ライフ・環境・情報等の分野において、研究開発の対象の新たな機能を迅速かつ確実に情報によってのみ把握することは、国際競争力維持の観点から欠かせない。したがって、これら安全安心の確保、イノベーションの創出のためには、計測技術が質、量ともに不足(Metrological Barrier to Social and Technology Innovation)することは是非とも避けねばならない。

この計測システムの構成要素は、計測器、計量標準、データベースなどからなる計測知的基盤であり、上記の観点に基づいて経済産業省では知的基盤整備計画を策定し、国家計量標準の早急な整備及び計量標準供給制度を施行することにより我が国産業の製品・サービスの性能の国際市場における競争力保全を図るなど、数々の政策を進めている。

本分野の技術戦略マップは安全・安心のために既に作成されている規格の実施に必要とされ、また内外の技術革新が求める計測システムの技術課題を抽出し、その技術的・政策的解決策を明らかにし、計測システムを担う産業界・政府・その他の機関の役割を共有することにより相互の協力を促進することを目指している。

I. 導入シナリオ

(1)計量・計測システム分野の目標と将来実現する社会像

製品・サービスの情報のうち、これらを直接計測して得られた客観的な一次情報は最も迅速でかつ信頼が置けるため、現代人が迫られる重要な価値判断の局面でもっとも頼りにするべき情報と言える。例えば食品の安全性に関わる一次情報を生み出すことは社会全体がこれを共有することにより安心な生活意識を高める上で必要であり、また一方、新素材のナノサイズの構造を計測することはナノテクノロジーに必要な科学的知見を得るための第一歩として技術イノベーションに必要不可欠と言える。これらは国全体として経済・産業規模に適した計量・計測システムによって提供される。この様に戦略的で高度な一次情報が先導する社会を作り上げるために本技術分野では、計測の時間・計測のコスト・計測の信頼性のレベルをユーザーがその目的に応じて自由に選べるという計測のための知的基盤を我が国に整えることにより、それを我が国社会全体が利用する計量体制・計測システムの運営に資する。

ここに、計測のための知的基盤とは、測定器・分析器を中心とする試験・検査に用いる機器、それを利用したり一次情報に結びつける方法を記述する試験・測定技術規格、計測結果の信頼性を保証するものさしとなる計量標準・標準物質、測定器の目盛りを正す校正技術基準、計測に必要とされるテータベース、計測のソフトウエア、計測を実施するオペレータの計測技能などの要素を指し、これらを総合して様々な客観的な評価に適用する計測システムの基盤を構成する。さらに本分野の技術開発は、ハードウエア・コンピューターソフトウエアのみならず組織を管理するソフトウエアを含むあらゆる技術に及んでいる。

計量・計測システムは、以上の社会革新を目指し我が国社会の安全・安心の確保とレベル向上及び技術競争力の高度化を図ることを目的とし、新規計測機器開発の加速、計測機器利用技術の普及を目標としている。またさらに、計測技術の迅速な社会浸透を促進するために、安心確保のためのリスク評価及びそれに基づく許容基準値設定・検査基準・検査機器基準のためのデータベース・計測ソフトウエア開発の加速を目標とする。

<我が国社会の安全安心分野への貢献>

- ① 食品中有害物質分析、河川水の pH 測定、X 線 CT など食品・生活環境・健康の安全確保に関する社会生活の安心
- ② 取引のためのはかりや燃料・タクシーメーターなど国際通商・国内通商・エネルギー取引・課税・廃棄物処理・運賃に関する経済活動の安心
- ③ 原子力施設診断・航空機整備診断・建設物診断などエネルギープラント・河川・地下資源・輸送に関する社会資本の安心

④ プロセス計測(温度・圧力・流量・レベル・電気・分析)・製品出荷検査・素材 データ・欠陥検査用顕微鏡など品質管理・不具合品対策・製品寿命設計・省エ ネエコ対策に関する生産活動ものづくりの安心

<技術競争力の高度化分野への貢献>

- ① 走査プローブ顕微鏡・内部欠陥分析・高速レーザー分析など他技術戦略分野で 行われる高付加価値製品開発や加工技術の高度化
- ② 排ガス分析器・遠隔検針校正・新計測技術基準データ作成など我が国新規計測 分析機器の国際競争力強化

(2) 研究開発の取組

研究開発の中心は、計測器メーカー及び大学を含む研究独法であるが、その他の計 測システムを構成する下記の機関で行われる技術開発と協力して担う。

- ・計測器メーカー:民間企業 計測・試験・検査機器の生産・供給・レンタル・普及・維持・保守・システム化、 適合性規格作成活動参画の事業及び関連するハードウエア・ソフトウエアの研究 開発
- ・試験・検査事業者:民間企業+公設試 試験検査事業、製造ライン診断、不具合製品分析の事業及び関連のソフトウエア 研究開発
- · 認証機関:

製品認証、適合性評価システムの審査、国際相互承認による対外的説明の事業及 び関連のソフトウエア研究開発

- · 製造事業者品質管理部署:
 - 製品認証、人材育成、生産ライン調整、生産ライン管理、不具合品対策の事業及 び関連のソフトウエア研究開発
- ・計測器認証・認定機関・検査機関: 計量器の適合性評価、校正事業、技能試験、これらの認定と相互承認の事業及び 関連のソフトウエア研究
- · 計量標準機関:

NMI (代表標準機関)、DI (指名補完標準機関) としての活動及び国際相互承認の事業及び関連のハードウエア・ソフトウエア研究開発

・ 人材育成機関:民間機関、大学 計量専門能力試験、教習育成、計量公教育、品質管理工学教育、普及啓蒙活動の

事業及び計測器のハードウエア及びソフトウエアの研究開発 計測機器に関するハードウエア及びソフトウエア研究開発の具体的な課題及び代表 的なプロジェクトとしては下記の共通的なものを挙げることが出来る。

① 新規センサー・新原理に基づく先端的計測機器の開発と世界市場への展開

代表的な課題群:微小化、ナノ計測、多次元化、極端条件下、高速化、複合 化、高分解能化

- → ナノ計測基盤・3D ナノ標準物質 (2001-2007)、先端計測分析機器プロジェクト (2003-)

代表的な課題群:マルチ計測、スマート化、遠隔化、計量標準内蔵、高信頼 化、システム化

- → 遠隔校正プロジェクト(2001-2008)、マルチ計測・認証標準(2009-)
- ③ 不具合検査などものづくり生産現場への計測ソリューション提供

代表的な課題群:内部測定、局所計測、InSitu 化、オンマシン、低価格、安定化、ダイナミックレンジ拡大、ライフ・材料・食品・人間感覚など新分野対応、ソリューション体系化とデータベース

- → 生産計測研究センターの発足、計測器メーカー、分析事業者、地域公設 試、検査機器評価プロジェクト
- ④ 計量標準整備、標準化活動と認証方法

代表的な課題群:製品規格・規制基準作成及び適合性評価規格作成への計測 技術専門家としての参画、国際標準への提言、新規適合性評価技術の迅速で 信頼の置ける認証方法の開発

→ 計量標準整備、サポーティングインダストリー、計量法検査・検則の JIS 化.

(3) 関連施策の取組

今後重要となる関連施策:

- ① 計測・試験・検査結果の信頼性を迅速に明示する制度の定着・拡充
- ② 共通基盤的計測技術開発を推進するための政府支援策
- ③ 計量器・試験器の迅速な評価体制と国際相互承認
- ④ 海外生産拠点・海外市場における企業活動を支える計量インフラの移転促進
- ⑤ 国際計量機関における主導提案

(4) 海外での取組

- ① 各国計量標準機関ではメートル条約、国際法定計量機関、国際試験所認定機関、 IEF、JIS·IEC 計測・認証関連規格、VAMAS などの活動を元に計量活動成果の相 互承認を推進している。また、ナノ・ライフ・環境の未開拓分野では、国内の 計量のトレーサビリティー確立のための技術開発に取り組んでいる。
- ② 先進各国の計量システムを運営する機関は国内で開発された計量機器の競争力 強化の観点から、計測器・分析器・計測技術などに関する国際規格作成へ積極 的に参画している。

- ③ 各国計測システムに関わる機関は、メートル条約「拡大する計量標準へのニーズ」報告、米国計量ニーズ調査、欧州計量標準開発計画、欧州計量標準による規制計量調査などの計量知的基盤に関する国際調査・国内調査を実施、それに基づいて計測システム分野の戦略を策定している。
- ④ 米国における SEMATECH と NIST の国家半導体計量プログラム協力、米国エネルギー省省エネルギー照明政策のための適合性評価認証プログラムの NIST への委託、欧州計量計画による国際計量標準技術開発プロジェクト推進、ブラジルにおけるバイオ燃料計量プロジェクトの INMETRO への委託など、各国重点産業科学技術施策を支える測定領域・分野で求められる計測知的基盤整備を計量標準機関などが担っている。

(5) 民間での取組

- ① 計測機器メーカーを中心として、計測機器開発からそれを用いたシステム化、コンピューターを利用した自動測定化、トレーサビリティーを確保しやすい機器開発、生産事業における不具合検出測定システムの開発などが研究開発傾向。また、不具合品対応など製造ラインの調整に際して発生する計測課題を個別に分析し、計測ソリューションを提供する活動が増加しつつある。
- ② 大学では、複合化したシステム、微細システムなどでの計測技術開発が進められている。

(6) 改訂のポイント

▶ 2009 年に新規策定したものであり、目立った状況変化はないことから今年度の導入 シナリオの改訂は行わなかった。

Ⅱ.技術マップ

(1)技術マップ

技術マップは、計量・計測システム分野における技術課題を一覧にしたものである。 技術戦略マップで計量・計測システム分野を新設するにあたり、まず技術課題の網羅的な抽出を行った。その際、一次情報源として参照したのは以下のようなものである。

- ・NMIJ計測クラブを通じて得た計測機器産業界からの要望
- ・ 計測機器メーカ・エンドユーザに対する調査活動
- ・技術戦略マップ 2009 年度版: それぞれの領域・分野において多くの技術課題があ げられている。その中には計量・計測技術が技術的障壁となっているものも多く あり、さらに複数の技術分野で同じ課題があることも多い
- ・USMS (United State Measurement System): 米国標準技術研究所 (NIST) がとりまとめた計測技術課題のリスト
- ・ iMERA: ヨーロッパの国際計量機関 EURAMET がとりまとめた計測技術のロードマップ

- ・既存のロードマップ:国際半導体技術ロードマップ(ITRS)を始めとした、様々な産業分野のロードマップ
- ・ 法令: 法規制において計測技術が必要とされているものを調査
- ・ JIS: 工業標準規格で計測技術やトレーサビリティが要求されているものを調査
- ・工業会からの意見
- ・ 産業技術連携推進会議(産技連)知的基盤部会を通じて得た地域地場産業からの 計測分析ニーズ

これらの一次情報から抽出した技術課題のうち、具体的な課題があげられるものを 一覧にしたものが技術マップである。

(2) 重要技術の考え方

技術マップにおいて抽出された各技術項目から以下の観点から見て重要なものを重要技術と位置づけ、技術マップ中に黄色で色分けして示した。その中からさらに重要なものについては最重要技術と位置づけ、赤色で色分けして示した。

- ① 産業界からの要請が大きいテーマ
- ② 政策的要請、社会的要請の大きいテーマ
- ③ 緊急の技術開発が必要なテーマ
- ④ 要素技術からシステム開発まで一連の技術開発を必要とし、波及効果の大きな テーマ
- ⑤ 委員会メンバーのこれまでの知見から重要と思われるテーマ

(3) 改訂のポイント

▶ 他の分野の 2009 年度版で追加されたを技術等を踏まえ必要となる技術を追加した。

皿. 技術ロードマップ

(1)技術ロードマップ

技術マップのうち、最重要技術として選定されたものについて技術ロードマップを 作成した。技術ロードマップ作成にあたっては計測機器業界からの意見を聴取し、市 場化までを視野に入れた技術ロードマップ作成に努めた。

(2) 改訂のポイント

▶ 技術ロードマップに記載されている装置・技術等の構成要素が、産業界、政府、その他の機関において、どのようなアウトカムに主に貢献できるかを明確にするために、「出口分類」と「出口イメージ」の欄を追加した。「出口分類」の欄には、縦軸を「新成長戦略(基本方針)」の政策 6 件、横軸を技術戦略マップの 8 領域と産業の 14 業種分類とを合わせて 22 件とした表(出口分類表)から 3 件まで選択し記載した。(技術戦略マップの領域と産業の業種分類はオーバーラップしている点がある。)「出口イメージ」の欄には、具体的な貢献内容や実際にその装置・技術を利用する事例のイメージを記載した。

計量・計測システム分野の技術戦略マップの構成

計量・計測システム分野の導入シナリオ

計量・計測システム分野の俯瞰図

技術マップ

- 1. 時間周波数計測
- 2. 長さ計測
- 3. 力学計測
- 4. 音響・超音波・振動・硬さ計測
- 5. 温度 · 湿度計測
- 6. 流量計測
- 7. 物性・粒子計測、不確かさ
- 8. 電気計測 直流・低周波
- 9. 電磁波計測
- 10. 光放射計測
- 11. 放射線・放射能・中性子計測
- 12. 化学計測
- 13. 環境化学計測
- 14. バイオ食品関連計測
- 15. 医療関連計測
- 16. 先端材料計測
- 17. 普及のための共通基盤

技術ロードマップ 1. 時間周波数計測

- 2. 長さ計測
- 3. 力学計測
- 4. 音響・超音波・振動・硬さ計測
- 5. 温度 · 湿度計測
- 6. 流量計測
- 7. 物性・粒子計測、不確かさ
- 8. 電気計測 直流・低周波
- 9. 電磁波計測
- 10. 光放射計測
- 11. 放射線・放射能・中性子計測
- 12. 化学計測
- 13. 環境化学計測
- 14. バイオ食品関連計測
- 15. 医療関連計測
- 16. 先端材料計測

計量・計測システム分野の導入シナリオ

2010 2000 2020 2030

技術マップ・技術ロードマップ

製品・サービスの客観的な定量評価に基づいた一次情報を、現代社会の各プレーヤーがその様々な価値判断に際 して共有することにより、社会の安心を高めまた社会イノベーションを推進する情報先導の社会を実現するため に、時間・コスト・信頼性に応じた選択肢を備えた計測知的基盤を整え、それに基づく計量体制・計測システム

をわが国に運営する。

目標1:社会の公共資本の安定な運営と体制変革の迅速な定着の為の計量システム 目標2:高度なものづくり・サービスの安定な運営と国際競争力強化の為の計量システム

目標3:高付加価値・低リスク製品の開発と科学技術開発の為の計量システム

民 関 計量 取 組関 4 連

研

計究

測開

知発

的の

基 取

盤 組

2

標

<mark>計測器メーカー:計測・試験・検査機器の生産・供給・普及・維持・保守・</mark> システム化、適合性規格作成活動

試験・検査事業者:試験検査事業、製造ライン診断、不具合製品分析

<mark>認証機関:製品認証、適合性評価システムの審査、国際相互承認による対外的説明</mark>

<mark>ものづくり製造事業者品質管理部署:製品認証、品質管理、人材育成、</mark>

計測器認証・認定機関:計量器検査・型式承認、校正、技能試験、事業認定と相互承認

計量標準機関(NMI・DI):トレーサビリティ源及び国際相互承認 <mark>人材育成:計量士試験制度、</mark>計量士育成、計量公教育、品質管理工学知識普及 <mark>行政:適合性評価関連規格作成、国際整合化、市場監視、地域計量監視</mark>

1:新規センサー・新原理に基づく計測機器の開発と世界市場への展開 <mark>微小化、ナノ計測、</mark>多次元化、極端条件下、高速化、複合化、高分解能化

ナノ計測基盤・3Dナノ標準物質

高感度質量分析・応力発光

2:現場ユーザー志向のソフトウエア内蔵・トレーサビリティー要件を保証 マルチ計測、スマート化、遠隔化、計量標準内蔵、高信頼化、システム化

遠隔校正技術

マルチ計測

水素定量標準

3:不具合検査などものづくり生産現場への計測ソリューション提供 <mark>内部測定、局所計測、InSitu化、オンマシン、低価格、安定化、ダイナミックレンジ、</mark> <u>拡大、ライフ・材料・食品・人間感覚など新分野対応</u>

> 生産計測研究セン検査機器評価 地域公設試・地域イノベ

4:計量標準拡充、標準化活動と認証方法

製品規格・規制基準及び適合性評価規格計量要件記述、 <mark>国際標準提言、新規適合性評価技術認証方法の迅速・高信頼化</mark>

計量標準整備計画

物理標準開発 | 検査規則のJIS化

関 取 連 組施 み策 ഗ

- 1. 計測・試験・検査結果の信頼性を迅速に明示する制度の定着・拡充
- 2. 共通基盤的計測技術等開発を推進するための政府支援策
- 新規計量器・試験器の迅速な評価体制と国際相互承認 3.
- 4. 海外生産拠点・海外市場に於ける企業活動を支える知的基盤普及移転促進
- 5. 国際計量機関に於ける主導

計量・計測システム分野の俯瞰図 技術イノベーション 情報通信 ソフト エネルギー システム・ 環境 電磁波計測 新製造 音響•超音波• 振動・硬さ計測 電気計測(A) 流量計測 長さ計測(m) ナノテク・ 時間周波数計測(s) バイオ 温度計測(K) 材料 力学計測(kg) SI基本7単位 先端材料計測 光放射計測(cd) 化学分析(mol) 放射線•放射能• 中性子計測 物性•粒子計測 計量 社会の安全・安心維持 社会イノベーション

計量・計測システム分野の技術マップ・技術ロードマップの記載について

技術マップ

計量・計測システム分野の技術マップ (28/49)

光放射計測(1/2)

大分類	中分類	小分類	装置名	課題	技術課題 (重要課題				
		分光放射照度	分光放射計	トレーサヒ'リティ トレーサヒ'リティ	トレーサビリティの確立、波長域の拡大、分光放射照度標準の供給 真空紫外域への拡張、紫外・真空紫外分光放射束評価技術				
		分光放射輝度	分光放射輝度計	トレーサビリティ ダイナミックレンジ	分光放射照度標準の供給、分光放射輝度率標準の開発・供給、トレーサビリティ体制の確立 極微弱レベル測定、FPD起高コントラスト精密評価技術				
		分光全放射束	分光全放射束測定装置	トレーサビリティ	分光全放射束標準光源の整備、LED放射束標準の整備(紫外、可視、赤外) 低強度分光放射照度標準光源、固体照明の高精度効率評価技術				
				高精度化 トレーサビリティ	分光放射東角度分布評価技術、積分球評価技術、分光金放射東比較技術。例定方法最適化 分光応答度標準の供給(真空紫外、紫外、可視、近赤外)、分光放射照度 ・ 各度標準の機能(真空紫外、紫外、可視、近赤外)、分光放射照度 ・ 各度標準の整備				
		分光応答度	分光応答度測定装置	高精度化	不確かさ向上、参照標準検出器の高精度化、一次標準検出器の高精 化 広帯域分半応答度高精度化のためカロリメータ高精度校正技術				
		放射照度				紫外放射(照度)計	高信頼性化 ダイナミックレンジ トレーサビリティ	特性採予要新、経面方法構築化、器量解消 機能・測定技術(< 1 mW/cm2)、高レベル光測定技術(mW~//cm2) ・ 放射照度応答度構築の確立、アバーチ・附口面積構多の供給、分光応答度構築の供給	
				トレーサビリティ 高精度化	紫外-真空紫外分光放射束評価技術				
			赤外線放射照度測定器	トレーサビリテ	加熱用赤外電球からの放射照度の校正				
			日射計	安定化	屋外環境下での経年劣化評価技術、温度・湿度を定性 太陽光評価技術、測定方法規格化、WMOトレーサビリティ				
				りとりティ	高精度電力-光パワー置換技術				
		放射東	極低溫放射計	高精度化 スマート化	受光キャビティ超低反射率評価技術、*** 煮放射低減・評価技術 液体冷媒フリー化、可搬化				
	放射量 分光放射量		耐候(光)性試験装置 促進耐候(光)性試験装置	トレーサビリティ	分光放射照度標準の供給、分学の答度標準の供給				
			光安定性試験對置	トレーサビリティ	照度計・紫外放射照度計のレーサビリティ				
		評価·試験装置	基準太陽電池セル 評価装置	トレーサビリティ	分光応答度標準の供給・変換効率比較技術				
			ソーラー・ミュレータ	トレーサビリティ	分光放射照度標準の大給、高精度相対分光分布標準の確立				
				高速化	フラッシュ・ソーラー・ンミュレータ用の高速スペクトル測定技術				

「重要課題」

「最重要課題」:技術ロードマップを記載

技術ロードマップ

計量・計測システム分野の技術ロードマップ

参考となる他のロードマップを記載 技術戦略マップ、ITRSなど

						先站	材料	計測														
大分類	中分類	小分類	装置名	辞题	技術課題	2010	2011	2012	2013	014	2015	2016	2017	2018	2019	2020		口分! Matrx		出口イメージ		
			参考資料: ITRS2007,		粒子検出限界 (nm)	18	16	14	13	11	10	9	8	7	6	6						
			Metrology, Table MET2		組成分析におけるウエハー上の最小 粒子サイズ (nm)	15	13	12	11	9	¥	7	6	6	5	5						
			参考資料:ITRS2008, Yield Enhancement, TableYE9		獎界粒子径 (nm)	22.5	20	17.9	15.9	14.2	12.6	11.3	10	8.9	8	7.1						
						粒径計 湖の定														ドラッグデリバリーシステム(DDS)など柔橋		
			磁塘匀配柱磁気共鳴法 稅子島部計測設置			量性向 上・DLS との相		位置選択性	計測法の記	建立、粒子分	布ならびに	粒子動態計	測法の確立	, in vitro 実	数への展開					造をもつ構造体のサイズ、あるいは液体中 の粒子に付着したタンパク質などの物質の		
				高精度化 多次元化	微小サイズ物質計測·実材料高選択 性粒径計測技術の開発	開評価											B2 E	B4	E2	吸着量などが評価できることで製薬錠剤の 開発やナノ粒子のリスク評価に役立つ。より 機能が優れ安全な製剤や工業製品の生産		
						異株	全子混合分 高選択性類	教液における 位径計測	5	混合溶液にお	おける同時			0確立						により経済力を高め、人々の健康安全に貢献する。出口分類Matrix A1、A2、E1、E4、 E13等も該当。		
				高精度化	粒径分布計測における計測値の 高精度化			78	精度粒径	分布解析法の	の開発		<u> </u>									
				複合化	高濃度溶液計測法の開発			高濃度消	液in situ#	瀬技術の開	£											
先編						ISC	D13321, JIS 5年改2					ISO13321, J 5年a								さまざまなナノ粒子やDDSのサイズとサイズ		
料料	液中粒子 計測技術			汎用化	技術の進展を反映した規格の作成と 改訂		- 1 - 1			022412 F改定	L				022412 医改定					分布を迅速にかつ一定の精度で評価できる ようになり、ナノテクノロジーや製剤製造など で使われる機能性ナノ粒子を素材とする各		
30		液中粒子径	勒的光散乱装置		4.17	4.87	4.07	JI	S粒子径計 通剛作成	(a)			-	IS粒子径針 5年改)					A2	B4	E2	種製品の開発と企業間のデータ流通が促 進される。先端製品の国際競争力の向上、
		計測装置		汎用化	興種装置間における粒径値評価法の 共適化・汎用化	異種原理 計測值	裁置間の相関評価													ナイ粒子のリスク評価の保証、および優れ た製列等により、人々の健康を増進する社 会の党際に貢献する。出口分類Matrix A1、 E1、E4、E13等も該当。		
				H2-95'974	液中微粒子校正技術の確立と供給				-	-	-	[放粒子径 E供給		7						
										1	\						$\overline{}$	\sim	_	' 		

技術課題の要求スペックを記載

実線:本格的研究開発が実施される(されるべき)時期を示す。破線:基礎研究または予備的実験しか行われない時期を示す。

小分類・装置等が関連する産業界を「出口分類マトリックス」から3個まで選択

小分類・装置等の産業界への寄与について「出口イメージ」を記載

産業業種分類

技術戦略マップの8領域

新成長戦略(基本方針):http://www.kantei.go.jp/jp/sinseichousenryaku/

新成長戦略(基本方針)

時間周波数計測(1/2)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
			一次周波数標準器	高精度化	原子数の増加による安定度の向上、低温化による黒体放射 の制御
			(GPS, VLBI, Deep Space, Gravimetry、時系(国際原子時、協定		レーザー光源の長期運転化、高出力半導体レーザーの高信 頼化、汎用固体レーザーの利用
			世界時)、基礎物理定数の決定、基礎物理定数に基づく標準体系の構築)	小型化	原子ビーム、イオントラップ、MOTの小型化、アトムチップの利用、トラップに必要なレーザーパワーの低減
			高精度実用周波数標準器 (GPS, VLBI, Deep Space,	高精度化	イオントラップ、ガスセル、原子トラップ、高信頼光源、放電ランプ
			Gravimetry、時系(国際原子時、協定		(1~5)日の時間スケールでの安定度確保
			世界時))	高信頼化	年のオーダーでの連続運転、CSOの改良
		│原子周波数標準 │ ───────────────────────────────────	水素メーザー	小型化	小型化しつつ、高真空、低電力水素源を得る手法。誘電体共 振器とその安定性の確保
			セシウム原子発振器	小型化	ビーム強度の確保、高SNでの検出手法
			小型実用周波数標準器	高精度化	MEMS、マイクロイオントラップ
			ルビジウム原子発振器	高信頼化高精度化	励起光源、ガスセル 光シフト、バッファーガスシフト、セルの経年変化
	信号発生器		ルピンクニが1元版品	高精度化	光シフト低減、ガスセル
			チップスケール原子時計	高信頼性化	半導体レーザー、原子セル
			7 7 7 7 7 7 7 7 1 1 1	低価格	ディスクリート部品の排除、全体をウェハー上で作成
				省Iネ化 高性能化	VCO、PLL イオントラップ利用
			宇宙用原子時計	小型化	イオントラップ利用 MEMSの利用
		周波数発生装置	低位相雑音シンセサイザ (サブミリ波VLBI、一次周波数標準 器、光格子時計、光コム)	高精度化	精密周波数合成、アップコンバージョン、ダウンコンバージョン 技術
			水晶発振器	付加価値	位相雑音評価、標準化
			サファイア発振器	高信頼化	長期連続運転の手法
		位相雑音	位相雑音測定器	高精度化	低雑音ミキサー、高安定基準信号 FFTアナライザー
				トレーサビリティ 高精度化	FF アプライリー 検出器の低雑音化
時		振幅雑音	振幅雑音測定器	トレーサビリティ	FFTアナライザー
間		ジッター	タイミングジッター測定器	高精度化	高安定基準信号
周 波		777	グインノンファ 例足報	トレーサヒ・リティ	高安定基準信号
数			光周波数コム(光周波数計)	高精度化	高周波数安定化、狭線幅化
計			(波長精密制御光源 光スペアナ	高信頼性化	小型化、波長変換技術、装置の簡略化、光学系のモジュール化、新たなモード同期レーザの開発、制御系の最適化
測			波長計	トレーサビリティ	レーザ線幅の校正技術、遠隔校正技術
		長	人工衛星搭載用精密距離計)	低価格	装置の簡略化
	光周	波数	波長計・光スペアナ	トレーサヒ゛リティ	jcss校正、遠隔校正
				ダイナミックレンジ 低価格	多波長化 小型·低価格化
			安定化レーザ装置	高精度化	高安定化
				トレーサヒ゛リティ	伝送性
				高精度化	光時計の性能向上
				高精度化	黒体輻射シフト抑制、真空システム開発、クライオシステム開発
			光周波数標準(光時計)	高精度化 高精度化	異原子種への拡張、光源開発、真空システム開発 光格子時計の3次元化
			ノレ/ロルX 3X 1示・干(ノレ・吋 il /	高精度化	光の先の周波数標準(標準候補探索、光源開発)
	v =	2rt+ **t-		微小化	原子源開発、真空システム開発
	大周 	波数		微小化	原子セル開発、真空システム開発
			レーザ線幅狭窄化技術	安定化	安定化技術の向上
				ダイナミックレンジ	光源の開発 光キャリアー方式
			光周波数リンク(ファイバリンク)	高精度化 ダイナミックレンジ	元キャリアー方式 伝送距離
			75/HJ // 20 / 2 / (2 / 11 · 1/2 /)	タ・イナミックレンシ [*]	他の波長
				高精度化	電離層遅延補正・大気遅延補正の高精度化
		時間周波数比較	GPS/GNSS時間周波数比較技術	高速化	データ処理解析技術の高度化、受信機の高度化(多周波受信、搬送波位相利用)、GPS2周波(L1C, L2C)受信機+L5、Galilea受信機
	時間 周波数		衛星双方向時間周波数比較技術	高精度化	搬送波位相利用技術、データ処理技術、地球局内信号系の高安定化
	時刻		UTC(NMIJ)の高度化	高精度化	高安定原子時計、光周波数標準器の組込、時系生成アルゴリズム、原子時計間位相差高精度測定システム
		時系	TA(NMIJ)の構築 (高分解能位相差測定装置、	高分解能化	高分解能周波数調整技術
		时术	(高分解能位相差測定装置、	וויין דען נכל נייון	[1] 77 7F [107] WX XX [10] 正 [X [1]

計量・計測システム分野の技術マップ (2/71)

時間周波数計測(2/2)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
			遠隔校正技術	遠隔化	データ通信技術の汎用化
			(遠隔校正用利用者端末装置、計測機器組込型超小型遠隔校正端末装置、距離計等他量目分野の測定機器組込型端末装置、オンサイト・オンマ	高精度化	多周波受信機の実用化
	時間			低価格	高感度汎用GPS/GNSS受信エンジンの活用
	周波数 時刻	供給・校正		オンマシン	小型化と屋内での安定受信の実用化
	-121		シン・リアルタイム校正)	リアルタイム	システム全体のフレキシブル化
			直接校正技術 (原子発振器、商用発振器)	トレーサビ・リティ	時間周波数標準の維持・供給
	時間・周沢	セ米h . ロキ カリ	測位衛星システム	高精度化 安定化 高信頼化	GPS, GLONASS, Galileo, QZSS,・・・の基盤技術としての時間 周波数標準、同上のシステム時系維持発生技術
時間周	时间,归,	衛星測位利用技術		低価格化 高信頼化 高精度化	シームレス測位、GIS、G-空間プロジェクト、A-GPS/GNSSの 基本情報としての時間周波数基準
波	時間周況	皮数比較	ACES	高精度化	衛星搭載原子時計、高精度時間周波数比較
数計測	周波数	時間周波数比較 光ファイバ利用の高精度周波数比較 用装置		高精度化	周波数標準器の不確かさの低減に対応した比較装置の高精 度化
	问从效	供給	高精度光ファイバ基準周波数供給装 置	高精度化	先端技術分野の高安定周波数源のニーズに応じた高精度装置の開発
		供給	時刻認証、タイムビジネス	高信頼化 トレーサピリティ	セキュア通信技術、認証技術、時刻比較技術
	時刻	供給	NTP∕IEEE1588	高信頼化 高速化 高精度化	処理アルゴリズムの合理化、ファイアーウォール環境下での アクセスに関する技術課題、非対称通信路における精度向上
	時間•周波数	計測	周波数安定度·位相安定度·時間間 隔測定技術	高精度化 高速化 トレーサビリティ	高速ディジタル信号処理(高速サンプリング、高速処理)、温度特性向上、校正技術、パルス標準
	-71-7 7511020	宇宙	深宇宙での時間周波数標準技術	高精度化 高信頼化	搭載用機器の信頼性・軽量化・省電力化、微弱信号の信号処 理技術、超遠距離通信技術

長さ計測(1/4)

	寸法			古蚌市ル	無洗明の子姉によの方!
_	寸法			高精度化	標準器の不確かさの向上
		mm~mの寸法	寸法測定装置	高信頼性化オンマシン	光学的測定結果と機械的測定結果の関係付け in-situ測定、実時間測定、実環境測定、対象多様化、非接触 測定、遠隔測定への対応
				トレーサヒ゛リティ	工業規格に用いられる標準の維持・供給
				高精度化	測定の不確かさの向上
	段差	mm~mmの段差	段差測定装置	ダ・イナミックレンジ	空間分解能の向上、測定ダイナミックレンジ拡大
	熱膨引	長係数	長さ標準器	高精度化高信頼性化	寸法の不確かさの向上(低熱膨張係数材料の利用、熱膨張 係数測定の不確かさの向上) 長期安定性向上、温度範囲拡大
1				微小化	小試験片対応、熱膨張率分布測定手法の開発
				高精度化	比例誤差、周期誤差の低減
1				高速化	データ処理の高速化
1				トレーサビリティ	現状(<200 m)のトレーサビリティ維持(0.2 mm)
1			光波距離計	トレーサヒ・リティ	kmレンジ
			元 灰 距離計 (トータルステーション)	トレーサヒ゛リティ	ノンプ [°] リス [*] ム距離計における反射面特性多様性の評価法確立
1			(,),,,,,	トレーサビリティ	プリズム定数の不確かさ低減
1				トレーサビリティ	測距基線の空気屈折率の補正法
				トレーサビリティ	座標測定の不確かさ低減
1				遠隔化 高精度化	周波数の遠隔校正 誤差要因の解明(伝搬誤差、位相誤差)
1				安定化	大気遅延補正法の開発による長期安定性向上
				トレーサヒ゛リティ	光波距離計(トータルステーション)との一致
			ODO 05 ##=1	トレーサヒ゛リティ	長距離評価用距離計の不確かさ低減
			GPS距離計	トレーサヒ゛リティ	大気モデルの確立
				トレーサビリティ	測距中心の決定方法確立
1				トレーサヒ゛リティ	座標測定の不確かさ低減
1	距	離		遠隔化	周波数の遠隔校正
				高分解能化 高精度化	10 mまでの測定技術開発。新規測定法探索(パルス法、多波長干渉法、光コム法)
			絶対距離計(近·中距離)	高精度化高感度化	100 mまでの測定技術開発。新規測定法探索(パルス法、多 波長干渉法、光コム法)
1				高悠度10 トレーサビリティ	反射鏡以外へのタードット拡大のための高感度検出法の開発 光コム、周波数標準に基づく測定法の開発
1				遠隔化	周波数の遠隔校正
長					長距離の高精度化技術開発。新規測定法探索(パルス法、
長さ計				タ・イナミックレンシ・	多波長干渉法、光コム法)
測				高精度化	空気屈折率補正式の高精度化
1				実環境	長距離空気屈折率測定、直接測定、自動補正
			絶対距離計(長距離、大気中)	基盤技術	光コム、多波長光源
1				高速化	データ取得、解析
				<mark>トレーサヒ[*]リティ</mark> 遠隔化	評価設備の開発。光コム、周波数標準に基づく測定法の開発 周波数の遠隔校正
-					
			絶対距離計(長距離、真空中)	タ・イナミックレンシ・	長距離の高精度化
				遠隔化	周波数の遠隔校正
				高精度化	100 mまでの測定技術開発。新規測定法探索(パルス法、多 波長干渉法、光コム法)
	距	離		実環境	空気屈折率測定、直接測定、自動補正
			絶対距離計(三次元)	多次元化	走査、多点化
				高速化	生産ラインのモニタ技術開発
				高感度化	ターゲット拡大。航空・自動車・構造物の高精度形状測定技 術開発
ı H				遠隔化 高精度化	周波数の遠隔校正 空気屈折率補正式の高精度化
				実環境	長距離空気屈折率測定、直接測定、自動補正法の開発
	空気唇	I 折率	空気屈折率計	機能拡大	位相屈折率、群屈折率、波長分散、波長領域の拡大(EUV、THz)、高強度効果(非線形光学効果、ブレークダウン)
				トレーサヒ [*] リティ 遠隔化	光コム、周波数標準に基づく測定法の開発 オンサイト測定、周波数標準の遠隔校正
i F				機能拡大	合成波干渉計、白色干渉計、パルス干渉計技術の開発
				実環境	長距離空気屈折率測定、直接測定、自動補正
				高精度 高分解能化	ピコメートル(ナノテク、基礎定数、宇宙ミッション)、光コム、周 波数測定の活用
				高精度 高分解能化	ピコメートル(宇宙ミッション)、光コム、周波数測定の活用
	変	位	干渉測長器	高速化	高速センシング対応、絶対位置の保持による測定の効率化
	~			多次元化	形状測定
				内部測定	デバイス・生体の形状・構造測定
				トレーサヒ゛リティ	供給維持
				トレーサヒ゛リティ	位相内分精度に対する保証
				トレーサビリティ	光コム、周波数標準に基づく測定法の開発
ـــــــــــــــــــــــــــــــــــــــ				遠隔化	オンサイト測定、周波数標準の遠隔校正

長さ計測(2/4)

大分類	中分類	小分類	装置名	課題	技術課題(== 要課題 == 最重要課題
				応用性 (機能拡大)	帯域選択、高モード強度化、任意波長発生、波長範囲の拡大
	光	源	光コム(長さ計測用)	小型化 システム化 低価格化	ファイバ技術の活用
				安定化	実用的な安定性
			波長安定化固体光源	低価格	プリンタブルDFB-LDなど新技術の開発
	光	源		応用性 (範囲拡大)	任意波長発生、波長範囲の拡大
			ランプ光源	高精度化	動作環境依存性の評価
			フンノ元源	トレーサビリティ 高度化	波長のトレーサビリティの確保、不確かさ低減 代替光源の開発(波長精度・範囲、価格)
				高分解能化	位置決めセンサの高分解能化(最高分解能)
				高精度化	位置決めセンサの精度保証
		位置決め精度	位置センサ	トレーサヒ゛リティ	超高分解能位置決めセンサのメートルトレーサブルな校正
	精密位置決め用			高速化	内挿回路および通信速度の高速化により読み取り速度を向
	の位置・変位計測			安定化	 上 耐環境性の向上(工場等使用環境における安定動作性)
		位置決め制御	アクチュエータ・コントローラ	高速化	移動速度向上、制御速度向上
		位置決め範囲	アクチュエータ・ガイド	ダイナミックレンシ	フラットパネルディスプレイ製造等のための高精度・大ストローク化
		検査·評価	標準尺·基準尺	高精度化	形状評価技術の高精度化(標準の高精度化)
			固体屈折率標準	トレーサヒ゛リティ	測定範囲の拡大、測定波長の拡大(ランプ、広帯域光源、光コムの活用)、光源波長トレーサビリティ確保
				高信頼性化	新規測定技術の開発、測定精度の向上
			屈折率測定機	高信頼性化	測定波長の拡大
				高信頼性化	負の屈折率(メタマテリアル)への対応
	光学定	数測定		高信頼性化高精度化	空間分解能の向上
			吸収係数測定機	トレーサビリティ 高信頼性化	対象形状の多様化、測定波長の拡大(透過帯~吸収帯)、高
					感度化
			非線形屈折率測定機	高精度化	測定精度の向上
	1		旋光性測定機	高分解能化高速化	測定対象の微細化に対応 スキャニング速度向上、移動速度向上
_				高精度化	スキャニング測定精度向上、非接触高精度センサ開発、動的補正法の開発
長さ計				極端環境下	温度環境性能の向上
			座標測定機(CMM)	システム化	不確かさ計算ソフト確立、効率的空間補正データ処理開発
測				高信頼性化	高精度・環境ロバストな標準器開発、装置評価方法の規格 化、日常点検手法の確立
				トレーサヒ゛リティ	画像プローブ式測定機用校正チャート範囲拡大
				トレーサヒ゛リティ	不確かさ算出手法確立、技能認定制度の確立
				遠隔化	JCSSへの対応
			非接触座標測定機(移動機構無)	高精度化 高速化	撮像等デバイス開発 測定時間の短縮
				高信頼性化	装置評価方法の規格化、環境ロバストな標準器開発、測定結果評価ソフトウェア技術開発、ノイズ処理手法確立
				微小化	小型、軽量化
				トレーサヒ゛リティ	不確かさ算出手法確立、解析ソフトウェア評価
				高精度化	関節角度測定精度向上、環境ロバスト性向上
			アーム式座標測定機	高信頼性化スマート化	高精度・環境ロバストな標準器開発、装置評価方法の規格化 軽量化
				トレーサヒ・リティ	不確かさ算出手法確立
	三次元座標計測	位置 寸法 幾何学形状		高精度化	角度測定の精度向上、空気屈折率補正技術、測長精度の向 上
		双門士炒仏	レーザトラッカ	ダイナミックレンシ ゛	測長可能距離の向上
				高信頼性化	高精度・環境ロバストな標準器開発、装置評価方法の規格化
				トレーサビリティ	不確かさ算出手法確立 測長精度の向上
			レーザレーダー	高精度化 高信頼性化	測長精度の同上 装置評価方法の規格化
				トレーサビリティ	不確かさ算出手法、トレーサビリティシステム
				高精度化	測長技術向上、空間補正機能
				タ・イナミックレンシ・	測定領域の拡大、プローブ開発
			非球面・自由形状測定機(接触式)	高信頼性化	高精度・環境ロバストな標準器開発、装置評価方法の規格化
				高速化	スキャニング速度向上
				トレーサビリティ	不確かさ算出手法確立 又線海の終し、悪火素子関発、エッジ栓出手法の確立
				高精度化 高信頼性化	X線源の絞り、受光素子開発、エッジ検出手法の確立 各種ファントム開発、装置評価法の規格化
			工業用X線CT装置	高速化	スキャニング速度向上、画像生成アルゴリズム改良
				低価格	低コスト化のための技術開発
				トレーサビリティ	不確かさ算出手法確立
			オンライン超高速三次元画像計測・	高分解能化オンマシン	画像プローブの測定分解能向上
			形状計測装置	トレーサヒ・リティ	オンマシン・高速測定への対応、ダイナミックレンジ拡大 ダイナミックレンジ拡大
			<u> </u>	,.,,,,	

長さ計測(3/4)

大分類	中分類	小分類	装置名	課題	技術課題(二重要課題 是重要課題
				多次元化	高アスペクト比をもつ構造への対応
			μ-CMM	トレーサビリティ	測定範囲の拡大と不確かさの低減
				遠隔化	仲介器の開発、JCSSへの対応
	メゾスケール形状	立体形状		安定化	多様な材料への対応
	計測	J 14 115 11X		微小化	小径化
			微細加工形状評価装置	トレーサビリティ	加工形状試験法の標準化
				多次元化	内面テーパ、異形噴孔
				省エネ化	小径化、内面テーパ、異形噴孔、多数孔化、異種燃料対応
		寸法測定		高精度化	測長低速電子線走査型電子顕微鏡による寸法測定
		側壁形状		高精度化	側壁構造と側壁粗さのインライン計測装置・計測技術開発
					新規材料(低誘電率(k)材料、電子ビームにより劣化する極紫
		回路寸法管理		高精度化	外線フォトレジスト)の非破壊計測
		ドーパント		 高精度化	イオン注入層における実時間でのインライン3Dドーパント分布計測
		1-7121		同相反化	
		材料構造		高精度化	SEM複合装置化(透過型電子顕微鏡(TEM)、スキャンTEM) の開発
		微細構造		高精度化	空間解像度、化学的感度、データ取得速度、ノイズ信号の理
	微小寸法	W W T X		IN THE STATE OF TH	論限界のブレークスルーのための装置開発研究
	形状計測	アスベスト含有率	走査電子顕微鏡(SEM)	高精度化	EDS機能による大気中繊維状粒子のナノメートル定性分析・
	וא ומאריכוו	ノスペスドロ有半		同相反化	定量化技術
		汚染粒子		支持	
		欠陥検出		高精度化	ウェハー上の付着固体粒子の計数技術と測定器の校正技術
		粒子径·結晶粒径		高精度化	金属触媒を含有したコロイド試料調整方法とその計測技術
		めっき厚さ	1	高精度化	断面試料作製とその計測技術
		セラミクス固相構造		高精度化	セラミクスの試料調整技術と非晶質界面検出技術
		こハハ川 沿隅辺	1		
		 		高精度化	標準試料からの2次電子信号をもちいた倍率校正技術開発
		校正基準		トレーサビリティ	標準試料校正技術
				トレーサビリティ	倍率校正用標準試料の微細化
				高速化	探針小型化、機械的剛性、高速制御技術
				高分解能化	探針の先鋭化、ノイズ低減
				高分解能化	プローブ顕微鏡(SPM)による側壁・ホールの評価
				- det 11	デバイス・マスク線幅、線幅ラフネス、EUVマスクパターン側壁
				高精度化	角度測定
				大面積化	スキャナの長ストローク化と低ノイズ化の両立、大面積校正
				高信頼性化	用標準試料
		— vb — 如b vm m v 山		複合化	マルチプローブ、アレイ化、並列加工との連携
		三次元微細形状・ 寸法 			
				複合化	材料特性の同時取得
長	微小寸法 形状計測			高信頼性化	プローブの安定性、評価方法、付加機能
長 計			走査型プローブ顕微鏡 	複合化 高信頼性化	微小力の測定
測				トレーサビリティ	
				トレーサビリティ	線幅ラフネス校正技術
				高精度化 ダイナミックレンジ	ピッチ標準、段差標準の維持、微細化対応
					Company of the Author State of the Company of the C
		粗さ計測		高信頼性化	MEMSデバイス等の側壁面の粗さ計測精度
		чисития		高信頼性化	探針先端の摩耗評価、試験方法の標準化、トレーサビリティ
		歪み計測		中華制字	チップ増強近接場ラマン分光の高分解能化、信号強度の再
		定の計測		内部測定	現性、歪みの定量化
		側壁膜厚		内部測定	Fin-FETやMEMSデバイスの非破壊側壁膜厚の計測
				極端環境下	多層膜、小試料の測定
				高精度化	X線波長トレーサビリティの確立
		周期構造スケール	X線小角散乱	高精度化	
		i .			田度計測()) 小惟かるは湯
					角度計測の不確かさ低減
		六 /+ #	√ 《白 BE 《朴 A产	システム化	ラボソース光源による装置のコンパクト化
		立体構造	X線顕微鏡	システム化 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発
	Abs - · ·	立体構造 格子定数	X線顕微鏡 X線干渉計、X線回折	システム化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化
	微小寸法	格子定数	X線干渉計、X線回折	システム化 高分解能化 高精度化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立
	微小寸法 形状計測			システム化 高分解能化 高精度化 高精度化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化
		格子定数	X線干渉計、X線回折 X線回折を用いた熱膨張係数	システム化 高分解能化 高精度化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減
		格子定数材料熱膨張	X線干渉計、X線回折	システム化 高分解能化 高精度化 高精度化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立
		格子定数	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計	システム化 高分解能化 高精度化 高精度化 高分解能化 トレーサビリティ	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去
		格子定数材料熱膨張	X線干渉計、X線回折 X線回折を用いた熱膨張係数	システム化 高分解能化 高精度化 高精度化 高精度化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減
		格子定数 材料熱膨張 光学式段差	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計	システム化 高分解能化 高精度化 高精度化 高分解能化 レーサビリティ 高分解能化 レーサビリティ	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定
		格子定数材料熱膨張	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計	ジステム化 高分解能化 高精度化 高精度化 高分解能化 レーサビリティ 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去
		格子定数 材料熱膨張 光学式段差	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置	システム化 高分解能化 高精度化 高精度化 高分解能化 レーサビリティ 高分解能化 レーサビリティ	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定
		格子定数 材料熱膨張 光学式段差	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測	ジステム化 高分解能化 高精度化 高精度化 高分解能化 レーサビリティ 高分解能化 レーサビリティ 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定
		格子定数 材料熱膨張 光学式段差 線幅	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置	ジステム化 高分解能化 高精度化 高精度化 高分解能化 レーサビリティ 高分解能化 レーサビリティ 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルコリス、ムの開発
		格子定数 材料熱膨張 光学式段差 線幅	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プロープ方式等)	ジステム化 高分解能化 高精度化 高角度化 高分解能化 レーサビリティ 高分解能化 レーサビリティ 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルコリス、ムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセス
		格子定数 材料熱膨張 光学式段差 線幅 粗さ	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プロープ方式等) 屈折率・光路長、光拡散率の測定機	ジステム化 高分解能化 高精度化 高精度化 高分解能化 レーサビリティ 高分解能化 レーサビリティ 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルコリス、ムの開発
		格子定数 材料熱膨張 光学式段差 線幅	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プロープ方式等) 屈折率・光路長、光拡散率の測定機 液侵リソグラフィーにおける液体屈折	ジステム化 高分解能化 高精度化 高精度化 高分解能化 ルーサビリティ 高分解能化 トーサビリティ 高分解能化 高分解能化 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルコリス、ムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセスでの計測
		格子定数 材料熱膨張 光学式段差 線幅 粗さ	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プロープ方式等) 屈折率・光路長、光拡散率の測定機	ジステム化 高分解能化 高精度化 高角度化 高分解能化 レーサビリティ 高分解能化 レーサビリティ 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルコリス、ムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセス
		格子定数 材料熱膨張 光学式段差 線幅 粗さ 光学特性	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プロープ方式等) 屈折率・光路長、光拡散率の測定機 液侵リソグラフィーにおける液体屈折	ジステム化 高分解能化 高精度化 高特度化 高分解能化 レーサビリティ 高分解能化 トレーサビリティ 高分解能化 高分解能化 高分解能化 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルゴリス「ムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセスでの計測 液体屈折率分布測定法の開発、空気バブルの検出技術
	形状計測	格子定数 材料熱膨張 光学式段差 線幅 粗さ	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 自色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プロープ方式等) 屈折率・光路長、光拡散率の測定機 液侵リソグラフィーにおける液体屈折 率分布・パブルの測定機	ジステム化 高分解能化 高精度化 高精度化 高分解能化 ルーサビリティ 高分解能化 トーサビリティ 高分解能化 高分解能化 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルゴリス、ムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセスでの計測
	形状計測 微小寸法	格子定数 材料熱膨張 光学式段差 線幅 粗さ 光学特性	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プローブ方式等) 屈折率・光路長、光拡散率の測定機 液侵リソグラフィーにおける液体屈折 率分布・バブルの測定機 ハードディスク(HDD)のスライダーの 粗さ・浮上量の測定機	ジステム化 高分解能化 高精度化 高精度化 高分解能化 レーサビリティ 高分解能化 トレーサビリティ 高分解能化 高分解能化 スマート化 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルゴリス、ムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセスでの計測 液体屈折率分布測定法の開発、空気パブルの検出技術 ギャップ測定の測長分解能
	形状計測 微小寸法	格子定数 材料熱膨張 光学式段差 線幅 粗さ 光学特性	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プローブ方式等) 屈折率・光路長、光拡散率の測定機 液侵リソグラフィーにおける液体屈折 率分布・バブルの測定機 ハードディスク(HDD)のスライダーの	ジステム化 高分解能化 高精度化 高特度化 高分解能化 レーサビリティ 高分解能化 トレーサビリティ 高分解能化 高分解能化 高分解能化 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルゴリス、ムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセスでの計測 液体屈折率分布測定法の開発、空気パブルの検出技術 ギャップ測定の測長分解能 微小非球面の補償光学等の高精度化
	形状計測 微小寸法	格子定数 材料熱膨張 光学式段差 線幅 粗さ 光学特性	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プローブ方式等) 屈折率・光路長、光拡散率の測定機 液侵リソグラフィーにおける液体屈折 率分布・バブルの測定機 ハードディスク(HDD)のスライダーの 粗さ・浮上量の測定機	ジステム化 高分解能化 高精度化 高精度化 高分解能化 レーサビリティ 高分解能化 トレーサビリティ 高分解能化 高分解能化 スマート化 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルコリスムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセスでの計測 液体屈折率分布測定法の開発、空気バブルの検出技術 ギャップ測定の測長分解能 微小非球面の補償光学等の高精度化 光学横分解能の大幅な向上、照明波長の短波長化、高NA液
	形状計測 微小寸法	格子定数 材料熱膨張 光学式段差 線幅 粗さ 光学特性 ギャップ 自由平面	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計測装置 他手法と互換の取れる光学式粗さ測定機(干渉画像方式、光ブローブ方式等) 屈折率・光路長、光拡散率の測定機 液侵リソグラフィーにおける液体屈折率分布・パブルの測定機 ハードディスク(HDD)のスライダーの粗さ・浮上量の測定機 光学式微小レンズ非球面測定装置	ジステム化 高分解能化 高精度化 高特度化 高分解能化 レーサビリティ 高分解能化 レーサビリティ 高分解能化 スマート化 高分解能化 スマート化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルゴリズムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセスでの計測 液体屈折率分布測定法の開発、空気バブルの検出技術 ギャップ測定の測長分解能 微小非球面の補償光学等の高精度化 光学横分解能の大幅な向上、照明波長の短波長化、高NA液 侵レンズ、近接場光の利用
	形状計測 微小寸法	格子定数 材料熱膨張 光学式段差 線幅 粗さ 光学特性 ギャップ 自由で一般	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計 測装置 他手法と互換の取れる光学式粗さ測 定機(干渉画像方式、光プロープ方式等) 屈折率・光路長、光拡散率の測定機 液侵リソグラフィーにおける液体屈折 率分布・パブルの測定機 ハードディスク(HDD)のスライダーの 粗さ・浮上量の測定機 光学式微小レンズ非球面測定装置 光学スーパーレンズの開発	ジステム化 高分解能化 高精度化 高精度化 高清度化 高分解能化 ルーサビリティ 高分解能化 トレーサビリティ 高分解能化 スマート化 高分解能化 スマート化 高分解能化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルゴリス、ムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセスでの計測 液体屈折率分布測定法の開発、空気バブルの検出技術 ギャップ測定の測長分解能 微小非球面の補償光学等の高精度化 光学横分解能の大幅な向上、照明波長の短波長化、高NA液侵レンズ、近接場光の利用 サブマイクロメートル精度の計測
	形状計測 微小寸法	格子定数 材料熱膨張 光学式段差 線幅 粗さ 光学特性 ギャップ 自由平面	X線干渉計、X線回折 X線回折を用いた熱膨張係数 位相シフト顕微干渉計 白色干渉顕微干渉計 集積回路の光学式線幅・パターン計測装置 他手法と互換の取れる光学式粗さ測定機(干渉画像方式、光ブローブ方式等) 屈折率・光路長、光拡散率の測定機 液侵リソグラフィーにおける液体屈折率分布・パブルの測定機 ハードディスク(HDD)のスライダーの粗さ・浮上量の測定機 光学式微小レンズ非球面測定装置	ジステム化 高分解能化 高精度化 高特度化 高分解能化 レーサビリティ 高分解能化 レーサビリティ 高分解能化 スマート化 高分解能化 スマート化	ラボソース光源による装置のコンパクト化 空間分解能の向上、検出系の高感度化、X線光源の開発 姿勢制御、移動制御の高精度化 X線波長トレーサビリティの確立 角度計測の不確かさ低減 0.05 nm以下の分解能、参照鏡の粗さの影響除去 白色干渉ヘッドの走査変位量の絶対測定 横分解能の向上 光、触針、AFMで粗さ測定の整合性:補正アルゴリズムの開発 FDP等で必要とされる屈折率、光路長、拡散率のインプロセスでの計測 液体屈折率分布測定法の開発、空気バブルの検出技術 ギャップ測定の測長分解能 微小非球面の補償光学等の高精度化 光学横分解能の大幅な向上、照明波長の短波長化、高NA液 侵レンズ、近接場光の利用

長さ計測(4/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
				高精度化	表面性状の三次元的な測定技術の開発
				多次元化	表面性状の三次元的な評価技術の開発と規格化(GPS)
			# # # # # # # # # # # # # # # # # # #	トレーサビリティ	表面性状の三次元的な校正技術の開発と標準供給
	幾何偏差	表面性状測定機	触針式粗さ計	トレーサビリティ	計算機によるシミュレーション技術を用いた表面性状における 不確かさの評価
				トレーサビリティ	表面性状の標準供給の維持と規格(GPS)への対応
					レーザプローブ方式(レーザ顕微鏡等)、光干渉顕微方式等
			非接触式粗さ計	高信頼性化	の規格化
				高精度化	円筒や球形状の高精度計測技術の開発
	幾何偏差	幾何偏差量測定 機	真円度測定機	トレーサビ・リティ	計算機によるシミュレーション技術を用いた真円度測定にお ける不確かさの評価
		12%		トレーサヒ・リティ	真円度の標準供給の維持と規格(GPS)への対応
				高精度化	最高測定能力の向上、450 mmウェハー対応 (P-V) (nm)
				高精度化	最高測定能力の向上、300 mmウェハー対応 (P-V) (nm)
			平面度測定機	高精度化	最高測定能力の向上、150 mmウェハー対応 (P-V) (nm)
長			(ウェファー、オプチカルフラット用)	高精度化	汎用機の測定不確かさ低減 (nm)
<u>ک</u> خ			フィゾー干渉計	高精度化	参照平面形状補正技術の開発
き計		₩=	斜入射干渉計 静電容量式	オンマシン	測定時間の短縮、対環境性の向上
測		平面	角度測定方式	多次元化	裏面形状、厚さ分布測定
				トレーサビリティ	不確かさ評価法の確立
				トレーサビリティ	オプチカルフラット、高精度ミラー等の検査・計測・校正
	表面形状		平面度測定機(マスクガラス用) フィゾー干渉計	高精度化	重力たわみ問題の解決
		≖ 4±	球面干渉計	高精度化	参照球面形状補正技術の開発
		球面	(フィゾー干渉計)	トレーサヒ・リティ	不確かさ評価法の確立
			JL-sh	高精度化	最高測定能力 (nm) for F/0.7
			非球面形状測定装置	同作技化	精度評価技術の確立
		軸対象非球面	フィゾー干渉計方式 CGH方式	低価格	CGH材料開発
			シヤリング干渉計方式	高速化	測定時間の短縮
				トレーサヒ゛リティ	不確かさ評価法の確立
		自由曲面	非接触形状測定装置 縞投影方式 角度測定方式	ダイナミックレンジ	大型ディスプレイ等対応技術の開発
				高精度化	ナノラジアンの分解能と精度
			オートコリメータ	トレーサビ・リティ	微小領域の角度校正技術の高度化、JIS等で規定された検査 で用いられるオートコリメータの校正
			1) 244 15 Mil. 11 27 199 - 144 779	極端環境下	微小面積に対する高速計測
角度		N角 域	光学式微小角測定装置	極端環境下	粗面に対する高速計測
泛	預	构	NG 6시 = L	高精度化	高分解能傾斜計・水準器の校正装置
			傾斜計 デジタルレベルシステム	トレーサビリティ	底面と目盛軸との直角度
				システム化	デジタルレベルと測量用スタッフのシステム校正
			角度干渉計	高精度化	校正装置
				高精度化	ベアリング、目盛盤等の部品加工精度を高めた高精度化
				高分解能化	実目盛数増加
				高信頼性化	内挿分割器の向上による高分解能化(分割値の理想分割値 からの偏差)
	◇田	領域	ロータリエンコーダ	オンマシン	使用環境下での信頼性向上、経年変化や偏心による角度偏 差要因の低減
角度	王周	原 -5X		低価格	技術開発による低価格化の実現
度				複合化	高温化での角度計測技術の向上
				高速化	加工機における回転角速変化(角加速度)校正技術
				高精度化	高精度ロータリエンコーダ校正装置の技術開発
			ロータリエンコーダ校正装置	低価格	不確かさ0.1 の校正装置の価格
	全角原	度領域	角度標準化技術	トレーサビリティ	角度校正技術の範囲拡大
		位	Gyro, GPS	トレーサビリティ	校正技術の新規開発
					市場のニーズ及び国際基準への整合のための技術基準(JIS D 5609)の見直しを行う。適切な技術情報(多様化するタイヤ
	適合性	生評価	トリップメーター	高信頼性化	補正値)の提供がないと正確な試験の実施に問題が発生す
	ᄺᄓ	, IIII	, , , , ,	安全·安心	るため、タイヤ補正係数値付け機(仮称)を開発する。GPS機
					能を利用した距離測定の可能性
			巻尺	高精度化 高信頼性化	最長能力を向上(100 mまで)させ、鋼製巻尺標準供給を開始する
計量	+8 +6	測量用スタッフ(デジタル目盛含む)		トレーサビリティ	(1)パーコード目盛の追加(性能基準:インバーテープの安定性) (2)線幅(性能基準:日盛幅精度) (3)一次回帰の係数を校正結果とする校正(性能基準:標尺改正数) (4)線膨張係数(ISO12858-1)
	規格適合		直径測定	安定化 高精度化 低価格	内径·外径標準供給
			小径測定及び球測定	高信頼性化 安定化 トレーサピリティ	小径内径及び球の標準供給

力学計測(1/5)

大分類	中分類	小分類	装置名	課題	技術課題 (
			質量標準	高信頼性化 範囲拡張 高機能化	質量標準の維持・高精度化・範囲拡大と分銅校正作業の効率 化、微小質量標準の確立、カ・トルク・圧力・液体流量など質量 関連量の標準の設定・高精度化										
			時不変キログラム実現	高精度化	人工物によらないキログラムの再定義、新材料(スマート材料 など)、高機能皮膜、表面処理										
	分釒	洞等	分銅(JIS B 7609)	高信頼性化 範囲拡張 高機能化	現状の規格維持と問題点の抽出および改善、技術の進展を反映した規格の改定										
質			重錘型圧力天びん (JIS B 7610-1, 2, 3)	高信頼性化 範囲拡張 高機能化	重錘の質量の不確かさが圧力測定の不確かさに直接影響、 技術の進展を反映した規格の改定										
量計測	質量センサー・トランスデューサ		質量検出型センサー(MEMS)	高感度 高精度化	ナ/ギャップの作成加工技術、微小振動子の作成のためのMEMS 技術、PZTやZnO、AIN等の圧電・強誘電体薄膜の成膜・熱処 理										
		非自動はかり	非自動はかり関連の規格	高信頼性化 範囲拡張 高機能化	現状の規格維持と問題点の抽出および改善、技術の進展を反映した規格の改定										
	はかり	7F E 30/16/17	静的な質量計測を必要とする試験関 連の規格	高信頼性化 範囲拡張 高機能化	静的質量計測の信頼性確保、技術の進展を反映した規格の 改定										
		自動はかり	自動はかり関連の規格	高速 高信頼性化 範囲拡張 高機能化	質量の動的計測・組合せ計量										
			力標準	高信頼性化 範囲拡張 高機能化	力標準の維持・高精度化・範囲拡大と力計校正作業の効率化										
	静的力計測		静的力計測		触覚センサ	低価格	有機トランジスタを利用した低価格化								
													_		小型環境情報取得センサ ナノワイヤ評価技術
+			微小力	微小化 高精度化	「個小材料の応力量み曲線の計測于法 信頼性が高く可搬性を有する微小力標準										
力			風洞試験技術	高精度化	天秤(力)計測精度向上										
測			広帯域力センサ	ダイナミックレンジ	帯域10000倍、ヒステリシス0.1 %										
	動的力	力計測	周期的力・衝撃力	高速化	動的力発生装置の開発、力計の時間応答特性の向上、動的 環境での力計のトレーサビリティ確保										
			ハードディスクドライブヘッド	微小化	1 μNの感度、0.1 μNの精度、1 MHzの処理能力、0.1 %のドリフト										
•	材料試験		材料の引張・圧縮関連の規格	高信頼性化	試験片に負荷される圧縮・引張荷重の計測の信頼性確保、技 術の進展を反映した規格の改定										
									トルク標準	高信頼性化 範囲拡張 高機能化	トルク標準の維持・高精度化・範囲拡大とトルク計測機器校正 作業の効率化				
									(標準機、基準機、試験機)		高精度化	HDDシステムの精密トルク計測、磁気記憶装置のトルク計測 の技術障壁			
	静的			トレーサヒ゛リティ	トルク計測のトレーサビリティと信頼性確保										
	付けロンドンレン		静的トルク			高精度化	HDDシステムの精密トルク計測、磁気記憶装置のトルク計測 の技術障壁								
			トルク計測機器	微小化	微小トルク計測、MEMSへの適用、光学的手法										
				トレーサヒ゛リティ	トルク計測のトレーサビリティと信頼性確保										
1 . 1				高精度化	多分力計測システム										
トル			手動式トルクツール	高信頼性化	ねじ締結測定										
ク				高速化	データ集録、動的応答のモデリング										
計測			トルク計測機器	システム化	動的トルク発生装置の開発、トルク計の時間応答特性の向上、変換器の周期的入力や衝撃入力に対する動的応答特性評価										
	動的	トルク	トルク実現装置 (標準機、基準機、試験機)	トレーサビリティ	NMIからの動的トルク標準の提供										
	ונים שב		コントロール・モーメント・ジャイロ	高精度化	コントロール・モーメント・ジャイロの大容量化のための動的トルク計測の信頼性確保										
			高許容トルク減速機	高精度化	高容量トルク減速機の長寿命化のための動的トルク計測の高 精度化と信頼性確保										
			センサーによる、速度・トルクのモデル ベース学習	高精度化	センサーによる、速度・トルクのモデルベース学習のための動的トルク計測の高精度化										
	静的/動	静的/動的トルク .		トレーサビリティ	供試体・試験片に負荷されるトルクの計測の信頼性確保、NMI からの動的トルク標準の提供										
重力加	重力力	重力加速度標準		トレーサビリティ 高信頼性化 高機能化	重力加速度標準の維持・高精度化										
速	王/1/1		相対重力計(ばね型)	高精度化	標準設定のための高精度化										
度			絶対重力計(自由落下型)	高精度化	標準設定のための高精度化										
			絶対重力計(原子干渉計型)	高精度化	標準設定のための高精度化										

力学計測(2/5)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題)
				高信頼性化	半導体製造装置や結晶成長中の動的観察(リアルタイムプロセスモニタリング、反応圧力の測定)
				リアルタイム	光吸収、散乱、偏光、発光などによる、プラズマ種の同定、反 応過程の理解
			高信頼性化	真空断熱材、真空断熱熱輸送の性能・寿命評価	
				高信頼性化	信頼性あるガス放出速度精度、信頼性あるゲッター性能評価、ガス放出標準、ゲッター標準
				高信頼性化	真空溶融に関する技術、モニタリング
				高信頼性化	真空、乾燥空気等を利用したSF6使用量削減技術
				高信頼性化	燃料電池、水素ステーション、水素輸送、水素エンジン自動車 における水素計測技術
				微小化	微小領域における圧力測定
				リアルタイム	実環境TEMにおける観察環境圧力の測定
				リアルタイム	有機TFT、体質診断チップ、ウィルス・細菌同定センサ、有機トランジスタなど真空を利用するナノテクノロジー
				高信頼性化	超高温プラズマを磁気で封じ込めるドーナツ型トカマク融合炉 を利用した核融合エネルギー
				高精度化	希薄気体の動力学の改善
				高精度化	光吸収、散乱、偏光、発光などを利用した光学的な真空圧力 測定
	低真空、	、中真空	隔膜真空計、 スピニングローター真空計など	トレーサビリティ	膨張法による中真空標準の維持供給、高度化(スピニングロー タ真空計、隔膜真空計)
				トレーサビ・リティ	規格の国際整合化(真空計校正方法 JIS Z8750、ISO/TS 3567)
				トレーサビ・リティ	社会ニーズによる規格の発行と国際整合化(比較校正方法での測定の不確かさの求め方、ISO/TS 27893)
				トレーサビ゛リティ	社会ニーズによる規格の発行と国際整合化(スピニングロータ 真空計・ピラニ真空計・複合真空計・隔膜真空計の仕様の明確 化と測定不確かさ)
				トレーサビ・リティ	規格の国際整合化(熱伝導真空計による圧力測定方法 JIS Z8753)
圧 力				トレーサビリティ	規格の円滑な運用のための技術開発(液柱差を使う真空計による真空度測定方法 JIS Z8751)
計測				トレーサビリティ	技術の進展を反映した規格の改定と国際整合化(ターボ分子 ポンプの性能試験方法 ISO 5302)
				トレーサビリティ	技術の進展を反映した規格の改定と規格の国際整合化(排気 ポンプの性能試験方法:一般法 ISO 21360)
				トレーサビリティ	技術の進展を反映した規格の改定と規格の国際整合化(容積 移送式真空ポンプー性能試験方法 JIS B8316-1,-2、ISO 21360-2、ISO 1607-1,-2)
				トレーサビリティ	規格の円滑な運用のための技術開発(蒸気噴射真空ポンプー性能試験方法 JIS B8317-1,-2、ISO 1608-1,-2)
				高信頼性化	リアルタイムプロセスモニタリング
				高信頼性化	信頼性ある背圧測定
				リアルタイム	有機TFT、体質診断チップ、ウィルス・細菌同定センサ、有機トランジスタなど真空を利用するナノテクノロジー
				高信頼性化	超高温プラズマを磁気で封じ込めるドーナツ型トカマク融合炉を利用した核融合エネルギー
				高信頼性化	真空を利用した顕微鏡技術のアシスト(SEM、SPMなどの原子レベル解析能力の向上)
	高真空、超高原	真空、極高真空	電離真空計	高精度化	光吸収、散乱、偏光、発光などを利用した光学的な真空圧力測定
				ダイナミックレンジ	極高真空のための低ガス放出材
				トレーサビリティ	オリフィス法による高真空標準の維持と高精度化 技術の進展を反映した規格の改定と規格の国際整合化(真空
				トレーサビ゛リティ	計校正方法 JIS Z8750、ISO/TS 3567) 技術の進展を反映した規格の制定と規格の国際整合化(電離 真空計の仕様 ISO/DIS 27884)
				トレーサビリティ	技術の進展を反映した規格の改定と規格の国際整合化(熱陰 極及び冷陰極電離真空計による圧力測定方法 JIS 28752)
	高真空、超高真空、極高真空		高真空、超高真空、極高真空電離真空計		技術の進展を反映した規格の制定と規格の国際整合化(複合真空計・Crossed field ionization gauges・Ionization gauges with emissive cathodesの仕様の明確化と測定不確かさ)
					技術の進展を反映した規格の制定と規格の国際整合化(ターボ分子ポンプの性能試験方法 ISO 5302)

力学計測(3/5)

大分類	中分類	小分類	装置名	課題	技術課題(二重要課題)
				高信頼性化	半導体製造装置でのリアルタイムプロセスモニタリング
				高信頼性化	信頼性ある背圧測定
				高信頼性化	環境貢献度の定量評価(CO ₂ 、省エネ)
				高精度化	ウェハ基板表面の活性種の種類、エネルギー、物性変化表面 反応、形状、損傷
				高信頼性化	月探査(着陸探査センサ技術、月の大気成分の分析)
				高精度化	プラズマディスプレイ技術(低消費電力化) 紫外線発生効率 向上
				高信頼性化	真空を利用した顕微鏡技術のアシスト(SEM、SPMなどの原子レベル解析能力の向上)
				微小化	ハンドヘルド質量分析集積化のための関連部材(小型4重極、 小型イオン源、イオンセンサーなど)の小型化
			分圧真空計 	リアルタイム	有機TFT、体質診断チップ、ウィルス・細菌同定センサ、有機トランジスタなど真空を利用するナノテクノロジー
				高信頼性化	超高温プラズマを磁気で封じ込めるドーナツ型トカマク融合炉 を利用した核融合エネルギー
				スマート化	低圧混合ガスの標準
				高精度化	光吸収、散乱、偏光、発光などを利用した光学的な真空圧力 測定
				高信頼性化	高安定な分圧真空計、トレーサブルな分圧真空計
				トレーサビリティ	技術の進展を反映した規格の制定と規格の国際整合化(分圧真空計の仕様の明確化)
				トレーサビリティ	分圧標準の維持と高度化
	分	圧		トレーサビリティ	技術の進展を反映した規格の制定と規格の国際整合化(真空 計校正方法 JIS 28750, ISO/TS 3567)
				トレーサビリティ	技術の進展を反映した規格の制定と規格の国際整合化(ターポ分子ポンプの性能試験方法 ISO 5302)
				ダイナミックレンシ゛	半導体製造装置でのリアルタイムプロセスモニタリング
				ダイナミックレンジ	真空溶融に関する技術、モニタリング
				ダイナミックレンジ	呼気分析
				ダイナミックレンジ	CO2分離・回収技術、地中貯蔵に関する標準化、モニタリング
				高信頼性化	環境貢献度の定量評価(CO ₂ 、省エネ)
				ダイナミックレンジ	排ガス(NO _x など)処理のモニタリング
				タ゛イナミックレンシ゛	空気圧力制御、空気再生、空気浄化のモニタリング
圧 力 計				ダイナミックレンジ	天然ガス、石炭のガス化、バイオマスなど発電用燃料ガスの分析、モニタリング
測			分圧真空計+ガスサンプリング	高信頼性化	燃料電池、水素ステーション、水素輸送、水素エンジン自動車などの水素計測技術
				高信頼性化	超低劣化プラズマディスプレイのための材料開発(残留ガス分析)
				リアルタイム	実環境TEMにおける観察環境圧力の測定 有機TFT、体質診断チップ、ウィルス・細菌同定センサ、有機ト
				リアルタイム	有機「上」、体質診断するプ、ワイルス・細圏向足をプサ、有機トランジスタなど真空を利用するナノテクノロジー 環境中や生体中濃度モニタリング、センサー、化学物質や生
				ダイナミックレンジ	環境中や生体中温度モニダリング、ゼンサー、化学物質や生物物質、爆発物を検出するための高性能センサ 希薄気体の動力学の改善
				高精度化 スマート化	布溥気体の動力学の改善 低圧混合ガスの標準
				高信頼性化	低圧混合ガスの標準 高安定な分圧真空計、トレーサブルな分圧真空計
				高信頼性化	真空断熱材、真空断熱熱輸送
				高信頼性化	真空封着技術
				高信頼性化	スラブ・光導波路分光装置(白色光源、分光器、光ファイバー、CCD 検出器)、燃料電池、水素ステーション、水素輸送、水素エンジン自 動車における水素リーク計測技術
				高信頼性化	ガスバリア膜の性能評価
				高精度化	CO ₂ 貯留・隔離からの漏洩量評価
				高信頼性化	真空断熱材、真空断熱熱輸送の性能・寿命評価
				高信頼性化	超高温プラズマを磁気で封じ込めるドーナツ型トカマク融合炉 を利用した核融合エネルギー
				高信頼性化	リーク量のモデリング、標準リークの校正
				高信頼性化	ガス放出速度の標準
	U # -	ガフな中	リーク ガフサ山海南の河ウ	ダイナミックレンジ LLーサビリティ	極高真空のための低ガス放出材
	リーク、ガス放出		リーク、ガス放出速度の測定 	トレーサビリティ	リーク標準の維持と高度化 規格の円滑な運用のための技術開発(発泡漏れ試験方法 JIS Z 2329)
				トレーサヒ゛リティ	対係の進展を反映した規格の制定化(ヘリウム漏れ試験方法の種類及びその選択 JISZ2330)
				トレーサビ・リティ	規格の円滑な運用のための技術開発(ヘリウム漏れ試験方法 JIS Z 2331)
				トレーサビリティ	技術の進展を反映した規格の制定(放置法による漏れ試験方法 JIS Z 2332)
				トレーサピリティ	規格の円滑な運用のための技術開発(アンモニア漏れ試験方法 JIS Z 2333)
				トレーサビ・リティ	技術の進展を反映した規格の改訂(真空技術-質量分析計形 リークディテクター校正方法 JIS Z8754, ISO 3530)
					技能認定制度、人材育成

力学計測(4/5)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題)
			シミュレーションによる可視化	高信頼性化	半導体製造装置の装置内現象予測モデル、プロセス出来映え 予測モデル
				トレーサヒ・リティ	重錘形圧力天びん、圧力センサなどの圧力標準の維持と高度 化(気体ゲージ圧力・気体絶対圧力・液体圧力標準・微差圧標 準)
				トレーサビ・リティ	社会ニーズによる重錘形圧力天びん・圧力センサを用いた低 圧力標準の制定と維持、高度化(低圧力への範囲拡大、真空 領域との整合性、不確かさ減少)
				トレーサビリティ	水素製造、貯蔵、運搬施設などでの気体高圧力標準の制定と 維持、高度化(段階的に〜35 MPa、〜70 MPa、〜140 MPa)
			圧力標準器	トレーサビリティ	社会ニーズによる変動圧力標準器、圧力センサを用いた変動 圧力標準の制定のための技術開発
				トレーサヒ゛リティ	社会ニーズによる重錘形圧力天びん、圧力センサを用いた標準の維持と高度化(遠隔校正システム)
				高精度化	不確かさ向上
				高精度化	ピストン・シリンダの形状測定(円筒度など)
				高精度化	標準状態での有効断面積の計算(理論式、モデリング)
				高精度化	有効断面積の圧力変形係数の高精度決定(実験)、及び制御
				高精度化	有効断面積の圧力変形係数の高精度決定(シミュレーション)
				高精度化	無回転ピストン浮揚技術の開発
				高精度化	ピストン・シリンダの圧力変形のその場観察
				高精度化	圧力発生時の圧力天びん内の温度分布の測定
				高精度化	圧力発生時のベルジャー内の圧力分布の測定(絶対圧力)
				スマート化	任意圧力の発生技術(発生圧力を連続的に変化させる技術)
				スマート化	自動校正技術
				遠隔化	通信手段の確保、プロトコルの開発、堅牢性の確保
				トレーサビリティ	規格の円滑な運用のための技術開発(重錘形圧力天びん-1,-2,-3 JISB7610-1,-2,-3)
圧				高精度化	光波干渉式標準器の整備、不確かさ減少
力 計	圧力	計	圧力標準器	トレーサビリティ	重錘形圧力天びん、密閉式ピストン・シリンダを用いた1 GPa超の圧力の安定発生技術
測				高精度化	重錘形圧力天びん、密閉式ピストン・シリンダを用いた1 GPa超の圧力領域での発生圧力の評価(圧力変形量、摩擦等の計算、シミュレーション)
				ダイナミックレンジ	1 GPa超の圧力でも使用できる圧力媒体の探索、評価
				高信頼性化	超高圧プレス(ダイアモンドアンビル、マルチアンビル装置)を用いた圧力媒体の静水圧性の評価(GPa超の圧力領域)
				ダ・イナミックレンジ	ダイヤモンドアンビルセルを用いた300 GPa以上の超高圧力発生技術の構築
				ダ・イナミックレンジ	300 GPa以上の圧力評価技術(ダイヤモンドのラマンシフト法)、精度の向上
			[+ 7 + "	高信頼性化	GPa領域での圧力マーカの探索(ルビーの蛍光など)、信頼性評価
			圧カスケール	高信頼性化	圧力マーカの分野横断的、国際的な合意形成 ************************************
				高精度化	水銀、ビスマスなどの相転移圧力の精密測定
				トレーサビリティ	圧力定点実現セルの開発・供給
			微小領域における物理量計測技術	微小化	センサの微細化によるサブミクロン領域の圧力計測(平面上の圧力分布)
				微小化	センサの微細化によるサブミクロン領域の圧力計測(圧力の空間分布)
			触覚センサ	人間感覚	圧力触覚センサによる人間の運動機能の高感度測定技術
				高信頼性化	国際的な合意形成、規格作成
			血圧計	リアルタイム	リアルタイム計測
			,⊥₽1	高信頼性化	長時間·無拘束測定
				遠隔化	体内深部の血圧測定
			眼圧測定装置	ライフ	眼圧測定装置の精度向上
			圧力計、圧力センサ	高分解能化	高分解能感圧素材の発明、改良
			圧力計、圧力センサ	高信頼性化	詳細な特性評価(環境の影響、経時変化、ヒステリシス等)
			エカロ、エカモング	極端環境下	極端環境下での特性評価(高温環境など)

力学計測(5/5)

大分類	中分類	小分類	装置名	課題	技術課題(■重要課題
		•		高速化	リアルタイム計測
				遠隔化	測定の無線化
				トレーサビリティ	圧力計の簡便な校正システムの構築
				高信頼性化	多種圧力媒体への拡張(窒素、CO2、水素など)
				高信頼性化	材料合成プロセスのグリーン化・シンプル化を目指した超高 温・高圧反応制御技術
				高信頼性化	食品製造プロセスでの高圧処理技術
				高精度化	海底の圧力精密測定による地殻変動測定技術
				高信頼性化	宇宙の有人施設における空気圧力制御技術
				高信頼性化	大推力エンジン技術
				高精度化	金属ガラス製圧カセンサの高度化、ブレーキ油圧制御技術
				高信頼性化	CO ₂ の分離・回収における高圧利用技術(物理吸収法、膜分離法、物理吸着法など)
				高信頼性化	CO₂の地中圧入技術
圧力	F-	L=1	圧力計、圧力センサ	高信頼性化	高圧貯蔵タンク(70 MPa級)の性能向上(軽量化、貯蔵量の増大)、容器システムの安全性・信頼性向上技術
計	上,	力計		高信頼性化	水素貯蔵・輸送技術
測				高信頼性化	圧力制御による顕熱蓄熱技術
				高信頼性化	高圧利用による大型単結晶育成技術
				高分解能化	ロボットの環境認識能力向上(高分解能、高空間分解能化)
				スマート化	インテリジェント溶媒(例: 発光特性を利用したナノ粒子分散型 圧力検知溶媒)
				トレーサピリティ	規格の円滑な運用のための技術開発(デジタル圧力計の特性 試験方法及び校正方法 JISB7547、アネロイド型圧力計-1- 2-3 JISB7505-1-2,-3、油圧一測定技術一第2部:管路にお ける平均定常圧力の測定 JISB9939-2、工業プロセス用圧 力・差圧伝送器の試験方法 JISC1031、鉄道車両用ブルドン 管圧力計 JISE4118、船舶一圧力計の装備基準 JISF7003、 可燃性粉じんの爆発圧力及び圧力上昇速度の測定方法 JISZ8817)
			耐圧技術	高信頼性化	(アスベスト代替物質での)耐圧シール材の開発
			パッケージ技術、封止技術	高信頼性化	耐高温·高圧接合技術、高温·高圧対応MEMS製品製造技術
			計量器のライフサイクルの適正化	システム	計量器のライフサイクルの適正化とサンプリングによる使用期間延長を可能にする試験技術の開発を行う。
	評価	技術	試験技術	効率化 合理化 高信頼性化	大型はかりの評価技術開発を行う。高精度のDLC(デジタルロードセル)の評価技術開発を行う。
計			非自動はかり	高信頼性化 高精度化	非自動はかりの国際技術基準による性能評価技術の開発を 行う。重力加速度の補正を.GPS及び携帯基地局からの位置情 報により自動補正する質量計の開発を行う。
量	適合性	生評価	荷重スケール	トレーサビリティ 安心安全	試験用機器の標準開発、試験制度、試験機関の規格
			電子血圧計	高信頼性化	血圧値評価技術の開発、擬似腕の開発及び血圧測定技術の 開発
	担格	適合	質量計用ロードセル	高精度化 高信頼性化	OIML R60に対応する高能力、高精度質量計用ロードセルの評価技術開発
	み 打口	1 KZ 11	自動はかり	高信頼性化 安心安全	OIML R50, R51, R61, R106, R107, R134, Welmec Guide7.2に対応する自動はかりの評価技術開発

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
			₩ ☆ =↓	トレーサヒ゛リティ	標準器(標準マイクロホン)の供給維持・信頼性確保
			騒音計 	トレーサビリティ	音響測定器の信頼性確保(計測用マイクロホン、サウンドレベルメータ、音響校正器) 「標準器(計測用マイクロホン)の抗正性係の開発・供給維持
			低周波音レベル計	トレーサヒ・リティ	標準器(計測用マイクロホン)の校正技術の開発・供給維持 国家標準に基づくデータの蓄積
	音	圧		標準化 トレーサビリティ	低周波騒音の安全基準策定 標準器(計測用マイクロホン)の校正技術の開発・供給維持
			拉山初 在沙湖中里	標準化	空中超音波の生体安全性評価等に必要な計測技術の開発
			空中超音波測定器 	標準化	国家標準に基づくデータの蓄積
			オージオメータ	高信頼性化	空中超音波の安全基準策定 人口耳による音圧計測技術の高度化
ľ	音響/	パワー	音響パワー測定器	トレーサビリティ	標準器(基準音源)の校正技術の開発
-			超音波音場パラメタ測定器	高信頼性化標準化	音響インテンシティブローブ評価技術の開発 超音波機器の安全性評価技術の確立及び規格化
			(対象機器→超音波癌治療器、超音波手術機器、超音波理学療法機器、超音波健康		20 W~300 Wの超音波パワー計測標準技術開発と規格化
		パワー	器具、等の高出力機器)	標準化	超音波洗浄機の出力評価、洗浄能力評価等の標準化
		音圧キャビテーション	キャビ・テーション発生量測定器 (対象:工業用超音波洗浄機、音響化学用	トレーサヒ゛リティ	キャビテーション発生検出技術開発と標準化
			機器、超音波理学療法機器、超音波手術機器、歯科用器具、ソノポレーション機器、等)	トレーサヒ゛リティ	高音圧測定技術及び測定デバイス開発
	水中超音波			トレーサヒ゛リティ	既存の超音波パワー標準の維持
	7. T. Z. E 1/2		超音波音場パラメタ測定機器	トレーサビリティ	既存の超音波音圧標準の維持 超音波音圧標準の周波数領域の拡張
		音場パラメタ	(対象:腹部、産科、循環系等の超音 波診断装置、等の低出力機器)	トレーサヒ・リティ	既存の超音波音場パラメタ標準の維持
				トレーサビ・リティ	光を用いた非接触手法による超音波音場可視化及びパラ メータ計測技術の開発
			超音波音場パラメタ測定機器(対象:	高分解能化	超音波送受信デバイスの超小型化、高分解能化
		パワー、音圧	│ 超音波内視鏡、カテ先超音波プロー │ ブ等の超小型プローブ、微小領域)	トレーサヒ [*] リティ トレーサヒ [*] リティ	微小領域の超音波パワー計測標準技術の開発 微小領域の音圧計測標準技術の開発
•	水中音響	音圧	超音波音場パラタ測定機器(対象機器:海洋ソナー、海底探査装置、海洋音響計測機器、等の低周波領域)		海洋における音響計測の高度化に必要な周波数範囲の拡大
音響		温度 形位 イメージン グ	音速温度計	極端環境下	高温環境での高精度遠隔計測、製造プロセスの動的温度管理(銑鉄、鋼、鋼スラブ、鋼材、鋼板のプロセス中のオンライン 温度分布計測)
• 超 音				遠隔化	高温環境での高精度遠隔計測、製造プロセスの動的温度管理(構造用セラミックス、機能性セラミックスの焼結や乾燥プロセス中のオンライン温度分布計測)
波 · 振動				リアルタイム	高温・清浄環境での高精度遠隔計測、製造プロセスの動的温度管理(ウエハープロセス及び半導体結晶製造時の高温かつ清浄雰囲気におけるオンライン温度分布計測)
計測				複合化	製造プロセス用音速温度計の開発、(高温・清浄雰囲気における温度のin-situ・遠隔・非接触・高精度・分布計測のための標準及び計測技術、デバイス、ソフトウェアの開発により、銃鉄、鋼、鋼スラブ、鋼材、鋼板、構造用セラミックス、機能性セラミックス、半導体ウェハー、半導体結晶の品質を向上させる。また、熱電対や放射温度計、ラマン温度計、その他の新しい温度計測技術と融合させる。)
			超音波非破壊検査装置 AE計測装置	高信頼性化	原子力発電施設や大型構造物、輸送機器の検査(製造時及 び供用中の欠陥計測、経年劣化の評価、寿命予測、保守補 修技術、設計技術、高温や放射線環境での実時間計測技 術)
				オンマシン	鉄鋼製品・セラミック製品の品質向上(製造時の欠陥計測、高 温環境での実時間計測技術)
			 AE計測装置	トレーサヒ゛リティ	温味児での美味间計測技術) トレーサビリティの確保
	音速		GHz超音波計測装置	リアルタイム	有機半導体材料の品質向上、ナノ粒子の品質向上(製造時 の欠陥、分散計測、実時間計測技術)
			超音波探傷装置 超音波非破壊検査装置	複合化	超音波探傷装置、超音波非破壊検査装置、(高温における欠陥の) がはいまない。 超のin-situ・遠隔・非接触・高精度・分布計測のための標準及び計測技術、デバイス、ソフトウエアの開発により、原子力発電施設や大型構造物、輸送機器の安全性及び信頼性の確保、鋼板、構造用セラミックス、機能性セラミックス、有機半導体材料、ナノコンポジットの品質管理を行う。)
			超音波探傷装置 超音波非破壊検査装置	複合化	光による超音波探傷装置、光による超音波非破壊検査装置、 (高温における欠陥のin-situ・遠隔・非接触・高精度・分布計 測のための標準及び計測技術、デバイス、ソフトウェアの開発によ り、原子力発電施設や大型構造物、輸送機器の安全性及び 信頼性の確保、鋼板、構造用セラミックス、機能性セラミックス、有機 半導体材料、ナノコンボジットの品質管理を行う。)
			超音波探傷装置	高信頼性化 高信頼性化	音響診断 空孔計測
		形状位置	超音波探傷試験方法通則	トレーサビリティ	「JIS Z2344 金属材料のパルス反射法による超音波探傷 試験方法通則」:技術の進展を反映した規格の改訂、法 規制への対応
		는 보다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다 다	超音波探傷試験用標準試験片	トレーサビリティ	「JIS Z2345 超音波探傷試験用標準試験片」:技術の進展を反映した規格の改訂、法規制への対応
			超音波探傷試験方法	トレーサビリティ	「JIS Z3060 鋼溶接部の超音波探傷試験方法」:技術の 進展を反映した規格の改訂、法規制への対応

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
	.	形状位置	超音波斜角探傷試験方法	トレーサビリティ	「JIS Z3080 アルミニウムの突合せ溶接部の超音波斜角探傷試験方法」及び「JIS Z3081 アルミニウム管溶接部の超音波斜角探傷試験方法」: 技術の進展を反映した規格の改訂、法規制への対応
	音速	形状	厚さ測定方法	トレーサヒ゛リティ	「JIS 22355 超音波パル反射法による厚さ測定方法」: 技術の進展を反映した規格の改訂、法規制への対応
		弾性率	音速測定装置	高分解能化	薄膜の弾性率評価装置
	立: ※性表	音速	音速標準	トレーサビリティ	音速標準の維持・供給
	音速・弾性率	密度	骨密度測定器	複合化	骨密度測定(生体骨の精密音速測定) 安全基準・法規制準拠、トレーサビリティ確保(感度)
音				トレーサヒ・リティ	位相特性評価の標準化(位相) 地震計のトレーサビリティ確立
響 • 超				トレーサヒ・リティ	レーザ振動計の標準化(感度及び位相) DCレベルでの加速度計校正の標準化(例えば、歪み式加速
音波			振動計•加速度計	高精度化	度計の感度校正)
				ダイナミックレンジ	RF領域での振動計測技術
振動	振動	加速度		ダイナミックレンシ゛	レーザ振動計の測定速度範囲の拡張
計	加以到	加还及		高信頼性化	多自由度計測の信頼性向上
測				極端環境下	高温下での振動計測
				トレーサビリティ	高温・低温下の振動計測の標準化及びトレーサビリティ構築
				タ゛イナミックレンシ゛ タ゛イナミックレンシ゛	周波数範囲の拡張 加速度振幅範囲の拡張(微小加速度)
				ダイナミックレンジ	加速度振幅範囲の拡張(微小加速度)
			振動試験器·衝撃試験器	高信頼性化	振動ひずみ・揺動の抑制
				高信頼性化	多軸振動発生技術の高精度化と動作範囲拡張
				極端環境下	複合環境振動試験器の試験範囲拡張
				トレーサビリティ	角速度計校正の標準化、法規制準拠
	角振動	角加速度·角速度	角速度計•角加速度計	スマート化	小型・多軸・多機能化(例えば、加速度計測機能を含む)
	/T 1/X 3/J	万加延及 万延及		高精度化	ジャイロの低コスト・高感度化
			角振動試験器・回転振動試験器	ダイナミックレンシ	周波数帯域の拡張 記線の微細化に伴う配線間容量の低減のためのポーラス絶
	機械的ナノ特性(硬さ)		DRAM1/2ピッチ(nm) Filipada	高分解能化	縁膜材料の開発とその機械的強度向上 ポーラス材料薄膜の機械的強度評価
			間間・一般 では、 できない できない できない できない できない できない できない できない	高分解能化	微細化するULSI配線材料(Low-k材料)の機械的強度評価 薄膜フィルムの機械的性質、例えば硬度、耐力等の伸縮性や
硬 さ 計			フィルムの機能と安定性	高分解能化	可塑性を測るための計測技術
計測			微小力計測法	高分解能化	インデンテーション計測機(IIM)や原子力顕微鏡(AFM)といった、極小力を計測するシステムの性能を検証するための、トレーサブルな装置
			ナノインデンテーション	高分解能化 高分解能化	薄膜・ナノスケール材料の機械的特性計測分析法 極薄薄膜への対応、高感度表面検出法
			ナノインデンター		微小力標準器
				トレーサビリティ	リファレンス試料
			微小硬さ(マルテンス硬さ)	トレーサビリティ	微小荷重·微小変位校正技術
	機械的ナノ特性(弾性)		ハードディスクの熱的な機械的特性	高分解能化	現在の技術では、厚さが約100 nm以下の構造に対し十分に 進展していない。 可能なアプローチは、ピコ秒超音波応用計測
			╻╸┸ [╒] ᆍᆟᇂᆍᄁᄥᆄᇄᆗᄓᅃᄽᄝ	ダ・イナミックレンジ	極薄薄膜/多層膜(ヘテロ)に対応するための励起超音波の 高周波数帯域化、超音波検出器の高周波数帯域化
硬		レーザ 放起表面弾性波計測等	レーザ誘起表面弾性波計測装置	高分解能化	多層膜(ヘテロ構造)対応解析ソフト
さ				高速化	多点計測、非接触計測
計測				トレーサビリティ	リファレンス試料
0/1	柘	īð.	JIS Z 2243 プリネル硬さ試験方法 JIS Z 2244 ビッカース硬さ試験方法 JIS Z 2245 ロックウェル硬さ試験方法	トレーサビリティ	標準供給・維持・範囲の拡大
	עי		ブリネル硬さ試験機・試験片	トレーサヒ・リティ	標準片のjcss供給
			ビッカース硬さ試験機・試験片	トレーサビリティ	jcss標準供給、微小荷重領域への範囲拡大
			ロックウェル硬さ試験機・試験片	トレーサビリティ	ロックウェル硬さBスケール等へのスケールの拡大
			建機用構造材 衝撃吸収エネルギー(J)	ダイナミックレンジ	軽量・高衝撃吸収エネルギー材料の開発とその衝撃吸収特性試験
			構造物安全性評価	ダイナミックレンジ	構造用鋼材料の高ひずみ速度下での変形特性の評価とデータベース
動的			高ひずみ速度データと試験法	ダイナミックレンジ	輸送機器のクラッシュモデリングのための高ひずみ速度下で の変形特性の評価とデータベース
強 度 計	衝擊吸収	エネルギー	JIS Z 2242 金属材料のシャルピー衝撃試験法	トレーサヒ゛リティ	JIS Z2242・法規制への対応
測				高度化	大型高剛性試験機の開発、試験機のエネルギー損失の低減、試験機のエネルギー損失の定量化
			シャルピー衝撃試験機 シャルピー衝撃基準片	複合化	衝撃加速度のリアルタイム同時計測
			ノバルレー国手埜牛刀	リアルタイム	高速変形のリアルタイム測定
				トレーサピリティ	高衝撃吸収エネルギー構造部材への拡張(高衝撃吸収エネルギー基準片の開発)

温度•湿度計測(1/4)

		小分類	装置名	課題	技術課題(重要課題 量 最重要課題
l			液化ガスの温度計測	高精度化	低温液化ガスの温度計測と温度計特性評価・校正技術開発
			医療医薬品・創薬・臨床試験での 温度計測	高信頼性化	使用任意温度での低温度温度計校正方法の確立
			磁場中での温度計測法	極端環境下	温度計測に対する磁場の影響評価 磁場中での高精度温度計測法の開発
			極低温領域用温度計の低コスト化	低価格	高精度工業用極低温温度計低価格化
			超高感度検出器	高分解能化	高感度温度変化検出器のアレー化 高信頼極低温冷却手法の開発
				内部測定	流れ場への低侵襲温度計設置技術温度計の応答特性評価
				高速化	振動する温度場の計測法
				極端環境下	大電流·低温計測法
				省工ネ化	磁気冷媒材料の磁気熱量効果の測定技術
				材料計量 高精度化	低温・強磁場中における温度計測技術 多重極限環境下における高感度極低温度測定技術
			極低温温度計測		
				高精度化	の開発高効率小型冷却装置開発
				高精度化	高信頼性·高精度極低温温度測定技術 高効率冷却技術
				高精度化	近接プローブにおける極微サイズ温度センサーによる高精度 局所温度測定技術
			 低温度トレーサビリティ	トレーサヒ・リティ	高精度の温度計測・トレーサビリティ
			低温度の国際トレーサビリティ		国際単位系と温度標準の定義の改変に対応したトレーサビリ
				トレーサビリティ	ティの確保
			校正技術の高精度化 トレーサビリティ	トレーサヒ゛リティ	国際または国家計量標準にトレース可能な温度標準
			校正技術の高精度化 トレーサビリティ	トレーサビリティ 啓蒙	その他の法令でのトレーサビリティの必要性の認識
				高精度化	 原子燃料の焼結温度(1750°C)測定用熱電対の長期安定化
			超高温の温度計測	高精度化	ガスタービン入口温度(1500 ℃~1700 ℃)測定技術の高度化
				高精度化	耐熱材料の熱処理温度測定用熱電対の高精度化
				高精度化	鋼材温度管理用熱電対の高精度化
			高温の温度計測	高精度化	セメントの焼成温度(1450℃以上)測定技術の高度化 石炭火力発電の蒸気条件(600°C~800°C)測定技術の高度
			同温び温及可原	高精度化	化
				高精度化	航空機エンジンの高温化に対応した 温度などの試験・計測技術の高度化
温度	温原	度計	次世代発電所用の堅牢な温度計	極端環境下	雑音温度計の開発(800 °C~1200 °C) センサのドリフトの影響を補正可能な原理として雑音温度計 JNTが有力視 センサの開発および信号処理技術
					ダイヤモンド単結晶生成のための温度制御技術の向上
			高温の温度計測	高精度化	(1000°C~1500°C)
				材料計量	微小温度勾配下の温度計測法
			極小温度勾配の温度計測 ナノ温度計	材料計量 微小化	微小温度差下の温度計測法 ナノレベルの温度計測法
					プランベルの温度計測法 微量分析プロセス制御のための高精度温度計測技術の開発
			微小流体温度計測	微小化	高精度温度計測の標準法の開発
			機械加工時の温度計測	微小化	切削面の温度計測、微小領域、高速度計測、高温度勾配
			半導体デバイス材料の温度計測 半導体プロセス(RTP、RTA)のため	微小化	ナノデバイスの薄膜/バルクの熱伝導率計測 高速熱処理・非平衡温度場、高速回転するウェハ上の温度を
			のウェハ面内温度分布計測制御技術	標準化	布、測定法の標準化
			半導体プロセス(熱酸化)のための ウェハ面内温度分布計測制御技術	標準化	室温付近の高精度温度計測制御 微小パターン上での温度値
			半導体プロセス(リソグラフィ)のためのウェハ面内温度分布計測制御技術	標準化	高温中·酸化雰囲気
			半導体製造(単結晶製造)のための	標準化	高温での温度センサのドリフト
			炉内温度分布計測制御技術	** * *	
			半導体デバイスの温度計測	微小化	発光ダイオードの寿命試験・評価のためのジャンクション温度管理 小線源放射線標準の開発/臨床用高エネルギービーム放射
				微小化	線標準の開発
			微小温度計測	微小化	高速回転ハードディスク回転軸の潤滑剤温度(5°C~95°C)
				微小化	高密度磁気記録テープ記録ヘッド開発のための内部温度計測
				微小化	フレキシブル基板上の素子/デバイスの寿命評価のための 温度測定
			半導体デバイスの温度計測	微小化	パワーデバイス実装技術(素子温度高耐熱化)のための温度
				高精度化	測定技術 海水温観測
				高精度化	海洋表面温度
			地球温暖化モニタ	高精度化	人工衛星搭載光学計測器の校正のための天体輝度の利用
				高精度化	地球内の熱循環の振る舞いを解明するため、THz帯の放射 の循環や輻射輸送を正しく理解する
			· ·	•	192 NR 28 T FROTERIO C 11 L2227 MF 9 (6)
				トレーサヒ゛リティ	
			次期国際単位系に対応した温度標準の確立		気体温度計による熱力学温度測定 雑音温度計による熱力学温度測定

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
	データ	ベース	物理/化学データベース整備	高信頼性化	化学プロセス産業用の高度な製造プロセス・シミュレーションのために 物理ノ化学データベースの整備および関連温度計測技術
				極端環境下	センサ・保護管の耐熱性・耐反応性、悪環境(高温・スラグ・粉塵)、連続測定、分布測定
				極端環境下	センサ・保護管の耐熱性・耐反応性、悪環境(高温)、連続測定、分布・界面測定
				内部測定	内部測定、放射率、悪環境(高温・水蒸気・粉塵)
				高信頼性化	血管内温度
			液体の温度計測	リアルタイム	非接触オンラインモニタ(ラマン・赤外分光温度計)
				高精度化	ナノ粒子分散型温度検出器
				高信頼性化	反応温度の急速調整・空間的時間的均一化
				高精度化	微小流体デバイス内温度測定 微小流動温度測定
				高精度化	テラヘルツ波・ミリ波温度計測
				極端環境下	テラヘルツ波・ミリ波温度計測
				極端環境下	鉄鋼熱延・熱処理プロセスのための非接触測定(放射温度計等)、放射率、悪環境(高温・冷却水・水蒸気・粉塵)
				高信頼性化	鉄鋼プロセス連続焼鈍モニタのための非接触測定(放射温度計等)、放射率、背景放射
	温度	計		高信頼性化	鉄鋼プロセス表面処理鋼板のための非接触測定(放射温度 計等)、放射率、背景放射
			表面・界面の温度(分布)計測	極端環境下	鉄鋼プロセスコークス炉のような悪環境(高温・粉塵)に対応する技術(ミリ波放射温度計等)
			我面 外面砂温及(为明/可观	多次元化	分布計測、精密計測(ウェハ露光(精密温度制御))
				多次元化	分布計測、精密計測(SiウェハPEB)
				オンマシン	分布計測、高温化、低コスト化(Siウェハプロセスモデリング検証用温度測定ウェーハ)
				オンマシン	表面計測、分布計測、プラス'マ下(Siウェハエッチンク'装置(ドライ:常温~200°C、非接触、1°C、ウエット室温~-50°C、1°C))
				オンマシン	表面計測、分布計測、プラズマ下 (Siウェハアッシング装置)
				オンマシン	界面計測(SiウェハCMP装置 (ウェーハ表面温度))
				オンマシン	50℃以下の放射測温 (Siウェハメッキ(配線)装置)
			オンマシン	分布計測(超音波等) (Si ウェハプロセス温度分布計測)	
温度			表面・界面の温度(分布)計測	オンマシン	分布計測(超音波等) (Si ウェハプロセス温度分布計測)化合物半導体(GaAs等)の結晶成長プロセス装置)
					赤外イメージング(メタマテリアルの合成技術)
				高精度化	熱赤外・遠赤外・テラヘルツイメージング
				高精度化	温度分布計測、内部温度計測
				高分解能化	微小領域、高精度
		ᄲᇄᄶᄰᇫᇃᆓᅴᅃ	高分解能化	微小領域・高速(SThM, SNOM温度計、サーモリフレクタンス 顕微温度計等)	
		微小領域の温度計測	高精度化	微小領域・高速(SThM, SNOM温度計、サーモリフレクタンス 顕微温度計等)	
				高精度化	非接触測定(放射温度計等)、透明体(ラマン温度計等)
			高精度化	微小領域、内部温度	
			高精度化	局所加熱・制御	
				高分解能化	高空間分解能、高速
				高精度化	高温度勾配、高空間分解能、高時間分解能での温度場測定法(赤外線カメラ)の開発
				高信頼性化	機械加工モデリングシミュレーション予測のための力・変形・ 温度同時計測技術の開発
			微小領域の温度計測	高精度化	熱光学物性
	70 et	∓=L		トレーサビリティ	ナノ温度標準
	温度	ξāΤ		高精度化	分子温度計
				内部測定	磁気ヘッドセンサの温度分布
				高精度化 高精度化	マイクロ流体・生体細胞 次世代能動ナノデバイスのための温度計測
				高精度化 高精度化	次世代ハードディスク等のナノ領域の温度計測
				高信頼性化	バイアス気温計測
				回信权注化	鉄鋼プロセス高炉内反応モニタ(数十センチ、1秒)のための 新規計測技術(超音波温度計測、ラマン温度計測、テラヘル ツ温度計測、その他)の探索、悪環境(高温)
			内部温度計測	内部測定	鉄鋼プロセス熱処理用垂直温度温度分布モ=タ(数ミクロン、数ミ) 砂)のための新規計測技術(超音波温度計測、ラマン温度計 測、テラヘルツ温度計測、その他)の探索、悪環境(高温)
				***	イオン注入(サブサーフェス in situ 温度モニタ)のための新規計測技術(超音波温度計測、ラマン温度計測、テラヘルツ温度計測、その他)の探索
				高精度化	人体内部の温度モニタ(MRI温度計等)

温度•湿度計測(3/4)

加熱肝内温度計測	大分類	中分類	小分類	装置名	課題	技術課題(
加熱仲内温度計測					オンマシン	鉄鋼プロセス高温加熱炉内鋼材温度モニタ(1200 ℃、5 ℃) のための非接触測定(放射温度計等)、放射率、背景放射		
加熱学内温度計劃 加熱学内温度計劃 加熱学内温度計劃 加熱学内温度計劃 加熱学内温度計劃 加熱学内温度計劃 加速					オンマシン	Siウェハ熱処理(RTA: 400°C~1350°C、1°C、0.1 msec)の ための非接触測定(放射温度計等)、放射率、背景放射		
おアペン というのかま移動業に、後の経過度があり、放射率、表 カアペン 大面域へテェエピゲイや高級を建立のための透明体・清 技術域は下				加熱炉内温度計測	オンマシン	SiC単結晶成長プロセスモニタ(2500 ℃、炉内分布1-2 ℃、内部温度モニタ)のための内部温度、高温測定技術		
超高温度測定 超高温度測定 超高温度測定 超高温度測定 超高温度測定 超高温度測定 超高温度測定 超高温度測定 超高温度期度 超高温度测定 加高温度测定 加速温度测度 加速温度测度加速温度测度 加速温度测度加速温度测度 加速温度测度加速温度测度 加速温度加速温度测度加速加速温度加速加速温度加速加速温度加速加速温度加速加速温度加速加速温度加速加速加速加速					オンマシン	SiCエピタキシャル成長プロセスモニタ(1500 ℃~1800 ℃、 ±5 ℃)のための非接触測定(放射温度計等)、放射率、背景 放射、高温		
超高温度制定 超高温度測定 超高温度測定 超高温度測定 超高温度測定 超高温度					オンマシン	大面積ヘテロエピダイヤ基板製造装置のための透明体・非接触(ラマン温度計・音響温度計等)		
超高温温度測定 超高温温度測定 超高温温度測定 「強調理度下 長規度定性、高速速少分下の対象型温度計画 「全域性化 温度 本身上、高温、高速 シットのお普温度計画 「全域性化 温度 本身上、高温、高速 シットのお普温度計画 「全域性化 温度 本身上の 1 日本 1 日					極端環境下	高温ガス炉冷却Heガス温度モニタの耐熱性、長期安定性(雑音温度計等)		
					トレーサヒ゛リティ	定点性能向上、新高温定点の確立		
				招喜温温度测定	極端環境下	長期安定性		
高品担性化				起向温温及例定	極端環境下	長期安定性、高精度化		
無原性化 温度計測を含むる機性の高い場中のデータの取得					高精度化	高温耐熱・耐食材料評価時の温度測定の高精度化		
福展度化 加速型技術の確認、高極度化 程度性 不均。 品面を加工での内部温度分布測定 相端環境下 特別 機器 数4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					高信頼性化	極限事象上(高温・高速ひずみ下)の精密温度計測		
福度					高信頼性化	温度計測を含む信頼性の高い相平衡データの取得		
理解環境下 担保環境下 超子 2000 での 数百月 xeo)の 免熱による 定 上の 対策を設定					高精度化	温度測定技術の確立、高精度化		
選及 選及					極端環境下	不均一・高温度勾配下での内部温度分布測定		
議院 選集					極端環境下	被覆燃料粒子の短時間(μ sec~数百μ sec)の発熱による温度上昇の精密測定		
選及計 超高温温度測定 超高温温度測定 超高温温度測定 超端環境下 極端環境下 一型のので以上での長寿命、高安定な熱電対温度測定 基環境で(高温、粉磨、窓の汚れ)での非極無 素別度 一型の回旋計測 素情度化 放射鏡環境下の温度対理 素性性化 放射鏡環境下の温度対理 素体の温度計測 系体の温度計測 系統での温度計測 系統での温度計測 系統での温度計測 系統での温度計測 系統性化 大力・アンライ 一型の関係を使用したMOX燃料配成の高精度測定 が発展度測定 超端環境下 大規模が不配列度がでの温度対理 大規模が不配列度がでの温度対理 気体の温度計測 系統性化 が対量が上いまます。(高級性のARS温度計停的用熱赤外イメージン 大変域の温度計測 系統性化 が対量が上いまます。(高級性のARS温度計停的用熱赤外イメージン 大変域の温度計測 系統性・アンラー分光温度計(前防用熱赤外イメージン サンザンディ ・ 地でリティ ・ シーザンディ ・ 一型の一般の対射温度を導 ・ トーザンディ ・ 一型の一般の対射温度を導 ・ トーザンディ ・ 一型の一級の対射温度を導 ・ トーザンディ ・ 一型の一級の対射温度が自 の製造の表域を通度計 ・ トーザンディ ・ 大型 一般の関係を対象による対象 ・ 大型 一般の一般の関係を対象による対象 ・ 大型 一般の一般の関係を対象による対象 ・ 大型 一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一般の一					極端環境下			
度 超高温温度測定	:8	温度			極端環境下			
高精度化 会議の300 では利用である。 高速度な熱電気料度が高速では100 では上での長寿命。高速定な熱電対温度測定 極端環境下 2000 では上での長寿命。高速定な熱電対温度測定 極端環境下 2000 では上での長寿命。高速定な熱電対温度測定 極端環境下 2000 では上での長寿命。高速定な熱電対温度測定 極端環境下 2000 では上での長寿命。高速高熱電対の 発				招喜温温度测定	極端環境下	核融合炉ブランケット材の照射下での温度測定方法		
極端環境下	12			足问血通及附足	高精度化	金属るつぼを使用したMOX燃料融点の高精度測定(2000 °C)~3000 °C)		
機能環境下 表現境下(2500~3000°C、粉塵、窓の汚れ)での非接触 使潮環境下 表現境下(高温、粉塵、窓の汚れ)での非接触 使潮寒使 表現境下(高温、粉塵、窓の汚れ)での多性熱量測定 極端環境下 高信頼性(小 放射温度) 放射線型計・止浮風計・心形に3品度計等 極端環境下 次表現下での温度計測 南端度化 次子地での温度計画 南端度化 次プラー分光温度計 公司の政治温度標準 上・サビリィ 本記域の放射温度標準 上・サビリィ 本記域の放射温度標準 上・サビリィ 本記域の放射温度標準 上・サビリィ 本記域の放射温度 表現度計画 本記域の放射温度 表現度計画 本記域の放射温度 表現度 本記域の 表現度 表现度 表现					極端環境下	2000 ℃以上での長寿命、高安定な熱電対温度測定		
世端環境 展測定					極端環境下	高温(2000 ℃以上)、還元雰囲気下での超高温熱電対の開発		
### 2000 おけっぱい おけっぱ まけっぱ ままります まま					極端環境下	悪環境下(2500 ~ 3000 ℃、粉塵、窓の汚れ)での非接触温 度測定		
無信頼性化 放射線環境下での温度測定 根端環境下 高温 (煙・砂塵・水蒸気下温度計・GARS温度計等 火炎環境下での温度計測 極端環境下 高温 (煙・砂塵・水蒸気下温度計 (消防用熱赤外イメージン 気体の温度計測 高精度化 シップラー分光温度計								
放射線環境下での温度計測 極端環境下 次環境下での温度計測 極端環境下 次環境下での温度計測 極端環境下 高温・煙・粉塵・水蒸気下温度計(消防用熱赤外イメージン 矢体の温度計測 高精度化								
大変環境下での温度計測 極端環境下 高温・煙・粉塵・水蒸気下温度計(消防用熱赤外イメージン 気体の温度計測 高精度化 気軽・放射の計測制御 し・サビリティ トレーサビリティ 大阪電子 大阪						放射温度計・LIF温度計・CARS温度計等		
無光字物性 高精度化 にップラー分光温度計						京月·梅· <u></u>		
熱光学物性 高精度化 反射・放射の計測制御						- 4-		
記度標準の供給全般 1サビリティ 1-50 °C~3000 °Cの放射温度標準 1サビリティ 1				-				
にしサビリティ 休温域の放射温度標準 ドレーサビリティ 休温域の放射温度標準 ドレーサビリティ 「ドレーサビリティ 小型・高安定性放射温度計 小型・高安定性放射温度計 小型・高安定性放射温度計 小型・高安定性放射温度計 小型・高安定性放射温度計 小型・高安定性放射温度計 小型・高安定性放射温度計 小型・ガールーサビリティ 小型・ガールーサビリティ 小型・高特度な実用非接触温度計 トレーサビリティ 高精度な実用非接触温度計 トレーサビリティ 京林度な実用非接触温度計 トレーサビリティ 放射率の精密評価 マイクロキャビティ構造、クラスター発光光源、小型赤外光、装置 微量水分計測 衛価額性 仮着平衡を利用した計測 小型・サリー・サビリティ 微量水分発生技術の開発 トレーサビリティ 新規計測技術の探索 小型・サリー・サビリティ 新規計測技術の探索 小型・サリー・サビリティ 新規計測技術の探索 小型環境情報取得センサイ(MEMS)温度センサー 新倉に額性化 高温高温(150 ℃、95 %)で動作可能な温度センサ開発 高温度標準管理用の高精度温度センサ開発 高調度化 高温度標準管理用の高精度温度センサ開発 高調度性を高温度圧下の水素気圧制御技術の開発 環境温度計測(ゴローバリ・リモセン) 微小型環境信息の多面的・動的計測・観測技術 環境温度計測(ゴローバリ・リモセン) 微小空間温度計測 高分解能化 原分子膜内水分制御 環境温度の多面的・動的計測・観測技術 環境温度計測(ゴローバリ・リモセン) 微小空間温度計測 高分解能化 航空機搭載・衛星搭載水蒸気センサ 常温度標準 小一サビリティ 標準の維持・供給					-	熱光学物性		
温度標準の供給全般 トーサビリティ 新しい温度のSI単位の定義導入を通じた熱力学温度測定に トーサビリティ 小型・高安定性放射温度計の校正 トーサビリティ 小型・高安定性放射温度計の校正 トーサビリティ 赤外・8~14 μm) 放射温度計の校正 トーサビリティ 赤外・8~14 μm) 放射温度計の校正 トーサビリティ 赤外・8~14 μm) 放射温度計の校正 トーサビリティ 放射率の精密評価 マイクロキャビティ構造、クラスター発光光源、小型赤外光・装置 微量水分計測 高橋痩な実用非接触温度計 トーサビリティ 放射率の精密評価 マイクロキャビティ構造、クラスター発光光源、小型赤外光・装置 微量水分計測 微量水分計測 微量水分利用ルー計測 トーサビリティ 微量水分発生技術の開発 トーサビリティ が製計測技術の探索 「本の表達を選挙測定装置 常温度計測 高精度化 高温高型に到定装置 高温度計測 高標性化 高温高型に到りで、95 %)で動作可能な温度センサ開発 高値性化 高温高温150 で、95 %)で動作可能な温度センサ開発 高橋痩化 高温動作、互換性、結電部性、低コストのセンサ開発 高橋痩化 高温直圧下での水蒸気圧制御技術の開発 微音化 高温度標準管理用の高精度温度センサ開発 高橋痩化 高温度標準管理用の高精度温度センサ開発 高橋痩化 高温度標準管理用の高精度温度センサ開発 高橋痩化 高温度標準管理用の高精度温度センサ開発 高橋痩化 高温高圧下での水蒸気圧制御技術の開発 微音化 高温度標準管理用の高精度温度センサ開発 高橋痩化 高温高圧 下での水蒸気圧制御技術の開発 大学・12 域 12								
温度標準の供給全般						rν−9€ 914		
高精度化 多波長温度計				温度標準の供給全般		不確かさ改善と一貫性の向上、		
トレーサビリティ 赤外(8~14 μm)放射温度計の校正 トレーサビリティ 赤外センサの校正・評価(標準化を含む) トレーサビリティ 赤外センサの校正・評価(標準化を含む) トレーサビリティ 高精度な実用非接触温度計 トレーサビリティ 放射率の精密評価 マイクロキャビティ構造、クラスター発光光源、小型赤外光・装置 微量水分計測 高信頼性化 分光法に基づく計測 仮価格 吸着平衡を利用した計測 トレーサビリティ 散量水分発生技術の開発 トレーサビリティ 新規計測技術の探索 低温度計測 高精度化 高速度透湿率測定装置 常湿度計測 スマート化 ナノハイブリッド環境センサの微細化、機能化価格 小型環境情報取得センサの微細化、機能化価格 小型環境情報取得センサの微細化、機能化価格 小型環境情報取得センサの微細化、機能化価格 小型環境情報取得センサ開発 高温高温(150°C、95%)で動作可能な湿度センサ開発 高温商度性化 高温高温(150°C、95%)で動作可能な湿度センサ開発 高信頼性化 高温高正下での水蒸気圧制御技術の開発 高温度展準 世界の高精度温度の多面的・動的計測・観測技術 環境温度計測(ダローバル・リモセン) 高精度化 環境温度の多面的・動的計測・観測技術 環境温度計測(ダローバル・リモセン) 高精度化 環境温度の多面的・動的計測・観測技術 現境温度計測(ダローバル・リモセン) 高精度化 航空機搭載・衛星搭載水蒸気・センサ ホコースルの空間温度計測 高分解能化 航空機搭載・衛星搭載水蒸気・センサ ホコースルの空間温度計測 高分解能化 航空機搭載・衛星搭載水蒸気・センサ ホコースルの空間温度計測 高分解能化 北ラビリティ 標準の維持・供給								
校正技術								
校正技術								
大ルーサビリティ 放射率の精密評価 マイクロキャビティ構造、クラスター発光光源、小型赤外光・装置 でイクロキャビティ構造、クラスター発光光源、小型赤外光・装置 では 公光法に基づく計測 高信頼性化 公光法に基づく計測 公量水分療準 トレーサビリティ 微量水分発生技術の開発 トレーサビリティ 新規計測技術の探索 高精度化 高感度透湿率測定装置 スマート化 ナノハイブリッド環境センサーク環境センサの微細化、機能化 (任価格 小型環境情報取得センサ (MEMS)温度センサ 高信頼性化 高温高温(150 °C、95 %)で動作可能な湿度センサ開発 高信頼性化 高温高温(150 °C、95 %)で動作可能な湿度センサ開発 高温育度化 高温前性・原温動作、互及性生、結露耐性、低コストのセンサ開発 高精度化 高温高圧下での水蒸気圧制御技術の開発 高精度化 高温高圧下での水蒸気圧制御技術の開発 海環湿度の多面的・動的計測・観測技術 高精度化 環境湿度の多面的・動的計測・観測技術 高精度化 航空機搭載・衛星搭載水蒸気センサ 微小空間湿度計測 高分解能化 航空機搭載・衛星搭載水蒸気センサ 高温度標準 トレーサビリティ 標準の維持・供給				11 11 /1-				
熟光源 光源 高精度化 マイクロキャビティ構造、クラスター発光光源、小型赤外光接置 微量水分計測 高信頼性化 分光法に基づく計測 仮画格 吸着平衡を利用した計測 しーサビリティ 微量水分発生技術の開発 トレーサビリティ 新規計測技術の探索 高精度化 高感度透湿率測定装置 スマー化 ナノハイブリッド環境センサク環境センサの微細化、機能化 仮価格 小型環境情報取得センサ(MEMS)温度センサ 高信頼性化 高温動作、互換性、結露耐性、佐コストのセンサ開発 高信頼性化 高温動作、互換性、結露耐性、佐コストのセンサ開発 高精度化 高温度標準管理用の高精度湿度センサ開発 高精度化 高温高圧下での水蒸気圧制御技術の開発 環境湿度計測(ダローバル・リモセン) 高精度化 露護湿度の多面的・動的計測・観測技術 高精度化 京倉頼性 京本 京本 京本 京本 京本 京本 京本 京								
大原 一				ļ	トレーザビ リナイ			
(板重水分計測) 低価格 吸着平衡を利用した計測 (微量水分標準 トレーサビリティ 微量水分発生技術の開発 トレーサビリティ 新規計測技術の探索 低湿度計測 高精度化 高感度透湿率測定装置 常湿度計測 高精度化 高感度透湿率測定装置 スマール ナノハイブリッド環境センサ/環境センサの微細化、機能化低価格 小型環境情報取得センサ(MEMS)温度センサ 高信頼性化 高温高湿(150°C、95%)で動作可能な湿度センサ開発 高信頼性化 高温高湿(150°C、95%)で動作可能な湿度センサ開発 高精度化 高温度標準管理用の高精度湿度センサ開発 高精度化 高温度標準管理用の高精度湿度センサ開発 高精度化 高温度圧下での水蒸気圧制御技術の開発 複合化 燃料電池・高分子膜内水分制御 環境湿度計測(室内・3次元分布など) 高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測(ゴローバル・リモセン) 高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測(カローバル・リモセン) 高精度化 対に関係を関係を関係を関係を関係を関係を関係を関係を表して、関係を関係を表して、表して、表して、表して、表して、表して、表して、表して、表して、表して、		熱分	光源	光源	高精度化			
(板重水分計測) 低価格 吸着平衡を利用した計測 (税量水分標準 トレーサビリティ 微量水分発生技術の開発 トレーサビリティ 新規計測技術の探索 低湿度計測 高精度化 高感度透湿率測定装置 常湿度計測 高精度化 方バイブリッド環境センサ/環境センサの微細化、機能イ 低価格 小型環境情報取得センサ(MEMS)温度センサ 高信頼性化 高温高湿(150°C、95%)で動作可能な湿度センサ開発 高信頼性化 高温高湿(150°C、95%)で動作可能な湿度センサ開発 高精度化 高温度標準管理用の高精度湿度センサ開発 高精度化 高温度圧下での水蒸気圧制御技術の開発 高精度化 高温度圧下での水蒸気圧制御技術の開発 環境湿度計測(室内・3次元分布など) 高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測(ブローバル・リモセン) 高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測 高分解能化 サノレベル領域での水分や不純物の分布 高湿度標準 トレーサビリティ 標準の維持・供給				御与セムショ	高信頼性化	分光法に基づく計測		
「ルーサビリティ 新規計測技術の探索 10								
(低湿度計測 高精度化 高感度透湿率測定装置 スマート化 ナノハイブリッド環境センサの微細化、機能化				ッキャン・ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	トレーサビリティ	微量水分発生技術の開発		
低湿度計測 高精度化 高感度透湿率測定装置								
□ 「は				低湿度計測		高感度透湿率測定装置		
湿度計 低価格 小型環境情報取得センサ(MEMS)温度センサ 高信頼性化 高温高湿(150°C、95%)で動作可能な湿度センサ開発 高信頼性化 高温動作、互換性、結露耐性、低コストのセンサ開発 高精度化 高温度標準管理用の高精度湿度センサ開発 高精度化 高温度標準管理用の高精度湿度センサ開発 高精度化 高温高圧下での水蒸気圧制御技術の開発 複合化 燃料電池・高分子展内水分制御 環境湿度計測(ダローバル・リモセン)高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測(グローバル・リモセン)高精度化 航空機搭載・衛星搭載水蒸気センサ 微小空間湿度計測 高分解能化 ナノレベル領域での水分や不純物の分布 高湿度標準 トレーサビリティ 標準の維持・供給					スマート化	ナノハイブリッド環境センサ/環境センサの微細化、機能化		
温度計 高温度計測 高信頼性化 高温高湿(150°C、95%)で動作可能な湿度センサ開発 高信頼性化 高温動作、互換性、結露耐性、低コストのセンサ開発 高精度化 高温度標準管理用の高精度湿度センサ開発 高精度化 高温高圧下での水蒸気圧制御技術の開発 高精度化 端料電池・高分子膜内水分制御 環境湿度計測(室内・3次元分布など) 高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測(グローバル・リモセン) 高精度化 航空機搭載・衛星搭載水蒸気センサ 微小空間湿度計測 高分解能化 ナノレベル領域での水分や不純物の分布 高湿度標準 トレーサビリティ 標準の維持・供給				► 本/ 正/ E T 川	低価格	小型環境情報取得センサ(MEMS)温度センサ		
高温度計測 高精度化 高温度標準管理用の高精度湿度センサ開発 高精度化 高温高圧下での水蒸気圧制御技術の開発 高温度計測 複合化 燃料電池・高分子膜内水分制御 環境湿度計測(室内・3次元分布など) 高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測(グローバル・リモセン) 高精度化 航空機搭載・衛星搭載水蒸気センサ 微小空間湿度計測 高分解能化 ナノレベル領域での水分や不純物の分布 高湿度標準 トレーサビリティ 標準の維持・供給					高信頼性化	高温高湿(150°C、95%)で動作可能な湿度センサ開発		
高精度化 高湿度標準管理用の高精度湿度センサ開発 高精度化 高温高圧下での水蒸気圧制御技術の開発 高温度計測 複合化 燃料電池・高分子膜内水分制御 環境湿度計測(室内・3次元分布など) 高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測(グローバル・リモセン) 高精度化 航空機搭載・衛星搭載水蒸気センサ 微小空間湿度計測 高分解能化 ナノレベル領域での水分や不純物の分布 高湿度標準 トレーサビリティ 標準の維持・供給		;P =	¥≘∔		高信頼性化	高温動作、互換性、結露耐性、低コストのセンサ開発		
高湿度計測 複合化 燃料電池・高分子膜内水分制御 環境湿度計測(室内・3次元分布など) 高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測(グローバル・リモセン) 高精度化 航空機搭載・衛星搭載水蒸気センサ 微小空間湿度計測 高分解能化 ナノレベル領域での水分や不純物の分布 高湿度標準 トレーサビリティ 標準の維持・供給	度	迎及	Z D I	同/业技引 则	高精度化	高湿度標準管理用の高精度湿度センサ開発		
環境湿度計測(室内・3次元分布など) 高精度化 環境湿度の多面的・動的計測・観測技術 環境湿度計測(グローバル・リモセン) 高精度化 航空機搭載・衛星搭載水蒸気センサ 微小空間湿度計測 高分解能化 ナノレベル領域での水分や不純物の分布 高湿度標準 トレーサビリティ 標準の維持・供給					高精度化	高温高圧下での水蒸気圧制御技術の開発		
環境湿度計測(グローバル・リモセン)高精度化航空機搭載・衛星搭載水蒸気センサ微小空間湿度計測高分解能化ナノレベル領域での水分や不純物の分布高湿度標準トレーサビリティ標準の維持・供給				高湿度計測	複合化	燃料電池·高分子膜内水分制御		
微小空間湿度計測高分解能化ナノレベル領域での水分や不純物の分布高湿度標準トレーサビリティ標準の維持・供給				環境湿度計測(室内・3次元分布など)	高精度化	環境湿度の多面的・動的計測・観測技術		
高湿度標準 トレーサビリティ 標準の維持・供給 標準の維持・供給				環境湿度計測(グローバル・リモセン)	高精度化	航空機搭載・衛星搭載水蒸気センサ		
常湿度標準 トレーサビリティ 標準の維持・供給				微小空間湿度計測	高分解能化	ナノレベル領域での水分や不純物の分布		
低温度標準 トレーサドリティー						標準の維持・供給		
[DIEXX] 10 / 10 / 11				低湿度標準	トレーサヒ゛リティ			

温度·湿度計測(4/4)

大分類	中分類	小分類	装置名	課題	技術課題(== 要課題 == 最重要課題
		the EUROMET iMERA project	km領域までの高精度測長	高精度化	大気屈折率精密決定のための湿度測定
		湿度の基本データ	水の蒸気圧式 増加補正係数	高精度化	全圧力・水蒸気分圧の精密測定 近似式作成
		領域別の湿度	微量水分測定	高精度化 ダイナミックレンジ	百万分の一~一兆分の一の濃度の水分発生
		領域別の湿度	低湿度測定	高精度化	不確かさが小さく、少ない連鎖数で遡及できる校正技術
	湿度計	領域別の湿度	常湿度測定	高精度化	不確かさが小さく、少ない連鎖数で遡及できる校正技術
湿度		領域別の湿度	高湿度測定	高精度化 ダイナミックレンジ	不確かさが小さく、少ない連鎖数で遡及できる校正技術
		特殊環境下の湿度	高圧湿度測定	極端環境下	耐圧湿度計
		特殊環境下の湿度	高温湿度測定	極端環境下	耐熱湿度計
		特殊環境下の湿度	蒸気測定	極端環境下	耐圧耐熱湿度計
	湿度計	特殊環境下の湿度	相対湿度・結露・着霜測定	高精度化	頑健・安定・ドリフトが無く・高分解能・高速応答で・露点計無しで校正できる湿度センサー、気体温度測定技術の進歩
		特殊環境下の湿度	空気以外の気体の湿度測定	極端環境下	耐食湿度計
湿度.	温度・	湿度計	環境温度・湿度計測 (室内・3次元分布など)	高精度化	環境温湿度の多面的・動的計測・観測技術
		湿度の空間分布	微小空間湿度測定	微小化	測定対象を乱さない湿度測定
湿	湿度計	水分	液体・固体中の水分	トレーサビリティ ライフ 材料計量	水分分布・水分移動・表面水分・全水分の測定、 どの測定方式にも共通して適用できる校正法 水分活性(AW)の校正方法
度	/亚/支訂	湿度共通基盤技術	上記の研究開発に共通の基盤となる 技術	高信頼性化	研究用湿度測定機器(分光学的方式、結露・着霜式、等)、低温・真空での圧力測定技術開発、実験室レベルの実験技術開発(音響共鳴、ドップラー広がり、等) 温度・湿度モデリング
			抵抗体温計	高信頼性化	予熱式体温計の評価技術開発を行う。JIS T 1140の改善
計 量	適合性	生評価	体温計	高信頼性化	電波暗室内での温度参照標準による評価方法の開発、JIS T 1140の改善
里	規格	適合	熱画像装置	安全·安心	現在、技術基準等が未整備。国民の安心安全のため、技術 基準を作成する必要がある

流量計測(1/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
			JIS B 7551 フロート形面積式流量計	標準化	規格の円滑な運用のための技術開発及び計量標準の供給
			JIS B 7555 コリオリメータによる流量 計測方法	標準化	規格の円滑な運用のための技術開発及び計量標準の供給
	流	믚	JIS D 3637-2 ディーゼル機関用燃料 噴射投資の試験(オリフィス流量計)	標準化	規格の円滑な運用のための技術開発及び計量標準の供給
	ni.	里	JIS Z 8761 円形管路の絞り機構に おける流量測定法	標準化	規格の円滑な運用のための技術開発及び計量標準の供給
			JIS Z 8765 タービン流量計による流量測定法	標準化	規格の円滑な運用のための技術開発及び計量標準の供給
			JIS Z 8766 渦流量計	標準化	規格の円滑な運用のための技術開発及び計量標準の供給
			気体小流量校正設備(衡量法)	高精度化	流量:0.005 g/min-180 g/minの不確かさを(U=0.05 %-0.25 %) 向上させる
			気体小流量校正設備(PVTt法)	範囲拡大	PVTt法による校正設備を整備し、流量範囲下限を0.01mg/minに引き下げ、依頼試験を開始する
			気体小流量校正設備(衡量法)、気体 小流量校正設備(PVTt法)、臨界ノス	範囲拡大	省エネルギーや代替エネルギーへの社会構造の変化に対応 するため、実ガス流量標準の整備を進める
	_,,		マスフローメータ マスフローコントローラ	高信頼性化	測定対象ガス種に依存しない普遍的コンバージョンファクタ補 正曲線を構築する
	気体小	N流量	リアルタイムプロセスモニタリング用 流量計	高精度化	産業プラント内を含めた計装システムに用いる流量計測機器 の各種高機能化を実現
			半導体プロセスモニタリング用流量計	高精度化	半導体製造における加工プロセスの高度制御を実現する流量計測システムの構成要素として高機能な流量計が必要
			半導体搬送技術用の流量計	高速化	半導体ウェハ等の搬送システムに組み込まれる流量計の開 発や評価
			洗浄用流量計	高精度化	各種洗浄技術における流量計測技術の構築. 特にガス洗浄での流量計測制御技術の開発が必要.
			気体中流量校正設備(定積槽)	高精度化 範囲拡大	既存標準供給の維持および不確かさ低減および範囲拡大検討(遷移域)
			気体中流量校正設備(閉ループ)	高精度化 範囲拡大	既存標準供給の維持および不確かさ低減および範囲拡大検 討
	気体中流量	気体中流量校正設備	範囲拡大 高精度化	空気流量標準の高精度化、臨界ノズルの境界層遷移における挙動の明確化、臨界ノズルの低流量使用時の非臨界現象解明、天然ガス等各種ガスへの拡張、トレーサビリティ確保	
			高圧天然ガス流量標準校正設備	高精度化 トレーサビリティ	高圧化での天然ガス流量標準の整備
流	気体大流量 気体脈動流量		高圧天然ガス流量標準校正設備	高精度化 トレーサビリティ	高圧大流量の天然ガス流量標準整備
量			高圧大流量ガス流量計	高精度化	高圧用、大流量用、質量流量用などの流量計の開発
計測			気体脈動流量標準校正設備	高精度化 高信頼化 高速化 トレーサビリティ	気体脈動流量を校正可能とする基準器の開発とそれを用いた標準供給体制の構築
			コンピュータ等電子デバイスの冷却・ 静音システム用流量計	システム化	コンピュータ等の発熱素子における冷却システムにおいて、 特に空冷システムでの流量計測制御技術の確立
			環境測定用流量計	高信頼性化	各種ヒューマンインタフェースにおけるセンシング技術の一つ として必要な環境測定用流量計の開発
			遠隔管理型流量計	高信頼性化	相互接続や運用および機器分散協調システムの一環として複数 の流量計をリモート管理し、かつそれらの測定情報を活用したよ り高度な消費量管理等のエネルギーマネージ メント技術の構築
			ナノセンサ型流量計	トレーサビ゛リティ	医療分野・産業分野・ユビキタス社会に向けた社会インフラや ユーザー末端向けの流量計開発
			クランプオン型超音波流量計	高精度化	音響信号の一つとも捉えられる超音波流量計の超音波信号から音源信号の高度な分離技術や情報抽出技術を構築して、計測箇所の管路に手を加えることなく安定して流量計測できるシステムの構築が必要
			空圧サーボ向け流量計	高精度化 高速化	各種アクチュエータとして多用される空圧サーボシステムにおける高度な流量計測技術の提供
	気体	流量	自動車用MEMS式流量計	高精度化 高信頼化	MEMSデバイスのIEC規格化としてエアフローセンサの評価が必要
	河	ルL里	MEMS型流量計	高精度化	生体情報評価や微小領域における物理量計測技術開発の 一環として流量計の開発が必要.
			環境効率評価に用いる流量計	高分解能化	環境効率を評価する技術として必要な流量計の開発とその流量計を用いての指標整備が課題
			ライフサイクルを考慮した品質保証用 流量計	トレーサビリティ	管路内流量計測技術を用いた劣化診断や遠隔検査技術の 構築
			加工現象計測用流量計	オンマシン	加工現象を逐次モニタリング可能とする流量計の開発および 流量計測システムを活用した評価技術の確立
			少すさ 特殊 田本見記	高信頼性化	製造設備等におけるガス体の消費量計測技術を構築し、その結果を利用したエネルギー使用合理化技術の検討
			省エネ対策用流量計 		の相木を利用したエイル(使用日本に反射の快的
			航空機評価用流量計	高精度化	航空機構造設計用高精度流量計の開発および整備・普及
				高精度化 高精度化 トレーサビリティ	

流量計測(2/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題	
			呼吸用流量計	高精度化	有用な呼吸用流量計の手段検討や開発・実用化、生体モニタ	
			廃棄物利用による生成ガス用流量計	高信頼性化	リング構築 生物系廃棄物を利用したメタン生成や有機物等からの水素生成など実用エネルギー生産されたガスを計測する技術の構築	
			二酸化炭素用流量計	高精度化	二酸化炭素貯留システムの効率化や評価技術整備に用いる 流量計の開発・整備	
			フッ素系ガス計測用流量計	高精度化	脱フロン化を進めるにあたり半導体製造分野におけるフッ素 系ガス供給システムでの流量計測技術の開発と普及	
			カバーガス計測用流量計	高精度化 高分解能化	カバーガス使用量削減を目的としたガス流量精密計量装置 の開発および最適操業運転の指針構築	
			高効率ボイラー用流量計	高精度化 高信頼化	ボイラー用高精度流量計の開発およびトレーサビリティ体系の構築。また既存のボイラー利用における効率を評価し、高効率運用の指針獲得を目指す	
			高効率天然ガス発電用流量計	高精度化	今後さらなる需要が期待される天然ガス発電用の流量計の 開発とその運用指針の整備	
	気体	流量	高効率コージェネ用流量計	高精度化	高効率コージェネシステムを構築する上で必須となる流量計の開発と整備・普及およびトレーサビリティ体系の中に組み込んでの補償	
			高効率内燃エンジン向け流量計	高精度化 高速化	高効率内燃エンジンを実現するために必要な流量計の開発 と普及。トレーサビリティの確保や高速応答性評価など、制御 技術への橋渡しを十分にできる計測技術構築が必須	
			副生ガス流量計	高精度化	製鉄プロセスで生じる副生ガスを計測する流量計の開発と整備	
			JIS B 7556 気体用流量計の校正方 法及び試験方法	標準化	規格の円滑な運用のための技術開発及び計量標準の供給	
			真空域用流量計(JIS 8316、JIS 8317-1)	標準化	規格の円滑な運用のための技術開発及び計量標準の供給	
			JIS B 8390 空気圧 圧縮性流体用 機器 流量特性の試験方法	標準化	規格の円滑な運用のための技術開発及び計量標準の供給	
			JIS C 9730-2-18 家庭用及びこれに 類する用途の自動電気制御装置(空 気流量検出)	標準化	規格の円滑な運用のための技術開発及び計量標準の供給	
			JIS Z 8767 臨界ベンチュリノズル	標準化	規格の円滑な運用のための技術開発及び計量標準の供給	
			JIS M 8010 天然ガス計量方法	標準化	規格の円滑な運用のための技術開発及び計量標準の供給	
-	液体(水)小流量	液体小流量標準	高度化	流量標準の高度化	
流	法 []	レ) 法昌	水流量標準	トレーサビリティ	高信頼性確保のための、校正設備の構築	
量計	液体(水)流量		大口径用流量標準	トレーサビリティ	環境問題対策として、各種発電所における大口径配管の流量計に対して、これを校正する装置を開発する。 工業排水流量、ダムの放水流量などの高精度計測	
測	液体(水)流量	開水路	JIS B 7553 開水路流量計 JIS B 7553 パーシャルフリューム式	高精度化	工未排水流里、ダムの放水流里などの高相及計測	
-	从件(水/加重	מעיינותן	流量計	標準化	規格の円滑な運用のための技術開発及び計量標準の供給	
		高温高圧	高レイノルズ数流量標準	トレーサビリティ	実原子カプラント相当のレイノルズ数における流量計校正	
	液体(水)大流量		高温高圧校正装置	高精度化	実原子カプラント相当の高温高圧下における流量計校正方法の確立	
-			原子力給水用流量計	高精度化	高レイノルズ数下において高精度に計測することができる流量計の開発。経年変化への対応。	
	石油/	小流量	リアルタイム燃費計	トレーサビリティ	高圧、高温、流量変動	
	石油/	小流量		高信頼性化	高圧、高温、流量変動	
		<u>-</u>	石油小流量標準	トレーサビリティ	流量標準の確立・高度化、不確かさの低減	
		低粘度、低温石油	LNG,LPG用取引流量計	高精度化	フィールド測定用、安定性、高精度化、粘度、密度影響、配管 影響、温度影響、低温・高圧・気液混相の影響	
		類(LNG、LPGなど)	LNG,LPG用流量計校正装置	高精度化	標準装置と異なる液種用現場校正装置、長期安定性、簡便性、流量拡大、トレーサビリティ体系	
				高信頼性化	標準装置と異なる液種用現場校正装置、マスターメータ、標準流量の流量・液種拡張技術	
			低粘度石油用取引流量計	高精度化	フィールド測定用、安定性、高精度化、粘度、密度影響、配管 影響	
		低粘度		高精度化	長期安定性、簡便性、流量拡大、トレーサビリティ体系	
		(揮発油等)	低粘度石油用流量計校正装置	高信頼性化	標準装置と異なる液種用現場校正装置、マスターメータ、標 準流量の流量・液種拡張技術	
			中粘度石油用取引流量計	高精度化	フィールド測定用、安定性、高精度化、粘度、密度影響、配管影響	
	石油流量			高精度化	現場校正装置の長期安定性、簡便性、流量拡大、トレーサビリティ体系	
		中粘度 (灯油、軽油)	中粘度石油用流量計校正装置	高信頼性化	現場校正装置、マスターメータ、標準流量の流量・液種拡張技術	
			石油大流量標準	トレーサビリティ	既存の石油大流量標準の維持と不確かさ軽減、民間への JCSS登録事業者の普及	
			石油中流量標準	トレーサビリティ	既存の石油中流量標準の維持と不確かさ軽減、民間への JCSS登録事業者の普及	
			高粘度石油用取引流量計	高精度化	フィールド測定用、安定性、高精度化、粘度、密度影響、配管 影響	
		高粘度		高精度化	長期安定性、簡便性、流量拡大、トレーサビリティ体系	
		(重油、原油等)	高粘度石油用流量計校正装置	高信頼性化	標準装置と異なる液種用現場校正装置、マスターメータ、標	
					向后棋注化	準流量の液種拡張技術

流量計測(3/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
	石油流量	石油一般	流量計器差補正装置	高精度化	粘度依存性の補正、流量直線性の補正、温度依存性の補 正、リアルタイム補正、現場条件での高精度化、過酷な使用 環境での高精度化
_			測定技術規格	トレーサヒ゛リティ	簡便化、トレーサビリティ体系、不確かさ解析
			(生理機能計測、健康状況計測)	高精度化 リアルタイム	流量計測精度の向上、瞬時計測技術
			カテーテル治療に用いられる微小流 量センサ(血行動態の把握)	高精度化 複合化	流量計測精度の向上
		血流量	光分野のユビキタスマイクロ顕微鏡 観察可能血流量分布センサ	高精度化 微小化	流量計測精度の向上
			血液流計測用流量計	高精度化 高信頼化	血液流量計測
			診断•治療用超音波流量計	高信頼性化	医療診断を主目的とする微小血管造影と計測技術
		薬液	薬剤送達システムに用いられる微小流 量センサ(ナノバイオ分野と関係深い)	高度化	標的治療との併用技術
	液体微小流量	生体内液	プロープ技術と流体システムによる高機能 計測システムに用いられる微小流量セン サ(MEMS技術の適用品)	高分解能化	流体計測分解能の向上(細胞内動態の観察分解能20 nmが 目標)
	水体吸小加里	生化学液	μTAS、μ流体チップ、マイクロリアクター、マ イクロ分析、流路演算、インテリジェントなセン サー、テーラーメイト・のナノ材料設計に用い られる微小流量センサ	実用化	流体制御
		±1017K	MEMS技術の適用品のトレーサビリ ティを確保するための標準	トレーサビリティ	マイクロ・ナノスケールにおける流量標準の確立
			ラボオンチップ技術を利用する高度DNA 解析に用いられる微小流量センサ	高度化	新しい技術的アプローチや標準法の開発
		液状部材	計測制御部材の発現に用いられる微 小流量センサ(サブシステム)	高精度化	流量計測精度の向上
		液体燃料	マイクロ燃料電池、マイクロタービン、流体デ パイスに用いられる微小流量センサ	実用化	微小燃料流量制御
		環境サンプル液体	環境分析装置のトレーサビリティを確 保するための標準	トレーサビリティ	現場計測とトレーサビリティ体系との連結
			エタノール用流量計	高精度化	フィールド測定用、安定性、高精度化、粘度、密度影響、配管影響
流			7.7.1 电路导动技术状架	トレーサビ・リティ	長期安定性、簡便性、流量拡大、トレーサビリティ体系、高精 度化、粘度、密度影響
量 計	エタノール流量		エタノール用流量計校正装置	高信頼性化	標準装置と異なる液種用現場校正装置、マスターメータ、標 準流量の液種拡張技術
測			バイオマス燃料製造技術、混合燃料 製造技術に必要なトレーサビリティを 確保するための標準	トレーサビ・リティ	流量標準の確立・高度化
			ロケットエンジン推進系高精度制御を 実現する流量計	高精度化 システム化	液体ロケットエンジン等での推進系弁類や新推薬エンジンの 評価用流量計
			水熱源空調システム用流量計	高精度化 省エネ化	空調システムの効率運転を目指した流量制御システムの構 築と省エネ運用指針の獲得および実践
	液体流量		血流量分布センサ	システム化	高アスペクト比貫通孔形成技術
			コンピュータ等電子デバイス発熱対策 用流量計	システム化	低発熱・低排熱を実現する液冷システムでの流量計測制御
			JIS B 7552 液体用流量計一器差試 験方法	標準化	規格の円滑な運用のための技術開発及び計量標準の供給
			JIS B 7554 電磁流量計	標準化	規格の円滑な運用のための技術開発及び計量標準の供給
	水素	流量	水素流量計	高精度化 極端環境下	水素製造・水素輸送・供給等において必須となる流量計測技 術の開発と整備. またその制御技術構築に必要な高性能な 流量計の実現
		圧縮水素	水素ディスペンサ用流量計	高信頼性化	燃料電池・水素自動車への充填対応水素ディスペンサの高 信頼性のための流量計を検討する
			液体水素ディスペンサ用流量計	高精度化	次世代技術としてエネルギー密度の高い液体水素による充 填技術の実証のため、精度の向上を目指す
	水素流量	液体水素	液化ガス流量校正装置	トレーサビ・リティ	エネルギー密度の高い液化ガスは今後取引量が増加すると 予想され、その輸送・貯蔵について環境・経済性を考慮すれ ば流量標準の整備と供給が必要である
				トレーサヒ゛リティ	液化ガスの輸送効率向上・輸送コスト低減策として面前取引 実現を目指した充填用極低温液化ガス流量計の開発する
ļ	熱量		JIS B 7550 積算熱量計	標準化	規格の円滑な運用のための技術開発及び計量標準の供給
			バイオマス用流量計	高信頼化	バイオマス向けの流量計測システム構築およびガス化や改質技術における流量計測制御システムの検討
	混相	流量	流量計測センサ	システム化	小型環境情報取得センサや超小型人体組み込みケミカルセンサ等の開発 国体、液体、気体の限期流性能における流量計測方法の確
			汚水系混相流用流量計 汚水系混相流用流量計用校正装置	高信頼性化 トレーサビリティ	固体・液体・気体の混相流状態における流量計測方法の確
	液体体積		The state of the s		既存の体積標準の維持と供給・不確かさの低減および供給
	液体	体積	体積標準	トレーサヒ゛リティ	範囲の拡大

流量計測(4/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
	気体大流速	風速	気体大流速標準流速計	タ゛イナミックレンシ゛	流量を流速へ変換する参照流速発生器の開発、低閉塞率の 高精度トランスファ風速計の開発、ナチュラル・ダスト環境下 における風速測定、気体大流速標準の安定供給
		速度	レーザドップラ流速計校正装置	高信頼性化	不確かさの改善による校正風洞の信頼性向上、気体中流速 標準の安定供給
			レーザドップラ流速計	高精度化	レーザドップラ流速計校正装置による校正と、測定法の信頼 性向上による不確かさの改善、気体中流速標準の安定供給
			校正風洞	高信頼性化	レーザドップラ流速計による校正と、測定法の信頼性向上による不確かさの改善、気体中流速標準の安定供給
	気体中流速	風速	国際比較用トランスファ流速計	高信頼性化	各国NMIへの適合性の確保、基幹比較に耐えうる信頼性の 確保
		風灰	超音波参照流速計付き風洞	高精度化	次世代航空機の研究開発支援、国家標準へのトレーサビリ ティ確保
			研究用PIV	高精度化	超高乱流・超低SN比での高精度測定
流			研究用LDV	高精度化	高温高圧の燃焼場および高乱流場、超高乱流・超低SN比で の高精度測定
量 計			MEMS風速センサ	微小化	風速センサの超小型化・スマートタグ化
測		空調	JIS型ピト一管	高精度化	一般風速計としての校正方法の普及、SIトレーサビリティの確保
,,,		排ガス	環境計測用特殊ピトー管	高精度化	一般風速計としての校正方法の普及、SIトレーサビリティの確保
	気体中流速	気流	鉱山用風速計	高精度化	一般風速計としての校正方法の普及、SIトレーサビリティの確保
			ライダー	高精度化	大気乱流測定の不確かさ低減、航空機の安全確保
		気象	測雲レーダー	高精度化	風速測定による気象衛星支援、不確かさの低減
	— 41 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	海上気象	マイクロ波散乱計	高精度化	海上風速測定による気象衛星支援、不確かさの低減
	気体中流速	風況	超軽量風速センサ	微小化	小型飛行船搭載のための小型軽量化
-	微風速	室内気流	走行台車	高信頼性化	校正風洞との比較および設備更新による不確かさの改善、微 風速標準の安定供給
	//X/JAKEE		トランスファ超音波流速計	高精度化	不確かさの改善、微風速標準の安定供給
-		河川流量	回転翼式流速計(水)	高精度化	民間校正機関の試験所認定の支援、水力発電の電源開発の 促進
		細胞液	バイオ用微流速プローブ	微小化	微細な流速プローブの実現、細胞内の高精度流動測定
	液体流速	小田がられ	サブミクロン流速センサ	微小化	サブミクロン流路内の流速分布測定
		流速分布	トレーサ用スマートダスト	微小化	マイクロチップの微細化、複雑な流路内の流速測定の実現
		//LXE/1 1 1	ナノ粒子分散型流速検知溶媒	微小化	複合反応場における流速測定
	標準供給	ガスメーター	体積標準器	効率化 高信頼性化	がスメーター用標準には、体積管や小型の湿式がスメーターが使用 されているが、標準器としての信頼性向上、試験時間の縮小 を実現する新たな標準器が求められている。音速パルを標準 器に導入するため、音速パルの簡易校正技術開発、パルの 経時的安定性等の性能評価を行う。これにより試験の効率化 及び高精度化を図る
	評価技術		評価技術	効率化 合理化 高精度化	機器の構成要素(モジュール)の性能評価を行い、完成品での性能評価と同等な評価を可能にする要素評価技術法の開発を行う。製造メーカの試験データの信頼性を向上させる評価システム開発を行う。適合性試験結果に不確かさの導入を試みる
				高精度化 安心安全	計量器に組み込まれるソフトウェアについて認証技術開発及び基準の確立、評価試験方法の技術開発を行う
計 量	規格適合	認証サービス	一般ユーティリティーメーター	高信頼性化 低価格化	製造メーカ等による事故宣言(マーク)の場合、低コストの性能表か技術開発を行い、製品信頼性を確保する認証方法を考案する
			簡易型熱量計	高機能化 高分解能化	CO2排出量評価に利用される家庭用太陽熱利用システムの能力測定技術開発、及び使用する簡易型熱量計の開発を行う
			自動車等給油メーター (自動車用燃料給油機)	高信頼性化 新エネルギー	新しい自動車燃料であるバイオエタノール等を含んだ燃料 (例:E3、85、E100)を計量する計量システムの開発と、性能 評価技術の開発を行う
	規格	適合	液化石油ガスメーター (自動車用LPG給油機)	高信頼性化	今後のニーズとして、高い信頼性を求められることが予想されるため、体積量から、質量または熱量等での取引への転換が求められる
			圧縮天然ガス給油機(CNG) (JMIF014)	高信頼性化	国際基準による性能評価技術の開発及び評価設備の開発
			燃料電池車用水素ガス給油機	高信頼性化	設置箇所での質量、圧力又は熱量による試験方法の開発、 給油機の耐久性の評価
	規格適合	体積計測	ピペット及びマイクロピペット	トレーサビリティ	微少質量による評価技術の開発、標準供給の開始

物性・粒子計測(1/7)

		小分類	装置名	課題	技術課題(二重要課題)	
				高精度化	不確かさの低減	
			熱伝導率測定装置	ダイナミックレンジ	範囲拡大(温度)	
			(GHP法:保護板法)	ダイナミックレンジ	範囲拡大(熱伝導率)	
			低熱伝導材の熱特性を測定する技術 (現状で測定不可能な低熱伝導率の 材料を測定する技術)	高精度化	依頼試験、標準物質、国際比較 <0.02 W/mKの熱伝導率を測定する方法の新規開発、GHPと 連動	
		熱伝導率	熱伝導率測定装置 (HFM法: 熱流計法)	高精度化 ダイナミックレンジ	<0.1 mWの熱量を測定するための高性能熱流計の開発 範囲拡大(温度)	
		(断熱材)		ダイナミックレンジ	範囲拡大(熱伝導率)	
			熱伝導率測定装置(円筒法)	トレーサビ・リティ	円筒形標準物質の開発	
			建築用構成材の熱貫流率、熱抵抗な どを測定する技術(校正熱箱法及び保 護熱箱法)	トレーサビリティ	標準物質(校正板)の開発	
			断熱・保温材料の熱性能宣言値の決 定手順	高信頼性化	宣言値と設計値	
			建具の断熱性試験方法	高信頼性化	低熱貫流率測定の信頼性の向上	
		熱伝導率	熱伝導率測定装置(非定常熱線法)	高精度化	不確かさの低減	
		(耐火物)	熱伝導率測定装置(定常熱線法)	高精度化	不確かさの低減	
				高精度化	不確かさの低減(RT~1500 K)	
				ダイナミックレンジ	範囲拡大(温度)	
				ダイナミックレンジ	測定対象の拡張(高熱伝導で均質なバルク材料)	
		1		ダイナミックレンジ	測定対象の拡張(複合材料)	
			熱拡散率測定装置	ダイナミックレンジ	測定対象の拡張(低熱伝導なバルク材料)	
			・パルス加熱法	ダイナミックレンジ	測定対象の拡張(材料:高熱伝導性グリース)	
			(フラッシュ法熱拡散率測定装置)	トレーサビリティ	熱拡散率の標準(依頼試験)	
				トレーサビリティ トレーサビリティ	標準物質の供給 国際比較の推進	
				トレーサビリティ	標準化	
		熱拡散率•		トレーザビリナイ		
		熱伝導率 (固体:金属・セラミッ		高信頼性化	熱伝導率の同時測定技術(比較測定による比熱容量測定の確立) データ解析モデルの開発	
		クス・高分子など)		高精度化 ダイナミックレンジ	第囲拡大(温度)	
				タ イナミックレンシ	測定対象の拡張(試料厚さ、材料)	
44				トレーサビリティ	標準物質	
物性	熱物性			高信頼性化	測定結果の信頼性評価	
計				トレーサヒ・リティ	標準化	
測				高信頼性化	熱伝導率の同時測定技術の開発(比較測定による比熱容量 測定)	
			熱伝導率・熱拡散率および関連する 物性値を実用的に測定する技術	高精度化	熱伝導率・熱拡散率および関連する物性値の実用的な測定技術の開発(対象は、バルク、薄板など自立するバルク材料)(簡易測定技術、可搬型測定技術)	
		熱拡散率・熱伝導率(ナノカーボン材料)	ナノカーボン材料の熱伝導率・熱拡散 率を測定する技術	ダイナミックレンジ	測定可能範囲(材料:カーボン材料、カーボンナノチューブ等)	
		熱膨張率		熱膨張特性評価技術 (対象物:パルク状、シート状、繊維 状)	高分解能化	ゼロ膨張材料の特性評価、高分解能化、実用計測器の開発・普及
					高精度化	測定対象の微小化・異形化対応、試料内の熱膨張特性分布 評価、in-situ計測への展開
			ᄎᆔ 마ᆣ(구토 #土 ル/ト 등급 /p= ++ イメニ	高分解能化 多次元化	高信頼性化/高分解能化、面内熱膨張特性分布の評価 膜厚方向の熱膨張特性分布評価	
			熱膨張特性評価技術 (対象物:薄膜)	多次元化 ダイナミックレンジ	課度を受ける 関係を表現しています。	
			(四) 外 (四)	トレーサビリティ	薄膜熱膨張率標準物質の開発	
					適用温度範囲、特性値の範囲拡張、不確かさの評価、SIトレー	
			熱膨張率標準物質 	トレーサビリティ	地方温度製品、特性に関い製品が扱い、特殊がGOS計画、SIITU	
		比熱容量	·比熱容量(断熱法) ·比熱容量(示差走査法)	トレーサビリティ 高度化	測定温度範囲の拡張、不確かさの低減	
		温度·熱量·比熱 容量	標準物質 ・比熱容量標準物質 ・熱量標準物質 標準データ	トレーサビリティ 高度化 高信頼性化	標準物質の多様化、標準データの整備、標準化(JIS・ISO)	
		熱量·比熱容量	熱量測定装置(断熱法)	ダ・イナミックレンジ	測定温度範囲の拡張、材料の測定情報の多様化、試料の少量化、薄物試料の精密測定	
		熱量·比熱容量	熱量測定装置(示差走査法)	ダ・イナミックレンジ	測定温度範囲の拡張、材料の測定情報の多様化	
		熟 放	パルス通電加熱法 (ミリ秒パルス通電加熱法、サブミリ秒 パルス通電加熱法、光通電ハイブリッ ド・パルス加熱法)	複数物性測定 高高速対対応定 無対法所応 調度が 高温接性 に で で で で で で で で で で で で で で が に で で が に が に	測定温度範囲の拡張、測定可能対象物質の増加、他の測定・分析法との複合化、測定雰囲気の多様化、物性の試料内分布評価、物性の異方性評価、高精度化、測定法・解析法の標準化、装置価格の低減、装置の小型化、測定の省力化(自動化)	

物性・粒子計測(2/7)

大分類	中分類	小分類	装置名	課題	技術課題(====================================
	熱物性	熟 热 伝	無容器加熱法 (電磁浮遊加熱法、 静電浮遊加熱 法、空力浮遊加熱法、静磁場印可電 磁浮遊加熱法)	複数物性測定 絶対法京応 高海体対応 液体却融体対応 非接触測定	測定可能対象物質の増加、 他の測定・分析法との複合化、 測定雰囲気の多様化、 入力熱量評価、高精度化、 測定法・解析法の標準化、 装置価格の低減、装置の小型化、 測定の省力化(自動化)
		分光放射率 相変態点	準非接触無容器加熱法 (コールド・クルーシブル (スカル溶解加熱法))	高速測定 高温対応 液体対応 非接触測定	測定可能対象物質の増加、他の測定・分析法との複合化、 測定雰囲気の多様化、高精度化、測定法・解析法の標準化、 装置価格の低減、装置の小型化、測定の省力化(自動化)
		エンタルピー 比熱容量	落下熱量法 (通常加熱方式型落下熱量法、無容 器加熱方式落下型熱量法)	絶対法原理 高温対応 液体対応	測定温度範囲の拡張、他の測定・分析法との複合化、高速化、試料と容器の反応、高精度化、標準物質の多様化、装置価格の低減、装置の小型化、測定の省力化(自動化)
		相変態点 相変態挙動	相状態評価用熱分析機器 (示差熱分析、熱重量分析、 示差走査熱量法)	高温対応 高温融体対応	測定温度範囲の拡張、他の測定・分析法との複合化、 高速化試料と容器の反応、高精度化、 標準物質の多様化、装置価格の低減
		熱伝熱空 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	標準物質(高温・バルク) (熱流計法校正用熱伝導率標準物質、DSC・ 落下熱量法校正用比熱標準物質、押し棒式 熱膨張計校正用、熱膨張率標準物質、熱 財特性評価装置校正用放射率標準物質、熱 電材料評価装置校正用複合物性標準物質、 熟重量分析装置校正用標準物質、熱	トレーサビリティ 高温対応	使用温度範囲の拡張 標準物質の多様性確保 正確な値付け・不確かさ評価 SIトレーサビリティ 安定性・均質性 価格の低減 他の標準物質用途との複合化
		薄膜の熱物性	薄膜熱物性測定装置	高度化	温度応答の高速化、界面熱抵抗を含むナノスケールの熱輸送 現象に対する理解、短波長化など新規プローブ技術、異方性 の計測、界面の熱移動
				トレーサビリティ	依頼試験、標準物質、膜厚、温度範囲の拡大、不確かさの向上、実用標準物質(多層膜、無機薄膜、面内方向用、微小領域用など)
物 性 計 測		微小領域の 熱物性	周期加熱、サーモリフレクタンス、走査型ブローブ顕微鏡(SPM)、近接場光技術など		測定手法の標準化(JIS・ISO) 空間分解能の向上、検出素子の微細化と高感度化の両立、定量性の向上、物性と形状の分離、界面熱抵抗を含むナノスケールの熟輸送現象に対する理解、電気特性、誘電特性、機械特性、磁気特性など他物性との複合測定化や測定スループットの向上、温度測定では過渡温度変化を捉えるための高速測定能力、低次元材料の測定(粒子、ワイヤ等)
				トレーサビリティ	標準物質、実用標準物質 関係機関におけるコンセンサスの形成
		熱物性全般	熱物性データ解析共通フォーマト	規格化	計測器と解析ソフトを結ぶ共通フォーマト
		熱物性全般	熱物性データ共通フォーマト	規格化	関係機関におけるコンセンサスの形成
		熱物性全般 機械特性 電気特性なども一 部含む	執物性データベース	網羅化 高精度化	先端材料データおよび基盤的材料データの体系的整備(半導体(ゲートスタックプロセス)high-kゲート絶縁膜材料におけるデバイスシミュレーション技術)
				網羅化 高精度化	先端材料データおよび基盤的材料データの体系的整備 (半導体(ゲートスタックプロセス)ゲート電極材料におけるプロセスシミュレーション技術)
		ナノ材料データ (原子間ポテンシャ ル等)		網羅化 高精度化	先端材料データおよび基盤的材料データの体系的整備(半導体 (材料物性予測、新デバイスモデリング、回路モデリング)におけるプロセスシミュレーション技術やデバイスシュミレーション技術)
		熱物性全般	パルス光加熱法解析技術 (レーザフラッシュ法、パルス光加熱 サーモリフレクタンス法)	データ解析技術 の開発	熱伝導メカニズムの解明 パッケージソフトウェアとしての提供
		熱物性全般	熱伝導シミュレーション技術	データ解析技術 の開発	熱伝導メカニズムの解明 パッケージソフトウェアとしての提供
		熱物性全般 機械特性 電気特性等	熱物性データベース	網羅化高精度化	次世代デバイス関連技術/放熱技術のための先端材料データ および基盤的材料データの体系的整備
		熱物性全般 機械特性 電気特性等	熱物性データベース	網羅化高精度化	燃料電池用先端材料データおよび基盤的材料データの体系 的整備
		熱物性全般 機械特性 電気特性等	熱物性データベース	網羅化高精度化	プロセス設計/印刷塗布のための先端材料データおよび基盤 的材料データの体系的整備
		熱物性全般 機械特性 電気特性等	熱物性データベース	網羅化高精度化	高純度・低欠陥密度、低転位密度・高速成長、大口径化に資する材料データおよび基盤的材料データの体系的整備
		熱物性全般 機械特性 電気特性等	熱物性データベース	網羅化高精度化	先端材料データおよび基盤的材料データの体系的整備

大分類	中分類	小分類	装置名	課題	技術課題 (重要課題 最重要課題)
	熱物性	熱物性全般 機械特性 電気特性等	熱物性データベース	網羅化高精度化	相変化RAM/熱設計・熱制御技術のための材料データおよび 基盤的材料データの体系的整備
		熱物性全般 機械特性 電気特性等	熱物性データベース	網羅化高精度化	NEMSメモリ/デバイス機能の導出のための先端材料データおよび基盤的材料データの体系的整備
		熱物性全般 機械特性 電気特性等	熱物性データベース	網羅化高精度化	ハードディスク系技術のための材料データおよび基盤的材料 データの体系的整備
		熱物性全般 機械特性 電気特性等	熱物性データベース	網羅化高精度化	光ディスク系技術のための先端材料データおよび基盤的材料 データの体系的整備
	密度	iMERA Length RM2	直径測定装置	高精度化	直径94 mm、精度0.3 nm以下への高精度化
	密度	球体の直径および体積の絶対測定	直径測定装置	トレーサビリティ高精度化	SI基本単位キログラムの再定義 X線結晶密度法によるアボガドロ定数の決定 シリコン単結晶の密度の絶対測定 高精度球体温度制御、高精度球体温度測定
				トレーサビリティ 高信頼性化	国際同等性の確保
		表面酸化膜厚		トレーサビリティ 高精度化	酸化膜組成評価、測定自動化
				高精度化	計量法登録校正事業者制度(JCSS)における密度の特定標準 器および特定二次標準器の高精度化 国際比較の高精度化
	材料	物性	固体密度測定装置	高速化 低価格化	建築材料、細骨材の密度試験方法など
			四下山汉(())之农已	微小化	骨密度(BMD)の評価 MEMSデバイス素材などの密度評価
				薄膜	High-k膜、カーボンナノチューブ、酸化膜などの密度の圧力浮遊法による直接測定
			DRAM1/2ピッチ(nm)	微小化	微細化による高集積化
	半導体物性	出典 ITRS 2007	Critical Defect Size (nm) (MPU, DRAM Technology)	高分解能化	Defect Sizeの縮小 検出感度の向上
	格子欠陥		成膜後、熱処理時の欠陥検出(nm)	高信頼性化	検出感度の向上
440		シリコン結晶中の	成膜バリア層の厚さ測定(nm) 欠陥評価装置、ボイド検出装置	高精度化 高精度化	検出感度の向上 X線顕微鏡によるボイドの可視化
物 性	半導体物性 バルク材料中の格 子欠陥	ボイド	コヒーレントX線顕微鏡	高分解能化	シリコン単結晶の欠陥検出技術の高分解能化
計測		シリコン結晶中の ボイド 原子空孔	圧力浮遊装置(欠陥量検出)	トレーサビリティ 高分解能化	超高分解能密度比較技術による欠陥量検出の定量化
				トレーサビリティ 高信頼性化	測定の自動化
		原子空孔	点欠陥検出装置(低温超音波装置)	高信頼性化	シリコン単結晶の空孔欠陥と弾性定数のカップリング定数の決 定による空孔量の定量化
	薄膜中の欠陥	欠陥	自由電子レーザーX線顕微鏡 圧力浮遊装置(欠陥量検出)	高分解能化 高分解能化	バルク欠陥検出技術の薄膜欠陥測定への応用 欠陥検出技術の薄膜への応用
	密度	NMIJ科室ロード マップ	磁気式密度計	ダ・イナミックレンジ	測定温度圧力範囲の拡張
		ISO 15212-1 国税庁所定分析 法	振動式密度計	高精度化トレーサビリティ	トレーサブルなアルコール濃度計測
		ISO 15212-1、二一 ズ調査報告書(京 都電子工業株式 会社)	標準液密度	高精度化 ダイナミックレンジ	高密度標準液の開発密度の安定化
		流体の密度	—————————————————————————————————————	広範囲化	温度·圧力範囲拡張
		流体の密度	19X1 H 0~0 Mm	多次元化	混合物組成決定システム高精度化
		液体の密度	振動式密度計	高信頼性化	トレーサブルな標準液を用いた校正方法の規格化、石油及び 石油製品の密度試験方法、海洋汚染等及び海上災害の防止 に関する法律(環境庁告示第78号)、大気汚染防止法(環境省 告示第61号)
		液体の密度		高精度化	低熱膨張率標準液の開発
		液体の密度 液体の密度	標準液	広範囲化 高信頼性化	高密度安定物質の開発 国際同等性の確保、技能試験参照値の提供
	水素貯蔵	水素貯蔵技術ロー ドマップ (NEDO 2008)	水素貯蔵技術	高信頼性化	水素貯蔵のための流体物性計測
	燃料電池	固体高分子型燃料電池(PEFC) ロードマップ (NEDO 2008)	燃料電池技術	高精度化	燃料電池のための流体物性計測
	バイオ燃料	ガソリン自動車に おけるエコ燃料普 及ロードマップ (エコ燃料利用推 進会議 2006)	バイオ燃料技術	トレーサビリティ	バイオ燃料のための流体物性計測

物性・粒子計測(4/7)

大分類	中分類	小分類	装置名	課題	技術課題(
	密度	天然ガス、水素、 バイオ燃料	密度測定装置	高精度化 ダイナミックレンジ スマート化	液化天然ガス、液体水素、バイオ燃料などの燃料流体の密度 管理をする必要性があり、幅広い条件下で高精度測定(0.5% 以上)が可能な密度センサが求められる
	音速	温度標準	音速測定装置	トレーサビリティ 高精度化 複合化 ダイナミックレンジ	単原子分子気体の音速測定による、温度標準設定への応用 が検討されており、測定のさらなる高精度化・範囲拡大が求め られる
		燃料電池		高精度化 ダイナミックレンジ オンマシン	燃料電池のガス拡散層における湿度管理は、音速測定により 行うことができるため、システム機器でインライン測定が可能な 高精度音速センサが求められる
		バイオ燃料		高精度化 ダイナミックレンジ スマート化	バイオ燃料における水分管理は、音速測定により行うことができるため、システム機器でインライン測定が可能な高精度音速センサが求められる
	誘電率	温度標準, 圧力標準	誘電率測定装置	トレーサビリティ高精度化トレーサビリティ複合化トレーサビリティ	- 単原子分子気体の誘電率測定による、温度または圧力標準 設定への応用が検討されており、測定のさらなる高精度化・範 - 囲拡大が求められる
		燃料電池		タ・イナミックレンシ・ 高精度化 ダ・イナミックレンシ・ オンマシン	燃料電池のガス拡散層における湿度管理は、誘電率測定により行うことができるため、システム機器でインライン測定が可能な高精度誘電率センサが求められる
		バイオ燃料		高精度化 ダイナミックレンジ スマート化	バイオ燃料における水分管理は、誘電率測定により行うことができるため、システム機器でインライン測定が可能な高精度誘電率センサが求められる
	拡散係数	燃料電池	拡散係数測定装置	高精度化 ダイナミックレンジ オンマシン	- 燃料電池の電解質膜内における気体、液体の拡散予測に必 - 要な拡散係数の測定が求められる
	PVT性質	作動流体の PVT性質	磁気浮上密度計	範囲拡大 極端環境下	ヒートポンプの用途拡大に伴う温度範囲をカバーする ヒートポンプの用途拡大に伴う温度範囲をカバーする
			PVT性質計測センサ	タ [・] イナミックレンシ [・] 低価格	ヒートポンプの用途拡大に伴う温度範囲をカバーする 機器組み込みを見込んだセンサ化
物 性 計	比熱	作動流体の比熱	比熱計	範囲拡大 高精度化 トレーサビリティ	ヒートポンプの用途拡大に伴う温度範囲をカバーする 比熱測定精度の向上を図る SIに対するトレーサビリティを確保する
測	音速	作動流体の音速	音速計	範囲拡大 極端環境下 微小化	ヒートポンプの用途拡大に伴う温度範囲をカバーする ヒートポンプの用途拡大に伴う温度範囲をカバーする 製品組み込みに向けたセンサ化
	飽和性質	作動流体の飽和 性質	循環式気液平衡性質測定装置	微小化 高速化 複合化	派用計測器として小型化を目指す 小型化および制御性の向上により測定の高速化を図る 他の物性を同時計測し計測器としての汎用性を付与する
	粘度	作動流体の粘度	高圧粘度測定装置	高精度化 微小化 複合化	作動流体の標準データ獲得を視野に入れ高精度化を図る 機器組み込みを見込んだセンサ化 飽和性質測定装置との融合化
			高圧粘度センサ	トレーサビリティ 高精度化 微小化 トレーサビリティ	特に気体に関してSIに対するトレーサビリティを確保する 限定した対象流体に対する再現性の向上を目指す 機器組み込みを見込んだセンサ化 センサーの定期校正方法の確立
	屈折率	技術戦略マップ 2008「半導体分 野」露光装置技術	微細化·高精度化	高精度化 高精度化	ゲートCD制御(3σ) (nm) 線幅ラフネス(3σ) (nm)
			193nm露光技術の延命 新規短波長露光技術	高精度化 高精度化 高精度化	液浸リソグラフの実用化 短波長化 紫外域での高屈折化
		液体の屈折率	干涉式屈折率測定装置	トレーサビリティ 範囲拡大 トレーサビリティ	紫外線リソグラフ用液体の光学物性紫外域への波長範囲の拡張
				範囲拡大 高精度化	4 ℃の水の普遍値に関する再測定を実施
			屈折率計 屈折率センサ	微小化 低価格 オンマシン	- 屈折率を用いた濃度センサの開発
		材料の屈折率	分光エリプソメトリー	高分解能化	ダブル光コム・テラヘルツ分光光源の開発 光周波数標準とのトレーサ 多層薄膜標準
	粘度	ニュートン粘度	細管式粘度計	トレーサビリティ 高精度化	温度測定不確かさ低減、表面張力補正による不確かさの低減、高粘度測定の不確かさ低減
				トレーサビリティ ダイナミックレンジ	低粘度域の高精度化
				トレーサビリティ	JCSS化

物性・粒子計測(5/7)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題)
				スマート化	全自動化、簡便化
				高信頼性化	中高粘度域の粘度絶対値の高精度化、水の粘度絶対値(ISO TR3666)の不確かさ低減、高精度高安定標準液の開発と高粘 度基準点の設定、ISO TR3666の改訂
				広範囲化	高粘度域の拡張。高粘度用標準液、温度域の拡張、高温・低温 用標準液、高圧への拡張
			ニュートン粘度標準	食品、医療への対応	水溶性標準液の開発
		ニュートン粘度		省Iネ化 高精度化	低温度係数(高粘度指数)高性能標準液の開発
				利便性向上	JCSS校正温度点の追加、JCSS中高粘度標準液の追加
				トレーサビリティ	シリコンオイル粘度校正液
				利便性	容器容量のバリエーション増大化
		-		規格 高精度化	JIS等現有規格の改訂、評価・測定法の規格化 表面張力の影響の低減
			振動式粘度計	高信頼性	振動方式の改良、低せん断速度化
物			派到八石八人口	簡便化	自動化、ワンパッケージ化
性	粘度			高精度化	不確かさの低減、トルク感度の向上、温度制御の高精度化
計測	11.2		回転粘度計	高信頼性化	ギャップ制御、回転ムラ抑制
79(1		ニュートン・非			非ニュートン粘度の校正技術(回転法)
		ニュートン粘度	北一 _ L 、 北	п желе	非ニュートン粘度の校正技術(円筒落下法)
			非ニュートン粘度標準	トレーサビリティ	非ニュートン標準液
					ハイシェアー非ニュートン粘度標準
				高信頼性化	不確かさの評価(手法・基準)、不確かさの低減、感度の向上、
		粘弾性	レオメータ		温度範囲拡大
		147712		利便性	簡便化
			粘弾性標準	トレーサビリティ	粘弾性標準
			粘度センサ	小型化	MEMS粘度センサの開発
		-		高精度化	MEMS専用標準液の開発
			プロセフ牡麻락	小型化 低価格化	構成の検討
		新しい粘度計	プロセス粘度計	高信頼性化	低せん断速度化
		-	表面粘度計	新規開発	料性スペクトル法、静電ピックアップ法
				リアルタイム化	制御システム改良
				高信頼性化	不確かさ解析、低振動数化
	拡散係数	液体の拡散係数・	きょんし ハ サレエニンナ	高精度化	自己相関関数フィッティング法改良
			動的光散乱法	高信頼性	余剰散乱光除去
		/区 本の月/日末 末安久	テイラ一拡散法	簡便化	ワンパッケージ化
		液体の拡散係数	, 1 > 1/A A A	高信頼性	管径均一化、注入方法再検討
			NMR	高精度化	コイルピックアップの改良
				小型化	小型永久磁石
			レーザー拡散係数測定法	新規開発 高信頼性	レーザー回折法、レーザー干渉計法 系統誤差解析、不確かさ解析
			拡散係数標準	トレーサビリティ	標準液の開発
-				高信頼性化	気泡等の偽計数の削減
			光遮断式粒子計数装置	トレーサビリティ	薬液・清浄水の現場測定技術、校正基準(粒径・濃度)
			光散乱式粒子計数装置	高信頼性化	微小粒径の計数、気泡等の偽計数の削減
			尤取乱式松于引致表直	トレーサビリティ	薬液・清浄水の現場測定、校正基準(粒径・濃度)
		個数濃度	フローサイトメーター	高信頼性化	微小粒径の計数、気泡等の偽計数の削減 高濃度試料測定、蛍光分光感度の向上
				トレーサビリティ	校正基準(粒径・濃度・蛍光強度)
]	コールター式粒子計数装置	高信頼性化	偽計数の削減、高濃度試料の測定、多種血球の識別計数
			· · · · · · · · · · · · · · · · · · ·	トレーサビリティ	血球の現場測定、校正基準(粒径・濃度)
			共鳴散乱光式粒子計数装置	高信頼性化	屈折率との同時測定、微小粒径の測定
粒 子		j		トレーサビリティ 高信頼性化	校正基準(粒径・濃度) 高濃度試料の測定、偽計数の削減、微小粒径の計数
計]	暗視野照明式粒子計数装置	トレーサビリティ	高濃度試料の測定、過計数の削減、微小粒径の計数 校正基準(粒径・濃度)
測		#L/77 () -L	.mt. = 1	高信頼性化	低濁度の測定、偽計数の削減、混濁物質の識別計数
		粒径分布	濁度計	トレーサビリティ	校正基準
			フロー式粒子像分析計数装置	高信頼性化	微小粒径の測定、粒子識別能力の向上、形状分類技術
	液中粒子		ノロース似丁隊刀が計数装直	トレーサビリティ	校正基準(粒径・濃度・形状)
		形状•凝集特性	顕微鏡法粒子画像計数装置	高信頼性化	微小粒径の測定、非球状粒子のアスペウトアスペクト比計測、液中粒子の気中粒子へと変換技術、粒子形状フラクタル次元測定技術、自動測定技術
]		トレーサヒ・リティ	校正基準(粒径・濃度)
		1	 液滴噴霧式粒子計数技術		液滴噴霧式粒子計数技術、液中粒子の気中粒子への変換技
			気中粒子形状測定技術	複合化	術、気中粒子形状フラクタル次元測定技術
		気中発生技術	液滴噴霧式粒子計数技術	多次元化	液中標準粒子を噴霧する技術、粒径と素材に適切な噴霧技 術、計数効率評価
		密度	液滴噴霧式粒子計数技術 気中粒子密度測定技術	複合化	液滴噴霧式粒子計数技術、液中粒子の気中粒子への変換技術、気中粒子密度の測定技術
			液中粒子数濃度標準液	トレーサビリティ 高信頼性化	不確かさの低減(濃度・粒径)、微小粒径化、高濃度化、使用 技術基準
		個数濃度標準液	液中蛍光粒子数標準液	トレーサビリティ高信頼性化	不確かさの低減(濃度・粒径・蛍光強度・発光波長) 微小粒径化、高濃度化、使用技術基準
			濁度標準液	トレーサビリティ 高信頼性化	不確かさの低減(濃度分布)、低濃度化、使用技術基準

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題)
		個数濃度標準液	粒径分布標準液	トレーサビリティ 高信頼性化	分布の均一性、高濃度化 分布幅の選択範囲、使用技術基準
		蛍光強度標準 粒子	蛍光粒子光度標準液	トレーサビリティ 高信頼性化	不確かさの低減(強度・波長) 蛍光強度の範囲拡大、蛍光波長の範囲拡大 使用技術基準
	液中粒子		対向レーザービーム式レーザートラップ装置	高精度化	操作位置・速度の高精度化
	/文十位]		対向レーザービーム式レーザートラッ	微小化 極端環境下	顕微鏡下への組込 極端環境下でのモニタリング
		粒子操作	プ装置	複合化 複合化	粒径・成分の識別 粒子の加工
			単一レーザービーム式レーザートラッ	複合化 複合化	粒径・成分の識別 粒子の加工
			プ装置	高精度化	操作位置・速度の高精度化
				高精度化	屈折率との同時測定
		個数濃度	 共鳴散乱光式表面粒子計数装置	多次元化 多次元化	位置情報 成分情報
			八响於山地及田恒了山東東區	ダイナミックレンジ	微小粒径の測定
	表面付着粒子			トレーサビリティ	校正基準(粒径・濃度)
				高信頼性化	噴霧効率の向上
		表面散布・造粒	液滴噴霧式粒子散布装置	安定化 複合化	噴霧液滴の回収技術
				校 百 1년 トレーサビリティ	多種粒子の造粒技術 校正基準(粒径・濃度)
-				高精度化	粒径測定精度および分解能の向上
			粒径分布測定装置 (電気移動度式(DMAS)	高精度化	校正・試験法の開発と規格化
			電子式低圧インパクター型	高精度化	粒子損失・帯電率・検出器効率などの補正の高精度化
		粒径(分布)	(ELPI) 光散乱式(LPS)	ダイナミックレンジ	測定可能な粒径・濃度範囲の拡大
			飛行時間型(APS)	高速化	使用可能な圧力・温度範囲の拡大 電気移動度式測定における測定速度の短縮化
			過渡応答型電気移動度式	小型化	ナノ粒子曝露量測定
			(FMPS))	低価格	低価格化による利用の拡大
		個数濃度	凝縮式粒子計数器(CPC)	ダイナミックレンジ	測定可能粒径範囲の拡大、特に微小粒径
				高信頼性化	校正方法の開発と規格化、現場校正技術の開発
				トレーサビリティ 低価格	個数濃度標準の整備と普及
				小型化	低価格化による利用の拡大 簡易ナノ粒子検出器
粒子			光散乱式粒子計数器(OPC)	高信頼性化	横正方法の規格化、現場校正技術の開発 個数濃度標準の整備
計測		表面積濃度	拡散荷電式表面積計	低価格	ナノ粒子曝露量モニター
751		質量濃度	エアロゾル粒子化学組成分析技術	ダイナミックレンジ	ナノ粒子の微小質量濃度を測定可能
		質量(分布)	エアロゾル粒子質量分析器(APM)	高感度化 高精度化 小型化	1 ag (密度1 g/cm3で約10 nm)を標準不確かさ6 %で測定できる 技術開発
		密度	有効密度測定技術 (電気移動度径測定と空気力学径測 定の組合せ、または、電気移動度径 測定と質量測定の組合せによる)	高速化	分単位での測定の実現、高精度化、低価格化
		電荷(分布)	粒子荷電装置	安全性向上	放射性同位体物質によらない荷電技術の実現
	気中粒子		電荷中和器	高精度化 スマート化	再現性がよく使用環境に影響されない荷電技術の開発 定量化
			MA 10 Am 1-11	高速化	 直像解析技術の高速化
		形状・凝集状態	粒子画像解析技術	ダイナミックレンジ	小粒径(ナノ粒子)への対応
				高精度化	高効率で粒径依存性の少ない捕集サンプリング技術の開発
			エアロゾル粒子マススペクトロメータ	高精度化	定量性の向上、再現性の向上
			オフライン技術 質量分析	ダイナミックレンシ ゙	感度の向上、測定可能な化学種の拡大
		化学組成	炭素分析	スマート化	膨大なデータの解析効率の向上
			イオン 硫酸塩・硝酸塩	リアルタイム	時間分解能の向上
			金属	低価格	分析コストの低減
		個数濃度標準	個数濃度標準	ダ・イナミックレンジ	濃度範囲の拡大(2009年時点で1000~10000 cm ⁻³) 粒径範囲の拡大(2009年時点で10~200 nm)
			液体噴霧分散装置 加圧気体方式、静電噴霧式	高信頼性化	溶媒および残渣の影響の評価、操作性の向上
		気中発生技術	超臨界流体利用分散装置	高信頼性化	濃度および時間変動の改善
			粉体分散装置	高信頼性化	分散・解砕力の改善
		粒径·粒子質量 標準(単分散)	30 nm以上標準粒子: ポリスチレンラテックス粒子	トレーサビリティ 高信頼性化	真球度、単分散性の向上、経年変化の調査
		粒径·粒子質量	30 nm以下標準粒子:	多次元化 トレーサビリティ	質量、密度、電気移動度など複数量の同時認証 標準の探索、選定および新規開発
		標準(単分散)	分子・イオン		新規開発(装置分解能の考慮した値づけ)および不確かさ評
		粒径分布幅標準 	ポリスチレンラテックス粒子 	トレーサビリティ	価 価
		粒径分布標準 (多分散)	試験用多分散標準粒子	微小化 高精度化 トレーサビリティ	100 nmまでの小粒径化・トレーサビリティ確立

物性・粒子計測(7/7)

大分類	中分類	小分類	装置名	課題	技術課題(== 要課題 == 最重要課題)
		形状	ナノ・高アスペクト比粒子対応 (気中・液中)	微小化	形状計測技術 標準技術(標準物質)
	気中粒子	ナノ試験粒子	カーボン材料(CNT, カーボンブラック) 酸化物(TiO2, ZnO, CaCO3) 金属(Zn, Cu, Ag, Ni, Fe) 高分子(PS)	複合化	粒径分布(多分散) 物理·化学特性 試料調製法
		粒径分布	沈降法、ふるいわけ法等	トレーサビリティ	標準化
粒		比表面積	気体吸着法	トレーサビリティ	標準化
子計		かさ密度	タップ測定法	トレーサヒ゛リティ	標準化
測		粒子密度	液浸ピクノメーター法	トレーサヒ゛リティ	標準化
79()		形状·細孔径分布	水銀圧入法	トレーサヒ゛リティ	標準化
	粉体	分散法	流動層型発生器	トレーサビリティ	標準化
		粒径分布標準 (多分散)	けい砂、タルク、フライアッシュ、ボルトランドセメン ト、関東ローム、重質炭酸カルシウム、アリゾナ テストダスト、その他新材質	トレーサビリティ	微小化、トレーサビリティ確立、標準化
		粒径分布標準 (単分散)	グラスビーズ、白色溶融アルミナ	トレーサヒ゛リティ	標準化
	不確かさ・同等性評価		不確かさ評価技術	高度化·簡易化	複雑な測定系での評価技術開発、トレーサビリティ下流での評価の簡易化、不確かさの定量的利用技術開発
					GUM/VIM改訂、GUM補足文書発行
普			大確かさ	不確かさ関連技術の規格化	規格化
及			不確かさ評価法の普及	普及•啓蒙	不確かさ評価技術者の養成
の			データベース	システム化	不確かさの情報を含んだデータベースの構築
ため		同等性評価	国家計量機関間の国際比較	高度化·簡易化	統計的手法の開発・整備
の		问寺注計価	試験所間比較による技能試験	高度化·簡易化	統計的手法の開発・整備
5共通基盤	高信頼性が要求されるコンピュータ制御の計量システム	信号量の計量表 示換算にソフトウェア を用いる法定計量 器	コンピュータ制御の計量システムの仕 様書あるいは規格との整合性の検証 サービス	高信頼性化	モデル検査、静的検査、不具合検知
	計量器全般	NIST Digital Library of Mathematical Functions, NPL SSfmクラブ	計量器のソフトウェア開発を行うため に必要な情報を提供するWebページ の開発	安定化	必要な知識の集積、利用しやすいWebページの設計
計量	標準供給	浮ひょう		高精度化 高信頼性化	密度浮ひょうにおいて、実用密度標準液を開発し、陸水全国マップを作成し、JIS B 7525を改定する

電気計測 直流・低周波(1/4)

				タ゛イナミックレンシ゛	量子抵抗標準の広範囲化(直流抵抗ブリッジによる標準供
			標準直流抵抗器	7 17 577027	給の代替)
				スマート化	室温QHRの開発
				高精度化	高安定な室温型標準抵抗素子の作製における評価のための 抵抗測定(標準供給中の標準抵抗器の代替)
				ダイナミックレンジ	低抵抗標準の開発(低抵抗標準の広範囲化)接触抵抗評価 装置で使用
				トレーサヒ゛リティ	低抵抗標準供給維持、1 mΩ、10 mΩ、100 mΩ
				課題解決用に適 合化	温度計(抵抗型)測定交流直流ブリッジ評価用抵抗アレー開発における評価のための抵抗測定
		直流抵抗		トレーサビ・リティ	抵抗標準供給維持 1 Ω 、10 Ω 、100 Ω 、1 k Ω 、10 k Ω 、1 M Ω 、10 M Ω 、100 M Ω 、1 G Ω 、10 G Ω 、100 G Ω
				高度化	国際単位系の大改訂に合わせた高度化
				高分解能化	Pt100温度センサ測定器の高度化(ステッパ、電子ビーム描画装置用)交流抵抗ブリッジ、直流抵抗ブリッジを用いた温度測定装置
			直流抵抗測定装置	システム化	コンパクトQHRシステムの開発(直流抵抗プリッジの代替)
				トレーサビ・リティ	テラオームメータ校正の維持 1 MΩ, 10 MΩ, 100 MΩ, 1 GΩ, 10 GΩ, 100 GΩ, 1 TΩ
			+++	スマート化	コンパクトCCCの開発
			直流抵抗ブリッジ、スキャナ	自動化	性能評価(0.02 ppm)(標準抵抗器、交流抵抗ブリッジ、温度測定装置、温度センサに関連有)
	直流			高精度化	次世代電圧標準(直流電圧標準の汎用化)
			直流電圧発生装置	トレーサヒ゛リティ	ジョセフソン接合アレー電圧標準を用いた電圧標準の供給維持 1 V, 1.018 V, 10 V
				トレーサビ・リティ	電子式標準電圧発生器を仲介器にした電圧標準の維持1 V, 1.018 V, 10 V
		直流電圧	直流電圧測定装置	高精度化	プログラマブル駆動型ジョセフソン素子電圧標準の電圧増大 (直流電圧標準、交流電圧標準に利用)
				高精度化	新太陽電池基準セルの校正技術の開発
電			標準直流分圧器	タ゛イナミックレンシ゛	1000Vに対応した分圧器標準の開発(標準の再立ち上げ、 Fluke752Aなどの校正に使用)
気				高精度化	量子直流分圧器標準の開発(Fluke752Aなどの校正に応用)
削(複合化	量子はMJ 圧破標準の開発(Fluke/32A/などの校正に応用) 量子ハイブリッド電圧標準の開発 (Fluke/352Aなどの校正に応用)
直 流		直流電流	直流電流発生装置	高精度化	単一電子トランジスタを用いた量子電流逓倍器および量子電流標準の開発(放射線、光標準、微粒子濃度標準に応用)
低周				複合化	ジョセフソン電圧標準で安定化した電流源(直流電流測定装置としての応用)
波			直流電流測定装置	高精度化	微小電流測定(放射線、光標準、微粒子濃度標準に利用)
			本次八次明	微小化	ナノスケール電流センサ(MEMS、MI、GMR、TMR等)
			直流分流器	大電流化	温度変化の小さい素材および設計
L			直流変流器	高精度化	ホール素子改良およびコア材
				高精度化	パルス駆動型ジョセフソン効果素子の広帯域化(交流電圧標準に応用)
			 交流電圧発生装置	高精度化	プログラマブル駆動型ジョセフソン素子電圧標準の電圧増大 (直流電圧標準、交流電圧標準に応用)
			ヘルセルルイタに	高精度化	2011年SI改訂以後の温度標準、ノイズ標準に用いる標準ノイ ズ源
				ダイナミックレンジ	高周波減衰量
				高信頼性化	交流電圧発生装置用小型デバイス
				高精度化	サンプリング計測の高精度化 電気波形基準のためのパルス駆動型ジョセフソン効果素子
			交流電圧測定装置	ダイナミックレンジ 高信頼性化	電気波形基準のためのバルス駆動型ショセフケン効果素子 の広帯域化 交流電圧測定用小型デバイス
					交流電圧サーマルコンバータ(機器組込用デバイス微小化
	交流	交流電圧	交流電圧交直電圧比較装置 交流電圧増幅器	微小化 高精度化	高電圧対応、交直変換器標準の応用) 高精度広帯域ボルテージアンプの開発
				ダイナミックレンジ	ブロードバンド標準変圧器
			文流電圧計器用変圧器 	タ・イナミックレンシ	ブロードバンド標準変圧器計測技術
				高周波化	誘導分圧器標準の高周波化
				高周波化	高周波誘導分圧器計測技術の開発
			誘導分圧器	トレーサビ・リティ	誘導分圧比標準の供給維持0.1 ~ 1.0; 10 V/ 1 kHz、0.05~ 1.0; 100 V/ 50~60 Hz、0.01~1.0; 10 V/ 200 Hz, 400 Hz, 1kHz, 10 kHz
				高精度化	高精度広帯域トランスコンダクタンスアンプの開発
			 交流電流発生装置	高精度化	局有及仏帝域トランスコンダンダンスアンプの開発量子標準ぺースのトランスコンダ・クタンスアンプ・校正システム
				高信頼性化	交流電流発生装置用小型デバイス
			交流電流測定装置	高信頼性化	交流電流測定用小型デバイス

電気計測 直流・低周波(2/4)

大分類	中分類	小分類	装置名	課題	技術課題(
				大電流化	交流電流用交直電流比較器(交直変換機標準の範囲拡張)	
				微小化	交流電流用サーマルコンバータ(機器組込用デバイスの微小 化高電流対応)	
			交流電流交直電流比較装置	トレーサヒ*リティ	交直変換器標準の供給維持(2 V~20 V)@(10 Hz~1 MHz) (10 mV~2 V)@(10 Hz~100 kHz) (20 V~1 kV)@(10 Hz~ 100 kHz) 6 V@1 kH遠隔校正	
				高分解能化	ナノスケール電流センサ(MEMS、MI、GMR、TMR等)	
		交流電圧	交流分流器	トレーサビ・リティ	高調波計測用分流器の校正システムの開発(高調波電圧標準の拡張)	
				大電流化	抵抗素子の開発および熱設計	
				高周波化	校正装置の高周波化(高調波電圧標準の拡張) ブロードバンド標準変流器	
				タ・イナミックレンシ タ・イナミックレンシ	ブロードバンド標準変流器計測技術	
			交流変流器	高周波化	巻線インピーダンス、シールド(変流器標準の拡張)	
				トレーサビ゛リティ	変流比標準の供給維持 50 A、1/1~1/10000、 周波数:45 Hz~1 kHz	
			電力変換器	微小化	MEMS電力センサ(カロリーメータ)の開発	
			電力測定装置	高分解能化	位相計測技術の開発(位相角標準の高分解能化)	
		電力	電力計	高精度化	マイクロプロセッサ用電力計の開発を評価用ベンチマーク開発	
				高精度化	量子標準ベースの電力標準の開発	
			電力量計	高精度化	量子標準ベースの電力量標準の開発 本 英景スポール 効果 測定 特署の関発	
				高信頼性化高精度化	交流量子ホール効果測定装置の開発	
				高信頼性化	single electron counting capacitance standard (ECCS)	
				高周波化	キャパシタンス標準の高周波化(供給範囲の拡張)	
				高周波化	損失角標準の高周波化(供給範囲の拡張)	
				大容量化	セラミックキャパシタ素子を用いたキャパシタンス標準の大容量化(供給範囲の拡張)	
				大容量化	損失角標準の大容量化(供給範囲の拡張)	
			標準キャパシタ(標準コンデンサ)	大容量化	キャパンタンス標準の大容量化(次世代型電気化学キャパンタ等の高エネルキー密度デバイスによる標準キャパンタ開発)	
電気	交流	キャパシタンス		トレーサビ・リティ	キャパンタンス標準供給維持 10 pF, 100 pF, 1000 pF/ 1 kHz,1.592 kHz、0.01 μF, 0.1 μF, 1 μF/ 1 kHz、10 μF/ 1 kHz	
計測(直				トレーサヒ゛リティ	キャパシタンスの損失係数標準供給維持 10 pF, 100 pF, 1000 pF/ 1 kHz,1.592 kHz, 0.01 μF, 0.1 μF, 1 μF/ 1 kHz, 1.592 kHz 10 μF/ 1 kHz	
流·低周波			キャパシタンス	マス 電力貯蔵用大容量キャパシタ	高エネルギー密 度化	大容量化に向けた電極材料の開発高出力化、低抵抗化、小型軽量化、製造コストの低減次世代型電気化学キャパシタ等の高エネルギー密度デバイス(例:電気二重層キャパシタ、レドックスキャパシタ)
~				標準化	標準化	
			キャパシタンス測定装置	高周波化	キャパシタンス標準の高周波化	
				高周波化	損失角標準の高周波化	
				大容量化	大容量キャパシタンス計測技術の開発(測定対象:セラミック キャパシタによる標準キャパシタ)	
				走査容量顕微鏡(Scanning capacitance microscopy: SCM)、走査型化学力顕微鏡(Scanning chemical force icroscopy: SCFM) などによるSI半導体素子のゲート領域のC-V測定による不純物密度評価,強誘電性記録素子の記録素単位の電荷量計測	大容量化	大容量キャバッタンス計測技術の開発(測定対象:次世代型電気化学キャバッタ等の高エネルキー密度デバイスによる標準キャバッタ)
						微小キャパシタンス標準の開発
			1774 1714 BB	高信頼性化	交流量子ホール効果測定装置の開発	
		交流抵抗	標準交流抵抗器	トレーサヒ゛リティ	交流抵抗標準の供給維持10 Ω , 100 Ω , 1k Ω , 10 k Ω , 100k $\Omega/1$ kHz	
			交流抵抗測定装置	高信頼性化	交流量子ホール効果測定装置の開発	
			接触抵抗評価	高分解能化	微小交流抵抗標準の開発	
			標準インダクタ インダクタンス測定装置	タ [*] イナミックレンシ [*] タ [*] イナミックレンシ [*]	微小インダクタンス標準の開発 微小インダクタンス計測技術の開発	
		インダクタンス	標準インダクタ	トレーサビリティ	インダクタンス # A M A M A M A M A M A M A M A M A M A	
			高調波電圧電流発生装置	高精度化	■子標準ベースの高調波電圧電流発生装置の開発	
			高調波電圧電流測定装置	高精度化	量子標準ベースの高調波電圧電流測定装置の開発	
			電力品質	多次元化	電力品質計測標準の開発	
		複合量	1001 5	低誘電率測定	LCRメータ、インピーダンスメータによる、半導体デバイスの微細配線間Low-k材料の比誘電率評価	
	直流∙交流		LCRメータ インピーダンスメータ	高誘電率測定	(LCRメータ、インピーダンスメータによる、機能性材料ナノ薄膜の比誘電率評価(測定対象:ナノキャパシタ)	
				低コスト化	遠隔校正技術	
			オシロスコープ	タ゛イナミックレンシ゛	波形標準	
			1,777,7	高速化	高速化する信号波形観測(オシロスコープ、ロジックアナライザとして)	

計量・計測システム分野の技術マップ (31/71)

電気計測 直流・低周波(3/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題	
			デジタルマルチメータ	高精度化	プログラマブル駆動型ジョセフソン素子電圧標準を利用(電圧 測定装置(に応用)	
		複合量	複合量	キャリブレータ	高信頼性化	パルス駆動型ジョセフソン素子交流電圧標準と誘導分圧器の組み 合わせ(デジタルマルチメータの校正や交直差標準に利用)
			オシロスコープ、LCRメータ、インピー ダンスメータ、デジタルマルチメータ	(プローブを)微 小化(しつつ精 度を落とさない)	半導体作製技術評価用計測技術	
				高精度化 高精度化	極小電流検出技術の開発(キャパシタンス・電圧にも関係) 微小電流センサの開発	
		電流	センサ・トランスデューサ	トレーサビリティ	微小電流センサ校正技術の開発	
				高精度化	ECTによる電流測定技術の高度化	
				高精度化 微小化	電流センサ校正技術の開発 チップ抵抗(0603サイズ、0402サイズ)の小形、低背、大電流 化に対応した量産技術の評価における抵抗測定	
				微小化	半導体の3次元ドーパント評価における抵抗測定	
				微小化	TMRセンサ膜抵抗評価のための抵抗測定	
				トレーサヒ・リティ	半導体微細化におけるゲート酸化膜の実効電気的膜厚(nm) LOP (Planar Bulk /DG)	
				多次元化	製造後のトランジスタVth特性調整における抵抗測定	
				トレーサヒ゛リティ	半導体ゲートスタック形成技術における電流密度測定における抵抗測定HP (High Performance)(Planar Bulk/Double-Gate) ゲートリーク電流密度(A/cm2)	
				スマート化	ゲートスタックプロセスにおけるhigh-kゲート絶縁膜材料を用いた場合のゲート電極の導電抵抗測定	
				スマート化	ゲートスタックプロセスにおけるゲート絶縁材料を変えたとき の絶縁抵抗測定	
			電気抵抗に関する測定技術	トレーサビリティ	浅接合形成技術における抵抗測定(Planar Bulk/Double- Gate)シート抵抗(NMOS, drain extension部分)(ohm/sq)	
電気		抵抗		トレーサヒ・リティ	浅接合形成技術における抵抗測定(Planar Bulk/Double- Gate)単位面積あたりのコンタ外抵抗(NMOS) (単位 ohm μm2)	
計測	直流∙交流			複合化	配線材料とパリアメタル銅配線の延命技術の評価における抵抗測定	
直流				トレーサビ・リティ	新規配線材料技術による電流密度向上の評価における抵抗 測定	
				多次元化	配線抵抗・信頼性影響因子の評価における抵抗測定	
低周				トレーサヒ゛リティ	7イドバンドギャップ半導体パワーデバイスの低損失化評価における 抵抗測定MOSFET ON抵抗(mΩcm2) @耐圧	
波				トレーサヒ・リティ	新規不揮発性メモリ技術開発におけるON/OFF抵抗(電流) 比評価のための抵抗測定	
				複合化	LSI高速化のため、多層配線の低配線抵抗化および高電流 密度化のための低抵抗率Cu膜の評価のための抵抗測定	
				トレーサヒ・リティ	・低抵抗かつリペア/修復可能なナノ材料・常温接合可能な表面制御、修飾技術・低熱抵抗コンタクト形成・機械的強度補強・高電流密度耐性の開発における抵抗測定	
				複合化	低融点高転移温度材料、界面抵抗制御技術における抵抗測 定	
				複合化	電界誘起巨大抵抗変化機構の解明のためのナノスケールで の界面・伝導バス評価・制御技術、電界誘起巨大抵、変化機 構の解明、新材料開発における抵抗測定	
				トレーサビ・リティ	電圧制御による中間抵抗値の精密制御技術開発のための抵 抗測定	
				極端環境下	低抵抗な分子一界面コンタクト作製技術開発の評価のための 抵抗測定	
				多次元化	絶縁膜技術、抵抗可変材料の開発における評価のための抵 抗測定	
				トレーサビ゛リティ	大面積低コスト低抵抗配線実証の評価における抵抗測定	
				トレーサヒ・リティ	大画面〜ポータブルな有機ELディスプレイのための低抵抗電極材料の・大面積低損傷成膜プロセス(電極・接合層等)開発・電極材料開発・劣化機構解明における抵抗測定	
				トレーサヒ・リティ	透明電極膜の低抵抗化技術開発における評価のための抵抗 測定	
				トレーサビリティ	ディスプレイ用超低抵抗配線技術開発における評価のための 抵抗測定	
				トレーサビリティ	大画面低コストなプラズマディスプレイのための大面積低コスト低抵抗配線実証における抵抗測定	
				ライフ	再生医療のための細胞の分化制御技術の開発における電気 的影響を評価するための抵抗測定	
				ライフ	再生医療用の長期生体適合性材料の開発における電気的	
					特性評価のための抵抗測定	

計量・計測システム分野の技術マップ (32/71)

電気計測 直流・低周波(4/4)

大分類	中分類	小分類	装置名	課題	技術課題(■重要課題 ■ 最重要課題
				トレーサビリティ	情報家電向けPRAM抵抗スイッチング・メモリーの・低コスト化・メモリー部の構造の微細パターン形成技術開発評価のための抵抗測定
				トレーサヒ゛リティ	ナ/ホーラス材料を用いた高容量キャパシタ(ナ/ホーラス材料を用いた自己組織化による電極の高比表面積化・細孔径最適化)の低抵抗化技術開発における評価のための抵抗測定
電気				トレーサヒ・リティ	高性能Li2次電池実現のためのイオン伝導抵抗低減電極・電解質界面構造開発における抵抗測定
計測	直流・交流			トレーサヒ・リティ	ナノチューブの電気伝導率計測の標準技術(標準物質)開発における抵抗測定
直 流 •		抵抗	電気抵抗に関する測定技術	トレーサヒ゛リティ	環境対策用電磁波遮蔽繊維構造体の導電成分の繊維内部への配合、導電成分による繊維の被覆の評価における抵抗 測定
低周波)				トレーサヒ゛リティ	MEMS偏向ミラー用コイルとして使用できる導電体成膜技術 (Cu等低抵抗材料を厚く、高アスペクト比に成膜、パターニングする技術)開発の評価のための抵抗測定
				トレーサビリティ	低抵抗電極接合技術(ウエハレベルパッケージ)開発における接触抵抗評価のための抵抗測定
				ライフ	脳深部電気刺激療法高度化研究における抵抗測定
				ダイナミックレンジ	クリーン電気自動車用高性能二次電池開発における電池の 内部抵抗の抵抗測定
計量	規格	適合	電気自動車用急速充電器	高信頼性化	設置箇所での試験方法の開発等

電磁波計測(1/7)

大分類	中分類	小分類	装置名	課題	技術課題(
	電流	·規格	電流プローブ	トレーサビリティ	IEC-CISPR規定の技術的な対応と関連量を含む総合的なトレーサビリティの確保
	電	:圧	高周波電圧計・高周波電流計 電圧プローブ	トレーサヒ゛リティ	電波法等の関連法規の指定する範囲内での関連量を含む総合的なトレーサビリティ
	電力·電圧		検波器	トレーサヒ゛リティ	サブミリ波・テラヘルツ波電力標準、システム感度の改善、冷 却受信機の開発
				トレーサヒ゛リティ	サブミリ波・テラヘルツ波電力標準、関連量を含む総合的なトレーサビリティ
			パワーメータ 高周波電力計	高精度化	部品レベル消費電力
			同问从电力引	トレーサビリティ	高周波電力標準の高精度化
				ダイナミックレンジ	デバイス高出力化への対応
			電力校正器	トレーサヒ゛リティ	サブミリ波・テラヘルツ波電力標準、EMC、電磁作業環境の安全性確保
			高出力デバイス		高出力デバイスの高周波化
	電	カ	テラヘルツパワーメータ テラヘルツ検波器		サブミリ波・テラヘルツ波電力標準、高周波化 1 THz 等価雑音温度の低減、受信感度向上、分光技術、常温・連続 発振
			テラヘルツパワーメータ		サブミリ波・テラヘルツ波電力標準、高周波化 1 THz 等価雑音温度の低減、受信感度向上、分光技術、常温・連続 発振技術
			1 5 100 5 1 5 - 5	トレーサピリティ	テラヘルツパワー標準の整備、THz周波数標準・トレーサビリティの整備 THz帯機器EMC規格、生体EMC規格の整備
			RFテスト: 位相雑音 (dBc/Hz @100k offset)		低位相雑音技術と標準
			ノイズフロア(dB/RT Hz)		トレーサビリティの確保
			雑音指数 (dB) @90 GHz		標準の高周波化
			超高周波低雑音デバイス		低雑音デバイスの高周波化
電磁			ノイズメータ ラジオメータ(放射計)	高精度化 トレーサビリティ	精密標準雑音源の開発 校正・試験方法、仲介用システム開発、サブミリ波・テラヘル ツ領域の雑音標準
波				システム化	テラヘルツ計測標準用雑音源の開発
高周波			プンオ グーラ ()及対 計)		放射輝度温度測定限界の低下、不確かさ解析、 装置試験方法、ジッタ雑音の低減、 低雑音高利得増幅器、SN比測定
計				高精度化	精密標準雑音源の開発
測			トレーサヒ゛リティ	校正・試験方法、仲介用システム開発、サブミリ波・テラヘル ツ領域の雑音標準	
			ノイズ校正システム	システム化	テラヘルツ計測標準用雑音源の開発、ラジオメータの開発
					放射輝度温度測定限界、不確かさ解析、装置試験方法 マイクロ波雑音の測定限界、ジッタ雑音の低減、低雑音高利 得増幅器
				高精度化	精密標準雑音源の開発
	雑	雑音		トレーサビ・リティ	校正・試験方法、仲介用システム開発、サブミリ波・テラヘルツ領域の雑音標準
			ノイズパラメータテストシステム	システム化	テラヘルツ計測標準用雑音源、雑音測定用ラジオメータ
					放射輝度温度測定限界、不確かさ解析、装置試験方法 マイクロ波雑音の測定限界、ジッタ雑音の低減、低雑音高利 得増幅器
				高精度化	精密標準雑音源の開発
				トレーサヒ゛リティ	校正・試験方法、仲介用システム開発、サブミリ波・テラヘルツ領域の雑音標準
			ラジオメータ(放射計)	システム化	テラヘルツ計測標準用ラジオメータ
					放射輝度温度測定限界、不確かさ解析、装置試験方法 マイクロ波雑音の測定限界、ジッタ雑音の低減、低雑音高利 得増幅器
				高精度化	精密標準雑音源の開発
				トレーサヒ゛リティ	校正・試験方法、仲介用システム開発、サブミリ波・テラヘルツ領域の雑音標準
			ノイズ終端器(雑音源)	システム化	テラヘルツ計測標準用低温高温雑音源
					放射輝度温度測定限界、不確かさ解析、装置試験方法 マイクロ波雑音の測定限界、ジッタ雑音の低減、低雑音高利 得増幅器
				トレーサビリティ	校正・試験方法、仲介用システム開発
			位相雑音測定システム		マイクロ波雑音の測定限界の低下、ジッタ雑音の低減

電磁波計測(2/7)

大分類	中分類	小分類	装置名	課題	技術課題(□■重要課題 ■■最重要課題
					高減衰量測定、電磁波遮蔽技術、広帯域・高精度化 ダイナミックレンジの拡張(大電力測定のための高減衰量測 定技術) 導波管部材 シールド技術、電磁波遮蔽繊維構造体、電磁波 吸収材料 シート状部材(反射・吸収)
			減衰量測定器	システム化	ナノ計測、非接触計測、オンウェハ計測、大電力測定への対応
				材料計量	材料特性評価(誘電体、磁性体)への応用技術、low-k, high- k材料への応用技術
	· -	- =		トレーサビリティ	仲介用システム開発 大電力測定 カギ 50 (ア
	河 风 马	衰量	可変減衰器	システム化 高信頼性化	クロストーク評価、遮蔽評価 ナノ計測、非接触計測、オンウェハ計測への応用形態 高安定仲介器の開発
			固定減衰器	トレーサビリティ	中介用システム開発 大電力測定
				<mark>システム化</mark> 高信頼性化	クロストーク評価、遮蔽評価 ナノ計測、非接触計測、オンウェハ計測 高安定仲介器の開発
			固定減衰器	トレーサビリティ	仲介用システム開発 大電力測定 クロスト クロスト クロスト
			ケーブル	トレーサビリティ	クロストーク評価、遮蔽評価 国家標準トレーサビリティ(VCCI)
					サブミリ波・テラヘルツ波領域までのインピーダンス測定、Sパラメータ測定技術と測定器
				ダイナミックレンジ	誘電正接の限界、高インピーダンスプローブの使用限界
	インピーダンス		インピーダンス インピーダンス測定器	トレーサヒ*リティ	電気波形測定のトレーサビリティ確保 超高速パルス解析技術・標準、波形標準、高速化、波形・ジッタの低減、ビット誤り率の低減 磁性体のパルス応答の改善、超高速パルス発生技術、波形 発生技術
				高周波化 高精度化	時間-周波数領域測定技術の高周波化と高確度化と波形標準
電磁				多様化	デジタル・アナログ信号計測
磁波(高周波)			誘電率計		サブミリ波・テラヘルツ波領域、測定方法の標準化、トレーサブルな測定基準(標準) 高周波領域での高誘電率(500以上)、誘電膜(low-k, high-k)、強誘電膜の評価 誘電正接の測定限界、薄膜・ナノ素材誘電効果へ対応、材料評価への方式
割	物質	特性	Q <i>У</i> —\$		サブミリ波・テラヘルツ波領域、測定方法の標準化、トレーサブルな測定基準(標準)高周波領域での高誘電率(500以上)、誘電膜(low-k, high-k)、強誘電膜の評価誘電正接・Q値の測定限界、薄膜・ナノ素材誘電効果へ対応、材料評価への方式
			マテリアルアナライザ		サブミリ波・テラヘルツ波領域、測定方法の標準化、トレーサ ブルな測定基準(標準) 高周波領域での高誘電率(500以上)、誘電膜(low-k, high- k)、強誘電膜の評価 誘電正接、薄膜・ナノ素材誘電効果、透磁率、材料評価
				高精度化	電気特性評価 高周波化
					広帯域化
					振幅確度 非線形歪みの低下、低雑音特性の実現
			スペクトラムアナライザ		高ダイナミックレンジ、変調フォーマットへの対応、スペクトル 精度
				高精度化・トレーサ ビリティ	電力・減衰量標準・インピーダンスの高周波化・高確度化、関連量を含む総合的なトレーサビリティ 国家標準トレーサビリティ(VCCI)、RFID標準化
			メジャリング・レシーバ		クロストーク評価、遮蔽評価、材料の減衰特性、EMC,電磁作業環境の安全性確保
	信号		シグナル・ソース・アナライザ		関連量を含む総合的なトレーサビリティの確保、VCCIにおける国の標準に対してのトレーサビリティ要請
			ベースバンド信号解析器		関連量を含む総合的なトレーサビリティの確保 VCCIにおける国の標準に対してのトレーサビリティ要請 変調フォーマットの種類、スペクトル分析、非線形歪みの低減
			テラヘルツ分光装置		ミリ波・テラヘルツイメージング、等価雑音温度、テラヘルツ電力、スペクトルデータベース イメージング(セキュリティ・医療・バイオ分野)
			ベクトル・シグナル・ジェネレータ		波形標準、変調標準、評価技術、不確かさ評価、関連量を含
		高周波信号源	アナログ・シグナル・ジェネレータ シグナル・ジェネレータ	トレーサビリティ	む総合的なトレーサビリティの確保 RFID計測、変調フォーマット、スペクトル、非線形歪み、MEMS
			信号発生器		評価、磁性体評価

電磁波計測(3/7)

大分類	中分類	小分類	装置名	課題	技術課題(
		高周波信号源	マイクロ波 シグナル・ジェネレータ ベースパンド シグナル・ジェネレータ I/Q変調信号発生器 ファンクションジェネレータ 任意波形発生器 デジタル変調信号発生器	ートレーサヒ [*] リティ ー ー	波形標準、変調標準、評価技術、不確かさ評価、関連量を含む総合的なトレーサビリティの確保 RFID計測、変調フォーマット、スペクトル、非線形歪み、MEMS 評価、磁性体評価
	信 号		パルスパターン発生器	トレーサビリティ	超高速パルス解析技術・標準、波形標準、高速動作、波形・ ジッタ、ビット誤り率 磁性体のパルス応答、超高速パルス発生、波形発生 トレーサビリティ確保
			テラヘルツ光源	トレーサビ・リティ	発信波長可変、300 GHz、1 mW、ミリ波・テラヘルツイメージング、等価雑音温度テラヘルツ電力、スペクトルデータベース、イメージング(セキュリティ・医療・バイオ分野)テラヘルツパワー測定
			無線通信システム	トレーザビリナイ	高速・広帯域化、技術融合
			EMC評価技術		トレーサビリティ技術、次世代通信技術研究開発 高周波基本量(電力電圧、雑音、減衰量、インピーダンス)標準の供給 高周波基本量の供給範囲拡張、新規標準(波形・パルス標準等)・トレーサビリティ技術の開発 EMC測定器等の組立量に対するトレーサビリティ技術開発取り扱いが容易な仲介器・校正システムの開発
			高周波デバイス		オンウェハ計測 標準拡張(大電力、高周波化への対応)
電			テラヘルツ技術		テラヘルツ標準の開発、高周波雑音標準の範囲拡張、高周波電力標準、減衰量標準、インピーダンス標準の範囲拡張、テラヘルツ無線通信、出力電力/動作周波数 雑音指数/動作周波数、分光分析、データベース
磁波(高周波			材料評価技術		誘電体、磁性体評価技術の確立、非接触計測、微細構造計 測 テラヘルツ精密計測技術の開発、テラヘルツ標準・トレーサビ リティの整備 材料物性評価・トレーサビリティ技術の開発、微細構造高周 波デバイス精密評価方法の確立
計			電磁環境保護技術		測定器・アンテナ校正技術
測			電界強度測定器 RFテスト	トレーサヒ*リティ	関連量を含む総合的なトレーサビリティ 高確度振幅測定と標準:振幅確度 (dB) 高周波化:周波数 (GHz) 多ポート化:ポート/素子 ノンリニア測定技術:三次高調波ひずみ (dBm)
	電力・電圧・¾ インピーダ	雑音・減衰量 ンス(複合)	インターフェースケーブル		ベクトル不確かさ解析・校正技術:誤差ベクトル振幅(%)
			(Gbps/pair wire)		差動回路測定技術と高周波化
			次世代通信デバイス: 仕様ft (GHz)		デバイス評価の広帯域化
			妨害波測定器・EMIレシーバ	トレーサビ・リティ	関連量を含む総合的なトレーサビリティ、国家標準トレーサビリティ(VCCI)
				多様化	多ポート化測定器の評価・校正技術
				トレーサビリティ 多様化	インピーダンス計量標準の高周波化 各種伝送線路規格に対応した計量標準と校正・評価技術 サブミリ波・テラヘルツ波領域までの高周波化
				高周波化 高精度化	非線形素子評価の高周波化と高確度化、高効率アンプの評価技術
				高周波化 高精度化	オンチップ/オンウエハ評価技術の高周波化、高確度化およびトレーサビリティの確立
			ネットワークアナライザ		LSI配線など平面回路への対応、Low-k材の低誘電率化への対応
			インピーダンス測定器	トレーサビリティ 高周波化 高想な化	オンチップ/オンウエハ評価の不確かさと測定基準 時間-周波数領域測定技術の高周波化と高確度化
				高精度化	
				標準化	測定方法・不確かさ評価方法の標準化
				高周波化高精度化高周波化	微小部品の微小化と高周波化対応測定技術と計量標準
				高精度化	材料評価応用での測定基準としての高周波化と高確度化 サブミリ波・テラヘルツ波領域までのインピーダンス測定、Sパ
					ラメータ測定技術と測定器

電磁波計測(4/7)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題	
			ネットワークアナライザ インピーダンス測定器		マルチポート測定不確かさ、ベクトル量の不確かさ解析、ミリ波・サブミリ波・テラヘルツ領域のインピーダンス標準、測定・評価方法標準化、誘電正接容量ブリッジ、マルチポート計測、建築材料の減衰特性、薄膜・ナノ素材伝達特性MEMS評価のアプリケータ、磁性体評価のアプリケータ、非線形デバイス評価の方式マルチポートデバイス・部品評価方式、オンウェハ・オンチップ・バッケージレベル評価の伝送路形態材料評価のアプリケータ、サブミリ波・テラヘルツ領域デバイス開発	
				高周波化 高精度化	材料評価技術と測定基準の高周波化と高確度化	
					LSI配線など平面回路対応、Low-k材の低誘電率化対応	
			インピーダンス測定器	高周波化 高精度化	微小部品の微小化と高周波化対応測定技術と計量標準	
				高周波化 高精度化	回路内信号伝送評価技術	
			テラヘルツイメージング装置		光ファイバ型EO検出システム、自動識別システム、等価雑音 温度、テラヘルツ電力 イメージング(セキュリティ・医療・バイオ分野)	
			システムLSI対応テストシステム	トレーサヒ゛リティ	複合システムの評価技術、不確かさ評価、高速化、低消費電力、クロストーク評価 遮蔽評価、マルチポート測定、高インピーダンスプローブ、 MEMS評価機能	
			ロジックアナライザ		高速化、低消費電力、処理速度高速化への対応	
電磁	電力・電圧・雑音・減衰量 インピーダンス(複合)	RFICテストシステム		低消費電力、波形・ジッタの低減、ビット誤り率の低減、変調フォーマット対応、スペクトル拡大 非線形歪み低減、MEMS評価の対応、CPU動作周波数向上 への対応		
波(高周波		変調アナライザ	トレーサビリティ	波形標準、変調標準評価技術、不確かさ評価、波形・ジッタの 低減、ビット誤り率の低減 変調フォーマット対応、スペクトル拡大、非線形歪み低減、 MEMS評価の対応、伝送速度向上対応		
分計				広帯域復調器	トレーサビリティ	波形標準、変調標準、評価技術、不確かさ評価、伝送速度向上への対応
測		フェージングシミュレータ	トレーサピリティ	波形標準、変調標準、評価技術、不確かさ評価、波形・ジッタ の低減、ビット誤り率の低減 変調フォーマット対応、スペクトル拡大、非線形歪み低減、 MEMS評価の対応、伝送速度向上対応		
			タイムインターバルアナライザ	トレーサビリティ	波形標準、評価技術、不確かさ評価、ジッタ雑音	
			ジッタメータ	トレーサビリティ	波形標準、評価技術、不確かさ評価、ジッタ雑音	
			高周波プローブ		クロック周波数、高インピーダンスプローブ化、デバイスの高 周波化への対応	
				高精度化	表面電荷分布測定の対応	
			ビット誤り(エラーレート)検出器		波形・ジッタの低減、ビット誤り率の低減、変調フォーマット対応、非線形歪み低減、伝送速度向上への対応	
1 1				複合化	データ伝送の信頼性改善	
			アイパターン解析器		波形・ジッタの低減、ビット誤り率の低減、変調フォーマット対応、非線形歪み低減、伝送速度向上への対応	
				複合化	データ伝送の信頼性改善	
			核磁気共鳴装置	高精度化	精度の妥当性確認のための標準の確立、参照データを確証 する関連計測学の発展 低温高温に対応可能なNMRプローブの開発	
			電子スピン共鳴装置	高精度化	精度の妥当性確認のための標準の確立、参照データを確証 する関連計測学の発展 低温高温に対応可能なESRプローブの開発	
			位相測定ユニット	高精度化	個体間の互換性確認、UTC信号処理	
			マイクロ波・ミリ波増幅器		サブミリ波・テラヘルツ領域帯増幅器	
			マイクロ波・ミリ波コネクタ		高性能化・高精度化・高周波化(サブミリ波・テラヘルツ領域	
	コンポーネント		マイクロ波・ミリ波ケーブルマイクロ波・ミリ波道波等		帯導波管の標準化と計量標準)	
			マイクロ波・ミリ波導波管		情報家電コネクタ用銅の低抵抗化	
1 1			マイクロ波・ミリ波ケーブル		高性能化・高精度化	
			マイクロ波・ミリ波導波管		サブミリ波・テラヘルツ領域帯導波管の標準化と計量標準	

電磁波計測(5/7)

大分類	中分類	小分類	装置名	課題	技術課題 (重要課題 最重要課題
			地上デジタル放送信号発生器	トレーサヒ゛リティ	波形標準、変調標準、評価技術、不確かさ評価
電		無線通信規格適	無線機テスタ		高速大容量化への対応
		合試験機器	WLANテストセット		高速大容量化への対応
磁波			ワイヤレス コミュニケーションテスタ	トレーサピリティ	波形標準、変調標準、評価技術、不確かさ評価、波形・ジッタ の低減、ビット誤り率の低減 変調フォーマット対応、非線形歪み低減
高	コンポーネント		携帯電話機テスタ	トレーサヒ゛リティ	波形標準、変調標準、評価技術、不確かさ評価
周 波			バスアナライザ	トレーサビリティ	波形標準、評価技術、不確かさ評価
			ネットワークテスタ	トレーサヒ・リティ	評価技術、標準の確立
計測			疑似電源回路網	リアルタイム トレーサビリティ	リアルタイム・ネットワーク・モニタリング 関連量を含む総合的なトレーサビリティ、国の標準に対するトレーサビリティ(VCCI)
			疑似通信回路網	トレーサビリティ	関連量を含む総合的なトレーサビリティ、国の標準に対するトレーサビリティ(VCCI)
				トレーサヒ・リティ	アンテナ係数校正手法・範囲の拡張
			ダイポールアンテナ標準	高信頼性化	アンテナ校正環境評価手法の開発
)	高精度化	不確かさの低減
				システム化	機器試験への応用技術の開発
			バイコニカルアンテナ 30 MHz ~300 MHz		
		広帯域アンテナ標	ログペリオディックアンテナ 300 MHz ~ 1000MHz	一高精度化	標準開発、校正サービス、品質システム整備 連続的な自由空間アンテナ係数の測定技術開発
	アンテナ係数	準	バイログアンテナ	トレーサヒ・リティ	既存のアンテナに代わる高利得小型広帯域アンテナの設計
			30 MHz ~ 1000 MHz	-	技術確立
			リッジドガイドホーンアンテナ 1GHz ~ 18 GHz		
		-	広帯域高効率アンテナ		
			仏帝域高効率アンテナ	トレーサヒ・リティ	低周波磁界測定技術
		低周波磁界	ループアンテナ標準	高精度化	不確かさの低減
		K 田 沖売田	- /- ¹ 11> - 1 1 = 14	トレーサビリティ	低周波電界測定技術
		低周波電界	モノポールアンテナ標準	高精度化	不確かさの低減
	アンテナ利得			高速化	広帯域アンテナ測定技術
			ホーンアンテナ標準	高精度化	不要反射波除去·抑圧技術
				スマート化	アンテナパターン測定技術
			ミリ波アンテナ利得標準	トレーサビリティ	ミリ波帯アンテナ利得計測技術
				トレーサビリティ	被測定アンテナ形状の拡充
		ミリ波		高精度化	不確かさ低減
			ミリ波アンテナパターン標準	トレーサヒ・リティトレーサヒ・リティ	ミリ波アンテナパターン測定技術 被測定アンテナ形状の拡充
				高精度化	不確かさ低減
電力				トレーサヒ・リティ	標準電界生成技術
•				トレーサビリティ	微小電界測定技術
電			電界強度標準	高精度化	不確かさの低減
界・			电外强反标平	システム化	電界機器試験への応用技術の開発
磁					高周波数への拡張
界		_			任意方向到来波測定技術
計測			光ファイバリンク 電界・磁界センサ	高精度化 トレーサビリティ	RF帯からミリ波帯域まで利用できるデバイス開発、高効率化 (低半波長電圧化) 無パイアス動作化、デバイス特性評価技術の国際標準化
	電界強度	低周波	低周波電界強度標準		校正システムの開発、校正周波数拡張、高度化・高精度化、 不確かさの低減 供給及び標準と校正システムの維持、EMC次世代規格への 対応
			磁界強度標準の確立	高精度化 トレーサビリティ	高精度磁界強度評価技術
			光ファイバリンク磁界センサ	微小化 ダイナミックレンジ 高精度化 トレーサビリティ	小型化、高効率化(低半波長電圧化)、無バイアス動作化
			低周波磁界強度標準		校正システムの開発、校正周波数拡張、高度化・高精度化、 不確かさの低減 供給及び標準と校正システムの維持、EMC次世代規格への 対応
			サイトアッテネーション標準	高精度化 トレーサビリティ	サイトアッテネーション測定の不確かさ評価技術確立
	サイトアッ	テネーション	サイトVSWR法による	高精度化 トレーサビリティ	サイトVSWR法によるサイト評価不確かさ評価技術確立、マルチパス評価技術開発
			サイト評価技術	高精度化 トレーサビリティ	光ファイバリンクシステムによる評価技術
				トレーサヒ・リティ	測定周波数帯の拡張
	散乱	断面積	ミリ波レーダー 断両時(PCS)標準	トレーサビリティ	測定対象の拡張
			断面積(RCS)標準	トレーサビリティ	不確かさ低減 RCS評価技術
				ורט אב אדו	100日 四江州

電磁波計測(6/7)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題)	
			誘電体電気定数測定器 (誘電率計、Qメータ)	トレーサビリティ	誘電率のトレーサビリティ	
			電界シールド測定器	トレーサヒ゛リティ	電界シールドのトレーサビリティ	
			磁界シールド測定器	トレーサビリティ	磁界シールドのトレーサビリティ	
			電波吸収体測定器	トレーサビリティ	吸収率のトレーサビリティ	
				リアルタイム	測定時間短縮技術	
			アンテナ近傍界測定装置	低価格 スマート化	装置小型·低価格化技術 雑音源対応技術	
				高精度化	ミリ波・テラヘルツ測定技術	
			電子校正器	複合化	アンテナ組み込み技術、温度補償技術、光制御技術	
	計測シ	ステム	电子尺亚加	高信頼性化	計算精度保証技術	
				高精度化	大規模解析技術	
			電磁界シミュレータ	÷ /=+= /+ // .	アンテナ種類の拡張	
				高信頼性化 高精度化	給電構造解析技術	
				1=7113.2.1 2	微細構造·大規模構造融合解析技術	
_			光ファイバリンク ネットワークアナライザ (フル2ポート校正可能な 光ファイバリンクのE/O、O/E 等複合デバイス)	複合化 ダイナミックレンジ 高精度化 高信頼化	RF帯からミリ波帯域まで利用できるE/O、O/E等複合デバイス開発、高効率化(低半波長電圧化) 無バイアス動作化、デバイス特性評価技術の国際標準化	
				高精度化 トレーサビリティ	RF帯からミリ波帯域まで利用できるデバイス開発	
			誘電体光変調デバイス (E/Oデバイス)	ダイナミックレンジ	高効率化(低半波長電圧化)	
			(E/UTハイス)	高精度化 トレーサビリティ	無バイアス動作化	
				高信頼性化	デバイス特性評価技術の国際標準化	
				高精度化		
				同相及1C トレーサビリティ	RF帯からミリ波帯域まで利用できるデバイス開発	
		'スによる 評価技術	半導体光変調デバイス	ダイナミックレンジ	高効率化(低半波長電圧化)	
	アンテア	計1四7文1初	(E/Oデバイス)	高精度化	無ぶノフュきかん	
				トレーサヒ゛リティ	無バイアス動作化	
				高信頼性化	デバイス特性評価技術の国際標準化	
				高精度化	RF帯からミリ波帯域まで利用できるデバイス開発	
			O/E変換デバイス	トレーサビリティ		
電			(フォトダイオード)	ダイナミックレンジ	高効率化	
波・	NA N			高精度化 トレーサビリティ	無バイアス動作化	
電界		スによる 評価技術	O/E変換デバイス (フォトダイオード)	高信頼性化	デバイス特性評価技術の国際標準化	
· 磁 界	機器組み込みアンテナ (無線LAN、ETC、携帯電話等) 評価技術		高精度アンテナ特性評価技術	高精度化 トレーサビリティ	光デバイスを用いたアンテナ特性評価技術	
計 測				高精度化 トレーサビリティ 高精度化	組み込み状態での機器アンテナ特性評価技術	
					トレーサビリティ	MIMO等複合アンテナ特性評価技術
				ダイナミックレンジ	低消費電力機器用、高感度評価技術	
				高精度化	標準電界、磁界発生・評価技術	
	光電界	センサ	動作周波数での	トレーサヒ゛リティ	保华电介、城介光生 計画技術	
		(空間電磁界計測) 野TF向加	E/O変換特性評価技術	高精度化	RF帯からミリ波帯域まで利用できるデバイス開発、評価技術開	
	計曲	技術		トレーサビリティ	発	
				高信頼性化	デバイス特性評価技術の国際標準化	
			誘電体	高精度化 トレーサビリティ	複素誘電率評価技術(低損失、高誘電率等)	
			磁性体	高精度化トレーサビリティ	複素透磁率評価技術(低損失、高誘電率等)	
	材料	評価	電波吸収体	高精度化 トレーサビリティ	吸収体材料複素誘電率、複素透磁率評価技術	
				高信頼性化	実装形状での評価技術	
			電磁波シールド材	高精度化 トレーサビリティ	RF帯からミリ波帯域まで利用できる評価技術開発	
			コンデンサ	高精度化 トレーサピリティ	チップデバイス等実装状態での測定評価手法開発	
			インダクタ	高精度化 トレーサビリティ	チップデバイス等実装状態での測定評価手法開発	
			EMIフィルタ	高精度化 トレーサビリティ	チップデバイス等実装状態での測定評価手法開発	
			フェライトビーズ	高精度化 トレーサビリティ	チップデバイス等実装状態での測定評価手法開発	
	デバイ	ス評価	フィルタ	高精度化 トレーサビリティ	チップデバイス等実装状態での測定評価手法開発	
			空間電界センサ	高精度化 トレーサビリティ	標準空間電界発生・評価技術	
			空間磁界センサ	高精度化 トレーサビリティ	標準空間磁界発生・評価技術	
			RF波-ミリ波→光変調波 変換デバイス	高精度化 トレーサビリティ	RF帯からミリ波帯域まで利用できるデバイス開発、評価技術開発	
			文庆 / ・	高信頼性化	デバイス特性評価技術の国際標準化	

電磁波計測(7/7)

大分類	中分類	小分類	装置名	課題	技術課題(== 重要課題 == 最重要課題)
				高精度化	RF帯からミリ波帯域まで利用できるデバイス開発、評価技術開
	デバイ	ス評価	光変調波→RF波-ミリ波 変換デバイス	トレーサビリティ 高精度化 トレーサビリティ	発 デバイス特性評価技術の国際標準化
 	シミュレーシ	ョン技術開発	モーメント法(境界要素法) 有限要素法 タイムドメイン法(FDTD法等) 物理光学近似・レイトレース法 複合解析法	高信頼性化	高精度手法、メモリ低減手法、精度評価手法開発
			EMC測定場評価	高精度化 トレーサビリティ	電波暗室標準と特性評価技術開発
			TEMセル	高精度化 トレーサビリティ	TEMセル特性評価技術開発
	EMCサイ	卜評価技術	リバーブレーションチャンバ	高精度化 トレーサビリティ	リバーブレーションチャンバ特性評価技術開発
			GTEMセル	高精度化 トレーサビリティ	電波暗室標準と特性評価技術開発
			EMI規格適合性評価技術	高精度化 トレーサビリティ	EMI規格適合性評価の不確かさ評価技術
			高感度伝送技術		高速・広帯域化、技術融合、システムの小型化、微弱電波の 検出、省電力化、無線干渉抑制技術
			長距離伝送技術		周波数有効利用、アンテナ性能向上、マルチビーム給電、移 動端末、衛星間通信
	無線通信	システム	トラフィック計測技術		衝突防止レーダ、ITS、位置情報の高度化、ETCシステムの高度化
			環境情報取得技術		セキュリティー技術、アンテナ開発·評価技術、干渉抑制技術、 技術基準適合検査、通信距離 位置検出精度
電 波 電		レーダー	合成開口レーダー		Lバンド合成開ロレーダーの高分解能化 Lバンド合成開ロレーダーの観測幅 X, Kuバンド合成開ロレーダーの高分解能化
界	センシング		合成開ロレーダー		合成開口レーダー共通課題
- T44					走査幅の拡大、高周波帯の利用 垂直分解能の向上、感度の向上、測定精度の向上
磁 界			州芸レーア		マルチバンド放射輝度計測技術
計			マイクロ波放射計		サブミリ波帯放射計関連技術
測					L带放射計高分解能化関連技術
			電波望遠鏡		高周波化、大型展開アンテナ技術
			車載用衝突防止レーダー		高分解能化、高度化
		イメージング	ミリ波イメージング		多素子化、高分解能化、アンテナ開発
	1, 22,		マイクロ波広帯域イメージング ICタグ, ICカード, RFID, POSシステム, スマートタグ		多素子化、高分解能化、アンテナ開発 広帯域化技術、セキリュティー技術、アンテナ開発技術、干渉 抑制技術、評価技術 通信距離の制御、位置検出精度
	海 会っ	゙ バイス	MEMS	高信頼性化	微小領域における電場・磁場I評価技術
	1支口 /	7.17	マイクロ波送電		高出力送電電力計測
			電磁誘導型非接触充電器 (被充電型電子機器、 電気自動車の充電)		新技術の開発、実用化、評価
		COURDE ENTS	構造物検査装置		高機能化
		SQUID応用装置	食品·薬品検査装置 半導体検査装置		簡易磁気シールド評価技術の開発 磁場計測分解能の向上、磁場計測システムの高速化
			干导体快宜装直 MRI		磁場安定性評価技術
					高磁場測定技術
	検査・診断		NMR テラヘルツ波診断装置		超高磁場測定技術、磁場安定性評価技術
	7大旦 砂樹		アプヘルツ波診断装直 MDDS(磁気誘導薬物配送)		計測技術の開発 高磁場測定技術
					磁気シールド技術の開発
			MEG(脳磁計)		多チャンネル計測システム
		[人工臓器用電磁気コーティング	ライフ	電磁波安全性評価技術の開発
			RFコイル付きカプセル内視鏡	ライフ	電磁波安全性評価技術の開発
-		1	生活環境中発がん性物質評価		電磁波のリスク評価
	tır	ıı	マイクロ波殺菌 マイクロ波プロセス技術		高機能化 効率化
	ЛL	· -	マイクロ波フロセス技術 マグネトロンスパッタ装置		高磁場測定技術
			・テコゴロンハハソス衣但		
計 量	適合作	生評価	評価時のEMC試験設備 及び電気試験設備	高速化、多様 化、高信頼化	評価時のEMC試験業務及び電気試験業務を維持すると同時に、各量の技術基準の高度化に伴う高性能なEMC試験及び電気試験が出来るように設備を更新し、試験方法の標準化を図る。
	規格適合	認証サービス	一般計量器	安全·安心	電子化された計量器の電磁的妨害に対する技術基準適合性 評価制度の整備及びEMCマーク制度の構築

光放射計測(1/4)

大分類	中分類	小分類	装置名	課題	技術課題(
		分光放射照度	分光放射計	トレーサビ・リティ	トレーサビリティの確立、波長域の拡大、分光放射照度標準 の供給		
		力元成初飛及	ופנגאמטלנג	トレーサビ・リティ	真空紫外域への拡張、紫外・真空紫外分光放射束評価技術		
		分光放射輝度	分光放射輝度計	トレーサビ・リティ	分光放射照度標準の供給、分光放射輝度率標準の開発・供 給、トレーサビリティ体制の確立		
				ダ・イナミックレンジ	極微弱レベル測定、FPD超高コントラスト精密評価技術		
		分光全放射束	分光全放射束測定装置	トレーサビリティ	分光全放射束標準光源の整備、LED放射束標準の整備(紫 外、可視、赤外) 低強度分光放射照度標準光源、固体照明の高精度効率評価 技術		
				高精度化	分光放射束角度分布評価技術、積分球評価技術、分光全放射束比較技術、測定方法最適化		
				トレーサビ・リティ	分光応答度標準の供給(真空紫外、紫外、可視、近赤外)、分 光放射照度応答度標準の整備		
		分光応答度	分光応答度測定装置	高精度化	不確かさ向上、参照標準検出器の高精度化、一次標準検出 器の高精度化 広帯域分光応答度高精度化のためカロリメータ高精度校正 技術		
				高信頼性化	特性評価技術、評価方法標準化、器差解消		
				ダイナミックレンジ	微弱光測定技術(< 1 mW/cm2)、高レベル光測定技術(mW ~W/cm2)		
		放射照度	紫外放射(照度)計	トレーサビ・リティ	分光放射照度応答度標準の確立、アパーチャ開ロ面積標準 の供給、分光応答度標準の供給		
		noa mix		トレーサビリティ 高精度化	紫外·真空紫外分光放射束評価技術		
			赤外線放射照度測定器	トレーサビリティ	加熱用赤外電球からの放射照度の校正		
			日射計	安定化	屋外環境下での経年劣化評価技術、温度・湿度安定性 太陽光評価技術、測定方法規格化、WMOトレーサビリティ		
				トレーサビ・リティ	高精度電力-光パワー置換技術		
		放射束	極低温放射計	高精度化	受光キャビティ超低反射率評価技術、背景放射低減・評価技 術		
				スマート化	液体冷媒フリー化、可搬化		
		評価•試験装置	耐候(光)性試験装置 促進耐候(光)性試験装置	トレーサビリティ	分光放射照度標準の供給、分光応答度標準の供給		
	放射量 分光放射量			トレーサビリティ	照度計・紫外放射照度計のトレーサビリティ		
N/	万元成别里		基準太陽電池セル評価装置	トレーサビリティ	分光応答度標準の供給、変換効率比較技術		
光 放 射			ソーラーシミュレータ	<mark>トレーサビ[*]リティ</mark> 高速化	分光放射照度標準の供給、高精度相対分光分布標準の確立 フラッシュ・ソーラー・シミュレータ用の高速スペクトル測定技 術		
計測			光触媒評価装置	トレーサビリティ	分光放射照度標準の供給、紫外放射照度計のトレーサビリ ティ		
		紫外·真空紫 分光放射計測 汎用測定機器 紫外·真空紫外光和	広帯域分光測定装置	トレーサビ゛リティ	分光放射照度標準の供給		
	汎用		紫外·真空紫外 分光放射計測装置	高信頼性化 ダイナミックレンジ	安定で再現性のある校正用放射源、検出器・材料、標準測定法、校正条件の多様化、光源安定性データベース整備		
			紫外·真空紫外光検出器	高精度化高信頼性化	ワイドギャップ半導体の開発、高品質なダイヤモンド層成長、 経済的結晶成長法の確立 熱安定な電極材料開発、分光応答度標準の供給、分光放射 照度応答度標準の整備		
					マルチチャンネル分光測定装置	規格化	迷光の補正アルゴリズム・評価方法の規格化、分光感度校正 技術
					非直線性評価技術(高安定光源、微小非直線性評価) 不均一性評価技術(マイクロビーム発生技術、高速走査技 術、位置再現性)		
		計測技術	光検出器特性評価技術計測技術	トレーサヒ・リティ	時間応答評価技術(入射光レベル可変性) 内部量子効率評価技術(反射率測定と外部量子効率測定の 複合化あるいは精密熱量計測) 入射角・偏光依存性評価技術(入射光の平行性、高偏光度) 温度依存性評価技術(可変温度制御、温度均一性)		
			加速試験による寿命予測技術	高信頼性化	EUV反射率測定技術、高強度パルスEUV光用検出器、EUV ナノレジスト光学系評価技術		
				高信頼性化 トレーサビリティ	LED経年変化評価技術、LED寿命予測方法規格化 バイアス光評価技術・安定化技術、差動光評価技術・安定化		
			差動分光応答度評価技術	安定化	ガイアス元計画技術・安定化技術、差割元計画技術・安定化 技術		
		計測技術	露光量評価技術	トレーサピリティ	分光放射輝度標準の供給、分光放射照度標準の供給、高精度相対分光分布標準の確立、分光放射束標準の整備、紫外・真空紫外分光放射束評価技術		
				トレーサビリティ	UV-LED放射束標準の整備		
	測光量	照度·光度	照度計	トレ─サピリティ	光度・照度標準の供給と高度化、照度応答度標準(検出器ベースの照度標準)の確立・供給 高照度対応照度応答度標準の開発、電力変換効率測定技 術、分光応答度標準の供給、アパーチャ開口面積標準の供 給		
		輝度	輝度計	トレーサビリティ	輝度標準の供給、分光放射輝度率標準の開発・供給		
				タ・イナミックレンジ	ワイドレンジ輝度測定		

光放射計測(2/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
			イメージング輝度計	複合化	より高いレベルでの視覚科学データの収集、規格化・見直し近視野・遠視野の双方に適用できる輝度評価測定方法標準化、イメージング測定技術
		輝度	拉一螺床水道	ダイナミックレンジ	ワイドレンジ輝度可変光源、分光分布プログラマブル可変光 源
			均一輝度光源	トレーサヒ゛リティ	分光分布標準の供給
				高精度化	積分球ムラ評価技術
			球形光東計(積分球)	トレーサビリティ	全光束標準の供給
		全光東・ 配光分布	配光測定装置	複合化 高速化	色、分光データを含む複合測定 イメージング検出器を用いた配光測定方法・解析方法の開発、測定時間の短縮、ライン計測技術
				トレーサビリティ	受光器応答度のトレーサビリティ
	測光量		LED特性評価装置	高精度化複合化トレーサビリティ	標準LEDの供給(光度・全光束)、LED輝度・色ムラ評価基準、 LED波長拡張技術 分光放射照度標準の供給、相対分光分布標準に基づく光源 色評価技術の確立 白色LEDデバイス・照明の効率評価技術
		特性評価・検査		トレーサビ・リティ	LED放射束・放射強度校正技術開発および標準LEDの供給
			有機EL特性評価装置	高精度化 複合化 トレーサビリティ	(分光放射)輝度計の校正、分光放射照度標準の供給、マルチチャンネル分光器の校正 電気計測機器の校正、汎用性、有機ELデバイス・ディスプレイ・照明の効率評価技術
			LED検査分別装置	高速化 トレーサピリティ	測定対象光源と同種の光源標準供給、色度の不確かさ向上
		測定技術	閃光計測技術	トレーサビリティ	フラッシュ光についての視覚科学データに基づく明るさ感覚の評価方法 LED閃光計測方法の規格化
	測色		アピアランス定量評価技術	トレーサビ [°] リティ 標準化	一次標準の確立、二方向反射率分布関数(BRDF)、トレーサ ビリティの確立 トランスファー標準の開発、標準化、外観計測
光放射計測			測色計 色彩計 色差計	高速化 トレーサピリティ	標準拡散板のトレーサビリティ、ライン検査における高精度測色技術 グレースケールのトレーサビリティ、分光放射照度標準の供給 分布温度標準または相対分光分布標準の供給、低輝度での色度測定精度向上、 LED色度の高精度化
			三次元測色計		三次元変角測定技術、二方向反射率分布関数(BRDF)、トランスファ標準の開発ニアフィールド・ファーフィールド変換技術、基準ジオメトリ・表記方法の規格化評価条件の標準化
			光沢計(グロスメータ)	トレーサビリティ	反射率標準のトレーサビリティ
			濁度計(ヘーズメータ)	トレーサビリティ	反射率標準のトレーサビリティ、透過,散乱,積分球による濁 度測定
		T	白色度計	トレーサビリティ	分光拡散反射率標準の供給、参照標準の供給
			分光光度計	トレーサビ・リティ	装置のバリデーション方法、広帯域分光透過率・反射率標準・トレーサビリティ整備 日射反射率評価技術
			off all pleased that the	高信頼性化	SN比向上·安定性向上
			吸光度測定装置	リアルタイム	インライン計測技術、小型化
			反射率測定装置	高精度化	超高反射率高精度評価技術、超低反射率高精度評価技術
		测点计型	視感透過率測定装置 透過濃度計(デンシトメータ)	トレーサビ・リティ	難燃性等級判定評価、スモークガラス基準のための透過率 標準の供給
	透過率 反射率	測定装置	視感反射率測定装置 反射濃度計(デンシトメータ)	トレーサビリティ	反射率のトレーサビリティ
	以 初辛		色試験器・比色計	トレーサビリティ	セーボルト色・ASTM色の分光透過率標準トレーサビリティ
			光反射式スモークメータ	トレーサヒ゛リティ	放射輝度率標準の供給
			オパシメータ (光透過式スモークメータ)	トレーサビ・リティ	校正用フィルタのトレーサビリティ
			再帰反射率測定装置	規格化 トレーサビ・リティ	高効率再帰反射器評価方法の規格化、再帰反射等の安全色 の測定方法 反射率標準の供給、波長標準の供給
		測定装置		アレータレ ソノイ	区別学標準の供給、波技標準の供給 S/N比向上、リニアリティ向上、分析手法の最適化
				高精度化	
		標準	鏡面反射率	トレーサビリティ	高反射率高精度評価技術、低反射率高精度評価技術

光放射計測(3/4)

大分類	中分類	小分類	装置名	課題	技術課題(二重要課題
	透過率		分光拡散反射率	トレーサヒ・リティ	波長域拡大(紫外、近赤外)、標準拡散反射板(各波長域)整備 有彩色物体の分光拡散反射率評価技術
	反射率	標準	二方向反射率分布関数(BRDF)	トレーサビ・リティ	変角分光反射率計の開発・評価、不確かさ向上、波長範囲拡 大
			分光透過率	トレーサビリティ	分光透過率標準の安定供給、波長範囲拡大
			テラヘルツ分光測定装置	10 10 11	検出器・光源の評価技術開発、測定方法の確立と標準化、テ ラヘルツ域パワー標準の確立
			ラマン分光測定装置	高感度化	装置の高感度化、データ標準化
			蛍光相関分光測定装置	高精度化	ナノスケール集合体のダイナミクス解析技術
			旋光(分散)計	トレーサビリティ	参照標準の供給、高感度検出
				トレーサヒ゛リティ	参照標準の供給
			円二色性測定装置	高精度化	真空紫外域円二色性測定技術、振動円二色性(VCD)測定技術、磁気円二色性(MCD)測定技術
			原子吸光分光光度計	トレーサビリティ	測光機構の小型化・高性能化、参照標準の供給
			ICP発光分析装置	トレーサビリティ	測光機構の小型化・高性能化、参照標準の供給
	分光分	析技術	赤外分光光度計(FTIR, 分散型)	トレーサビリティ	絶対値高精度化、標準試料整備、データベース整備
			スラブ型光導波路分光装置	高感度化 高機能化	装置の高機能化・汎用化、導波路素子精密製造技術
			和周波発生(SFG)·第二高調波	システム化	装置の小型化、汎用化
			発生(SHG)分光測定装置	高速化	装置の高性能化、計測速度の向上
				タ・イナミックレンシ	高感度検出、高精度化
			キャビティリングダウン分光装置	リアルタイム	インライン計測技術、装置の小型化
				高精度化	電場変調吸収・反射測定技術、磁場変調分光測定技術
			反射率差分光測定装置	高精度化	SN比向上
			光音響測定装置	高精度化	
					生体試料に対する高感度検出
			光熱変換分光測定装置 蛍光分光光度計	高精度化	光熱偏向分光測定技術、熱レンズ分光測定技術 パリデーション要求、分光放射照度標準の供給、 低照度標準光源(200 nm~2500 nm、相対分光分布)、標準
光 放	蛍光・発光計測		蛍光·発光分光測定装置	トレーサヒ゛リティ	試料の整備、真空紫外標準光源 HIDランブ放電中化学種の輝線同定技術とデータベース整備、蛍光・燐光材料の高精度特性評価
射 計			カソードルミネッセンス測定装置 熱ルミネッセンス測定装置	高信頼性化 高精度化	試料劣化損傷防止技術、高感度検出技術 高感度検出技術
測			化学·生物発光測定装置 微弱発光測定装置	高精度化	検出S/N比向上、測定法、測定装置の規格化、実用二次標準光源
			蛍光·燐光量子効率測定装置	高精度化 トレーサビリティ	蛍光量子効率の参照標準、蛍光・燐光材料の高精度効率評価、微弱蛍光・発光定量測定技術
			時間分解蛍光•発光測定装置		蛍光寿命参照標準試料
			マルチ/ハイパースペクトル イメージング装置	高分解能化	微弱光検出技術、迷光除去、物体の分光特性データベース、マルチ/ハイパースペクトルセンサ開発、宇宙空間からの地球観測技術、多波長化校正方法ISO化、組織再生薬剤(TEMPS)インビボ・モニタリングにおける高情報量化
			衛星観測センシング装置		校正の高精度化、ドリフト改善、衛星軌道上でのオンサイト校 正のSIトレーサビリティの確保 太陽、月、恒星などの標準光源化、二方向反射率分布関数 (BRDF)
			磁気光学イメージング装置	高精度化	実時間イメージング、鉄鋼表面状態変化相変化モニター、時間相関イメージセンサ 磁性材料の磁区視覚化技術
	分光イメ	ージング	ラマンイメージング装置 近赤外・赤外イメージング装置	高精度化	デバイス・検出器の高感度化、新しいデバイスの開発、イメージングによる定量分析法
			バイオイメージング装置	バイオ	バイオマーカー・バイオセンサの高感度化(発光効率向上)・ 多様化・複数化 低侵襲生体組織診断技術、医療・診断用イメージング装置定量化、 生体顕微計測における空間分解能向上、単一分子計測技術、分光感度補正技術(蛍光ビーズ)
			画像評価技術	高精度化 規格化	イメージングシステム性能基準(色彩、画像角度、距離、照明条件など)、画像の標準評価法映像内の顔認識、虹彩計測、赤外線画像装置コントラスト評価技術、 遠隔医療ディスプレイ・イメージングシステムの評価、色空間再現性、食料品動的製造システム

光放射計測(4/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
			レーザパワーメータ	ダ・イナミックレンジ	高パワー(>10 W)絶対値評価、高パワー用光学素子精密評価技術
			レーザパワーメータ	トレーサヒ [*] リティ	標準カロリメータ高精度化、波長依存性評価法確立、波長拡張技術、直線性評価技術、規格化波長感度一様性が担保されたカロリメータヘッドの供給、青紫色レーザ評価技術 校正用光源のプログラマブル化広帯域分光応答度標準の高精度化のためのカロリメータ高精度化高NA青色LDの測定法標準化(斜入射依存性評価など)、標準レーザ光源(規格化)
		空間系		複合化 トレーサビ・リティ	安全管理(クラス分け)に適用しやすいパワー密度絶対値評価、ビーム径測定
	レーザ計測		レーザエネルギーメータ	トレーサビリティ	マルチパルスの絶対値評価、高出力フラッシュランプ測定、パルスtoパルス安定性評価技術(産業用レーザ)、レーザエネルギー標準の供給ビームプロファイル標準の確立、高パワー用光学素子精密評価技術
			ビーム特性診断装置	トレーサビリティ 高精度化 複合化	産業用レーザビームプロファイル評価技術及び規格 非点角差(far-field/near-fieldビームプロファイルの相違) 測 定技術 多機能化(ビームサイズ、M2、パワー密度、全パワー測定、 ビーム断面内偏光分布測定)
光 放射 計			光ファイバパワーメータ	トレーサビリティ	波長依存性評価技術、空間系パワー標準からの組立技術、 光ファイバパワー標準の供給 光減衰量標準の供給、多様なコネクタ形状への対応
測			ファイバ系	光損失測定装置 OTDR	トレーサビリティ
			光減衰量標準	トレーサビリティ	任意波長への範囲拡大技術の確立と標準化
			光ネットワークアナライザ	トレーサビ・リティ	光波形・波長分散・偏波モード分散測定技術、マルチモード ファイバ励振状態定量化 RIN(相対強度雑音)測定技術、波形・遅延精密測定技術
		偏光·位相	偏光計測技術	高精度化トレーサビリティ	偏光·位相差制御のための偏光分離素子(偏光選別フィルタ)、高効率偏光分離
			単一光子検出器	高精度化 高信頼性化	超伝導転移端センサ技術、InGaAs, APD、量子効率向上、絶 対値評価、高ビットレート、低暗計数 室温動作、高効率単一光子源、標準化
	単一光子計測		単一光子発生源	高精度化	励起子などの波動関数制御、量子ドット形状制御、強結合共振器の精密構造制御 パラメトリック単一光子発生光源、高発光効率化、オンデマンド
	ナノスケー	-ル光計測	ナノスケール分光計測技術	高分解能化	ナノ空間分解能でのミスマッチ歪み定量化技術、超解像光学素子、近接場顕微鏡(NSOM)技術、表面増強型ラマン分光技術、表面プラズモン共鳴(SPR)計測技術、MEMSによるチューナブル分光素子(光強度を測定できるAFM)、コンビナトリアル技術
	センサ技術・	·光計測全般	光ファイバセンサ	複合化	光周波数領域反射計測法(OFDR)、ブリルアン散乱シフト
			ビジョンセンサ・ロボットビジョン	スマート化	高感度化、ダイナミックレンジ拡大

計量・計測システム分野の技術マップ 放射線・放射能・中性子計測(1/4) (44/71)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
		l	大強度陽子加速器		大強度陽子加速器、蓄積リングエネルギー
			単色陽電子線源		加速器出力增大
			準単色γ線発生装置	高性能化	レーザーコンプトン(LOS)γ線発生装置の高性能化
			小型加速器LCS-X線光源		コンパクト、高輝度、高エネルギーLCS-X線源、コヒーレントテーラへルツ光源、FEL
			超小型高エネルギーX線源		超小型、省エネ、高エネルギーX線源
			偏光可変光源		真空紫外から高エネルギーX線へ偏光可変光源帯域拡大、 アンジュレーター
			 X線レーザ発生装置	高分解能化	X線自由電子レーザの開発、レーザプラズマの開発
	新しいた	女射線源	テラヘルツ自由電子レーザー	L177777+11616	小型リニアック、FELコンプトン
			(THz-FEL)		小至リーチック、FELコンノドン
				トレーサビリティ 高信頼性化	新しい光源を評価するための校正場の開発
			新しい放射線源評価のための	トレーサビリティ 高信頼性化	新しい光源を評価する検出器の開発、パルス特性、エネル ギー特性
			線量計測装置	トレーサビリティ 高信頼性化	加速器ベースの新しい放射性医薬品の検査
				トレーサヒ・リティ	放射線関連の基礎データと相互作用の基礎データの詳細化
				高信頼性化	
			リニアック・Co-60による 放射線治療装置	複合化 高信頼性化	治療装置の高度化・高精度化、治療計画の高精度化、強度 変調を用いた照射技術 モニタリングの手法を用いた照射技術、小型化、照射技術の 自動化等
				トレーサビリティ 高信頼性化	患者内の3次元線量分布の高精度評価
		リニアック・		トレーサビリティ 高信頼性化	サイバーナイフのための線量測定技術の開発
		Co-60による 放射線治療	医療用リニアックの	トレーサビリティ高信頼性化	グラファイトカロリーメータの開発
			高精度線量測定装置	トレーサビリティ高信頼性化	線源のエネルギー成分特定
				トレーサビリティ高信頼性化	臨床高エネルギー・ビームの水熱量測定技術の開発
	放射線治療			トレーサビリティ 高信頼性化	モンテカルロシミュレーション技術の高精度化
		粒子線治療	粒子線治療装置		シンクロトロン陽子線加速器の開発
放				スマート化	シンクロトロン炭素線加速器の開発
射線				高精度化	サイクロトロン加速器の開発 リッジフィルターによる照射系、動態追跡(呼吸同期)システム
計					による照射精度の向上、線量評価
測			粒子線線量評価装置	トレーサビリティ 高信頼性化	臨床高エネルギー・ビームの水熱量測定技術の開発
		ナノ計測	ナノ治療技術	複合化	細胞、DNAに対する放射線の影響を微視的に評価する技術の開発
		小線源 (近接照射) 療法の 線量測定		微小化	I-125等の小強度小線源、検知素子の3寸法は全て0.5mm以
			[接照射) 療法の 小線源の線量測定装置	高精度化	下 低エネルギー光子放射小線源付近の基準点で直接実現
				微小化	Ir-192等の大強度小線源、スペクトル計測技術の開発
				高精度化	線量計測技術の開発
		眼科用β線 治療線源	医療用 β 線源の 水吸収線量評価装置	トレーサビリティ 高信頼性化	眼科用治療線源に関する水吸収線量標準の確立
		治療線源 放射線			放射線感受性物質をDDS輸送した放射線治療、リアルタイム
		感受物質による治療	DDS+ターゲット療法	複合化	線量評価技術の開発
		による冶漿	放射能による放射線治療	複合化 高精度化	加速器ベース新規放射線核種の探索
			マンモグラフィX線診断装置	高有度化 高分解能化	高精度化、高分解能化、低線量化
		マンモグラフィ	マンモグラフィ線量計計測器	トレーサヒ゛リティ	国家標準およびトレーサビリティ体系の維持
		X線診断	マンモグラフィX線診断計測器	トレーサヒ゛リティ	管電圧、半価層の計測
			シンクロトロン放射光・FELによる 診断装置	高精度化	マンモグラフィー診断技術、微細分析技術、被曝線量低減
		X線CT 血管造影	X線CT·X線一般撮影診断装置	高精度化 高分解能化 複合化 スマート化 遠隔化	高速化、低被ばく化、高機能化
	医療診断	X線一般撮影	画像分析装置	高信頼性化	制御された医療画像データセットの開発
			X線CT·X線一般撮影	トレーサビリティ	X線発生装置の診断技術の維持
		X線CT	線量計測装置 X線発生装置の診断装置	高信頼性化 トレーサビリティ	管電圧、半価層の計測
		血管造影	シンクロトロン放射光・FELによる	高精度化	アンジオグラフィー評価手法開発、微細分析技術、被曝線量
		X線一般撮影	診断装置 PET放射線線量計測装置	高信頼性化	低減 放射線被爆量計測用の物理的、数学的人体モデルの開発 放射能診断薬の実用化、診断薬の自動合成装置の小型化、 高精細化
		PET	PET/CTイメージング装置	高分解能化	イメージング技術基準の開発、マルチモダリティ化、画像融合による複合画像診断(PET/CT)の開発 半導体検出器(CdTe、CZT)検出器の実用化

計量・計測システム分野の技術マップ 放射線・放射能・中性子計測(2/4) (45/71)

大分類	中分類	小分類	装置名	課題	技術課題 (===================================	
			高エネルギーX線発生装置	高分解能化	コヒーレントX線光源の開発、高電圧X線管の開発、リニアックによるX線発生装置の開発 レーザ逆コンプトン技術による単色 γ線の発生技術	
			線量計測装置	トレーサヒ゛リティ	高エネルギーX線の線量計測技術の開発、イメージングシステム性能評価法の開発	
		非破壊検査	X線CT・ホログラフィ装置	高信頼性化高速化高分解能化トレーサビリティ	コヒーレントX線光源の開発、X線干渉計の開発 高カウント率検出器の開発、X線集光系の高スループット化、 データ転送系の高速化 検出器とメモリのチップ上への混載、X線集光系の高精度化、 授似CT手法の開発 エネルギー分光機能の組み込み、分子動力学などのシミュ レーション手法との組み合わせ X線ホログラフィ用標準試料(密度分布の値付けがされたも の)、X線イメージングシステムの開発 CTイメージングの評価手法の開発、大型X線CT装置の開発、 可搬型X線CT装置の開発、	
			γ線CT装置	高速化	高エネルギーγ線CT装置の開発、CT分解能向上	
		食品照射	食品照射検知装置	トレーサヒ゛リティ	食品照射検知装置の高性能化、再照射のトレーサビリティ	
		TS HI WAY	食品照射放射線線量計測装置	トレーサビリティ	食品照射放射線の線量評価技術の開発	
	ŀ		標準アラニン線量計	トレーサビリティ	アラニン線量計の校正技術の開発 大線量Co-60 γ 線の線量評価技術	
	産業用放射線	滅菌等	大線量産業用放射線 線量測定装置	トレーサヒ・リティ	高ビーム電流(>10 mA)で加速器(10 MVまで)から および低電圧加速器(80から300 KVの範囲で必要	
				トレーサヒ゛リティ	バイオドシメトリー法 汚染除去および殺菌における放射線強度測定の開発	
			単色X線フルエンス標準 0.1-20 keV	トレーサヒ [*] リティ トレーサヒ [*] リティ	国家標準およびトレーサビリティ体系の維持供給範囲(エネルギー上限)の拡大	
			シリコンフォトダイオード (紫外〜X線領域の 強度測定基準あるいは仲介器)	高精度化	黒体源や極低温放射計などの機器を使っての校正	
		放射光等の 産業応用	極低温カロリーメータ パルスX線(FEL)標準	ダイナミックレンジ 極端環境下	エネルギー範囲および測定可能な強度範囲の拡大 パルス強度測定手法の確立	
放射線計測			シンクロトロン放射光・FELによる X線分析装置	高精度化	放射光利用の組織特異的なX線スペクトルによる画像計測、 小型高出力単色X線源の開発 ナノスケール分解能による磁気ナノ構造を提供するX線分光 ホログラフィの開発 リソグラフィ材料の高度な評価技術の開発、サブ50 nmリソグ ラフィ材料分析 ナノスケール、分子レベルの非破壊計測法の開発 高度な半導体製造の小粒子モニタリング技術の開発	
)Ail			×線顕微鏡	高精度化高分解能化	組成分析技術、評価手法開発 光電子分光顕微鏡、結像型X線顕微鏡、走査型X線顕微鏡、	
-		ナノ計測	ナノ計測装置		偏光可変μビーム	
		X·γ線検出器	スペクトル測定技術	複合化 高信頼性化 高度化	マイクロビーム、飛行時間法、単一粒子検出高速:簡易二次元検出	
				高度化 高精度化	散乱法を使った高線量場のスペクトル測定技術 Ge検出器によるスペクトル測定技術	
			X•γ線検出器		高速化	検出パルスのデジタル処理技術の開発、処理の高速化
	検出器			高分解能化	10 MeV以上の高エネルギーγ線計測	
			検出時間計測装置	高分解能化	減衰時間の短いシンチレータ開発、信号処理回路の高度化	
			高エネルギーX線・γ線 イメージング装置	高分解能化	消滅γ線、200~1 MeVのX線の画像高分解能化	
		宇宙開発	X線/γ線望遠鏡	複合化	多層膜スーパーミラー技術、偏光測定技術、冷却技術 高エネルギー(硬X線、軟γ線)・高分解能・高分光能カセン サー技術	
			X線検出器(EDX)	高分解能化	エネルギー分解能向上、計数率向上	
		X線	X線線量計	トレーサビリティ	国家標準およびトレーサビリティ体系の維持	
		△市水	ヘ4水 里 直	トレーサヒ・リティ タ・イナミックレンシ	QIシリーズ以外の線質についての校正 低線量率X線標準(20 keV~200 keV)	
				高精度化	X線スペクトル情報に基づく線量校正 70 μmの線量計(ガラスバッジ等)校正用単色1 keV~20 keV	
		X線	X線線量計	トレーサヒ・リティ	標準の整備	
			管電圧、線質計測器	高精度化 高精度化	単色X線による線量校正 高電圧の簡易校正技術の開発	
	## 61 % 64 - ##	 γ線	空気カーマ、照射線量計測器	高相及10 トレーサビリティ	国家標準およびトレーサビリティ体系の維持	
	放射線防護	加速器による放射線	高エネルギーX線の 発生計測技術	高信頼性化	200 keV以上の線量標準の開発	
			線量当量計測器	高精度化	スペクトル測定・国家標準およびトレーサビリティ体系の維持	
		線量当量		高精度化 低価格	Gy→Svの変換値 サーベイメータなどの簡単なチェック・校正手法	
		線量当量	原子力施設における計測機器	トレーサヒ・リティ	原子力発電所の計測機器における法令上のトレーサビリティ 要求	
			有人施設技術(有人宇宙)	極端環境下	放射線防護技術、線量評価及び線量計の校正	

			装置名 	課題	技術課題(二重要課題 是重要課題)
		線量当量	搭乗員関連技術(有人宇宙)	極端環境下	宇宙放射線被爆管理(線量算定·評価·予測、線量計測、障害 防止、遮蔽)、線量評価
		林里コ里	有人安全技術(有人宇宙)	極端環境下	宇宙旅行者保護のための宇宙船内の放射線レベルの規格 化、線量評価
	放射線防護	微小電流計測	微小電流計	高精度化	常時校正または自己校正できる放射線計測器と微小電流計 の開発
		版引·电加引/例		内部測定	微小電流計についての情報提供
			微小電流源	内部測定	安定微小電流源の開発
			組織吸収線量計測器	トレーサビリティ	国家標準およびトレーサビリティ体系の維持
		β線	線量当量計測器	トレーサビリティ	トレーサビリティ体系の維持
				高精度化	Gy→Svの変換値
				高精度化	超伝導放射線検出器を用いた放射能絶対測定装置の開発
			11 41 61 64 11 12 11 11 11	高精度化	微細加工放射線検出器を用いた放射能絶対測定装置の開発
			放射能絶対測定技術	高精度化	放射線源用検出効率可変装置の開発 放射能絶対測定の高精度化のためのモンテカルロシミュレー
	測定∙村	交正技術			ションソフトウェアの開発 マルチチャンネル放射線検出器を用いた放射能絶対測定装置
			微量放射能測定技術	高精度化 高精度化	の開発 微量放射能検出技術
				高分解能化	微量領域放射能検出技術
			放射能が作計測技術 放射性ガス計測技術	高精度化	
放				トレーサビリティ	控悩 単 成 別 住 刀 入 快 田 技 州
射			遠隔校正技術	トレーサビリティ	退隔校正技術の開発 モニタリングポストの遠隔校正システムの開発
能 計				高分解能化	線源からの線量の方向分布の高分解能測定に基づく校正定
測					数を持つ装置の供給
			放射能測定器	高精度化	水吸収線量での線量測定に基づく校正定数を持つ装置の供給 給
	放射能	則定装置		トレーサヒ・リティ	医療分野で新たに利用される放射性核種の放射能測定
				高精度化	放射能絶対測定技術の現場測定器への応用
				高精度化	測定有効領域の形状や測定対象核種に合わせた校正用線源
			放射能汚染測定装置		の適用 the left to the left of a TRUE Windows の to True Windows の
ļ				高精度化	放射能絶対測定技術の現場測定器への応用
	4.4	. W.F.	放射線源	高精度化	新たな社会の要求に合致した線源の供給
	杨	源		高分解能化	レーザー放射線源の開発
-	標準の維持・高度化		γ線核種放射能標準 純α、β核種放射能標準 環境レベル放射能標準	トレーサビリティ	PET装置校正用放射線源の開発 放射能校正用線源の維持
F			γ(X)線放出率標準	トレーサビリティ	γ(X)線放出率校正用線源の維持
	標準の維	持·高度化	荷電粒子放出率標準 放射能面密度標準	トレーサヒ・リティ	粒子放出率校正用線源の維持
			放射性ガス標準	トレーサビリティ	ガス放射能校正用線源の維持
Ī			放射性エアロゾル放射能標準	トレーサビリティ	エアロゾル粒径別線源の開発
			環境中ガス放射能標準	トレーサビリティ	ラドン発生源の精密測定
	個別用途	向け標準	治療用密封小線源標準	トレーサビリティ	微少吸収線量の精密測定
			線量監視装置校正用線源	トレーサビリティ	線量校正場のコンパクト化
			α 線エネルギー特性試験用線源	トレーサビリティ	面放射可能な粒子線発生器具の開発
				技術開発	RI線源中性子放出率、RI線源による中性子フルエンス
			中性子線源	高精度化	不確かさ向上
				トレーサビリティ	供給範囲
				技術開発	単色中性子場
				技術開発	準単色中性子場
	±=	準		技術開発	連続スペクトル中性子場
	1রু	· -		高精度化	不確かさ向上
			中性子校正場	高精度化	高強度中性子、原子炉中性子源、加速器中性子、白色中性子源、スピード校正 混在ガンマ線測定
				トレーサヒ・リティ	仲介器の開発、遠隔校正、現場校正 核データ
中性子計測				高精度化	高強度中性子照射場の開発と線量率試験方法の確立 航空機内中性子線量当量測定、有人宇宙の線量測定・放射 線防護 作業環境場測定、ガンマ線混在場測定
測	汎用測定器		電子式中性子個人線量計	トレーサヒ*リティ	Am-Be、Cf線源による校正の際の仲介器の開発、高強度中性 子照射場のトレーサビリティ 15 MeV以上中性子エネルギー領域の準単色中性子標準・校 正場と測定法の開発 15 MeV以上のエネルギー領域の白色中性子源開発
				高精度化	15 MeV以上高エネルギー中性子領域の試験、作業環境場測
				ISTRIC IS	定
			中性子用固体飛跡個人線量計	トレーサビ・リティ	正 15 MeV以上中性子エネルギー領域の準単色中性子標準・校正場と測定法の開発 15 MeV以上のエネルギー領域の白色中性子源開発、エネルギースペクトル、フルエンス率

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題)		
			高速中性子用フィルムバッチ	高精度化	作業環境エネルギーの測定、作業環境場におけるエネルギー に対応する補正係数		
			高速中性ナ用ノイルムハ		同医中住于用ノイルムハッテ	トレーサビリティ	0.5-15 MeV中性子のトレーサビリティ(標準の維持) 仲介器の開発、線源の標準へのトレーサビリティ
					中性子用線量当量(率) サーベイメータ	高精度化	Am-Be,Cf,2.8 MeVD(d,n)中性子源による試験、15 MeV以上高エネルギー中性子領域の試験作業環境場線量、ガンマ線混在場測定
			7 17 7	トレーサヒ・リティ	Am-Be,Cf,2.8 MeVD(d,n)中性子源の標準へのトレーサビリティ 15 MeV以上高エネルギー領域の標準へのトレーサビリティ		
	汎用》	則定器	スペクトロメータ	高分解能化	宇宙環境・核燃料・原子力施設などの作業環境場におけるスペクトル測定技術 リアルタイムスペクトロメータ、応答関数のトレーサビリティ		
				高効率化	高感度化(核融合、クリアランス)、高エネルギー中性子スペクトル技術		
			中性子測定用可搬式測定器	技術開発	小型化、軽量化		
				トレーサビリティ	測定器の感度、エネルギースペクトル		
			BPI線質計	技術開発	精度、検出効率		
			高感度中性子測定器	トレーサビリティ	測定手法の開発、リアルタイムモニターとしての利用 校正方法の開発		
			ガス比例計数管	技術開発	応用利用開発、位置検出、分解能、検出効率、安定測定		
			シンチレーション検出器	技術開発	新規物質の開発、エネルギー分解能、時間分解能、検出効率 の安定度、小型プローブ開発		
			半導体検出器	技術開発	新規物質、エネルギー分解能、放射線ダメージ		
			国土安全保障用中性子測定器	技術開発	高感度測定器、リアルタイム測定、テロ対策物質検知		
	特殊目的	內測定器		トレーサビリティ	測定器の感度、エネルギースペクトル		
			油田探査検層用中性子測定器	技術開発	高感度測定器、リアルタイム測定		
			加速器中性子源	高性能化	医療目的の新しい中性子源、パルス中性子源、レーザー中性 子源、白色中性子源 ガンマ線混在中性子場		
				トレーサビリティ	中性子測定器(シンチレーション検出器)の感度トレーサビリティ		
			レーザー中性子源	技術開発	中性子発生技術、ペタワットレーザー		
	中性	子源		トレーサビリティ	中性子発生量		
中 性 子 計			中性子照射施設	技術開発	校正施設の開発、遮蔽体開発、材料開発のための照射、核燃料、絶縁体 高エネルギー中性子照射、半導体ソフトエラー		
測				トレーサビリティ	標準トランスファ用仲介器の開発、中性子フルエンス、エネル ギースペクトル 滅速中性子フルエンス率、高エネルギー中性子標準場		
		検査	非破壊検査装置	技術開発	水素燃料、直接法、転写法、鉱山における中性子検層、塩水 検層 中性子ラジオグラフィー、中性子フルエンス、中性子反応核 データの測定		
			N W NEWE	リアルタイム	検出器の時間応答特性の改良		
	応用装置			トレーサビリティ	検知に用いる中性子源、中性子フルエンスのトレーサビリティ		
			中性子回折装置	技術開発	構造解析技術の向上、構造解析データの集積		
			中性子イメージング装置	技術開発	生物医学応用技術、水素移動測定		
		分析	中性子散乱装置	技術開発	高感度化、高分解能化、小型化		
			即発ガンマ線分析装置	高精度化	不確かさ向上、多次元化、高感度化		
			かにノしハン 、 中外ノリ リハ 女人 巨	トレーサヒ・リティ	中性子ビームの標準化、国際比較		
			原子炉開発	技術開発	周辺環境中性子測定(~20MeV)、中性子核反応データの測定 定 高速増殖炉、小型原子炉、核融合炉、超臨界圧炉の技術開発		
		基礎・基盤	14 m 1/2 to m 1/2 /h	11 /1- BB 74			
			核変換処理技術	技術開発	中性子測定、長寿命FP処理のための核データの測定		
			中性子核反応測定	技術開発	中性子入射散乱反応、中性子放出核反応、中性子捕獲反応、核データと標準の関連について		
	=1 multi die	検査	原子炉検査	技術開発	原子炉脆弱化率測定、クリアランスレベル評価法、リアルタイムモニター		
	計測技術			トレーサヒ・リティ	測定器の感度、中性子フルエンス、エネルギースペクトル、テロ対策技術		
		医療	中性子治療	高性能化	ホウ素中性子捕捉療法(BNCT)、原子炉以外からの中性子利 用技術		
			先進医療画像技術	技術開発	偏極3Heガス測定のための中性子測定		
		半導体	省エネルギーデバイス技術 半導体ソフトエラー抑止技術	技術開発	半導体空孔計測技術、中性子照射ドーピング技術 宇宙線起因高エネルギー中性子による照射試験 粒子線等放射線治療現場において発生する熱中性子によるソフトエラー		
				トレーサビリティ	試験の際の中性子照射量		
<u> </u>]	トレーリに リナイ	武派の际の中は丁忠が里		

化学計測(1/3)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
			不確かさ研修	分析値の信頼性 維持・向上	標準物質の正しい使い方
			共同実験、分析技術の維持・向上	分析値の信頼性 維持・向上	測定の不確かさ評価、分析法の妥当性評価
	標準物質	トレーサビリティの 普及	トレーサビリティを確保した参照標準 物質(RM)と値付け技術	分析値の信頼性 維持・向上	値付け技術の研究、開発と移転
			技能試験、分析技術の維持	分析値の信頼性 維持・向上	技能試験に参照値を提供、標準物質の正しい使い方
-			分析機器の校正に用いる試薬	分析値の信頼性 維持・向上	トレーサビリティを確保する仕組み
			元素とイオンの計測と標準	トレーサビリティ	JCSSの金属標準液・非金属イオン標準液・pH標準液等 SIトレーサブルな定量法
			pHの計測と標準	トレーサビリティ	一次標準の不確かさの低減
		産業基盤	電気伝導率の計測と標準	トレーサヒ゛リティ	一次標準の確立
			ストイキオメトリー利用計測と標準	トレーサヒ゛リティ	高純度物質の探索と不確かさの低減
			同位体の計測と標準	トレーサビリティ	一次標準の確立
			ICP-AES、ICP-MS、原子吸光分析装	高精度化	元素分析の高精度化
			置、ストリッピングボルタンメトリー等		
			ICP-MS、LC/MS、GC/MS等	高精度化	同位体比分析の高精度化
	無機分析	元素分析	ICP-AES、ICP-MS、原子吸光分析装置等	高精度化	微少量分析技術開発
			ICP-MS等	高精度化	高時間分解能計測
			ICP-AES, ICP-MS, HPLC, IC, GC, 原子吸光分析装置等	低価格	分析装置の専用化、低価格化
			ICP-MS, ICP-AES, 原子吸光分光装	高精度化	化学形態別分析技術開発
		化学形態分析	置、HPLC, IC, GC, LC/MS等	システム化	化学形態別分析装置のシステム化、自動化
		16十月8月1	ICP-MS, HPLC, GC, GC/MS, LC/MS 等	高信頼性化	化学形態別同位体希釈質量分析技術の開発、濃縮安定同位 体標識化合物
		試料前処理装置	分解装置、抽出装置	高速化	高効率化、再現性向上、自動化、汎用化
		ᆘᅖᅕᄭᄯ	LA-ICP-MS、蛍光X線分析装置、中	高精度化	元素分析の高精度化
		非破壊分析	性子放射化分析等	高信頼性化	高信頼性計測システム、妥当性評価
	汎用分析	専用測定装置	テーラーメイド計測機	システム化	デバイス交換型、安価かつ簡易なユニットデバイスシステム 計測機開発と高度化。
化学計測		液体クロマトグラフ	高速液体クロマトグラフ、液体クロマト グラフ質量分析計	高速化 簡易分析化 高感度化 低価格、環境調 和	迅速に行う装置の開発、簡易分析システムの開発(ダウンサイジング、Lab on a chip等) 検出器の高感度化等、代替溶媒による分離システムの開発
		かスクロマトグラフ 抽出装置	ガスクロマトグラフ、ガスクロマトグラ フ質量分析計	高速化 簡易分析化 高感度化	迅速に行う装置の開発、簡易分析システムの開発(ダウンサイジング、Lab on a chip等) 検出器の高感度化等
			高速溶媒抽出装置、マイクロ波加速 抽出装置、超臨界流体抽出装置、 ソックスレー抽出装置、固相抽出装置 等	高速化 簡易分析化 高感度化 低価格 環境調和	迅速に行う装置の開発、簡易分析システムの開発(ダウンサイジング、Lab on a chip等) 代替溶媒による分離システムの開発
					感度向上、汎用化、高速化
		1対多型の純度校 正装置	定量NMR(qNMR)	高信頼性化	新規なトレーサビリティコンセプトを有する純度定量技術の確立、既存の同一化学種の比較濃度測定からの打破、他品種の有機化合物のトレーサビリティの確保、低価格化
	<u></u>			高信頼性化	qNMR用の標準物質の開発、高度化と維持
	有機分析	校正用物質の純	定量NMR(qNMR)	ダ・イナミックレンジ	不純部物の構造決定ならびにその定量 高感度化と検出器のダイナミックレンジ向上による高純度物 質中の不純物の精確分析
		度測定装置		高信頼性化	純物質の精確な定量技術の確立、相対不確かさのレベル (H-1 NMR)、より精確な不確かさの積算と、全体の不確かさ 軽減
			定量NMR(qNMR) ERETIC (Electronic Reference To access In vivo Concentrations)法	安定化	電気信号の安定的な受信システムの構築、定量における相対不確かさのレベル(H-1 NMR)、より精確な不確かさの積算と、全体の不確かさ軽減
		同位対比測定装 置	NMR	高精度化	NMR活性アイソトープ純度決定
		1		安定化	トレーサビリティの確保された迅速計測法
			ハコレノエンル・奈良ハゼ	高信頼性化	純物質の精確な定量技術の確立 不確かさの積算と、全体 の不確かさ軽減
		##T M ## 55 ~	ソフトイオン化質量分析	安定化	制御電源の安定化によるシグナル強度の安定化
		校正用物質の 純度測定装置		高分解能化	定量対象化合物と不純物のピーク分離、分解能と感度の向 上
			ソフトイオン化 - 通常イオン化のタン デム質量分析計	ダイナミックレンシ	一 不純物の構造決定ならびにその定量 高感度化と検出器のダイナミックレンジ向上による高純度物 質中の不純物の精確分析

化学計測(2/3)

大分類	中分類	小分類	装置名	課題	技術課題(■重要課題■最重要課題
			LC-ソフトイオン化質量分析計	複合化	分離技術との融合による化学形態別定量 夾雑物存在中の含量定量
	+ 1010 // 14*	校正用混合標準 液の濃度測定装 置	LC-(ソフトイオン化-通常イオン化の タンデム質量分析計)	複合化	分離技術との融合による化学形態別定量、化学形態ごとの 化学構造解析 夾雑物存在中の含量定量
	有機分析	1	ソフトイオン化質量分析 ソフトイオン化-通常イオン化のタン デム質量分析計	低価格	装置の低価格化
			特定の分子種の構造の状態の混合を、分光学的を確定する装置(NMR)		量子コンピュータのための計測装置
					高機能材料の開発
			均質合金の製造装置および分析	材料計量	均質化とSIトレーサブルな成分計測
		高機能材料	高機能セラミックスの実現 半導体関連の計測技術	材料計量 材料計量	SIトレーサブルな成分計測 高感度化と微小計測
		マイクロエレクトロ	金属含有新素材の計測技術	材料計量	高感度化
		ニクス			 資源の効率的・持続的な利用
		省資源、代替資源	希少元素、貴金属代替新材料	低価格	高感度組成分析
	工業分析	L X III Y II X III		高精度化	SIトレーサブルな高精度測定
		資源リサイクル	希少元素、貴金属の回収	高精度化	組成·不純物分析
		貝がリッインル	金属・プラスチック等の素材資源の回		高感度化と迅速化
			収	高精度化	組成・不純物分析
			ガス成分分析装置	タ゛イナミックレンシ゛	高融点金属、低沸点金属への適用範囲拡大
			理许可传针划	++씨 <u>카</u> 트	環境配慮材料・廃棄物管理
		環境配慮	環境配慮材料 廃棄物管理	材料計量 材料計量	有害物質フリーのエレクトロニクスの製造と計測 高感度化と迅速化
			グローバル環境(水圏)	トレーサビリティ	同窓及れと処塞化 SIトレーサブルな計測と測定不確かさの低減
			プローバル環境(小園)	高速化	安価で迅速なスクリーニング法の開発
		残留性有機汚染	GC/MS、前処理装置、イオンクロマト	高信頼性化	分析装置の高信頼性化
	工業分析	物質(POPs)分析	グラフ等		標準物質の整備・維持
	(製品・素材)			高速化	安価で迅速なスクリーニング法の開発
		REACH規則高懸 念物質分析	GC/MS、ICPMS、イオンクロマトグラフ、XRF等	高信頼性化	分析装置の高信頼性化
		心物具刀机	ノ、XRF 寺	高信頼性化	計量標準の整備・維持
化学計測	工業ガス分析 (半導体用以外の 高純度ガス)	高純度ガス分析装 置(NO, SO2, …)	ガスクロマトグラフ、質量分析計、硫 黄酸化物分析計、一酸化炭素分析 計、窒素酸化物分析計、炭化水素分 析計、アンモニア分析計、塩素・塩素 化合物分析計、酸素分析計、フーリエ 変化赤外分光計、キャビティリングダ ウン分光分析計	高信頼性化	PSA, TSA等のガス分離精製技術の向上による高純度ガス純度の向上
		クリーンルームエ ア	イオンクロマトグラフ、GC、GC/MS、 LC/MS、THC, TD-GC/MS, TD- GC/FID, APIMS, UV, IR	高信頼性化	標準物質+分析法
		パージ用空気	露点計、キャビティーリングダウン分 光計、イオンクロマトグラフ、イオンク ロマトグラフ/MS、LC/MS、THC, TD- GC/MS, TD-GC/FID, APIMS, UV, IR	高感度化 高信頼性化	不純物分析法等の改良による純度制御、フィルター、精製装置の改造
	工業ガス分析 (半導体用高純度 バルクガス)	高純度窒素	露点計、キャビティーリングダウン分 光計、イオンクロマトグラフ、イオンク ロマトグラフ/MS、LC/MS、イオンクロ	高精度化高感度化高信頼性化リアルタイム	不純物分析法等の改良による純度制御、フィルタ、精製装置、高感度分析装置
		高純度ヘリウム	マトグラフ、GC、GC/MS、LC/MS、 THC, TD-GC/MS, TD-GC/FID, APIMS, UV, IR	高精度化高感度化高信頼性化リアルタイム	不純物分析法等の改良による純度制御
		高純度酸素 高純度アルゴン 高純度水素 高純度二酸化炭 素	THC, TD-GC/MS, TD-GC/FID, APIMS, UV, IR	高信頼性化	不純物分析法等の改良による純度制御
	工業ガス分析 (半導体用高純度 特殊ガス)	エッチングガス、蒸 着ガス	ガスクロマトグラフ、ICPMS、イオンク ロマトグラフィー、水分計、GC/MS等	高信頼性化	エッチングガス(BCI3, CI2, C2F6, NF3等)、蒸着ガス(SiH3, NH3, (CH3)3SiH)、ドーパントガス(AsH3, PH3, GeH4)の純度制御
	半導体排ガス分析	半導体ガス(地球 温暖化ガス)	FTIR、GC-TCD	トレーサビ・リティ	半導体業界:基準年(1995年)比の10%削減、液晶業界:2010 年までに0.82MMTCE(炭素換算)以下に削減 標準ガス
		粒径、濃度、組成	浮遊粒子状物質測定計(検出可能最小微粒子径/mm)、浮遊粒子状物質組成(無機物、有機物)測定用標準物質	高精度化	
	プロセス (半導体)		水分計	低価格 高精度化	
		濃度	ガス中金属測定装置	高精度化 高感度化 高信頼性化	

化学計測(3/3)

大分類	中分類	小分類	装置名	課題	技術課題(■重要課題 ■ 最重要課題
	エネルギー分野	天然ガス成分 分析装置	ガスクロマトグラフ、マイクロガスクロマトグラフ、過塩素酸パリウム沈殿滴定法、ジメチルスルホナゾ吸光光度法、よう素滴定法、メチレンブルー吸光光度法、育酸鉛試験紙法、中和原法、インドフェノール吸光光度法、硝酸銀ー硝酸マンガン試験紙法、露点法、吸収ひょう量法等	トレ─サピリティ	バリデーション用SIトレーサブルな混合標準ガスの開発 海外における分析方・解析方法の高精度化への対応
					ガソリン代替バイオ燃料の開発・普及
					軽油代替バイオ燃料の開発・普及
					燃料電池の開発・普及
					石炭ガス化・液化技術の開発
		燃料(気/液/固	紫外蛍光、蛍光X線、ICP(-MS)、(電	高精度化	高感度測定装置の開発
		体):硫黄分析	量)滴定、イオンクロマト	高信頼性化	計量標準の整備・維持(純物質系・組成系)
		バイオ燃料:水分	カールフィッシャー滴定(電量・容	高精度化	高精度測定装置・妨害除去手法の開発
		分析、水分モニタ	カールフィックヤー尚足(电里・谷 量)、IR、NMR、LC(/MS)、GC(/MS)、	高信頼性化	計量標準の整備・維持(組成系)
		リング装置	DSC DSC	オンマシン	分光学的手法等による燃料槽内等のその場測定手法・装置 の開発
		バイオ燃料:メタ	DSC、断熱型熱量計、GC-FID、	高速化	簡易分析法の開発
		ノール分析	GC/MS、ヘッドスペース	高信頼性化	計量標準の整備・維持(純物質系・組成系)
		バイオ燃料:金属	原子吸光、ICP-OES、ICP-MS	高精度化	高感度測定装置の開発
		元素・リン分析	原于吸孔、IOF OES、IOF WIS	高信頼性化	計量標準の整備・維持(非水系溶媒系の標準液等)
		バイオディーゼル 油:脂肪酸エステ ル類分析	DSC、GC-FID、GC/MS	高信頼性化	計量標準の整備・維持(純物質系: ヘプタデカン酸メチル・リノレン酸メチル)
化学計測		バイオディーゼル 油:グリセライド類 分析	DSC、GC-FID、GC/MS、LC/MS	高信頼性化	計量標準の整備・維持(純物質系: グリセリン・モノ〜トリオレイン)
	工業分析(燃料)	バイオ燃料:酸度 の分析	DSC、自動滴定・イオンクロマト・ LC/MS	高信頼性化	計量標準の整備・維持(純物質系: 酢酸ほか)
		バイオ燃料:電気 伝導度・pHの測 定	電気伝導度計、pH計	高信頼性化	計量標準の整備・維持(非水溶媒系の電気伝導度[低値]およびpH[pHe])
		バイオ燃料:酸化 安定性の評価方 法・装置	加熱気化-電気伝導度検出	システム化	ランシマット法に代わる新規な標準分析法・装置の開発
		次世代バイオ燃料 の分析	GC-FID、GC/MS	高信頼性化	計量標準の整備・維持(純物質系・組成系:水素化油脂・ BTL・ジメチルエーテル・ブタノール)
		メチルおよびエチ ルt-ブチルエーテ ル(MTBE/ETBE) の分析	GC-FID、GC/MS	高信頼性化	計量標準の整備・維持(純物質系)
		気体燃料(内燃機 関・燃料電池用 等)の分析	GC-FID、GC/MS	高信頼性化	計量標準の整備・維持(純物質系・組成系:水素・LNG・LPG・バイオガス・ジメチルエーテル)
		ガス化・液化石炭 の分析	GC-FID、GC/MS	高信頼性化	計量標準の整備・維持(純物質系)
		超重質油(頁岩油 等)の分析	GC-FID、GC/MS	高信頼性化	計量標準の整備・維持(純物質系)
	スペクトル	データベース	イオン化法別タンデム質量分析スペ クトル		更に進歩したデータ分析ツールの開発をニーズに即して支援
	形状	単一分子 イメージング装置	磁気共鳴力顕微鏡 magnetic resonance force microscopy (MRFM)		感度向上

環境化学計測(1/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
			硫黄酸化物分析計、一酸化炭素分析 計、窒素酸化物分析計、炭化水素分析計、アンモニア分析計、酸素分析 計計	トレーサヒ゛リティ	高感度分析、ゼロガス評価方法の確立
				トレーサビリティ	標準物質の整備・維持
		ガス分析装置		トレーサビ・リティ (MRA)	標準ガス調製法の多様化
				トレーサビリティ	17025認定分析所の増加
			超音速分子ジェット多光子共鳴イオン 化質量分析装置	高感度化	有機分子の高感度分析 (例:ナフタレンのリアルタイム分析)
			SO2計、NO計、反応性ガス分析計、 水分計	トレーサビリティ	既存の機器分析法のプライマリメソッド化の検討・妥当性確認
				省エネ化	マイクロチップ、マイクロ検出器、小型ガス分析装置
			ガスクロマトグラフ、質量分析計、硫 黄酸化物分析計,一酸化炭素分析 計,窒素酸化物分析計、炭化水素分	高精度化	質量比混合法におけるガス充てん容器の高精度秤量方法、 及び、高精度秤量用容器
		大気分析装置	前, 至系版化物力が前、灰化小系力 析計, アンモニア分析計, 塩素・塩素 化合物分析計、酸素分析計計, 非分	材料計量	標準ガス用高圧ガス容器の分析技術(アウトガス分析, 表面状態,)
			散型赤外分光計、キャビティリングダ ウン分光分析計等	安定化	"国産"標準ガス用アルミニウム合金製高圧ガス容器製造技術、内面処理技術の開発、海外依存からの脱却
				高精度化	分光法の一次測定法化
				高精度化	地球温暖化に係る温室効果ガスの標準ガス開発 観測データと社会経済データの統合を図り、人為的な地球温 暖化予測の基盤となる情報を整備する
		地球観測の推進	対流圏短寿命化学種観測装置	リアルタイム(リモー トセンシング)	地球環境 対流圏短寿命化学種観測衛星センサー、航空機、大気球等 の搭載機器及びリモートセンシング技術等の大気観測技術 の研究開発を行う。アジア地域における巨大都市の大気汚染、広域大気汚染、半球規模大気汚染等の実態とトレンドを 把握する。
環境	大気環境分析		エアロゾル、オゾン等大気汚染物質 の観測装置	高精度化	標準ガス、分析法の整備 大気汚染物質の地域的気候変動への影響とその空間的広が りを定量的に把握するためのエアロゾル、オゾン等大気汚染 物質の観測を実施する。エアロゾル物質の性状を解明するた め、航空機や気球を使ったエアロゾルの試料採集を行う。
化学計		大気(地球温暖化ガス)	NDIR, GC-FID/ECD, GC-MS	高精度化	大気中CO2、CH4、SF6、N2O、PFCs、HFCs観測装置の高精度化
計測		(2027/12/2017)		高信頼性化	高精度標準ガスの開発
2/4		物質循環	同位体質量分析計、GC-TCD	高信頼性化	炭素、酸素、窒素の同位体比の測定 大気中酸素の測定
		オゾン前駆体	低温濃縮・GC-MS、CI-MS、FT-IR、	リアルタイム	リアルタイム分析計の開発
		オゾン	CRDS、TDLAS、DOAS 大気中オゾン、高濃度オゾン等の分	高信頼性化 トレーサビリティ	動的発生法による標準ガス調製法の開発 標準分光計
			析のトレーサビリティ体系		
		voc	GC-FID,GC-ECD、GC-MS等 クロマトグラフ、質量分析計、FT-IR	高信頼性化	標準ガス 標準ガス
		****	GC-FID,GC-ECD、GC-MS等	低価格	混合標準ガス(値付け)のコストダウン
		半導体ガス	FTIR, GC-TCD	トレーサビリティ	標準ガス
		地球温暖化ガス		トレーサビリティ	標準ガス
			浮遊粒子状物質測定計(検出可能最 小微粒子径/nm)	リアルタイム化 高精度化 高感度化 低価格化	パーティクルカウンタの開発
		大気中浮遊微粒	浮遊粒子状物質濃度測定用標準発 生器 or 標準物質	トレーサビリティ	パーティクル発生装置の開発
		子	浮遊粒子状物質粒径分布測定用標 準物質	トレーサビ゛リティ	単分散パーティクル or 粒度分布測定装置
			浮遊粒子状物質組成(無機物)測定 用標準物質	トレーサビリティ	パーティクル組成(無機物)標準
			浮遊粒子状物質組成(有機物)測定 用標準物質	トレーサビリティ	パーティクル組成(有機物)標準
		異臭分析	VOC分析装置、ガス成分分析装置等 の異臭分析装置	高信頼性化高精度化	多成分一斉分析技術の開発、高精度分析技術開発、機械センサー化(現在は臭気判定士の臭覚による測定)、悪臭防止法の特定悪臭物質標準ガスの整備、標準物質の整備・維持
				高速化	抽出・クロマトグラフ分析を迅速に行う装置の開発
		多環芳香族炭化 水素類分析	GC/MS、LC/MS、ソックスレー抽出装 置等		簡易分析システムの開発
		小糸規刀彻	単守	高感度化 高信頼性化	検出器の高感度化
		粒子状物質内無 機成分分析	ICP-MS、ICP-OES、原子吸光分析装置、LA-ICP-MS、試料分解装置、抽出装置等		標準物質の整備・維持元素分析の高精度化

環境化学計測(2/4)

大分類	中分類	小分類	装置名	課題	技術課題(== 重要課題 == 最重要課題
			ICP-MS、LC/MS、GC/MS等	高精度化	同位体比分析の高精度化
			試料分解装置、抽出装置等	高速化	前処理技術の簡易化、自動化
			ICP-MS、ICP-OES、原子吸光分析装 置、LA-ICP-MS、リアルタイム粒子モ ニタリング(同位体トレーサー)装置	リアルタイム	リアルタイム分析技術・装置の開発
	大気環境分析	粒子状物質内無 機成分分析	ICP-MS, ICP-AES, 原子吸光分光装置、HPLC, IC, GC, LC/MS等	複合化	化学形態(化合物)別分析システム開発と高速化、簡易化、 自動化
			ICP-MS、ICP-OES、原子吸光分析装置、LA-ICP-MS、リアルタイム粒子モニタリング(同位体トレーサー)装置		簡易かつ安価な計測法および装置開発
			標準物質	高信頼性化 高信頼性化	同位体トレーサー用標準開発 粉塵標準物質の開発・維持
			ICP-MS、ICP-OES、原子吸光分析装置、LA-ICP-MS、試料分解装置、抽出装置等		元素分析の高精度化
			ICP-MS、LC/MS、GC/MS等	高精度化	同位体比分析の高精度化
			試料分解装置、抽出装置等	高速化	前処理技術の簡易化、自動化
	煙道排ガス	粒子状物質内無機成分分析	ICP-MS、ICP-OES、原子吸光分析装置、LA-ICP-MS、リアルタイム粒子モニタリング(同位体トレーサー)装置	リアルタイム	リアルタイム分析技術・装置の開発
		機成分分析	ICP-MS, ICP-AES, 原子吸光分光装置、HPLC, IC, GC, LC/MS等	複合化	化学形態(化合物)別分析システム開発と高速化、簡易化、 自動化
			ICP-MS、ICP-OES、原子吸光分析装置、LA-ICP-MS、リアルタイム粒子モニタリング(同位体トレーサー)装置		簡易かつ安価な計測法および装置開発
		1	標準物質	高信頼性化	同位体トレーサー用標準開発
				高信頼性化	粉塵標準物質の開発・維持
		粒子状物質内無 機成分分析	ICP-MS、ICP-OES、原子吸光分析装置、LA-ICP-MS、試料分解装置、抽出装置等		元素分析の高精度化
			ICP-MS、LC/MS、GC/MS等	高精度化	同位体比分析の高精度化
			試料分解装置、抽出装置等	高速化	前処理技術の簡易化、自動化
環 境 化	自動車排ガス	粒子状物質内無 機成分分析 多環芳香族炭化 水素類分析	ICP-MS、ICP-OES、原子吸光分析装 置、LA-ICP-MS、リアルタイム粒子モ ニタリング(同位体トレーサー)装置	リアルタイム	リアルタイム分析技術・装置の開発
学計			ICP-MS, ICP-AES, 原子吸光分光装置、HPLC, IC, GC, LC/MS等	複合化	化学形態(化合物)別分析システム開発と高速化、簡易化、 自動化
測			ICP-MS、ICP-OES、原子吸光分析装 置、LA-ICP-MS、リアルタイム粒子モ ニタリング(同位体トレーサー)装置	低価格	簡易かつ安価な計測法および装置開発
			標準物質	高信頼性化 高信頼性化	同位体トレーサー用標準開発 粉塵標準物質の開発・維持
				高速化	抽出・クロマトグラフ分析を迅速に行う装置の開発
			GC/MS、LC/MS、ソックスレー抽出装	簡易分析化	簡易分析システムの開発
			置等	高感度化	検出器の高感度化
				高信頼性化	標準物質の整備・維持
		ガス成分分析装置	車内空気モニター	リアルタイム	リアルタイム分析計の開発
		カス級カカ州表色	キャュエス・ヒーク	トレーサヒ゛リティ	標準物質の調製法
		粒子状物質測定 装置他	浮遊粒子状物質濃度計、環境大気用複合分析計、リアルタイム粒子モニタリング、硫黄酸化物分析計、一酸化炭素分析計, 窒素酸化物分析計、水化水素分析計, アンモニア分析計, オキシダント・オゾン分析, 塩素・塩素化合物分析計、酸素分析計等		標準物質の調製法
	自動車関連	硫黄分析計、VOC 分析装置、酸分析 計、不揮発性分析 計	微量滴定式酸化法、紫外蛍光法、蛍 光X線法、GC、滴定法、LC、IC等	高信頼性化	(ガソリン)硫黄分、MTBE、ベンゼン、メタノール、エタノール (軽油)黄分、FAME、トリグリセリド、メタノール、ギ酸、酢酸、 プロピオン酸、そのほか実測に合った標準物質
	口划平因注	硫黄分析計	紫外蛍光法、GC等	高精度化	測定法および測定装置の高感度化 高精度化
		別、央刀 忉 町	术/T虫儿丛、GU可	高信頼性化	(燃料電池) 硫黄分 燃料品質基準化の動向調査・確認
		硫黄分析計、水分 計、不揮発性分析 計、VOC分析計	微量滴定式酸化法、紫外蛍光法、蛍 光X線法、KF、GC、LC、等	高信頼性化	(FAME) 硫黄分、水分、ステアリン酸メチルエステル、トリリノ レイン、メタノール
		VOC分析計	GC等	高信頼性化	ETBE
		硫黄分析計、水分 計、VOC分析計	微量滴定式酸化法、紫外蛍光法、蛍 光X線法、GC、KF、滴定法、IC等	高信頼性化	(混合用エタノール) メタノール、水分、硫黄分、酢酸
		自動車排ガス		高信頼性化	バイオエタノール、DME、ETBE等新燃料の排出ガス測定用標準ガス

環境化学計測(3/4)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
		シックハウス対策 関連物質分析	シックハウス関連物質測定装置 ガス分析装置 浮遊粉塵量測定装置	高信頼性化	ビル管理法規制関連対応、標準物質の整備・維持 リアルタイム測定技術開発
	室内環境	作業環境測定	浮遊粉塵量、VOC成分、特定化学物質分析装置	高精度化 高信頼性化 リアルタイム	リアルタイム測定技術開発 標準物質の整備・維持
			金属分析装置	高精度化	標準物質の整備・維持
		リアルタイム分析 装置	色度計測, 電気伝導率計測, 浮遊物質(SS)計測, 濁度計測, COD計測, TOC計測, UV計測, BOD計測, DO計測, 油分計測等	リアルタイム 高感度化	リアルタイム分析計の開発
	水道水 排水 下水分析	濃度計測	ポーラログラフ、紫外及び可視分光 光度計、赤外分光光度計、蛍光光度 分析装置、光電光度計、比色計、 GC/MS、LC/MS、NMR、GC、HPLC、 薄層クロマトグラフ、イオンクロマトグ ラフ	高信頼性化	標準液、標準ガス整備 標準物質の整備・維持
		VOC分析装置		低価格	混合標準物質(値付け)のコストダウン
		VOC計測	紫外及び可視分光光度計、光電光度 計、比色計、GC/MS、LC/MS、GC、 HPLC	高信頼性化	フェノール類、トリクロロエチレン、テトラクロロエチレン、ジクロロメタン、四塩化炭素、1,2-ジクロロエタン、1,1-ジクロロエチレン、cis-1,2-ジクロロエチレン、1,1,1-トリクロロエタン、1,3-ジクロロプロペン、ベンゼン
				高速化	抽出・クロマトグラフ分析を迅速に行う装置の開発
		残留性有機汚染 物質(POPs)分析	GC/MS、固相抽出装置等	簡易分析化	簡易分析システムの開発
				高感度化	検出器の高感度化
				高信頼性化	標準物質の整備・維持
		フタル酸エステル 類分析	GC/MS、固相抽出装置等	高信頼性化	標準物質の整備・維持
環境化学		アルキルフェノー ル類、ビスフェノー ルA分析	GC/MS、固相抽出装置等	高信頼性化	標準物質の整備・維持
学計		農薬分析	GC/MS、HPLC、固相抽出装置等	高信頼性化	標準物質の整備・維持
測		医薬品類 (PPCPs)	LC/MS、固相抽出装置等	高速化	抽出・クロマトグラフ分析を迅速に行う装置の開発
				簡易分析化	簡易分析システムの開発
				高感度化	検出器の高感度化
	水質			高信頼性化	標準物質の整備・維持 技能試験
			ICP-AES, ICP-MS, 原子吸光分析装		· 技能試験
			置、ストリッピングボルタンメトリー等	高精度化	元素分析の高精度化
			ICP-MS、LC/MS、GC/MS等	高精度化	同位体比分析の高精度化
			試料導入システム	システム化	マトリックス分離技術、試料導入システムの開発と高速化、簡易化、自動化
		重金属分析	ICP-AES, ICP-MS, HPLC, IC, GC, 原 子吸光分析装置等	低価格	簡易かつ安価な計測法および装置開発
			ICP-AES, ICP-MS, 原子吸光分析装 置、試料導入システム、ストリッピング ボルタンメトリー等	リアルタイム	多元素モニタリング技術の開発
			ICP-MS, ICP-AES, 原子吸光分光装置、HPLC, IC, GC, LC/MS等	複合化	複合分析システム(化学形態分析システム)開発と高速化、 簡易化、自動化
			標準物質	高信頼性化	水質分析評価用標準物質の開発・維持・更新・高度化
				高速化	抽出・クロマトグラフ分析を迅速に行う装置の開発
		残留性有機汚染	GC/MS、抽出装置等	簡易分析化	簡易分析システムの開発
		物質(POPs)分析	•	高感度化	検出器の高感度化 押業物質の数件・維持
	土壌·底質		ICP-AES, ICP-MS, 原子吸光分析装 置、ストリッピングボルタンメトリー等	高信頼性化 高精度化	標準物質の整備・維持 元素分析の高精度化
		Z A E	ICP-MS、LC/MS、GC/MS等	高精度化	同位体比分析の高精度化
		重金属分析	試料導入システム	システム化	マトリックス分離技術、試料導入システムの開発と高速化、簡易化、自動化
			試料分解装置、抽出装置等	高速化	試料前処理のシステム化、高速化、簡易化、自動化

環境化学計測(4/4)

大分類	中分類	小分類	装置名	課題	技術課題(== 要課題 == 最重要課題
	土壌・底質		ICP-AES, ICP-MS, HPLC, IC, GC, 原子吸光分析装置等	低価格	簡易かつ安価な計測法および装置開発
		重金属分析	ICP-AES, ICP-MS, 原子吸光分析装置、試料導入システム、ストリッピングボルタンメトリー等	リアルタイム	多元素モニタリング技術の開発
			ICP-MS, ICP-AES, 原子吸光分光装置、HPLC, IC, GC, LC/MS等	複合化	複合分析システム(化学形態分析システム)開発と高速化、 簡易化、自動化
			標準物質	高信頼性化	土壌・底質分析評価用標準物質(有害金属・化学形態分析 用)の開発・維持・更新・高度化
				高速化	抽出・クロマトグラフ分析を迅速に行う装置の開発
		残留性有機汚染	GC/MS、抽出装置等	簡易分析化	簡易分析システムの開発
		物質(POPs)分析	GO/ MO、加田农巨寺	高感度化	検出器の高感度化
				高信頼性化	標準物質の整備・維持
			ICP-AES, ICP-MS, 原子吸光分析装置、ストリッピングボルタンメトリー等	高精度化	元素分析の高精度化
			ICP-MS、LC/MS、GC/MS等	高精度化	同位体比分析の高精度化
			試料導入システム	システム化	マトリックス分離技術、試料導入システムの開発と高速化、簡易化、自動化
	生物		試料分解装置、抽出装置等	高速化	試料前処理のシステム化、高速化、簡易化、自動化
環境		重金属分析	ICP-AES, ICP-MS, HPLC, IC, GC, 原 子吸光分析装置等	低価格	簡易かつ安価な計測法および装置開発
化学計測			ICP-AES, ICP-MS, 原子吸光分析装置、試料導入システム、ストリッピングボルタンメトリー等	リアルタイム	多元素モニタリング技術の開発
炽			ICP-MS, ICP-AES, 原子吸光分光装 置、HPLC, IC, GC, LC/MS等	複合化	複合分析システム(化学形態分析システム)開発と高速化、 簡易化、自動化
			標準物質	高信頼性化	食品衛生法・Codexガイドライン等規制対応組成標準物質(微量元素・化学形態分析用)の開発・維持・更新・高度化
		作業環境測定	ガス分析計	高信頼性化	標準ガス整備、干渉対策
	プロセス・現場	焼却灰中重金属 分析	ICP-AES, ICP-MS, HPLC, IC, GC, LC/MS、原子吸光分析装置、ストリッ ピングボルタンメトリー、試料前処理 装置等	高信頼性化	高信頼性計測システム、妥当性評価
		状態計測	レーザー分光成膜プラズマ評価装置	リアルタイム	高選択性 高精度化 三次元化
		危険物探知	時間分解レーザー	高速化	高感度、小型化
					PCB含有特別管理廃棄物の処分・低濃度PCB汚染トランス油の判別
	特別管理廃棄物	PCBの簡易モニタ	LC(前処理)、GC/QMS、GC-ECD、 免疫学的デバイス	低価格	安価な前処理法・定量デバイスの開発
	河州日生优未物	リング・装置	LC(前処理)、高速GC、免疫学的デ バイス	高速化	簡便な前処理法の確立・ガスクロマトグラフの高速化
				高信頼性化	計量標準の整備・維持:PCB分析用鉱物油標準物質(開発 済・高度化)
	環境分析	環境計測	レーザーイオン化質量分析装置	高精度化	ppt検出 可搬化 測定時間短縮
計 量	規格適合	取締計量器	光透過式黒煙測定器 (Smoke meters)	安全·安心	ディーゼルエンジン車の排気ガスに含まれる、粒子状物質の 測定器の評価技術開発を行う。
-		認証サービス	二酸化炭素排出量推定システム	安心安全	二酸化炭素排出量推定システムの開発

バイオ食品関連計測(1/3)

大分類	中分類	小分類	装置名	課題	技術課題(
				高速化、高感度 化	前処理・クロマトグラフ分析法等の高速化・高感度化	
		残留農薬分析	GC/MS、LC/MS、GPC、固相抽出装	低価格	安価なスクリーニング技術の開発	
		ж ш ш и и	置、超臨界抽出装置等	高信頼性化	多成分分析法の開発	
				高信頼性化	計量標準の整備・維持	
				高速化、高感度 化	前処理・クロマトグラフ分析法等の高速化・高感度化	
		残留動物用 医薬品分析	LC/MS、HPLC、抽出装置等	低価格	安価なスクリーニング技術の開発	
		区未加力加		高信頼性化	多成分分析法の開発	
				高信頼性化	計量標準の整備・維持	
		食品添加物分析	GC、HPLC、薄相クロマトグラフ、原子		前処理・クロマトグラフ分析法等の高速化・高感度化	
		2011/10/10/10/10/10/10/10/10/10/10/10/10/	以光分析装置等 	低価格 高信頼性化	安価なスクリーニング技術の開発 計量標準の整備・維持	
		食品成分分析	水分計、ケルダール分解装置、ソック スレー抽出装置、クロマトグラフ、原 子吸光分析装置等	高信頼性化	計量標準の整備・維持	
			ICP-AES, ICP-MS, 原子吸光分析装置、ストリッピングボルタンメトリー等	高精度化	元素分析の高精度化	
		1	ICP-MS、LC/MS、GC/MS等	高精度化	同位体比分析の高精度化	
			試料導入システム	システム化	マトリックス分離技術、試料導入システムの開発と高速化、簡易化、自動化	
		1	5-4-W1 / \ A77 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	古 油 //-	試料前処理のシステム化、高速化、簡易化、自動化、安全性	
		1	試料分解装置、抽出装置等	高速化	向上	
			ICP-AES, ICP-MS, 原子吸光分析装置、試料導入システム、ストリッピングボルタンメトリー等	リアルタイム	多元素モニタリングシステム開発	
		無機(汚染) 物質分析	ICP-MS, ICP-AES, 原子吸光分光装 置、HPLC, IC, GC, LC/MS等	複合化	複合分析システム(化学形態分析システム)開発と高速化、 簡易化、自動化	
		13923 111	ICP-AES, ICP-MS, 原子吸光分析装置等	微小化	微少量試料導入システム開発	
	食品分析	有機汚染物質 (PCB、ダイオキシ ン類、N-ニトロソア ミン等) 分析	ICP-AES, ICP-MS, HPLC, IC, GC, 原子吸光分析装置等	低価格	装置の低価格化	
			ICP-AES, ICP-MS等	省エネ化	プラズマ消費ガスの少量化、装置コンパクト化	
化			標準物質	高信頼性化	化学形態分析用標準物質の開発・維持・更新・高度化	
学計				高信頼性化	食品モニタリング・リスク評価用組成標準物質(微量元素・化学形態分析用)の開発・維持・更新・高度化	
測					高信頼性化	食品衛生法・Codexガイドライン等規制対応組成標準物質(微量元素・化学形態分析用)の開発・維持・更新・高度化
			技能試験·技能講習	高信頼性化	国内分析技術の向上と計量標準の普及	
					高速化	前処理・クロマトグラフ分析法等の高速化
			GC/MS、GC、抽出装置等	高感度化	前処理・クロマトグラフ分析法等の高感度化	
				低価格 高信頼性化	安価なスクリーニング技術の開発 計量標準の整備・維持	
		天然汚染物質(マ	t物質(マ ンンや変 レC/MS、HPLC、GC/MS、前処理装置 等	高速化	前処理・クロマトグラフ分析法等の高速化	
					前処理・クロマトグラフ分析法等の高感度化	
				低価格	安価なスクリーニング技術の開発	
				高信頼性化	計量標準の整備・維持	
		自然毒(貝毒等)	LC/MS、HPLC、滴定装置、薄相クロ	高速化 高感度化	前処理・クロマトグラフ分析法等の高速化・高感度化	
		分析	マトグラフ、前処理装置等	低価格	安価なスクリーニング技術の開発	
				高信頼性化	計量標準の整備・維持	
		器具・容器包装、 おもちゃ等の溶出 試験、材質試験	ICP-AES、HPLC、IR、GC/MS、原子 吸光分析装置、GC等	高信頼性化	計量標準の整備・維持	
			食品照射検知装置	トレーサビリティ	食品照射検知装置の高性能化、再照射のトレーサビリティ	
		食品照射	食品照射放射線線量計測装置	トレーサビリティ	食品照射放射線の線量評価技術の開発	
			標準アラニン線量計	トレーサビリティ	アラニン線量計の校正技術の開発	
		1		高信頼性化高信頼性化	測定プロトコル開発 定量測定データの集積、データベース整備	
		1	定量NMR(qNMR)	高信頼性化	定量測定アーダの集積、アーダペース登備 測定解析技術の汎用化、解析用ソフトウエアの開発	
		<u></u> 144.41		低価格	装置の汎用化	
		有機物質の 純度校正装置	標準物質開発 校正技術の開発	トレーサピリティ	迅速な標準物質開発技術、健康食品の含量標準の開発、計 測結果の信頼性向上、測定対象物質の標準物質整備延べ 数、簡易校正技術の開発 標準は1対多型校正装置を利用して整備し、その標準で現場 計測の信頼性を向上	
		一	EL 10 4 + L 45	低価格	安価なスクリーニング技術の開発	
		残留農薬分析 —————	ELISAキット等	高信頼性化	計量標準の整備・維持	
		天然汚染物質(マイ	ELISAキット等	低価格	安価なスクリーニング技術の開発	
		コトキシン等)分析	2日0八八万	高信頼性化	計量標準の整備・維持	
		I				

バイオ食品関連計測(2/3)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
	栄養補助食品の	成分分析	HPLC、GC、ICP-MS、前処理装置等	高信頼性化	高信頼性計測システム、妥当性評価
		不純物分析		高信頼性化	高信頼性計測システム、妥当性評価
化学	品質管理	含有汚染物質分 析	- HPLC、GC、ICP-MS、前処埋装直等 	高信頼性化	高信頼性計測システム、妥当性評価
計	w * last 4 =	無機成分分析	ICP-AES, ICP-MS, HPLC, IC, GC,	高信頼性化	高信頼性計測システム、妥当性評価
測	栄養補助食品・	無機不純物分析	LC/MS、原子吸光分析装置、ストリッ	高信頼性化	高信頼性計測システム、妥当性評価
	機能性食品の 品質管理	含有無機汚染物 質分析	ピングボルタンメトリー、試料前処理 装置等	高信頼性化	高信頼性計測システム、妥当性評価
				高速化	抽出技術
				高速化	分析時間
		ETEL OND ONL	D143 /-> II	高速化	解析時間
		配列、SNP,CNV	DNAシーケンサー	高精度化	変異・誤差情報の確認
				高信頼性化	解析技術
				高信頼性化	標準整備
				高速化	抽出技術
	LL TA VO			高速化	分離技術
	核酸∙遺伝子	動態解析	LC/MS	高速化	解析技術、データベース構築
			·	高感度化	質量分析計の高感度化
				高信頼性化	標準整備
		M = = =:-=		高速化	解析処理
		遺伝子発現	DNAチップ	高信頼性化	標準整備、SIトレーサブル
				高速化	反応・検出部分
		特定配列検出	リアルタイムPCR	高速化	抽出技術
		NACIONIAL	77777131 311	高信頼性化	標準整備
				高速化	抽出技術
				高速化	読み取り技術
		配列	プロテインシーケンサー	高速化	解析処理
		日にグリ			
	タンパク質・ ペプチド			高信頼性化	解析処理
					標準整備
		特定配列検出	ELISA	高速化	解析技術
				高速化	抽出技術
バ				<u> </u>	抗体探索
1			LC/MS	高信頼性化	標準整備
オ				高速化	抽出技術
食				高速化 高速化	分離技術 解析技術
品				高感度化	
計		特定配列検出相互作用測定	LC/MS SPR		質量分析計の高感度化
測				高信頼性化	前処理技術
				高信頼性化	標準整備 抽出技術
				高速化	1000000
				高速化	スループット
				高信頼性化	標準整備
				高速化	分離技術の高度化(高理論段分離分析法の開発) 分析装置の高速化(分析装置のハイスループット化)による網 羅的解析技術の開発
				高精度化	検出器の高精度化
	タンパク質・ ペプエド	定量的プロテオー ム・ペプチド解析	LC/MS, CE/MS, マイクロチップ	微小化	分離分析装置の小型化(分離分析装置のマイクロチップ上への展開)
	ペプチド			高感度化	質量分析計の高感度化
				高信頼性化	情報処理解析技術の高度化
				高信頼性化	定量分析用タンパク質・ペプチド標準物質の開発
		原子間距離、角度 および配向を測定		高精度化	高分子構造の決定、創薬における構造解析
				高精度化	特定部位のNMR活性アイソトープの置換技術とその評価技
		タンパク質構造解	Nr	高精度化	高磁場化に伴う高感度化、高分解能化、極低温プローブの汎 用化とそれに伴う高感度化、高感度化に伴う高速化
		析装置	NMR	高速化	創薬(診断)における構造解析
				高信頼性化	標準化、スペクトルデータベース集積、評価基準の決定、信 頼性向上、リソースの削減
				高速化	より良く、早く、簡便な分析技術
	アミノ酸	定量分析	アミノ酸分析装置	高信頼性化	生体試料中から目的成分を効率よく抽出する技術
	アミノ酸	ミノ酸 正重分析	*	高信頼性化	標準整備、SIトレーサブル

バイオ食品関連計測(3/3)

大分類	中分類	小分類	装置名	課題	技術課題(== 要課題 == 最重要課題
				高速化	抽出技術
			LIDLO	高速化	分離技術
			HPLC	高信頼性化	検出技術
				高信頼性化	標準整備
				高速化	抽出技術
				高速化	解析技術、データベース構築
			TOF-MS	高感度化	質量分析計の高感度化
				高信頼性化	標準整備
				高速化	分離技術
		配列、構造		高速化	解析技術
	糖タンパク・糖鎖		LC/MS	高速化	抽出技術
			E07 MIO	高感度化	質量分析計の高感度化
				高信頼性化	標準整備
				高速化	分離技術
			CE/MS	高速化	解析技術
			CE/MS	高速化	曲出技術
				高感度化	質量分析計の高感度化
				高信頼性化	標準整備
		特定配列検出	糖鎖チップ	高速化	抽出技術
				高信頼性化	標準整備
				高分解能化	分離技術の高度化(高理論段分離分析法の開発)
				高速化	分析装置の高速化(分析装置のハイスループット化)
				高精度化	検出器の高精度化
				微小化	分離分析装置の小型化(分離分析装置のマイクロチップ上へ
	メタボローム解析	代謝物検出	糖鎖チップ		の展開
	771111	1 400 100 100		高感度化	質量分析計の高感度化
				高信頼性化	情報処理解析技術の高度化
				高信頼性化	標準整備
バ				高信頼性化	インビトロ診断機器(IVDD)の使用を支える計測基準
イ				高信頼性化	インビトロ診断機器(IVDD)の使用を支える計測基準
オ・		画像解析	光学顕微鏡	高速化	
食				高信頼性化	標準整備
品			共焦点顕微鏡	高速化	
計	細胞・組織		六無 無頭 成蜕	高信頼性化	標準整備
測	小川刀ピー小口小以	四	TOF-MSイメージング	高速化	
				高速化	抽出技術
				高感度化	質量分析計の高感度化
				高信頼性化	標準整備
			NMR		公定法への追加 ヘパリン製剤不純物定量に関して、2008年
		製剤中の不純物 分析装置	INIVIR		に日本薬局方に掲載済み
			いコレナンル所見ハゼーノナン仕業		クロマトグラフィー等による分離を経ずにスペクトルによる物
			ソフトイオン化質量分析: イオン付着 MS等	高速化	質情報分離が可能(1物質種が1ピークとなる)となり、評価対
			₩S Ţ		象中の不純物の一斉分析が可能となると期待される
					天然由来の化合物の定量にはクロマトグラフ法が主に利用さ
					れているが、ソフトイオン化質量分析により一斉分析が可能と
	14k /\ 1F				なる。また、測定対象の化合物を入手、有機合成あるいは単
	有機分析			高信頼性化	離精製できた場合、その純度値を正確に求めるための有効な
		天然物の精確な			支援技術となり、定量値に信頼性を与える。これは、健康食品及び生薬等の天然物の有効性や品質について議論すると
		含量定量を行う装	ソフトイオン化質量分析		一つのなど主楽寺の人が初め有効はやの員について議論すると「き最も基本的な問題であるが未だ解決策が見いだされていな」
		置	Jan 195 Instant		しい
				食品	健康食品の含量標準の開発、食の安全
				HH	測定プロトコル開発
					測定解析技術の汎用化
				低価格	装置の汎用化
				にか開け	高精度化、高感度化、ダイナミックレンジ向上に伴う迅速化、
		構造解析装置	NMR	高精度化	正確性の向上
				標準化	リソースの削減、信頼性向上、データベース整備
					新規装置の開発: ソフトイオン化で分子量を決定したものに
	化学構造分析			複合化	対して、そのイオンを分離した後段で通常のイオン化を行うこ
			ソフトイオン化一通常イオン化のタン		とにより化学構造を決定することができる。単離していない対
1		解析装置	デム質量分析計		象についての一斉分析が可能となる
			, 一点主/J 7/J FI	1 C C / 1 .	タノナ、ルの中中ルに 2 古蛙曲ル
				安定化 低価格	各イオン化の安定化による高精度化 リソースの削減、信頼性向上

医療関連計測(1/2)

大分類	中分類	小分類	装置名	課題	技術課題(== 要課題 == 最重要課題	
		無機成分分析	ICP-AES, ICP-MS, HPLC, IC, GC, LC/MS、原子吸光分析装置、ストリッ	高信頼性化	高信頼性計測システム、妥当性評価	
	医薬品分析	無機不純物分析	ピングボルタンメトリー、試料前処理 装置等	高信頼性化	高信頼性計測システム、妥当性評価	
		無機成分分析	ICP-AES, ICP-MS, HPLC, IC, GC, LC/MS、原子吸光分析装置、ストリッ	高信頼性化	高信頼性計測システム、妥当性評価	
		無機不純物分析	ピングボルタンメトリー、試料前処理 装置等	高信頼性化	高信頼性計測システム、妥当性評価	
	化粧品•医薬部外 品分析	含有無機汚染物 質分析	ICP-AES, ICP-MS, HPLC, IC, GC, LC/MS、原子吸光分析装置、ストリッ ピングボルタンメトリー、試料前処理 装置等	高信頼性化	高信頼性計測システム、妥当性評価	
化学		粒子径分析	SEM、TEM、レーザー回折式粒度分 布測定装置、光散乱装置、磁場勾配 核磁気共鳴法、ゼータ電位測定装置 等	高信頼性化	高信頼性計測システム、妥当性評価	
計 測			ICP-AES, ICP-MS, 原子吸光分析装置、ストリッピングボルタンメトリー等	高精度化	元素分析の高精度化	
			ICP-AES, ICP-MS, 原子吸光分析装 置等	高精度化	金属結合化合物の高精度分析、元素標識技術による高感度選択的検出	
			ICP-MS、LC/MS、GC/MS等	高精度化	同位体比分析の高精度化 マトリックス分離技術、試料導入システムの開発と高速化、簡	
			試料導入システム	システム化	易化、自動化	
	バイオ・生体分析	無機(金属)元素 分析	試料分解装置、抽出装置等	高速化	試料前処理のシステム化、高速化、簡易化、自動化	
		23 1/1	ICP-AES, ICP-MS, HPLC, IC, GC, 原子吸光分析装置等	低価格	簡易かつ安価な計測法および装置開発、元素標識による高 速スクリーニング法開発	
			ICP-AES, ICP-MS, 原子吸光分析装置、試料導入システム、ストリッピングボルタンメトリー等	リアルタイム	多元素モニタリング技術の開発	
			直、HPLU, IU, GU, LU/MS寺	複合化	複合分析システム(化学形態・生体金属化合物分析システム)開発と高速化、簡易化、自動化	
			標準物質	高信頼性化	組成標準物質、元素標識用タグ試薬標準マーカー探索用分離分析技術の高度化・高速化	
		生化学検査の		高速化	診断用分析技術の高度化・高速化	
		標準化		高信頼性化	臨床用分析技術の高度化・標準化 インビトロ診断機器(IVDD)の使用を支える計測基準	
		ホルモン 代謝物 薬物	血液検査装置・臨床化学自動分析装	高速化	より良く、早く、安いデバイス	
				低価格	小型・簡易分析装置の開発	
				高精度化	測定方法・機器・臨床値の補正 多成分分析	
			ホルモン 置・電解質		高信頼性化	臨床結果の信頼性・比較同等性の改良
				高速化	生体試料中から目的成分を効率よく抽出する技術	
				高速化 高信頼性化	試料導入技術 誘導体化技術の開発	
			175 164 AL 555	高信頼性化	純物質系:SIへのトレーサビリティ、組成系	
			標準物質	高信頼性化	校正サービス	
				小型化	装置の小型化	
		. 0.00	4 7 1A 7 15 III	高感度化 多次元化	高感度化 多成分分析	
医		タンパク質	血液検査装置	高信頼性化	生体試料中から目的成分を効率よく抽出する技術	
薬				高信頼性化 高信頼性化	加水分解技術 SIへのトレーサビリティ: 純物質系、組成系	
医	生化学検査			高速化	より良く、早く、簡便な分析技術	
療計			アミノ酸分析装置	高信頼性化	生体試料中から目的成分を効率よく抽出する技術	
測				高信頼性化	SIへのトレーサビリティ: 純物質系、組成系	
				高速化 高速化	分析時間	
			DNAシーケンサー	高速化	解析時間	
			DIAN 129	高精度化	変異・誤差情報の確認	
		核酸∙遺伝子		高信頼性化 高信頼性化	標準整備	
		IVIN WINI	DNAチップ	高速化	解析処理	
			DINA・アツノ	高信頼性化	標準整備、SIトレーサプル	
			リアルタイムPCR	高速化 高速化	反応・検出部分 抽出技術	
			77727 TAI OIL	高信頼性化	標準整備	
				高信頼性化	細胞ベースの計測	
				高速化	細胞ベースの計測	
		細胞	細胞計測	高信頼性化高速化	細胞ベースの計測 細胞ベースの計測	
				低価格	細胞ベースの計測	
				高信頼性化	細胞ベースの計測	

医療関連計測(2/2)

大分類	中分類	小分類	装置名	課題	技術課題(重要課題 最重要課題
			H-TA-1A-7 ++ 45	高速化	検査技術開発、DDSによる核酸医薬品の開発
		核酸医薬(核酸)	核酸検査技術	高信頼性化	標準整備
			核酸導入技術	安定化	核酸導入用分子の開発
				高速化	抽出技術
			アッセイ法	高感度化	高感度化
				高信頼性化	標準整備
	D= 587			高速化	読み取り技術
	医薬	抗体医薬		高速化	解析処理
		(タンパク質・ペプチ	プロテインシーケンサー	高信頼性化	解析処理
		h *)		高信頼性化	標準整備
			地下作用测点(ODD签)	高速化	スループット
			相互作用測定(SPR等)	高信頼性化	標準整備
- T-			抗体生産技術	安定化	細胞安定株の開発
医薬			(細胞培養装置、セルソーター)	高信頼性化	標準整備
*				高精度化	ナノスケールバイオイメージング
医		11 7 1 1 N N	ハフノノバンド	高精度化	ナノスケールバイオイメージング
療		分子イメージング	分子イメージング	高精度化	再生医療製品のためのイメージング
計				高信頼性化	再生医療製品のためのイメージング
測				高分解能化	分解能の向上
				高速化	迅速化
		蛍光イメージング	蛍光イメージング(蛍光顕微鏡)	高精度化	高感度標識技術・定量的解析技術の開発
				高信頼性化	標準化・定量分析用標準物質の開発
	形態分析			高分解能化	分解能の向上
	(細胞・組織)		元素イメージング(LA-ICPMS)	高速化	迅速化、リアルタイム計測技術
		元素イメージング		高精度化	定量的解析技術の開発
		ル系イグークング		高感度化	高感度化
		沈	《四·四句号上:旧(日百·沙卜 《辛)	高信頼性化	標準化・標準物質の開発
		染色法	細胞計測(顕微鏡)	高信頼性化	自動化・標準化
		画像解析	TOF-MSイメージング	高速化	スキャンスピードの向上と撮影範囲の拡大
				高感度化	高感度化
				高信頼性化	抽出技術
	形態分析 (細胞・組織)	画像解析	TOF-MSイメージング	高信頼性化	標準整備
				高精度化	超高磁場化による高精度化、新たな画像機器の開発
		画像解析		安定化	磁場の安定化、血流の安定的計測技術
			磁気共鳴画像法(MRI)	高速化	高感度化・高分解能化、高分解能化、分子レベルでの分解
				同还化	能、撮像技術の向上
					造影剤による高感度化、ナノマグネティック造影剤の開発、高感度化、ヘリウム(3He)ガスを光学的にスピン偏極させる技術
					1.5
	TIZ 성당 / / +C				ボア系の拡大
-	形態分析			高信頼性化	データベース化、診断における基礎データの集積、定量的基準の設定、画像の標準化、解析アルゴリズムの標準化、ガイドラインの作成、一次標準の整備、トレーサビリティの整備
医療					安全性
計		スクリーニング装置	磁気共鳴画像法(MRI)		小型化、迅速化、高感度化
量			MA メレノ いゅう 日 永 / 本 (1911年)	高信頼性化	画像とスクリーニングする対象の相関データベース集積による信頼性向上、診断の迅速化
		脳機能を評価する 装置	機能的磁気共鳴画像装置(fMRI)		高感度化が必要
		薬事法	呼気分析用標準ガス (一酸化窒素:数十ppb)	ライフ 高信頼性化	疾病モニタリング:マトリックスは擬似呼気ガス
	医療用ガス分析	大気汚染防止法 建築基準法	呼気分析用標準ガス(VOC)	ライフ 高信頼性化	VOC被爆モニタリング:マトリックスは擬似呼気ガス
		薬事法	医療用酸素濃縮器用標準ガス	ライフ 高信頼性化	医療用酸素発生器の品質管理: 濃度範囲: 35%~95%
		薬事法 日本薬局方	医療用ガス用標準物質 (CO2、N2、N2O、滅菌ガス、空気)	高信頼性化	医療用ガスの安全確認用
	生化学検査 (血液・体液)	ステロイト・ホルモン分析	血液検査装置、尿検査装置、LC/MS	高信頼性化	高純度一次標準の開発

先端材料計測(1/8)

大分類	中分類	小分類	装置名	課題	技術課題(
			磁場勾配核磁気共鳴法:粒子動態計 測装置	高精度化· 多次元化	微小サイズ物質計測・実材料高選択性粒径計測技術の開発
			州衣巨	高精度化	測定限界(nm)の最小化
				高精度化	粒径分布計測における計測値の高精度化
			 動的光散乱装置	複合化	高濃度溶液計測法の開発
			劉 的无敗乱表世	汎用化	技術の進展を反映した規格の作成と改訂
				汎用化	異種装置間における粒径値評価法の共通化・汎用化
				トレーサビリティ	液中微粒子校正技術の確立と供給
				高精度化	測定限界(nm)の最小化
			静的光散乱装置	高精度化	不確かさ評価、計測値信頼性の検討、高感度化、解析法の検討
				汎用化	技術の進展を反映した規格の作成と改訂
			レーザ光回折散乱法:	支柱在ル	サブマイクロ・マイクロレンジの粒径計測のオンライン化、散
			質量粒子濃度計測装置	高精度化	乱測定角度範囲の検討、高感度化、解析法の検討
		液中粒子径計測	 流動場分画・分級法(流れ):	高精度化	ナノ・サブミクロン領域の高速・高分離・高分解能の粒径分
		装置	質量粒子濃度計測装置	多次元化	画・分級システムの開発 粒径と粒子物性の相関評価
			質量粒子濃度計測装置	高精度化	高速・高分離・高分解能の粒径分画・分級システムの開発
			誘電グレーティング法	高精度化• 高信頼性化	計測法妥当性評価と高精度化
				高精度化	測定限界(nm)の最小化
			小角X線散乱装置	高信頼性化	測定の高精度化
	***			汎用化	技術の進展を反映した規格の改訂
	液中粒子計測技 術		ナノ粒子映像解析法:	高精度化	粒径分布解析法の確立
	ניון		ナノ粒子映像解析法: 粒子動態計測装置	高精度化・高信頼性化	計測法妥当性評価と高精度化
			平均粒径標準	トレーサビ [*] リティ トレーサビ [*] リティ	微粒子粒径標準の開発と供給 シングルナノ粒子粒径標準の開発と供給
			 粒径分布標準質量粒子		
			濃度計測装置	トレーサビリティ	広幅粒径分布・多峰粒径分布試料
		拡散係数 計測装置	拡散係数標準: 粒径計測装置	トレーサビ゛リティ	拡散係数標準の開発
		粒子質量濃度計 測装置	紫外吸収法:粒径計測装置	高精度化	粒子の吸収特性評価、測定不確かさの低減、装置の高感度 化・高速化
4-			示差屈折率法: 粒径計測装置	高精度化	計測値の粒子依存性評価、測定不確かさの軽減、装置の高感度化・高速化
先 端 材		質量粒子濃度計 測装置	蛍光発光分析法: 粒径計測装置	高精度化	蛍光特性の粒子・波長依存性評価、装置の高感度化・高速 化
料計		粒子質量濃度計 測装置	全炭素量計測法: 粒径計測装置	高精度化	 炭素系粒子(材料)分散液の濃度計測
測		ゼータ電位	ゼータ電位計:		
		計測装置	粒径計測装置	トレーサビリティ	ゼータ電位値評価法・評価値の受容性
		粒子形状	静的散乱法	高精度化	散乱法による粒子形状解析法の検討
		計測装置	静的散乱装置 (光散乱·X線散乱)	高信頼性化	高精度計測技術と不確かさ低減技術の開発
		粒子化学組成計 測装置	ICP·XRF·各種分光法	トレーサビ・リティ	コンポジット粒子における構成成分評価法の確立
		粒子動態計 測装置	有限要素法・粒子法・DLVO/非DLVO 理論など各種理論計算	高精度化	粒子動態評価手法の開発
			超臨界流体クロマトグラフィー	高分解能化	多成分重合体分離への適用と高分解能化
				システム化	単一分子量標準物質供給用分取システムの構築と高収率化
		分子量測定装置	単一分子量標準物質	トレーサビリティ	単一分子量標準物質の開発と供給
				高精度化	高分離システムの開発と高精度計測の実施・展開
			サイズ排除クロマトグラフィー	高精度化 汎用化	標準物質供給に向けた高精度化 技術の進展を反映した規格の作成と改訂
					システムのマイクロ化、高速測定技術の確立
				高精度化	測定装置の高精度化、計測値組み立て量の検討(レーリー
		分子量測定装置	静的光散乱装置		比の絶対測定)、計測値の不確かさ軽減
				高信頼性化	不確かさの低減
			定量NMR(qNMR)	高精度化	高分子の末端基を精確に定量可能な感度、分解能、ならび にダイナッミクレンジの向上
		 示差屈折率		高精度化	分子量計測の高精度化
	古스크스크	測定装置	屈折率計	高信頼性化	不確かさの低減
	高分子分子特性	レイリー比	散乱光度計	高精度化	静的光散乱標準物質供給用高精度化
		測定装置	我心ル没前	高信頼性化	不確かさの低減
			あョンド サ ぬ	高精度化	定量精度の向上 サギの光展を 5 ml + 1 H & の作成します。
			質量分析装置	汎用化 複合化	技術の進展を反映した規格の作成と改訂 クロマトグラフィー複合化システムの構築
		分子量測定装置	高分子分子量標準物質の維持:静的光 散乱装置、示差屈折率測定装置、サイ ズ排除クロマトグラフィー		分子量測定の簡易化、高速化
		/J 里 / J 上次恒	ポリスチレン(低分子量)標準物質	トレーサビリティ	ポリスチレン(低分子量) 標準物質の開発と供給
			静的光散乱標準物質 (有機溶媒系)	トレーサヒ゛リティ	静的光散乱標準物質(有機溶媒系)の開発と供給
			静的光散乱標準物質	トレーサビリティ	静的光散乱標準物質(水系)の開発と供給
			(水系)	., ,,,,	WAS TO BE DOWN TO AND

先端材料計測(2/8)

大分類	中分類	小分類	装置名	課題	技術課題(
		高分子一次構造 解析(共重合)装	核磁気共鳴法・TOF-MASS・ 流動場分離(熱)	高精度化	熟拡散係数による共重合体高分子の成分分離システムの構築、核磁気共鳴法(感度、分解能、ならびにダイナッミクレンジの向上)・TOF-MASSとの整合性
		置	高分子共重合体標準物質	トレーサビ・リティ	高分子共重合体標準物質の開発と供給
		高分子一次構造 (分岐)解析装置	NMR	高分解能化高精 度化	分子中で希薄な分岐点などからの信号を精確に評価するための感度、分解能、ならびにダイナッミクレンジの向上
		回転半径 測定装置	静的光散乱装置	高精度化 高信頼性化	測定限界(nm)の最小化 計測法確立と不確かさの低減
	高分子分子特性	回転半径・コンホ メーション 計測装置	光散乱法·回転異性近似計算法·分 子動力学法		高分子構造の予測ツール開発
		コンホメーション・ 高次構造 計測装置	紫外吸収法·赤外分光法·回転異性 近似計算法·分子動力学法	多次元化	高分子構造と高分子物性の評価・計測システム開発
		高分子高次構造 計測装置	広角X線回折·分子動力学法	多次元化	高分子構造と高分子物性の相関評価
		分光スペク トル計測装置	蛍光発光分析法	トレーサビリティ	量子収率計測用・試料調整手順の容易・各種波長における 量子効率計測用標準物質の開発
	高分子構造	高分子を構成する 原子の距離、角度 および配向を精確 に測定する装置	NMR		高分子構造の決定、創薬における構造解析
	材料物性	スペクトルデータ ベース	スペクトルと物性の対応		材料開発、リソースの削減
	材料物性(形状)	単一電子スピンイ メージング装置	磁気共鳴力顕微鏡 magnetic resonance force microscopy (MRFM)	高感度化	感度向上
		電子スピン操作・ 観測装置	電子スピン共鳴(ESR)装置	安定化	電子スピン量子コンピュータのための電子スピン操作・計測 装置
	材料物性	半導体計測装置		材料計量	材料の特性計測
		ラジカル計測装置	パルス電子スピン共鳴(ESR)装置	システム化	測定及びデータ解析のプロトコル作成
先端			臭素系難燃剤含有高分子の維持:抽出 装置、クロマトグラフィー、質量分析装 置、NMR、赤外吸収装置、熱分析装置、 試料分解装置、蛍光X線分光装置	高信頼性化	高効率な抽出法の開発、高速な抽出法の開発、組成や変性
材料計測			ビスフェノールA含有ポリカーボネート標準物質の維持・油出装置、クロマトグラフィー、質量分析装置、NMR、赤外吸収装置、熱分析装置、試料分解装置、蛍光X線分光装置	高信頼性化	を伴わない安定した抽出法の開発、環境負荷の少ない抽出 法の開発、高精度な定量法の開発、高効率な抽出法の開 発、簡易分析法の開発
			低分子化合物及び添加剤含有高分 子標準物質の開発	高信頼性化	
			熱分解(熱抽出)装置:熱分解ガスクロマトグラフィー	高速化	熱をかけることに伴う試料の分解の抑制、安定した抽出効率 の確立
			超臨界抽出装置 高速溶媒抽出装置	高信頼性化 高信頼性化	試料分解の抑制 溶媒量の低減、環境負荷の少ない溶媒の開発
			固相抽出装置	高信頼性化	固相の開発、高速化
		プラフエックホク	マイクロ波前処理装置		抽出における分解の抑制、抽出効率を決定する手法の確立
		プラスチック中の 有害物質分析装 置	試料粉砕装置	高信頼性化	形状の整った微細粉末の作製、粉砕した試料をより微細化すること
		뜨	マイクロチップ前処理装置	微小化	装置の小型化、安定した前処理技術の開発
	高分子分析		液体クロマトグラフィー	高速化	カラム開発、溶媒量の減少、分析時間の短縮、検出装置の 高感度化
	IEIVI I 시까		液体クロマトグラフィー /質量分析装置	高分解能化	新規なイオン化法の開発、荷電の違う粒子の分離
			ガスクロマトグラフィー	高速化	カラム開発、キャリアガスの減少、分析時間の短縮、検出装 置の高感度化
			ガスクロマトグラフィー /質量分析装置	高分解能化	新規なイオン化法の開発、荷電の違う粒子の分離
			質量分析装置	高分解能化	新規なイオン化法の開発、荷電の違う粒子の分離、巨大分 子検出法の開発
			キャピラリー電気泳動	高分解能化	新規キャピラリーの開発、分析時間の短縮
			マイクロチップ電気泳動	微小化	装置の小型化、分離の向上、選択的な検出装置の開発
			マイクロチップクロマトグラフィー 赤外分光装置	微小化 高精度化	装置の小型化、分離の向上、選択的な検出装置の開発 高感度化
			サインル表画 蛍光X線分析装置	高精度化	高感度化、補正機構の向上
		高分子組成分析	添加剤含有高分子標準物質:抽出装置、クロマトグラフィー、質量分析装置、NMR、赤外吸収装置、熱分析装置、試料分解装置、蛍光X線分光装置	高信頼性化	高効率な抽出法の開発、高速な抽出法の開発、組成や変性 を伴わない安定した抽出法の開発、環境負荷の少ない抽出 法の開発、高精度な定量法の開発、高効率な抽出法の開 発、簡易分析法の開発
		装置	高分子組成標準物質:抽出装置、クロマトグラフィー、質量分析装置、NMR、赤外吸収装置、熱分析装置、試料分解装置、蛍光X線分光装置	高信頼性化	質量分析の高感度化、クロマト分離の高性能化、分子(モノマー)単位での検出感度向上

先端材料計測(3/8)

大分類	中分類	小分類	装置名	課題	技術課題(== 華櫻縣 == 員事華課額
			赤外分光装置	高分解能化	高感度化、データベースの充実
			蛍光X線分析装置	高分解能化	高感度化、補正機構の向上
			AFM	高分解能化	高分解能化
			MALDI/TOFMS	タ・イナッミクレンシ	測定可能分子量の増大、高感度化
			液体クロマトグラフィー	高速化	カラム開発、溶媒量の減少、分析時間の短縮、検出装置の 高感度化
	高分子分析	高分子組成分析 装置	液体クロマトグラフィー/質量分析装 置	高分解能化	新規なイオン化法の開発、荷電の違う粒子の分離
			ガスクロマトグラフィー	高速化	カラム開発、キャリアガスの減少、分析時間の短縮、検出装置の高感度化
			ガスクロマトグラフィー/質量分析装 置	高分解能化	新規なイオン化法の開発、荷電の違う粒子の分離
			マイクロチップ検出装置	微小化	装置の小型化、、検出感度の増大、選択的な検出装置の開発
	標準サンプル	工業用添加剤	高分子及び添加剤サンプル	高信頼性化	サンプル保存方法
-		工業用添加剤	高分子データベース:赤外分光装置、質量分析装置、NMR、クロマトグラフィー、示差熱分析、熱抽出装置	高信頼性化	データベースの構築、信頼性の高いデータの集積
		- A/11/M/34/73	添加剤データベース:赤外分光装置、質量分析装置、NMR、クロマトグラフィー、示差熱分析、熱抽出装置	高信頼性化	データベースの構築、信頼性の高いデータの集積
			NMR, IR, MS		材料評価、教育等
					規格の参照スペクトル
			NMR	高信頼性化	H-1 NMR 信頼性の高い帰属付きデータの収集加速
			ESR	高信頼性化	材料評価、教育等
			固体NMR		材料開発、リソースの削減
			IRシグネチャ		基礎計測手法の確立とデータ収集
	データベース	スペクトル	HID放電		信頼性向上 材料開発に必要な物性と対応したスペクトル情報の収集
先			ミリ波/テラヘルツスペクトル		爆発物対策のためのデータ集積
端 材			タンデム質量分析スペクトル		更に進歩したデータ分析ツールの開発を支援
料計			トカマク関連のスペクトル線		高信頼性のデータ集積
測			NMR、蛍光光度スペクトル、原子吸光スペクトル、紫外可視吸光スペクトル、赤外吸収スペクトル		規格の参照、リソースの削減
			吸光光度法、原子吸光法、フレーム光度法、ICP発光分光分析法、ICP質量分析法、イオンクロマトグラフ法、イオン電極法、有機体炭素(TOC)、全酸素消費量(TOD)		規格の参照、リソースの削減
		クロマトグラム	液体クロマトグラフィ、ガスクロマトグラ フィ、薄相クロマトグラフィ		規格の参照、リソースの削減
		光学特性	ハイパースペクトル画像		化学的・生物学的薬品の検知、天候調査、天文学、医療、プロセス監査、環境修復、災害予防、火災救援、それから防衛 (偵察、監視、照準)などに応用のための情報集積
		フォーマット	登録情報	システム化	データフォーマットの統一化
			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	複合化	多種のデータベース間の検索機能
			MRI, CT		診断の迅速化、高精度化
			医療画像	遠隔化	遠隔診断の信頼性向上、医師不足解消
		検索	画像取り扱いシステムの開発		信頼性があり、校正され、遠隔画像の取得に対し実装される 技術よりも優れた画像システムを開発
		快煮	二重X線吸収骨塩定量(DXA)		骨密度の計測プロトコル作成と、そのデータベース化
			画像と骨密度の相関データベース		信頼性向上・診断の迅速化
		<u></u>	MRI画像と光画像との融合		光学特性データベース
		プロテオミクス	スペクトル		既存研究データのデータベース化 臨床検査薬、創薬ならびに基礎的な生化学および生物医学 研究において画期的な発見を阻んでいる
			標準化		データの標準化
			データ解析		大量データからの規則性の発見
		計算システム	分子軌道法	多次元化	ユーザへの計算手法選択指針の提供
		□ 弁ンヘアム	分子力場(動・静)	多次元化	ユーザへの計算手法選択指針の提供
		ハルコペ与しっき	赤外分光法	多次元化	物性評価パラメータの多次元化
		分光スペクトル計	紫外吸収法	多次元化	物性評価パラメータの多次元化
		測装置	蛍光発光分析法	多次元化	物性評価パラメータの多次元化

先端材料計測(4/8)

大分類	中分類	小分類	装置名	課題	技術課題(== 華要課題 == 最重要課題)
			温度可変偏光解析装置	ダイナッミクレンジ	広帯域波長での熱光学定数計測技術の開発
				高信頼性化	広帯域波長での線膨張率計測技術の開発 広帯域化されたナノ光学物性計測用標準物質の開発
			温度可変X線反射率測定装置	ダ・イナッミクレンシ・	広範囲熱領域における線膨張率計測技術の開発
		熱的性質	日子執八七十里	高精度化	膨張率計測用高分子標準物質の開発
			局所熱分析装置	微小化微少化	μTA,ナノTAなどによる微小領域の構造転移評価技術の開 大気圧μビーム技術の開発
			陽電子消滅測定装置	ダイナッミクレンジ	低速陽電子寿命測定時間軸の広帯域化
	高分子/ソフトマテ			高分解能化	寿命計測時間分解能向上
	リアル/生体高分 子中の表面・界			高信頼性化	陽電子消滅装置用標準物質の開発
	面・微小領域の物 性/構造計測		水平力(摩擦力)顕微鏡 NMR	高信頼性化	表面の動的粘弾性計測法の規格化および不確かさの低減薄膜中の拡散係数/構造緩和計測の規格化および不確かさの低減
		動的性質		高精度化	微小領域の粘弾性測定法の確立
			計装化インデンター	リアルタイム	微小変形量のリアルタイム計測の高精度化
					規格化(粘弾性評価手法)
			AFM	高信頼性化	微小領域の表面構造計測における不確かさ低減
		静的性質	反射率測定装置	高精度化	X線,中性子,偏光,単純光などによる階層構造計測の不確か さ低減
				高信頼性 微少化·高精度	高分子膜厚標準物質の開発
			走査型近接場偏光解析装置	似少化 · 尚有及 化	回折限界以上の空間分解能をもつ膜厚計測技術の微小化・ 高精度化
			陽電子消滅測定装置	高精度化	広帯域化・不確かさの低減
		欠陥		高信頼性化	金属、半導体中の欠陥測定用標準物質の開発
			走查型近接場光顕微鏡 超音波計測装置	微少化 高精度化	微小領域の欠陥計測技術の微小化 極低温計測による高感度化
	ŀ		起 日 次 日 点 表 世	高信頼性化	低速陽電子発生技術の小型化・汎用化
		ナノ空孔	陽電子消滅測定装置	微少化	μビーム技術の開発
	ナノ空間計測			ダイナッミクレンジ	低速陽電子寿命測定時間軸の広帯域化
#				深さ可変範囲拡 大	陽電子エネルギー可変範囲拡大
先端				多次元計測	マルチパラメータ化
材料				高分解能化 高信頼性化	寿命計測時間分解能向上 ナノ空孔測定用標準物質の開発
計			 X線散乱測定装置	高精度化	不確かさの低減
測			中性子散乱測定装置	高精度化	ソフトマテリアル/生体高分子中の空孔分析技術の高精度化
			DSC細孔分布測定装置	高精度化	ソフトマテリアル/生体高分子中の空孔分析の高精度化
			ナノパームポロメーター	高精度化	分離膜中の空孔分析技術の高精度化
		19.415	高感度気体吸着測定装置	高精度化	偏光解析、X線反射率などによる薄膜の高感度計測技術の 高精度化
			標準技術(測定規格):X線散乱、高感度 吸着、陽電子消滅法	高信頼性化	各手法の互換性確立のための空孔径校正技術基準開発
			標準技術(標準物質):X線散乱、高感度 吸着、陽電子消滅法	高信頼性化	空孔径校正用標準物質の開発
			走査型近接場光顕微鏡	高信頼性化	微小領域検出技術の確立
		ボイド	バブルポイント/パームポロメーター 超音波計測装置	高信頼性化 三糖度化	分離膜評価技術の標準化 高感度非破壊検出技術の高精度化
			ICPMSによる注入量の定量	高精度化 高精度化	の表の定量化技術の高精度化
			2次イオン質量分析法によるイオン注		イオン注入量評価の高精度化
			入量の評価	信頼性確保	標準物質開発
		元素量の	イオン散乱分析法によるイオン注入 量の評価	高精度化	イオン注入量評価の高精度化
		精密測定		信頼性確保 高精度化	標準物質開発 イオン注入量評価高精度化
			入量の評価	信頼性確保	標準物質開発
			中性子放射化分析による注入量の定 量	高信頼性化	ひ素の定量化技術の高精度化
	イオン注入量・ドー パント濃度		斜入射蛍光X線分析	高精度化	ウェハ面内分布(微小領域)計測の高精度化 深さ方向分布計測の高精度化
	ハンド版及		走査型プローブ顕微鏡	高精度化、高分 解能化	高精度計測技術の確立(トランジスタレベル)
		元素量の	走査型TEM(STEM)	高精度化、高信 頼性化	高精度計測技術の確立(トランジスタレベル)
		空間分布	元素分布測定	高精度化、高信 頼性化	深さ方向分析の高精度化
			イオン散乱分析による深さ方向元素 分布測定	高精度化、高信 頼性化	深さ方向分析の分解能向上
			局所電界型アトムプローブ(LEAP)	高精度化、高信 頼性化	3D分布計測法の確立

先端材料計測(5/8)

大分類	中分類	小分類	装置名	課題	技術課題(垂奏課題
			中性子放射化分析		High-k膜中元素量測定の高精度化
			ICPMS	高精度化	High-k膜中元素量測定の高精度化
				高精度化	High-k膜中元素量測定の高精度化高精度化
			評価	信頼性確保	標準物質開発 High-k膜中元素量測定の高精度化
	膜厚	面密度	イオン散乱分析による面密度の評価		同間下限中ル糸里別との同相及化 標準物質開発
				高精度化、高分 解能化	high-k/metal積層構造のウエハ面内分布計測の高精度化
			斜入射蛍光X線分析		タイプ
				信頼性確保	標準物質開発
			収束電子回折(CBED)	旧根江睢怀	微小領域(トランジスタレベル)計測法の確立
			ナノビーム回折(NBD)		微小領域(トランジスタレベル)計測法の確立
			チップ増強ラマン散乱(TERS)		微小領域(トランジスタレベル)計測法の確立
	材料物性	応力・ひずみ量	RBS-channelingによる歪評価	高分解能化	RBS測定法の高分解能化
			共焦点ラマン分光		測定領域の微小化(μ mレベル)
			XRD		測定領域の微小化(μmレベル)
			光反射率		測定領域の微小化(μmレベル)
			2次イオン質量分析法による組成分	高感度化 高精度化	バルク・結晶、金属・半導体・有機薄膜の高感度・高精度計測 法の確立
			析	信頼性確保	標準物質開発
	組成	分析		高精度化	保平物具開光
			イオン散乱分析法による組成分析	高信頼性化	薄膜の組成分析の高精度化
			1-3 2 (3×10×3 (7) 2×1-0× 0×12/30×3 (7)	信頼性確保	半導体組成分析結果の高信頼性化
			+ + ====	高精度化	
			走査型TEM	高信頼性化	原子マッピング、ポテンシャルマッピングの高分解能化
	構造	解析	SPM	高感度化 高信頼性化	原子マッピング、ポテンシャルマッピングの高感度化
			LEAP	高精度化 高信頼性化	原子マッピングの高分解能化
		キャリア移動度			微小領域(トランジスタレベル)キャリア移動度計測の高精度 化・高信頼化
		抵抗			微小領域(トランジスタレベル)の抵抗計測の高精度化・高信頼性化
	電磁気特性	 伝導率	ナノ・プローブによる計測:走査型表 面ポテンシャル顕微鏡(SSPM)/走査	高精度化 高信頼性化	微小領域(トランジスタレベル)の伝導率計測の高精度化・高 信頼性化
先		電荷・ポテンシャ ル	型ケルビンカ顕微鏡(SKFM)	同旧秋江10	微小領域(トランジスタレベル)の荷電・ポテンシャル計測の高 精度化・高信頼性化
端材料		スピン・磁気			微小領域(トランジスタレベル)のスピン・磁気計測の高精度化・高信頼性化
計測			質量分析	高感度、高識別 能定量化	電子状態選択性を持つ化学種の発見
			蛍光X線	高精度化 高信頼性化	元素定量用・標準物質の開発
		=		立特度ル	
	元素分析	微量元素分析	X線吸収構造解析	高信頼性化	6価クロムの定量
				高感度•高識別能	放射光応用データベース
				汎用性	可搬装置開発
				高信頼性 高精度	被膜標準物質 X線集光&高精度資料ステージの開発
	デバイス線幅	平均線幅	線幅測定•検査装置	高信頼性	
		, Jawitm	THE PROPERTY OF THE PARTY OF TH	定期検査用	パターン検査用標準物質の開発
				高感度化	生体適合性材料分析の高感度化
	タンパク質分析	組成分析	2次イオン質量分析	高感度化、高精	プロテオーム解析の高感度化
				度化、高信頼性	マッピング測定の高感度化
				高精度化	高精度測定法の開発
	<i>ֈ</i> ∔ <i>[</i> ↓	齊 公丘	し		標準試料の開発
	生14~物	質分析	レーザーイオン化質量分析装置	高速化 高速化	データベースの構築 ハイブリッド型装置の開発
				高迷1匹 ダイナッミクレンジ	大イフリット至装直の開発 表面イオン化(マトリックス不使用)分析法の開発
	環境分析	自動車排ガス (PM)	フィルタ検定用標準微粒子	信頼性安全性	高精度連続遠心分離装置の開発
	表面構造	生体(構造、成分)	感染コンタミの微量成分技術の開発		in situでの短時間、高解像度観察
	> m 1174		二、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一、一	材料計量	リソグラフィ計測・評価
			3D-TEM	材料計量	トランジスタ構造計測・評価
				材料計量	配線構造計測·評価
		構造計測	標準技術	高信頼性化	構造計測のためのスケール、校正技術の開発
	3Dナノ構造		TEM	高分解能化	試料加工技術の確立
			シミュレーション、TEM	材料計量	3Dナノ計測シミュレーション(バルク)法の確立
		표시 이자 듣기 그대			3Dナノ計測シミュレーション(表面)の確立 世際中のナノ株件の形状・分類状態の証例
		形状計測 粒子分布	3D-TEM, SAXS	技術開発 標準物質	媒質中のナノ構造の形状、分散状態の評価 媒質中に分散したナノ粒子の標準物質の開発
	ML 10 1 L NT 1-1	和丁万州	局所電極アトムプローブ(LEAP;	高分解能化	探真中に分散したアノ粒十の標準物質の開発 原子レベルでのマップの実現
	微視的領域元素 分析	元素 構造計測	Local Electrode Atom Probe) TEM-EELS、3D-TEM	高分解能化	EELSの分解能向上
			,		界面の高解像度化、高精度化

先端材料計測(6/8)

大分類	中分類	小分類	装置名	課題	技術課題(====================================	
				高精度化	XRRによる極薄膜の精密測定の高精度化	
				高信頼性化	エレクトロニクス産業及び光学工業において、極薄膜計測、 並びに構造モデル及び機器のエラー校正における精密かつ 再現可能な信頼できる計測手法の開発	
			X線反射率法(X-ray Reflectometer: XRR)	高精度化	フレキシブルなエレクトロニクス及びフォトニクスデバイスに使 用されるバリヤー層の、水分浸透率について、十分定量でき る計測方法の開発	
				高信頼性化	界面層モデルの構築(他手法との同等性評価)	
				高精度化·安定 化	XRRによる極薄膜の精密測定の高精度化・安定化のための 解析基準の確立	
			エリプソメトリー(Ellipsometer)	高信頼性化	薄膜計測の校正方法及び光学定数のデータベースの確立	
		膜厚	透過型電子顕微鏡(Transmission	高精度化	関連技術の高度化(ダイナッミクレンジフォーカシング等)	
			Electron Microscope:TEM))、走査 型プローブ顕微鏡(SPM)	高分解能化	原子マッピング測定器として、十分な特徴及び原子分解で構造特性と材料特性を計測する計測ツールの開発	
				標準物質	新材料の標準物質・試料の開発・拡充	
	構造解析		標準物質・薄膜の膜厚・密度・組成の 総合的評価のための標準技術の開	リアルタイム	インライン検査と工場制御装置において、制御及びモニタリング機器には、要求された分解能を備えた超薄型膜、ナノワイヤ・サイズのナノスケール界面、構造、及びその材料特性で測定する新しい特徴描写、計測学ツールの開発	
			発	高精度化·高分 解能化	界面特徴描写測定器として、界面、ナノサイズデバイスの構造及び材料特性の計測学ツールの開発	
				校正事業	校正システム確立および事業者の拡充	
				基準計測システ ム	標準物質・試料の基準計測システムの確立	
			X線光電子分光法(X-ray Photoelectronic Spectroscopy: XPS)	高精度化	角度分解法を含むXPSによる極薄膜の深さ方向分析の高精 度化	
		深さ分布	二次イオン質量分析法(Secondary Ion Mass Spectrometry:SIMS)、ラザフォー ド後方散乱分析(Rutherford Backscattering Spectrometry:RBS)	高精度化	SIMS、RBSによる深さ方向分析技術の高精度化	
先			標準技術(標準物質)	トレーサビリティ・高 信頼性化	深さ方向分析用標準物質の開発	
先端材料計	ナノ構造	構造計測	ナノ構造評価計測装置	高精度化	ナノインプリント・リソグラフィにおいて、非破壊的でサブnm分 解能を持つ小さいパターンを明確に測定できる方法の開発	
計測		歪みSiの歪み	透過型電子顕微鏡(Transmission Electron Microscope:TEM))	高精度化	歪み計測の感度の向上	
			X線反射率法(X-ray Refl ectometer:XRR)	高信頼性化 高分解能化	解析信頼性、X線装置の信頼性確保及びアライメント調整法の確立	
		SOIウエハの層 厚·界面構造	X線反射率法(X-ray Refl ectometer:XRR)	高精度化・高分解能化・安定化・ 高信頼性化・ダイ ナッミクレンシ	XRRによる測定技術の高度化	
	構造解析	形状計測(長さ)	TEM	高精度化	倍率校正技術の確立	
	組成比(表面	·微小領域)	EPMA	トレーサビリティ	炭素鋼中の炭素濃度決定のための標準物質の開発	
			EPMA	トレーサビリティ	構成元素濃度の決定のための標準物質の開発	
	組成比(氢 構造解析	表面領域) 形状計測(長さ)	XRF TEM_STEM	トレーサビリティ 高精度化	構成元素濃度の決定のための標準物質の開発	
	1再 1旦 7件 1/1	形状計測 形状計測 (3次元)	TEM, STEM FIB	高精度化	原子マッピングの高精度化 形状計測用試料作製のための加工技術の高精度化	
			XRR	高精度化	デバイス微小化に伴う膜厚測定の高精度化	
	+# \# #71±°	薄膜計測	TEM	高精度化	デバイス微小化に伴う膜厚測定の高精度化	
	構造解析	(膜厚)	XPS	高精度化	デバイス微小化に伴う膜厚測定の高精度化	
		藩間計制	SPM	高精度化	薄膜深さ方向計測の高精度化	
		薄膜計測 (深さ方向分布)	SIMS	高精度化	深さ方向分布測定の高度化	
			RBS	高精度化	深さ方向分布測定の高度化	
			誘電率測定	高精度化	誘電膜(low-k,high-k)、強誘電膜の評価の高感度化	
		電気計測	SCM SCFM	高精度化 高精度化	Si半導体素子のゲート領域のC-V測定による不純物密度評価、強誘電性記録素子の記録素単位の電荷量計測の高感度化	
	薄膜物性	熱計測(ナノ領域	サーモリフレクタンス法熱物性計測	高精度化	サーモリフレクタンス法熱物性計測技術の空間分解能向上 (短波長化、近接場光技術)	
		熱物性·温度計 測)	 ナノ表面測温技術	高精度化	ナノ表面測温技術の高精度化	
		熱計測(熱膨張率	光干渉法	高精度化	熱膨張率計測技術の高精度化	
		計測)	XRD	高精度化	熱膨張率計測技術の高精度化	
	バイオ、医療材料	組成分析	生体材料、医療用材料(ステント、人 工透析用チューブ等)のキャラクタリ	装置開発、低価	大量の試料を迅速に測定できる装置の開発と低価格化	
	分析				格化	

先端材料計測(7/8)

大分類	中分類	小分類	装置名	課題	技術課題(====================================
		組成分析	電子分光による複雑な表面の解析技 術	応用展開	電池の電極等、複雑な実材料表面分析への応用
			同心半球型電子エネルギー分析器	トレーサビリティ	SIトレーサブルな分光装置の開発
			ToF-SIMS 用標準整備	標準物質 標準化	標準試料の開発、測定手順の標準化
			ToF-SIMS用DB	データベース整 備	多数のピーク全体のパターンを総合的に評価可能なDBの開発
	表面分析	膜厚	材料別の膜厚標準試料	標準物質	10 - 100 nm PMMA、ポリイミドなどの有機物薄膜(10 - 100 nm)標準物質の開発
		微視的領域元素 分析	XPS	高空間分解能化	絶縁物の微小部分析技術の開発
		組成分析	表面分析用試料作製技術		EPMA、Hard X-rayでも計測できない5ミクロン以上深いところの計測を行うための所定の厚さの表面層を除去する技術の開発
			表面分析用エキスパートシステムの 開発		初心者でも失敗を起さないユーザーフレンドリーなソフトウエ アの開発
		示差走査熱量測 定	示差走査熱量計、示差熱分析装置	高精度化 高信頼性化	装置の改良 標準物質の整備・維持
	熱分析	熱重量分析	熱重量分析装置、熱天秤	高精度化 高信頼性化	装置の改良 標準物質の整備・維持
	W(52 b)			ダイナッミクレンジ	測定温度範囲の拡張
		断熱型熱量測定	断熱型熱量計	微小化 低価格	小試料化装置の簡略化
				スマート化	技術の汎用化
				高精度化	装置の改良
	11461 () 15	熱機械分析	熱機械分析装置	高信頼性化	標準物質の整備・維持
	材料分析	動的粘弾性測定	動的熱弾性測定装置	高精度化	装置の改良
		到的柏押注则是	到的然伴任例 是表直	高信頼性化	標準物質の整備・維持
	分光分析技術	極微量計測	光イオン化質量分析装置	高精度化	高選択性、高精度化、小型化、測定時間短縮
	環境分析 プロセ	環境計測 状態計測	レーザーイオン化質量分析装置 レーザー分光成膜プラズマ評価装置	高精度化 リアルタイム	ppt検出、可搬化、測定時間短縮 高選択性 高精度化 三次元化
	ス・現場)	P11217171			
	有機材料組成分 析 構造解析	材料計測	TOF-SIMS	高信頼性化	質量軸較正 低侵襲分析 マトリックス効果低減、高精度化イオン化、高精度化
#			SNMS(スパッタ中性粒子質量分析)	高精度化 高精度化	マトリックス効果低減、高効率イオン化、高精度化
先 端	半導体計測	産業応用	超短パルスレーザー分光	高速化	高感度化、デバイス適応化
材 料 計	環境分析(プロセス・現場)	危険物探知	時間分解レーザー	高速化	高感度、小型化
測		構造解析	円二色性構造装置	高精度化	糖鎖、高分子、タンパク質、アミノ酸等の構造解析
		分子量 計測技術	質量分析装置	高精度化	定量性、未知生体分子の分子量の正確な決定(親イオン ピークとフラグメンテーションピークの区別)、分子構造(タン パク質の4次構造)解析能力の向上
		分子種 同定検出技術	バイオチップ	高信頼性化	DNAチップ、プロテインチップ等により特定の生体分子を正確かつ簡便に検出する必要
		分子構造 解析評価技術	円偏光2色性分光装置	高精度化	分子構造(タンパク質の2次構造: α ヘリックスと β シートの割合)解析能力の向上
			分子配向制御技術	高精度化	生体分子の質量分析等に適用することで分子構造(タンパク 質の3次構造)解析の能力を付加
			X線回折法		分子構造(タンパク質の3次構造)解析能力の向上
	バイオ計測		核磁気共鳴法(NMR) 電子顕微鏡	<mark>リアルタイム</mark> 高精度化	分子構造(タンパク質の3次構造)解析能力の向上 イメージング能力、リスク評価能力
		空間分布・		高精度化	イメージング能力、リスク評価能力
		形態評価技術	新規標識物質の開発	高精度化	イメージング能力、ケスノ計画能力
		機能発現 解析技術	タンパク質間相互作用解析	高精度化	特定のタンパク質間相互作用の測定から反応部位を高精度に解明する必要
			電気泳動	微小化	単分子計測を可能にするための分離技術の必要性
		分離精製技術	クロマトグラフィー	微小化	単分子計測を可能にするための分離技術の必要性
			マイクロ流路	微小化	単分子計測を可能にするための分離技術の必要性
		計算機支援技術	バイオインフォマティクス	複合化	生体の階層構造に対応したデータの統一的解釈とその医療 現場への適用を図る必要
			データベース	複合化	機器開発の進捗に合わせて増加するデータを、相互の関連を踏まえて効果的効率的利用を図る必要
				高速化	超音波伝搬可視化
			計測:欠陥検出装置、非接触超音波 検査装置	迷隔1 0	非接触超音波計測標準化(試験法)
	構造解析	欠陥・傷計測	· · · · · · · · · · · · · · · · · · ·		標準化(試験法) センサの安定性と信頼性
			光ファイバセンサーインフラモニタリン	高信頼性化	センザの女定性と信頼性 センサ/構造インターフェースの信頼性
			グ装置:構造診断装置	トレーサヒ゛リティ	センサ信号の正確度と再現性評価法とその規格化
1		0 -		高精度化	高感度化による拡散係数の高精度化
		プロトン・イオン拡	固体NMR	タ・イナッミクレンシ・	高感度化、高速化により測定可能な拡散係数の範囲を拡張
	材料物性	散評価装置		低価格	装置の小型化による低価格化
		固体における物質	ニフンスメージンガ キョレスノージン・ゼ	高速化	高感度化による経時変化計測の高速化
		輸送現象計測	ラマンイメージング、赤外イメージング	システム化	解析ソフトウェアの開発・整備

先端材料計測(8/8)

報告を用いた情報の	大分類	中分類	小分類	装置名	課題	技術課題(== 華樂縣 ==
議会報報				単結晶X線回折法を用いた精密原子 構造解析	高精度化	
機会解析						
報告部分						
構造解析						化、微小結晶のマニピュレーション(光・レーザーマニピュレーション)
#法院解析 株式						構造解析ソフトの進化
# 本土・・						X線の利用
### ### ### ### ### ### ### ### ### ##		構造解析				
お木工・				未知構造解析技術	高信頼性化	
接稿			粉末X線構造回折	結晶エネルギー評価付き構造解析技 術	高精度化	ネルギー評価の連携による水素位置の決定や構造決定精
#被操材料中型の					極端環境下	
イメージング 金工ネルギー物質テータペース 一次素をどの高温高圧での結晶構造データと結晶エネースの作品 大変				マイクロストリップガス検出器	安定化	
####################################				X線CT・ホログラフィ	極端環境下	実環境計測技術
根小領域の物性 3Dナ/メーシング 超解像技術 空間総計学による材料場造のキャラの 20サビーション 20サビーション		データベーフ	爆発危険性評価	高エネルギー物質データベース	高精度化	
構造解析 空間焼計年による材料構造のキャラ 標準化 標準化(不均質性の定量化手法) カオ料物性 電子スピン共総要置 高外解能化 データ結合による分解能向上 無素液化・ 機力・ 機力・ 機力・ 機力・ 大素液化 部の かまれ に 理事を で		ナーダベース	スペクトル	粉末X線回折	高信頼性化	
### ### ### ### #####################		微小領域の物性	3Dナノイメージング			アルゴリズム・ソフトウェア開発
対料物性 電子スピン共鳴装置		構造	解析	空間統計学による材料構造のキャラ		
### ### ### ### ### ### ### ### ### ##		林士坐上	- 物性			
おおり						燃料電池自動車や高圧水素貯蔵システム等の水素社会に
### ### ### ### ### #################			水素脆化解析	超高真空走査型トンネル顕微鏡	極端環境下	吸着水素分子・原子の可視化と水素侵入による相変態や構
計測	先端材			鏡のコンビネーション	高分解能化	
高水素圧下での圧力計測技術の標準化)				リアルタイム	水素チャージ環境下における微小領域の水素脆化評価
#で評価可能な薄膜センサシステムの 高信頼性化 原子間力顕微鏡を用いた薄膜物性の正確な計測 開発 水素能化データベース 水素能化データベース ※素能化データベース ※素能化データベース ※素能化データベース ※素能化データベース ※ 2 間分解能の向上 ※表 2 を関う解能化 ※表 2 を間分解能の向上 ※表 2 を間分解能の 2 を間分解能の 2 を間分解能の 2 を間分解能の 3 を 2 を 2 を 1 を 3 を 3 を 3 を 4 を 4 を 4 を 4 を 4 を 4 を 4					極端環境下	水素脆化等の影響を受けない電気的圧力計測技術の確立
大宗郎北に計画				場で評価可能な薄膜センサシステムの	高信頼性化	原子間力顕微鏡を用いた薄膜物性の正確な計測
大線の収(XAFS)測定装置 高感度化 高感度化 高感度化 高感度化 不線小電子分光装置 高寿度化 不少月 一次 一次 一次 一次 一次 一次 一次 一		データベース	水素脆化評価	水素脆化データベース	高信頼性化	
大阪州大計測 株造解析						
X線小角散乱 高精度化 高持度化、小型化 高分解能化 福成分析 蛍光X線 高分解能化 低温動作型検出器 高分解能化 低温動作型検出器 高分解能化 低温動作型検出器 高計度化、高分解能化 低温動作型検出器 高精度化、高分解能、リアルタイム化 表面増強ラマン散乱 高精度化、高分解能、リアルタイム化 京精度化、高分解能、リアルタイム化 交流インピーダンス解析 電位窓の拡大、修飾電極開発 位窓の拡大、修飾電極開発 本能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高機能材料 有害菌類の測定方法 食品 短時間計測の実現 高精度化、高分解能、リアルタイム化 短時間計測の実現 高精度化、高分解能、リアルタイム化 短時間計測の実現 電積性の確保 短時間計測の実現 電積性の確保 短時間計測の実現 電積性の確保 数値化・自動化 電機性・音響を高速化・高精度 電性・音響を高速化・高精度 電機化・音響を高速化・高精度 電機化・音響を高速化・高精度 電性・音響を高速化・高精度 電機化・音響を高速化・高精度 電性・音響を高速化・高精度 電機化・音響を高速化・高精度 電機・・音楽を高速化・高精度 電機・・音楽を高速化・高精度 電機・・音楽を高速化・高精度 電機・・音楽を高速化・高格度 電機・・音楽を高速化・高格度 電機・・音楽を高速化・音楽化・音楽を高速化・音楽を高速化・音楽を高速化・音楽を高速化・音楽を高速化・音楽を高速化・音楽を高速化・音楽を高速化・音楽を高速化・音楽を高速を高速を高速を高速を高速を高速を高速を高速を高速を高速を高速を高速を高速を			# 3 4 67 tc			
X線トモグラフィー 高分解能化 高分解能化 高分解能化 第分解能化 第分解能化 第分解能化 第分解能化 第請度化、高分解能化 四級 表面修飾方法の確立 五元 五元 五元 五元 五元 五元 五元 五		放射光計測	構造解析			
組成分析 蛍光×線 高分解能化 低温動作型検出器 高精度化、高分解能、リアルタイ 表面修飾方法の確立 ム化 高精度化、高分解能、リアルタイ 人化 高精度化、高分解能、リアルタイ 人化 交流インピーダンス解析 経験化、リアルタイ 人化 京精度化、高分解能、リアルタイ 人化 京精度化、高分解能、リアルタイ 人化 京精度化、高分解能、リアルタイ 人化 京精度化、高分解能、リアルタイ 人化 京精度化、高分解能、リアルタイ 人化 高機能材料 有害菌類の測定方法 高精度化、高分解能、リアルタイ 人化 高機能材料 有害菌類の測定方法 高精度化、高分解能、リアルタイ 人化 京精度化、高分解能、リアルタイ 人化 高機能材料 水素ガス漏れ検知器 大応用計測 大応用計測 欠陥・異常検査 半導体・電子素材検査装置 大応・高精度 製造ラインへの適用技術、官能検査の自動化、検査法の標準化・規格化						
表面学施ラマン散乱 解能、リアルタイム化 素面修飾方法の確立 点情度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 京精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム化 高精度化、高分解能、リアルタイム 高精度化、高分解能、リアルタイム 高精度化、高分解能、リアルタイム を品 短時間計測の実現 高精度化、高分解能、リアルタイム化 地域 近天 大学			組成分析	蛍光X線		低温動作型検出器
表面増強ラマン散乱 解能、リアルタイム化 高精度化、高分解能、リアルタイム化 京精度化、高分解能・リアルタイム化 交流インピーダンス解析 空流インピーダンス解析 解能・リアルタイム化 高精度化、高分解能・リアルタイム化 高構度化、高分解能・リアルタイム化 高機能材料 有害菌類の測定方法 食品 短時間計測の実現 高精度化、高分解能、リアルタイム化 高機能材料 水素がス漏れ検知器 材料計量 信頼性の確保 単導体・電子素材検査装置 数値化・自動化・高速化・高精度 製造ラインへの適用技術、官能検査の自動化、検査法の標準化・規格化				スラブ光導波路分光法	解能、リアルタイ	表面修飾方法の確立
表面分析 産業基盤 電気化学分析 解能、リアルタイム化 電位窓の拡大、修飾電極開発ム化 交流インピーダンス解析 高精度化、高分解能、リアルタイム化 高間波数での測定 屈折率測定:エリプソメーター 高精度化、高分解能、リアルタイム化 高精確化ム化 工業分析 有害菌類の測定方法 食品 短時間計測の実現 高機能材料 水素がス漏れ検知器 大路・リアルタイム化 表面修飾方法の確立ム化 高機能材料 水素がス漏れ検知器 材料計量 信頼性の確保 光応用計測 欠陥・異常検査 半導体・電子素材検査装置 数値化・自動化・高速化・高精度 準化・相路化 進ニラインへの適用技術、官能検査の自動化、検査法の標準化・相路化				表面増強ラマン散乱	解能、リアルタイ	メカニズムの解明、スペクトルの帰属
交流インピーダンス解析 解能、リアルタイム化 高周波数での測定 屈折率測定:エリプソメーター 高精度化、高分解能、リアルタイム化 高精確化ム化 工業分析 有害菌類の測定方法 食品 短時間計測の実現 高精度化、高分解能、リアルタイム化 育業活性測定方法 解意、リアルタイム化 表面修飾方法の確立ム化 高機能材料 水素ガス漏れ検知器 材料計量 信頼性の確保 光応用計測 欠陥・異常検査 半導体・電子素材検査装置 変値化・高速化・高精度 推作・担格化		表面分析	産業基盤	電気化学分析	解能、リアルタイ	電位窓の拡大、修飾電極開発
屈折率測定:エリプソメーター 解能、リアルタイ 高精確化 ム化 高機能材料 有害菌類の測定方法 食品 短時間計測の実現 高精度化、高分解能、リアルタイ 人化 高機能材料 水素ガス漏れ検知器 材料計量 信頼性の確保 数値化・自動化・高速化・高精度 操化・担格化				交流インピーダンス解析	解能、リアルタイ	高周波数での測定
工業分析				屈折率測定:エリプソメーター	解能、リアルタイ	高精確化
工業分析 ライフサイエンス 酵素活性測定方法 解能、リアルタイ 表面修飾方法の確立 人化 高機能材料 水素ガス漏れ検知器 材料計量 信頼性の確保 数値化・自動化・高速化・高精度 進化・担格化・			高機能材料	有害菌類の測定方法	食品	短時間計測の実現
光応用計測 欠陥·異常検査 半導体・電子素材検査装置 数値化・自動化・ 高速化・高精度 進行・現路化・ 集化・現路化・ 集化・現路化・		工業分析	ライフサイエンス	酵素活性測定方法	解能、リアルタイ	表面修飾方法の確立
光応用計測 欠陥・異常検査 半導体・電子素材検査装置 高速化・高精度			高機能材料	水素ガス漏れ検知器	材料計量	信頼性の確保
		光応用計測	欠陥·異常検査	半導体・電子素材検査装置	高速化·高精度	

普及のための共通基盤(1/4)

大分類	中分類	技術課題

各計量・計測システム領域ごとに詳細な技術マップ、ロードマップが展開されているが、ここでは各分野の普及のための横断的な共通基盤として遠隔校正、トレーサビリティ、不確かさ、規格(JIS・ISO)、データベース、人材育成・技能認証、ソフトウェア認証を抽出し、それらの技術課題の具体例を挙げる。共通基盤の概観あるいは横断的な素引としてご利用いただきたい。

遠隔校正

遠隔地にある測定機器を最新の通信技術を駆使してその場で校正する方式が開発され、JCSSでの運用も制度化されている。海外に進出した工場やタイの国家計量 機関(NIMT)への遠隔校正の事例もあり、ここに上げるように適用できる量目はまだ少ないものの今後増加が見込まれる。

時間•周波数計測	波長、光周波数	光周波数コム(光周波数計)、波長計・光スペアナの遠隔校正
时间,问从数点从	時間・周波数供給	時間・周波数・時刻供給のための遠隔校正技術(データ通信、多周波受信機、低価格化、オンマシン・リアルタイム)
長さ計測	三次元座標計測	遠隔校正による座標測定機(CMM)のJCSSへの対応
圧力計測	気体·液体圧力	社会ニーズによる重錘形圧力天秤・圧力センサを用いた圧力標準の維持と高度化(遠隔校正システム)
音響•超音波•振動計測	振動	振動計・加速度計の安全基準・法規制準拠、感度に関して遠隔校正によるトレーサビリティ確保および位相特性評価の標準化
		遠隔校正による地震計のトレーサビリティ確保
電磁気計測	直流•低周波	LCRメータ、インピーダンスメータの遠隔校正
放射能計測	放射能	放射能遠隔校正技術の開発およびモニタリングポストの遠隔校正システムの開発
中性子計測	中性子	中性子校正場用の仲介器の開発、遠隔校正、現場校正

トレーサビリティ

測定器は標準器によって校正される。その標準器はより正確な標準器によって校正され、最上位の国家計量標準にまで遡源し信頼性を確保する体系をいう。分析機器の場合は標準物質が標準器に相当する。国家計量標準にトレーサブルであるためには、標準器の校正の技術と備える設備を管理する品質システムが必要である。ここに示すのは計量トレーサビリティのために維持し、あるいは更に開発すべき計量標準の例である。

時間•周波数計測	光周波数	レーザ線幅の校正技術、光周波数計の校正
F11F1 /F1//2 32 E1 ///	時間·周波数供給	周波数安定度・位相安定度・時間間隔測定技術のjcss校正
	寸法、変位	工業規格に用いられる標準の維持・供給、干渉測長器:位相内分精度に対する保証、光コム、周波数標準に 基づく測定法の開発
長さ計測	距離	光波距離計のためのノンプリズム距離計における反射面特性多様性の評価法確立、測距基線の空気屈折率の補正法、GPS距離計のための光波距離計(トータルステーション)との一致、大気モデルの確立、測距中心の決定方法確立
	微小寸法、形状計測	m-CMMの測定範囲拡大、SEMの倍率校正用標準試料の微細化、白色干渉顕微干渉計の干渉ヘッドの走査変位量絶対測定
	幾何偏差および形状	触針式粗さ計の表面性状の三次元的校正技術開発と標準供給、および表面性状の標準供給の維持と規格 (GPS)への対応
角度計測	全角度および微小角領域	角度校正技術の範囲拡大と傾斜計の底面と目盛軸との直角度
質量計測	分銅等	質量標準の維持・高精度化・範囲拡大と分銅校正作業の効率化、微小質量標準の確立 カ・トルク・圧力・液体流量など質量関連量の標準の設定・高精度化
	+6.11 1 =1.551	人工物によらないキログラムの再定義、新材料(スマート材料など)、高機能皮膜、表面処理
力計測	静的力計測	力標準の維持・高精度化・範囲拡大と力計校正作業の効率化
	動的力計測	動的力発生装置の開発、力計の時間応答特性の向上、動的環境での力計のトレーサビリティ確保
	低•中真空~超高•極高真空	法による局具空標準の維持と高度化
	分圧	分圧真空計のための低圧混合ガスの標準確立、および分圧標準の維持と高度化
F 4=1 mi	リーク、ガス放出	リーク、ガス放出速度の測定用標準の維持と高度化
圧力計測	圧力標準	重錘形圧力天びん、圧力センサなどの圧力標準の維持と高度化(気体ゲージ圧力・気体絶対圧力・液体圧力標準・微差圧標準)、および低圧力標準の制定と維持、高度化(低圧力への範囲拡大、真空領域との整合性、不確かさ減少)
		水素製造、貯蔵、運搬施設などでの気体高圧力標準の制定と維持、高度化(段階的に~35 MPa、~70 MPa、~140 MPa)
	音響パワー	音響パワー測定器用標準器(基準音源)の校正技術開発
		超音波音場パラメタ測定器のための20 W~300 Wの超音波パワー計測標準技術開発、キャビテーション発生量測定器のためのキャビテーション発生検出技術開発と高音圧測定技術開発
音響·超音波·振動計測	水中超音波·音響	超音波音場パラメタ測定機器のための超音波音圧標準の周波数領域の拡張、光を用いた非接触手法による 超音波音場可視化及びパラメータ計測技術の開発、微小領域の超音波パワー計測標準技術・音圧計測標 準技術の開発
	振動	安全基準・法規制準拠のための振動のトレーサビリティ確保(感度)、位相特性評価の標準化、レーザ振動計の標準化(感度及び位相)、および地震計のトレーサビリティ確立、DCレベルでの加速度計校正の標準化(歪み式加速度計の感度校正など)
	角振動	角速度計・角加速度計のための角速度校正の標準化、および法規制準拠
硬さ計測	硬さ	ブリネル硬さ試験機・試験片の標準片のjcss供給、およびビッカース硬さ試験機・試験片のjcss標準供給、微小荷重領域範囲拡大
(更で引 次)	機械的ナノ特性(硬さ)	ナノインデンターの基準試料開発、および微小力標準器の開発、微小荷重・微小変位校正技術の開発
	機械的ナノ特性(弾性)	レーザ誘起表面弾性波計測装置のための基準試料開発
海 在 11.101	温度計	高精度の温度計測・トレーサビリティ、国際単位系と温度標準の定義の改変に対応したトレーサビリティの確保、-50 ℃~3000 ℃の放射温度標準、体温域の放射温度標準、赤外(8~14 μm)放射温度計の校正、および放射率の精密評価
温度計測		新しい温度のSI単位の定義導入を通じた熱力学温度測定の不確かさ改善と一貫性の向上
	湿度計	微量水分発生技術の開発、水分分布、水分移動、表面水分、全水分等どの測定方式にも共通して使える液体・固体中の水分校正法
	与什法具	高圧化での天然ガス中流量・大笠良標準の整備、気体脈動流量を校正する基準器の開発とそれを用いた標準供給体制の構築
	気体流量 	航空機等の空力特性を評価する高精度風洞試験設備や実環境模擬風洞試験、飛行試験技術等に用いる高 精度流量計の開発と整備・普及
流量計測	流体(水)流量	各種発電所における大口径配管の流量計校正装置の開発、実原子カプラント相当のレイノルズ数における 流量計校正
	石油類流量	既存の石油大流量標準の維持と不確かさ軽減、民間のJCSS登録事業者への普及
	1 1 m +H /III =	
	水素流量	エタノール用流量計校正装置の長期安定性、簡便性、流量拡大、トレーサビリティ体系 エネルギー密度の高い液化ガスの輸送・貯蔵用液体ガス流量校正装置のための標準整備と供給

普及のための共通基盤(2/4)

大分類	中分類	技術課題
		熱伝導率測定装置用標準物質整備、国際比較
	熱物性	熱拡散率測定装置・パルス加熱法用の熱拡散率の標準(依頼試験)、標準物質の供給、国際比較の推進、 標準化
		標準物質(高温・バルク)の使用温度範囲拡大、標準物質の多様性確保、SIトレーサビリティ
物性計測	密度	シリコン直径測定装置のSI基本単位キログラムの再定義、X線結晶密度法によるアボガドロ定数の決定、シリコン単結晶の密度の絶対測定、高精度球体温度制御、高精度球体温度測定
	屈折率	干渉式屈折率測定装置のための紫外線リングラフ用液体の光学物性、4 °Cの水の普遍値に関する再測定、分光エリプソメトリーの光周波数標準とのトレーサ、多層薄膜標準の開発
	粘度	非ニュートン粘度標準のための非ニュートン粘度の校正技術(回転法)、非ニュートン粘度の校正技術(円筒落下法)、非ニュートン標準液、ハイシェアー非ニュートン粘度標準、および細管式粘度計のJCSS化
	液中粒子	光遮断式粒子計数装置・光散乱式粒子計数装置用の薬液・清浄水の現場測定技術、校正基準(粒径・濃度) 液中粒子数濃度標準液のための微小粒径化、高濃度化、使用技術基準
粒子計測	気中粒子	30 nm以上標準粒子のためのポリスチレンラテックス粒子の真球度、単分散性の向上、経年変化の調査、お よび30 nm以下標準粒子のための分子・イオンの標準の探索、選定および新規開発
	交流	交流分流器用の高調波計測用分流器の校正システムの開発
電磁気(直流・低周波)計測	抵抗	半導体微細化におけるゲート酸化膜の実効電気的膜厚(nm)、半導体ゲートスタック形成技術における電流密度測定における抵抗測定、半導体ゲートスタック形成技術における電流密度測定における抵抗測定
	電力	高周波電力標準の高精度化
電磁波(高周波)計測	雑音	ノイズメータ・ラジオメータ(放射計)用の校正・試験方法、仲介用システム開発、サブミリ波・テラヘルツ領域 の雑音標準、位相雑音測定システムのための校正・試験方法、仲介用システム開発
	複合(電力・電圧・雑音・減 衰量・インピーダンス)	ネットワークアナライザ、インピーダンス測定器用のインピーダンス計量標準の高周波化、オンチップ/オンウェハ評価の不確かさと測定基準
		ダイポールアンテナ、バイコニカルアンテナ(30~300 MHz)、ログペリオディックアンテナ(300~ 1000 MHz)、 バイログアンテナ(30~1000 MHz)、広帯域高効率アンテナの標準開発、校正サービス、品質システム整備、
	アンテナ係数	連続的な自由空間アンテナ係数の測定技術開発
電波·電界·磁界計測		ループアンテナ、モノポールアンテナ用低周波磁界測定技術の開発 電界強度標準の標準電界生成技術、微小電界測定技術、光ファイバリンク磁界センサの小型化、高効率化、
HENCE HEST HARSTELLING	電界強度	電が強反標準の標準電子上級技術、版が電子層を技術、ルファイバりング磁子とフリのが至し、高効率に、無バイアス動作化
	サイトアッテネーション	光ファイバリンクシステムを用いたサイトVSWR法によるサイト評価技術
	EMCサイト評価技術	EMC測定場評価用の電波暗室標準と特性評価技術開発、標準電界生成のためのTEMセル特性評価技術開発 発
	放射量、分光放射量	分光全放射束標準光源の整備、LED放射束標準の整備(紫外、可視、赤外)、低強度分光放射照度標準光源、蛍光量子効率の参照標準、分光放射照度標準の供給、高精度相対分光分布標準の確立、分光放射輝度標準の供給
	測光量	標準LEDの供給(光度・全光束)、LED放射束・放射強度校正技術開発および標準LEDの供給
光放射計測	反射率•透過率	二方向反射率分布関数(BRDF)
	レーザ計測	レーザパワーメータ用の標準カロリメータ高精度化、波長依存性評価法確立、波長拡張技術、直線性評価技術、規格化、波長感度一様性が担保されたカロリメータへッドの供給、青紫色レーザ評価技術
		ビーム特性診断装置用の産業用レーザビームプロファイル評価技術及び規格 光ファイバパワーメータ用の波長依存性評価技術、光ファイバパワー標準の供給、光減衰量標準の供給
	放射線防護	放射線防護のため放射線計測器用の γ 線、 X 線、 β 線、単色 X 線、中性子標準の開発・整備、トレーサビリティ体系維持
	医療診断	X線診断装置、マンモグラフィ装置および放射線診断装置の線量計測器のための国家標準およびトレーサビリティ体系の維持
放射線計測	放射線治療	医療用リニアックの高精度線量測定用のグラファイトカロリーメータの開発、粒子線など臨床高エネルギー・ビームに対する水熱量測定技術の開発、モンテカルロシミュレーション技術の高精度化、医療用 β 線源の水吸収線量評価装置の開発
		非破壊検査用高エネルギーX線の線量計測技術の開発、イメージングシステム性能評価法の開発
_	産業用放射線	大線量産業用放射線線量測定装置および食品照射放射線線量測定装置用の大線量Co-60 γ線・高エネルギーX線および電子線の線量評価技術、バイオドシメトリー法、汚染除去および殺菌における放射線強度測定技術の開発
放射能計測	放射能測定器	医療・放射線防護・産業用放射能計測装置のための放射能標準の開発・整備、トレーサビリティ体系維持
中性子計測	中性子測定器	産業・医療・半導体ソフトエラーのための広領域中性子計測技術開発、中性子標準整備、トレーサビリティ体系維持トレーサビリティを確保した参照標準物質、および値付け技術の研究・開発と移転、測定の不確さ評価、分析
, <u>.</u>	標準物質	法の妥当性評価
化学計測	無機分析	元素とイオンの計測と標準のためのSIトレーサブルな定量法、電気伝導率の計測と一次標準の確立 天然ガス成分分析装置のバリデーション用SIトレーサブルな混合標準ガスの開発、海外における分析方・解
	エネルギー	析方法の高精度化への対応
環境化学計測	大気環境分析	ガス分析装置用の高感度分析、ゼロガス評価方法の確立、標準物質の整備・維持、標準ガス調製法の多様化、およびFTIR、GC-TCD用の標準ガス開発
医薬・医療計測	自動車関連 生化学検査	車内空気モニター用標準物質の調製法 標準物質のSIへのトレーサビリティ確保
バイオ食品計測	食品分析	食品用標準物質開発技術、健康食品の含量標準の開発、計測結果の信頼性向上、簡易校正技術の開発
	液中粒子計測	平均粒径標準、粒径分布標準、拡散係数標準の開発と維持供給 動的光散乱装置用の液中微粒子校正技術の確立と供給、 ICP・XRF・各種分光法用のコンポジット粒子における構成成分評価法の確立
先端材料計測	高分子分子特性	単一分子量標準物質、ポリスチレン(低分子量)標準物質、静的光散乱標準物質(有機溶媒系)、静的光散乱標準物質の開発と供給、分光スペクトル計測装置: 蛍光発光分析の量子収率計測用各種波長における量子効率計測用標準物質の開発
	組成比	EPMA用の炭素鋼中の炭素濃度決定のための標準物質の開発、 EPMA、XRF用の構成元素濃度の決定のための標準物質の開発
1 1 트	構造解析	インフラモニタリング装置用光ファイバセンサ用のセンサ信号の正確度と再現性評価とその規格化
計量	規格適合	ピペット及びマイクロピペット用の微少体積標準を質量標準により開発、標準供給の開始

普及のための共通基盤(3/4)

大分類	中分類	技術課題
史的には1993年に計測に関	わる7つの主要国際機関から	長わす尺度。計量標準総合センター(NMIJ)で発行する校正証明書には、すべて不確かさが表記されている。歴 5共同で「計測における不確かさの表現ガイド(GUM)」として提案され、計測によって得られる知識の曖昧さを定近〈GUM-IIIが発行される予定である。ここには、GUMの不確かさ、同等性評価にかかわる共通的なものといく
データ解析	不確かさ、同等性評価	不確かさ関連技術の規格化のためGUM/VIM改訂、GUM補足文書発行 不確かさ評価技術として複雑な測定系での評価技術開発、トレーサビリティ下流での評価の簡易化、不確か さの定量的利用技術開発
	距離	光波距離計、GPS距離計、絶対距離計の座標測定の不確かさ低減
長さ計測	三次元座標計測	座標測定機(CMM)、非接触座標測定機(移動機構無)、アーム式座標測定機、レーザ・トラッカ、レーザ・レーダ、、非球面・自由形状測定機、工業用X線CT装置、非接触座標測定機(移動機構無)の不確かさ算出手法確立
	幾何偏差	触針式粗さ計用の計算機によるシミュレーション技術を用いた表面性状における不確かさの評価
	低真空、中真空	隔膜真空計、スピニングローター真空計などの規格の発行と国際整合化(比較校正方法での測定の不確かさの求め方、ISO/PRF TS 27893)
圧力計測	高真空、超高真空 極高真空	電離真空計の技術の進展を反映した規格の制定と規格の国際整合化(複合真空計・Crossed field ionization gauges •Ionization gauges with emissive cathodesの仕様の明確化と測定不確かさ)
	その他(圧力標準器)	重錘形圧力天びん、圧力センサを用いた低圧力標準の制定と維持、高度化(低圧力への範囲拡大、真空領域との整合性、不確かさ減少)
物性計測	粘度	細管式粘度計の温度測定不確かさ低減、表面張力補正による不確かさの低減、高粘度測定の不確かさ低減
	ニュートン粘度	水の粘度絶対値(ISO TR3666)の不確かさ低減
電波・電界・磁界	アンテナ係数 サイトアッテネーション	ダイポールアンテナ標準、モノポールアンテナ標準の不確かさの低減 サイトアッテネーション測定の不確かさ評価技術確立
电水 电外 脳が	磁界強度	低周波磁界強度標準の不確かさ低減
有機分析計測	定量NMR	気信号の安定的な受信システムの構築、定量における相対不確かさのレベル(H-1 NMR)、より精確な不確かさの積算と全体の不確かさ軽減
規格(JIS,ISO) 計量標準を整備することは、 ので、間接的にそれらを補完 す役割は大きい。	校正用の標準供給のみでなまする役目を担う。またJIS規	くJIS規格の技術的評価基準を与える場合がある。JIS規格の多くは強制法規や他の規格にも引用されている 格は国際規格(ISO)との整合化も進めており、国際基準認証の技術基準にもなっているので計量標準の果た
	低・中真空	規格の発行と国際整合化(JIS Z8750, ISO/TS3567真空計校正方法、ISO/PRF TS 27893スピニングロータ真空計・ピラニ真空計・複合真空計・隔膜真空計の仕様の明確化と測定不確かさ、JIS Z8753熱伝導真空計による圧力測定方法)、JIS B8317-1,-2、ISO 1608-1,-2規格運用のための技術開発(蒸気噴射真空ポンプー性能試験方法)
		規格の改定と国際整合化(ISO 5302ターボ分子ポンプの性能試験方法、ISO 21360排気ポンプの性能試験方法、JIS B8316-1,-2、ISO 21360-2、ISO 1607-1,-2容積移送式真空ポンプ-性能試験方法)
	高、超高、極高真空	規格の改定と規格の国際整合化(JIS Z8750、ISO/TS 3567真空計校正方法、ISO/DIS 27894電離真空計の 仕様、ISO 5302ターボ分子ポンプの性能試験方法、)
圧力計測	分圧	規格の制定と規格の国際整合化(JIS Z8750、ISO/TS 3567真空計校正方法、ISO 5302ターボ分子ポンプの性能試験方法)
	リーク、ガス放出	技術の進展を反映した規格の制定化(JIS Z 2330ヘリウム漏れ試験方法の種類およびその選択、JIS Z2332 放置法による漏れ試験方法) 規格の円滑な運用のための技術開発(JIS Z2329発泡漏れ試験方法、JIS Z2331ヘリウム漏れ試験方法、JIS
	その他(圧力計、圧力センサ)	Z2333アンモニア漏れ試験方法) JISB7547デジタル圧力計の特性試験方法及び校正方法、JISB7505-1,-2,-3アネロイド型圧力計、 JISB9939-2油圧ー測定技術-第2部(管路における平均定常圧力の測定)、JISC1031工業プロセス用圧力・ 差圧伝送器の試験方法、JISE4118鉄道車両用ブルドン管圧力計、JISF7003船舶—圧力計の装備基準、 JISZ8817可燃性粉じんの爆発圧力及び圧力上昇速度の測定方法
音響·超音波·振動計測	音速	超音波探傷試験として、JIS Z2344金属材料のパルス反射法による超音波探傷試験方法通則、JIS Z2345超音波探傷試験用標準試験片、JIS Z3060鋼溶接部の超音波探傷試験方法、JIS Z3080アルミニウムの突合せ溶接部の超音波斜角探傷試験方法、JIS Z3081アルミニウム管溶接部の超音波斜角探傷試験方法、JIS Z2355超音波パルス反射法による厚さ測定方法
硬さ計測	硬さ	硬さ試験法として、JIS Z2243ブリネル硬さ、JIS Z 2244ビッカース硬さ、JIS Z2245ロックウェル硬さ試験方法による標準維持・拡大
動的強度計測	衝撃吸収エネルギー	シャルピー衝撃試験法として、JIS Z 2242金属材料のシャルピー衝撃試験法による法・規制への対応
流量計測	液体(水)流量	JIS B7553開水路流量計による工業排水流量、ダムの放水流量などの高精度計測
物性計測	熱物性	標準物質・標準データとして比熱容量標準物質・熱量標準物質の多様化、標準化(JIS・ISO)、標準物質(高温・バルク)の使用温度範囲の拡張、標準物質の多様性確保、正確な値付け・不確かさ評価、SIトレーサビリティ、安定性・均質性、薄膜熱物性測定装置の測定手法の標準化(JIS・ISO)
データ解析	ニュートン粘度 不確かさ、同等性評価	ISO TR3666の改訂、JIS等現有規格の改訂、評価・測定法の規格化 新JISマーク表示制度の要請によるISO/IEC17025対応、量別規格の原案作成者への助力
計量	分銅関連 適合性評価	JIS B7611の改善、JIS B 7525比重浮ひょうの改善 OIML R117:2007燃料油メータ電子装置への対応、OIML R117/118自動車等給油メーターに対応するJIS B 8572の改善 JIS B8570水道メータの改善 JIS B8570水道メータの改善 JIS B7550積算熱量計の改善、JIS C1609およびJIS C7612照度計の改善、JIS B7502およびJIS B7505アネロイド型圧力計の改善 JIS B7611非自動はかりの改善、JIS B7613家庭用はかりの改善
		JIS T115電子血圧計の改善、JIS T4203血圧計の改善、JIS T1140体温計の改善
		JIS B7981大気濃度計の改善、JIS K0311pH計の改善
	規格適合	OIML R60に対応するJIS B7612質量計用ロードセルの改善 OIML R50, 51, 61, 106, 107, 134に対応する各種JIS(国際規格とJISの適用範囲が不一致)の改善

OIML R50, 51, 61, 106, 107, 134に対応する各種JIS(国際規格とJISの適用範囲が不一致)の改善

普及のための共通基盤(4/4)

大分類	中分類	技術課題	
データベース			
計量標準にかかわる物質探	素のために熱物性や化学物質	質の分光スペクトルデータベースの整備をすすめている。	
音響·超音波·振動計測	音圧	低周波音レベル計および空中超音波測定器のための国家標準に基づくデータの蓄積、低周波騒音の安全 基準策定	
動的強度計測	衝撃吸収エネルギー	構造物安全性評価のための構造用鋼材料の高ひずみ速度下での変形特性の評価とデータベース構築、高 ひずみ速度データと試験法のための輸送機器のクラッシュモデリングのための高ひずみ速度下での変形特 性の評価とデータベース構築	
		関係機関におけるコンセンサスの形成、計測器と解析ソフトを結ぶ熱物性データ解析共通フォーマット作成 比熱容量標準物質・熱量標準物質の多様化、標準物質・標準データの整備	
物性計測	熱物性	先端材料および基礎的材料データとしての熱物性データベースの体系的整備	
		先端材料データおよび基盤的材料データとして物性全般およびナノ材料データベースの体系的整備、次世代デバイスの放熱技術のための先端材料データおよび基盤的材料データの体系的整備	
放射線計測	新しい放射線	加速器ベースの新しい放射性医薬品の検査、放射線関連の基礎データと相互作用の基礎データの詳細化	
バイオ計測	有機分析	NMRのリソースの削減、信頼性向上、データベース整備	
先端材料計測	分光スペクトル	NMR、蛍光光度スペクトル、原子吸光スペクトル、紫外可視吸光スペクトル、赤外吸収スペクトル、吸光光度 法、原子吸光法、フレーム光度法、ICP発光分光分析法、ICP質量分析法、イオンクロマトグラフ法、イオン電 極法、有機体炭素(TOC)、全酸素消費量(TOD)などの高信頼性のデータ集積	
	分子軌道法、分子力場	ユーザへの計算手法選択指針の提供	
	元素分析	X線吸収構造解析のための放射光応用データベース	
人材育成・技能認証計量・計測システムにかかわ	る人材育成も深刻な問題であ	5り、技術者育成とともに技能認定制度の制度化を試みている段階である。	
長さ計測	三次元座標計測	座標測定機(CMM)の技能認定制度の確立	
圧力計測	リーク、ガス放出	リーク、ガス放出速度の測定の技能認定制度、人材育成	
データ解析	不確かさ、同等性評価	不確かさ評価技術者の養成	
ソフトウェア認証			
		当性を検証し、認証するソフトウェア認証は緒についたばかりであるが、今後重要性を増すものと考えられる。	
計量	適合性評価	JIS B7612質量計用ロードセルを、OIML D31ソフトウエア基準による改善	