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An Overview of NQR Signal Detection
Algorithms

Naveed R. Butt, Erik Gudmundson, and Andreas Jakobsson

Abstract Nuclear quadrupole resonance (NQR) is a solid-state radio frequency
spectroscopic technique that can be used to detect the presence of quadrupolar
nuclei, that are prevalent in many narcotics, drugs, and explosive materials. Sim-
ilar to other modern spectroscopic techniques, such as nuclear magnetic resonance,
and Raman spectroscopy, NQR also relies heavily on statistical signal processing
systems for decision making and information extraction. This chapter provides an
overview of the current state-of-the-art algorithms for detection, estimation, and
classification of NQR signals. More specifically, the problem of NQR-based detec-
tion of illicit materials is considered in detail. Several single- and multi-sensor al-
gorithms are reviewed that possess many features of practical importance, including
(a) robustness to uncertainties in the assumed spectral amplitudes, (b) exploitation
of the polymorphous nature of relevant compounds to improve detection, (c) ability
to quantify mixtures, and (d) efficient estimation and cancellation of background
noise and radio frequency interference.
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Sweden, e-mail: {naveed, erikg, aj}@maths.lth.se. This work was supported in part by the Eu-
ropean Research Council (ERC Grant Agreement n. 261670), the Swedish Research Council, and
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1 Introduction

Nuclear quadrupole resonance (NQR) is a solid-state radio frequency (RF) spectro-
scopic technique that can be used to detect the presence of quadrupolar nuclei, for
example 14N, an element contained in many high explosives [1–5]. Furthermore, as
quadrupolar nuclei are prevalent in many narcotics and drugs, NQR can also be used
for drug detection and in pharmaceutical applications [6]. Recently, the technique
has also been discussed in the area of oil drilling and geothermal heat drilling. NQR
is related to both nuclear magnetic resonance (NMR) and magnetic resonance imag-
ing (MRI), but does not require a large static magnetic field to split the energy levels
of the nuclei. This makes it attractive as a non-invasive technique that can be used
for detection of counterfeit medicines, land mines and unexploded ordnances, or
for screening baggage for explosives and narcotics at airports. For instance, the cur-
rent commonly used counterfeit medicine detection technologies generally require
varying degrees of sample pre-treatment or removal of pills from packages [7, 8].
In contrast, portable NQR-based sensors can be developed that custom officers and
other agents of law enforcement can use without having to remove the medicines
from their packaging. In case of explosive detection, contrary to metal detectors
and, for instance, ground penetrating radar (GPR), NQR detects the explosive itself
and its signature is unique; the NQR signal depends on the chemical structure of
the molecule. Hence, in the case of land mine detection, NQR will detect the 14N
of the explosive, without suffering interference from, e.g., any fertilizer in the soil.
Furthermore, metal detectors will have problems in magnetic soil and with mines
containing very little metal1, GPRs in clay or wet soils and with shallow mines. The
NQR technique, on the other hand, suffers mainly from its inherently low signal-to-
noise ratio (SNR), RF interference (RFI), and spurious signals such as piezoelectric
and magnetoacoustic responses, see, e.g., [1, 3]. The low SNR can be remedied by
repeating measurements, as NQR signals can be added coherently (indeed, an NQR
detection system can clear its own false alarms). However, the time needed to guar-
antee accurate detection can be prohibitively long, especially for the case of the
common explosive trinitrotoluen (TNT). RFI, on the other hand, can be alleviated
using proper shielding, which, unfortunately, is only possible in laboratory environ-
ments and not when used in practice. Radio transmissions are extremely problematic
for NQR signals if they lie at or near the expected locations of the NQR resonance
frequencies. This is the case for TNT as it has its resonances in the radio AM band,
often causing the AM signal to effectively mask the weak NQR signal. The remain-
der of this paper focuses on the recent advances on solutions to the aforementioned
problems. We discuss different data acquisition techniques and summarize detector
and interference cancellation algorithms.

1 Data from the Cambodian Mine Action Centre, taken from March 1992 until October 1998,
shows that for every mine found, there was more than 2200 false alarms, mainly due to scrap items
in the ground.



An Overview of NQR Signal Detection Algorithms 3

Time

In
te
n
si
ty

Echo

Echo

Echo

xx xxxx x x x

τ 2τ 2τ 2τ

τ

t0

θ
r

θ
p

θ
r

θ
r

θ
r

Fig. 1 Illustration of a PSL sequence.

2 Signal Models and Data Acquisition

Historically, the NQR signal has been measured as the free induction decay (FID),
which is the response after a single excitation pulse. The FIDs can then be added
coherently to improve the SNR, indicating that an NQR detection system is able to
clear is own false alarms. However, measuring FIDs may not be the best strategy for
compounds with very long spin-lattice relaxation time, T1, as one needs to let the
system fully relax before acquiring another FID. A delay time of 5T1 is normally
required between two excitation pulses, which could be as much as 30 seconds
for substances such as TNT. To improve the SNR per time unit, several multiple
pulse techniques have been proposed, of which the main techniques for detection
and quantitative applications are based on steady-state free precession (SSFP) and
pulsed spin locking (PSL)2 sequences. An example of the former sequence is the
strong off-resonant comb (SORC) [9]. Other SSFP-type sequences have been used
for the detection of cocaine base [6] and the explosive RDX [10]. In the interest
of brevity, we will here not further consider the SSFP techniques, merely noting
that the development for PSL sequences can be paralleled for SSFP sequences. The
signal obtained by PSL sequences consists of echoes that are measured between
a string of pulses [1, 2], see Fig. 1. The sequence consists of a preparatory pulse,
followed by a train of refocusing pulses (i.e., pulses which refocus the transverse
magnetization to produce an echo), written as

θ
p
6 p

—
(

tsp — θ
r
6 r

— tsp

)
M
, (1)

where θ p and θ r denote the flip angles of the preparatory and refocusing pulses,
respectively, while 6 p and 6 r denote their associated RF phases. Moreover, M is
the number of refocusing pulses, or, equivalently, the number of echoes, and tsp

2 The PSL sequence is sometimes referred to as the spin-locking spin-echo (SLSE) sequence.



4 Naveed R. Butt, Erik Gudmundson, and Andreas Jakobsson

Fig. 2 Illustration of the real part of a typical echo train.

is the time (normalized with respect to the dwell time) between the center of the
preparatory pulse and the center of the first refocusing pulse. This generates a train
of echoes, see Fig. 2, where each individual echo can be well modeled as a sum of d
exponentially damped sinusoids. In [11], the authors proposed the following model
for the mth echo in the echo train:

ym(t) =
d

∑
k=1

αke−ηk(t+mµ)e−βk|t−tsp|+iωk(T )t +wm(t), (2)

where m = 0, . . . ,M− 1 is the echo number; t = t0, . . . , tN−1 denotes the sampling
time, measured with respect to the center of the refocusing pulse and typically start-
ing at t0 6= 0 to allow for the deadtime between the pulse and the first measured sam-
ple; αk, βk, ηk, and ωk(T ) denote the complex amplitude, the sinusoidal damping
constant, the echo-train damping constant, and the temperature dependent frequency
shifting function of the kth sinusoid, respectively. Moreover, wm(t) denotes an ad-
ditive colored noise, which often can be modeled using a low order autoregressive
model [11, 12]. It is important to note that the number of sinusoids, d, and the fre-
quency shifting function, ωk(T ), can generally be assumed to be known. For many
compounds, such as TNT and RDX, ωk(T ) is a linear function of the temperature T
at likely temperatures [13]. In Fig. 3, a periodogram spectrum of an averaged NQR
signal from a shielded TNT sample is displayed. The above mentioned acquisition
techniques, which we term conventional, or classical, NQR (cNQR), use powerful
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Fig. 3 Illustration of the periodogram spectrum of an NQR signal from a TNT sample.

coherent RF modulated pulses to interrogate the sample. Alternatively, one can use
stochastic excitation, where the excitation sequence consists of trains of low power
coherent pulses whose phases or amplitudes are randomized [14,15]. This technique
is in the following termed stochastic NQR (sNQR). Provided the pulses are suffi-
ciently weak, the sNQR system can be treated as linear and time invariant. Hence,
cross-correlation of the observed time domain signal with the pseudo-white input
sequence will produce an FID which can be well modeled as [15]

y(t) =
d

∑
k=1

αke[−βk+iωk(T )]t +w(t), (3)

where t = t0, . . . , tN−1. As it is not possible to acquire the signal when shooting a
pulse, the FID obtained using sNQR will contain gaps and the signal will consist
of blocks of regularly sampled data. Furthermore, the time between the first sample
of each block is often not an integer multiple of the inter-sampling time within the
blocks. In [16], the authors proposed, for NMR, to fill the gaps by repeating the
measurements with different experimental settings so that the gaps occur at differ-
ent times. The different signals can then be stitched together. This technique is slow
and is therefore not recommended. As sNQR uses low power pulses, it has the ad-
vantage, as compared to cNQR, that it can be used to interrogate samples hidden on
people and that it simplifies the construction of light-weighted, man-portable detec-
tors for use in, e.g, land mine detection. Another advantage with sNQR is that the
problem of waiting 5T1 between the measurements that is needed in cNQR is alle-
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Fig. 4 ROC curves comparing state-of-the-art cNQR detectors, using partially shielded measured
TNT data.

viated, and the data can, in principle, be acquired continuously. Furthermore, due
to the cross-correlation, sNQR measurements are less affected by RFI and spurious
signals as compared to cNQR. The advantage of cNQR over sNQR is primarily the
higher SNR. Several compounds of interest appears in different crystalline struc-
tures, or polymorphs. For example, the explosive TNT exists in orthorhombic and
monoclinic polymorphs, and the proportions are often not known [4]. Searching for
monoclinic TNT when the explosive contains a mixture of both can severely dete-
riorate the detection peformance [17, 18]. Sometimes the explosive is a mixture of
several explosives, e.g., TNT and RDX [19]. In [17, 18], the authors proposed the
following signal model for the mth echo of PSL data from a mixture of different
explosives or polymorphs, or both:

ym(t) =
P

∑
p=1

γpy(p)
m (t)+wm(t), (4)

where y(p)
m (t) is defined as in (2) with the addition that the model parameters depend

on the pth polymorph, and where γp denotes the proportion of the pth polymorph.
We also note that in pharmaceutical applications, it is sometimes important to know
the amount of each polymorph [20, 21].
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Fig. 5 ROC curves comparing state-of-the-art cNQR detectors, using partially shielded measured
TNT data.

3 Detectors

During the last ten years, several NQR detectors have been proposed; however, most
of them do not fully exploit the richness of the NQR model. For example, the de-
modulated approach (DMA) detects only one single resonance frequency. Recently,
more effective detectors have been proposed, exploiting more features in the NQR
model. In [22], the authors proposed using the echo train model (2) together with a
matched filter; in [11, 15, 17, 23, 24], generalized likelihood ratio tests were used in
combination with the models presented in Section 2. Commonly, the amplitudes of
the NQR signal were considered known to a multiplicative factor; however, in prac-
tice, this would not be the case in most realistic scenarios as the field at the sample
will vary, causing variations in the NQR signal amplitudes. In [25], this was reme-
died by allowing for uncertainties in the amplitudes, introducing the FRETAML
detector. Figures 4 - 6 display the performance of some of the current state-of-the-
art cNQR detectors, applied on partially shielded measured data. The FETAML and
ETAML detectors are both derived using model (2), whereas FSAML and AML
do not fully exploit the echo train structure. All four algorithms assume the am-
plitudes to be fully known, as compared to FRETAML. Furthermore, FETAML
and FSAML are frequency selective. In order to utilize the possibly polymorphic
structure of compounds, an extension of FETAML, termed FHETAML, was devel-
oped in [17]. FHETAML utilizes the polymorphic model in (4). In [24], FHETAML
was generalized to allow for uncertainties in the assumed signal amplitudes, lead-



8 Naveed R. Butt, Erik Gudmundson, and Andreas Jakobsson

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Probability of false alarm

P
ro

b
a
b
ili

ty
 o

f 
d
e
te

c
ti
o
n

FRETAML

FLSETAML

FETAML

0 0.1 0.2 0.3 0.4
0.7

0.75

0.8

0.85

0.9

0.95

Fig. 6 ROC curves comparing state-of-the-art cNQR detectors, using partially shielded measured
TNT data.

ing to the REMIQS detector. Typical comparative performance of the FHETAML
and REMIQS detectors is shown in Fig. 7, where LS-FHETAML is a variant of
FHETAML that does not assume any prior knowledge of the relative signal am-
plitudes. Common analysis and detection algorithms for echo-train data, including
the ones discussed above, require some initial estimates of the expected echo de-
cay within each echo, as well as the overall echo-train decay. Also, the number of
frequency components needs to be specified. One way to retrieve initial estimates,
and at the same time estimate the number of frequency components, is to use non-
parametric data-adaptive estimators, such as the ones based on the Capon, APES,
and IAA algorithms [?, 26]. The downside with these algorithms is that they are
not able to estimate the finer structure of the echo train. To alleviate this problem,
the so-called ET-CAPA algorithm was recently introduced in [27], which takes the
whole echo train structure into account and estimates the damping constants for
every component present in the signal. NQR measurements are often highly con-
taminated by powerful interference, and depending on the power and frequency of
the interference, detection may be very difficult. ET-CAPA is more resilient to in-
terference and manages to visualize both the interference and the signal of interest.
This is depicted in Fig. 8 for an experimentally realistic methamphetamine NQR
signal corrupted by several sinusoidal interferences. The signal of interest is located
in the middle of the plot at a damping of 0.01. Even though the interference is 40
dB stronger than the signal of interest, the plot shows that the amplitudes of the
interference and the signal of interest are of almost the same magnitude. This is
due to the interference cancellation power of the ET-CAPA estimator, making the
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Fig. 7 Plots illustrating probability of detection as a function of the amplitude uncertainty level,
ν , for probability of false alarm = 2%.

signal easier to locate. The algorithm is also suitable when faced with a new or an
unknown substance. In a typical NQR detection setup, one may first use ET-CAPA
to get initial estimates to limit the search space, and then use previously discussed
parametric methods to obtain more precise results. An alternative way to form the
initial estimates of the expected echo decay and the overall echo-train decay is to
use the parametric ET-ESPRIT estimator [28]. This is a computationally and statis-
tically efficient estimator that assumes that the measured signal can be well modeled
using (2), and that the additive noise may be approximated as being white, although
it has been found that the estimator finds reasonably accurate estimates even in cases
when these assumptions are somewhat violated. In the same work, the theoretically
lower limit on the parameter’s estimation variance is also presented, which may be
useful in, for example, determining an appropriate SNR to achieve a desired estima-
tion or classification accuracy. An example of how this can be done was discussed
in [29], where the possible classification of different manufacturers of paracetamol
was examined using such a theoretical expression. As for sNQR systems, there are
notably fewer detector algorithms published and the most efficient seems to be the
method published in [15]. This detector, as well as the ones shown in Figures 4-6
and Fig. 9, are CFAR, i.e., they have constant false alarm rate with respect to the
power of the additive white noise. An alternative sNQR detector is also the below
discussed interference-resilient REWEAL detector, which was presented in [30].
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Fig. 8 The amplitude landscape for an echo-averaged experimentally realistic methamphetamine
NQR signal corrupted by sinusoidal interferences.

4 Interference Rejection

One of the major concerns with NQR is the interference, both from RFI and from
piezoelectric and magnetoacoustic responses caused by, e.g., sand or by metal. To
remedy this, one idea is to use frequency selective algorithms, such as the one intro-
duced in [25]. As the frequency shifting functions are known and the temperature is
approximately known, the idea is to operate only on a subset of possible frequency
grid points. This not only makes it possible to omit frequencies where interference
signals are located, but also substantially reduces the computational complexity. In
this section, we consider single-sensor detection algorithms, proceeding in the next
section to also consider detectors based on spatial diversity. In [15, 31], the authors
proposed highly efficient projection algorithms to remove interference signals, us-
ing the idea that secondary data, i.e., signal-of-interest (SOI) free data, can easily
be acquired without additional hardware. In sNQR, only a very small amount of
the data contains the FID, the rest can be considered secondary data; in cNQR, sec-
ondary data can be acquired by continuing the measurement after the pulsing has
ceased. This information is used to construct an interference subspace, to which
the signal is then projected orthogonally, removing the RFI components. The detec-
tors based on these principles have shown extremely good interference cancellation
properties, and simulations show that interference-to-signal ratios (ISRs) of 60 dB
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simulated data with SNR = -28 dB.

are easily cancelled [15], without losing much detection performance; see Fig. 9,
where SEAQUER denotes the projection algorithm, RTDAML is a detector where
the data was prewhitened using a covariance matrix estimated from the secondary
data, and RETAML is the non-frequency selective version of FRETAML. Note that
the SNR is defined as the ratio of the energy of the noise-free signal and the en-
ergy of the noise. The main limitation of SEAQUER is that it does not work well
when the SOI contains mixed NQR signals (e.g., from different polymorphic forms
of the same substance). In order to remove this limitation, a generalization of SEA-
QUER, termed RESPEQ, was presented in [32]. The performance of the RESPEQ
algorithm is shown in Fig. 10, where it is also compared to other state-of-the-art
detection algorithms described previously. REMIQS, discussed in the previous sec-
tion, takes the full polymorphic structure of the signal into account, but does not
have support for dealing with the strong RFI. The suffixes (m) and (o) refer to de-
tection of the monoclinic and the orthorhombic parts of the signal, respectively. As
is seen from the figure, RESPEQ offers the best performance as it can take all poly-
morphs into account as well as have an effective interference rejection support. In
both SEAQUER and RESPEQ, it is assumed that the SOI and the RFI reside in low
dimensional signal and interference subspaces. For various reasons, such as devi-
ations in the assumed SOI and uncertainty in the estimated interference subspace
due to finite sample effects, the SOI and RFI may, however, deviate from their as-
sumed subspaces. These errors may be in the measurements or in estimations of the
subspaces, but they can alternatively be viewed as uncertainties in the subspaces.
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In [30], in order to compensate for these errors, the authors allowed for a small part
of the energy in the signals to be outside the subspaces, leading to the REWEAL
detector. REWEAL carries out interference rejection by constructing hyper-cones
around the subspaces and searching for the SOI and RFI in these cones instead of
in the subspaces, and is particularly useful when only small amounts of secondary
data are available.

5 Multi-Channel Detectors

Using multiple antennas for efficient interference rejection in NQR-based detection
has been proposed in several papers, e.g., [19, 24, 33–36], and has shown good RFI
mitigation properties. Typically, one antenna is used to acquire the NQR signal and
the others measure the background interference and noise. This information is then
used to improve the detection. Among these, the NLS detector and the frequency-
selective FSMC detector developed in [37], are based on the structured NQR sig-
nal model (2), and exploit the fact that the shifts of the spectral lines depend in a
known way on temperature. In [24], FSMC is generalized to include polymorphism
and to also allow for amplitude uncertainties, leading to the ESPIRE detector. Fig-
ures 11 and 12 compare the different multi-channel detectors, including the alter-
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Fig. 11 Plots illustrating probability of detection as a function of the uncertainty level, ν , for
probability of false alarm = 8%, SNR = -36dB, with no RFI.

nating least squares (ALS) and the model-mismatched maximum likelihood (M3L)
detectors, both presented in [34], and the NLS, FSMC, and ESPIRE detectors. The
NLS, FSMC and ESPIRE algorithms allow for a temperature uncertainty region of
±10 K around the true temperature, as well as large search regions over the damp-
ing and echo damping constants. On the other hand, the ALS and M3L detectors
assume perfect knowledge of the nonlinear parameters. To mimic a more realistic
scenario, however, the figures also include results for ALS and M3L for a 5 degrees
(K) offset. In a more recent work, [38] have introduced the NORRDIQ detector,
that extends and improves ESPIRE by exploiting secondary data to estimate the
interference subspace.

6 Concluding Remarks

In this chapter, we have discussed recent advances in the detection, classification,
and identification of explosives, narcotics, and counterfeit medicines using NQR,
giving an overview of the data acquisition techniques and their mathematical mod-
els. Furthermore, we have overviewed a variety of different detector and interference
cancellation algorithms and compared them on both measured and simulated data.
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