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Preface

This book provides an introduction to Number Theory from a point of view that

is more geometric than is usual for the subject, inspired by the idea that pictures

are often a great aid to understanding. The title of the book Topology of Numbers is

intended to express this visual slant, where we are using the term “Topology" with its

general meaning of “the spatial arrangement and interlinking of the components of a

system" rather than its standard mathematical meaning involving open sets, etc.

The principal geometric theme is a certain two-dimensional figure known as the

Farey diagram, discovered by Adolf Hurwitz in 1894, which displays certain relation-

ships between rational numbers beyond just their usual distribution along the one-

dimensional real number line. Among the many things the diagram elucidates that

will be explored in this book are Pythagorean triples, the Euclidean algorithm, Pell’s

equation, continued fractions, Farey sequences (of course!), two-by-two matrices with

integer entries and determinant ±1, and best of all, quadratic forms in two variables

with integer coefficients, thanks to John Conway’s marvelous idea of the topograph

of such a form. A good part of the book is devoted to this last topic, and in fact an

alternative title for the book might have been “The Topography of Numbers".

Besides the goal of making the Farey diagram more widely known, our second aim

is to make the elementary theory of two-variable quadratic forms more accessible to

students. The origins of this wonderfully subtle theory can be traced back to ancient

times, and a big boost was provided in the 1600s by Fermat, but it was only in the

period 1750-1800 that Euler, Legendre, Lagrange, and especially Gauss were able to

uncover the main features of the theory. The later chapters of the book provide an

introduction to this material.

Prerequisites for reading the book are fairly minimal, hardly going beyond high

school mathematics for the most part. One topic that often forms a significant part

of elementary number theory courses is congruences modulo an integer n . It would

be helpful if the reader has already seen and used these a little, but we will not de-

velop congruence theory as a separate topic and will instead just use congruences

as the need arises, proving whatever nontrivial facts are required including several

of the basic ones that form part of a standard introductory number theory course.

Among these is quadratic reciprocity, where we give Eisenstein’s classical proof since

it involves some geometry.
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Chapter 0: A Preview

Pythagorean Triples

As an introduction to the sorts of questions that we will be studying, let us con-

sider right triangles whose sides all have integer lengths. The most familiar example

is the (3,4,5) right triangle, but there are many others as well, such as the (5,12,13)

right triangle. Thus we are looking for triples (a, b, c) of positive integers such that

a2 + b2 = c2 . Such triples are called Pythagorean triples because of the connection

with the Pythagorean Theorem. Our goal will be a formula that gives them all. The

ancient Greeks knew such a formula, and even before the Greeks  the ancient Baby-

lonians must have known a lot about Pythagorean triples because one of their clay

tablets from nearly 4000 years ago has been found which gives a list of 15 differ-

ent Pythagorean triples, the largest of which is (12709,13500,18541) . (Actually the

tablet only gives the numbers a and c from each triple (a, b, c) for some unknown

reason, but it is easy to compute b from a and c .)

There is an easy way to create infinitely many Pythagorean triples from a given

one just by multiplying each of its three numbers by an arbitrary number n . For

example, from (3,4,5) we get (6,8,10) , (9,12,15) , (12,16,20) , and so on. This

process produces right triangles that are all similar to each other, so in a sense they

are not essentially different triples. In our search for Pythagorean triples there is

thus no harm in restricting our attention to triples (a, b, c) whose three numbers

have no common factor. Such triples are called primitive. The large Babylonian triple

mentioned above is primitive, since the prime factorization of 13500 is 223353 but

the other two numbers in the triple are not divisible by 2, 3, or 5.

A fact worth noting in passing is that if two of the three numbers in a Pythagorean

triple (a, b, c) have a common factor n , then n is also a factor of the third number.

This follows easily from the equation a2 + b2 = c2 , since for example if n divides a

and b then n2 divides a2 and b2 , so n2 divides their sum c2 , hence n divides c .

Another case is that n divides a and c . Then n2 divides a2 and c2 so n2 divides

their difference c2−a2 = b2 , hence n divides b . In the remaining case that n divides

b and c the argument is similar.

A consequence of this divisibility fact is that primitive Pythagorean triples can also

be characterized as the ones for which no two of the three numbers have a common

factor.

If (a, b, c) is a Pythagorean triple, then we can divide the equation a2+b2 = c2 by

c2 to get an equivalent equation
(a
c

)2
+
(b
c

)2
= 1. This equation is saying that the point

(x,y) =
(a
c ,

b
c

)
is on the unit circle x2 + y2 = 1 in the xy -plane. The coordinates

a
c and

b
c are rational numbers, so each Pythagorean triple gives a rational point on

the circle, i.e., a point whose coordinates are both rational. Notice that multiplying
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each of a , b , and c by the same integer n yields the same point (x,y) on the circle.

Going in the other direction, given a rational point on the circle, we can find a common

denominator for its two coordinates so that it has the form
(a
c
, b
c

)
and hence gives a

Pythagorean triple (a, b, c) . We can assume this triple is primitive by canceling any

common factor of a , b , and c , and this doesn’t change the point
(a
c ,

b
c

)
. The two

fractions
a
c and

b
c must then be in lowest terms since we observed earlier that if two

of a , b , c have a common factor, then all three have a common factor.

From the preceding observations we can conclude that the problem of finding

all Pythagorean triples is equivalent to finding all rational points on the unit circle

x2 +y2 = 1. More specifically, there is an exact one-to-one correspondence between

primitive Pythagorean triples and rational points on the unit circle that lie in the

interior of the first quadrant (since we want all of a,b, c, x,y to be positive).

In order to find all the rational points on the circle x2 + y2 = 1 we will use

a construction that starts with one rational point and creates many more rational

points from this one starting point. The four obvious rational points on the circle are

the intersections of the circle with the coordinate axes, which are the points (±1,0)

and (0,±1) . It doesn’t really matter which

one we choose as the starting point, so let’s

choose (0,1) . Now consider a line which

intersects the circle in this point (0,1) and

some other point P , as in the figure at the

right. If the line has slope m , its equa-

P

0r( ),

10( ),

tion will be y =mx + 1. If we denote the

point where the line intersects the x -axis

by (r ,0) , then m = −1/r so the equation for the line can be rewritten as y = 1−
x
r .

To find the coordinates of the point P in terms of r we substitute y = 1−
x
r into the

equation x2 + y2 = 1 and solve for x :

x2 +

(
1−

x

r

)2

= 1

x2 + 1−
2x

r
+
x2

r 2
= 1

(
1+

1

r 2

)
x2 −

2x

r
= 0

(
r 2 + 1

r 2

)
x2 =

2x

r

x =
2r

r 2 + 1
or x = 0

Now we plug x =
2r

r 2 + 1
into the formula y = 1−

x
r . This gives:

y = 1−
x

r
= −

1

r

(
2r

r 2 + 1

)
+ 1 =

−2

r 2 + 1
+ 1 =

r 2 − 1

r 2 + 1
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Summarizing, the coordinates (x,y) of the point P are given by the following for-

mula:

(x,y) =

(
2r

r 2 + 1
,
r 2 − 1

r 2 + 1

)

Note that when x = 0 there are two points (0,±1) on the circle. The point (0,−1)

comes from the value r = 0, while if we let r approach ±∞ then the point P ap-

proaches (0,1) , as we can see either from the picture or from the formula for (x,y) .

If r is a rational number, then the formula for (x,y) shows that both x and y

are rational, so we have a rational point on the circle. Conversely, if both coordinates

x and y of the point P on the circle are rational, then the slope m of the line must

be rational, hence r must also be rational since r = −1/m . We could also solve the

equation y = 1−
x
r for r to get r = x

1−y , showing again that r will be rational if x

and y are rational (and y is not 1). The conclusion of all this is that, starting from

the initial rational point (0,1) we have found formulas that give all the other rational

points on the circle.

Since there are infinitely many choices for the rational number r , there are in-

finitely many rational points on the circle. But we can say something much stronger

than this: Every arc of the circle, no matter how small, contains infinitely many rational

points. This is because every arc on the circle corresponds to an interval of r -values

on the x -axis, and every interval in the x -axis contains infinitely many rational num-

bers. Since every arc on the circle contains infinitely many rational points, we can say

that the rational points are dense in the circle, meaning that for every point on the

circle there is an infinite sequence of rational points approaching the given point.

Now we can go back and find formulas for Pythagorean triples. If we set the

rational number r equal to p/q with p and q integers having no common factor,

then the formulas for x and y become:

x =
2
(p
q

)

p2

q2 + 1
=

2pq

p2 + q2

y =

p2

q2 − 1

p2

q2 + 1
=
p2 − q2

p2 + q2

Our final formulas for Pythagorean triples are then:

(a, b, c) = (2pq,p2 − q2, p2 + q2)

Here are a few examples with small values of p and q :
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(p, q) (x,y) (a, b, c)

(2,1) (4/5,3/5) (4,3,5)

(3,1)∗ (6/10,8/10)∗ (6,8,10)∗

(3,2) (12/13,5/13) (12,5,13)

(4,1) (8/17,15/17) (8,15,17)
(4,3) (24/25,7/25) (24,7,25)

(5,1)∗ (10/26,24/26)∗ (10,24,26)∗

(5,2) (20/29,21/29) (20,21,29)

(5,3)∗ (30/34,16/34)∗ (30,16,34)∗

(5,4) (40/41,9/41) (40,9,41)
(6,1) (12/37,35/37) (12,35,37)

(6,5) (60/61,11/61) (60,11,61)
(7,1)∗ (14/50,48/50)∗ (14,48,50)∗

(7,2) (28/53,45/53) (28,45,53)
(7,3)∗ (42/58,40/58)∗ (42,40,58)∗

(7,4) (56/65,33/65) (56,33,65)
(7,5)∗ (70/74,24/74)∗ (70,24,74)∗

(7,6) (84/85,13/85) (84,13,85)

The starred entries are the ones with nonprimitive Pythagorean triples. Notice that

this occurs only when p and q are both odd, so that not only is 2pq even, but also

both p2−q2 and p2+q2 are even, so all three of a , b , and c are divisible by 2. The

primitive versions of the nonprimitive entries in the table occur higher in the table,

but with a and b switched. This is a general phenomenon, as we will see in the course

of proving the following basic result:

Proposition. Up to interchanging a and b , all primitive Pythagorean triples (a, b, c)

are obtained from the formula (a, b, c) = (2pq,p2 − q2, p2 + q2) where p and q

are positive integers, p > q , such that p and q have no common factor and are of

opposite parity (one even and the other odd).

Proof : We need to investigate when the formula (a, b, c) = (2pq,p2 − q2, p2 + q2)

gives a primitive triple, assuming that p and q have no common divisor and p > q .

Case 1: Suppose p and q have opposite parity. If all three of 2pq , p2 − q2 , and

p2+q2 have a common divisor d > 1 then d would have to be odd since p2−q2 and

p2+q2 are odd when p and q have opposite parity. Furthermore, since d is a divisor

of both p2−q2 and p2+q2 it must divide their sum (p2+q2)+ (p2−q2) = 2p2 and

also their difference (p2 + q2) − (p2 − q2) = 2q2 . However, since d is odd it would

then have to divide p2 and q2 , forcing p and q to have a common factor (since any

prime factor of d would have to divide p and q ). This contradicts the assumption

that p and q had no common factors, so we conclude that (2pq,p2 − q2, p2 + q2) is

primitive if p and q have opposite parity.

Case 2: Suppose p and q have the same parity, hence they are both odd since if

they were both even they would have the common factor of 2. Because p and q are

both odd, their sum and difference are both even and we can write p + q = 2P and
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p−q = 2Q for some integers P and Q . Any common factor of P and Q would have

to divide P +Q =
p+q

2
+

p−q
2
= p and P −Q =

p+q
2
−

p−q
2
= q , so P and Q have no

common factors. In terms of P and Q our Pythagorean triple becomes

(a, b, c) = (2pq,p2 − q2, p2 + q2)

= (2(P +Q)(P −Q), (P +Q)2 − (P −Q)2, (P +Q)2 + (P −Q)2)

= (2(P2 −Q2),4PQ,2(P2 +Q2))

= 2(P2 −Q2,2PQ,P2 +Q2)

After canceling the factor of 2 we get a new Pythagorean triple, with the first two

coordinates switched, and this one is primitive by Case 1 since P and Q can’t both be

odd, because if they were, then p = P +Q and q = P −Q would both be even, which

is impossible since they have no common factor.

From Cases 1 and 2 we can conclude that if we allow ourselves to switch the first

two coordinates, then we get all primitive Pythagorean triples from the formula by

restricting p and q to be of opposite parity and to have no common factors. ⊔⊓

Rational Points on Other Quadratic Curves

The same technique we used to find the rational points on the circle x2 +y2 = 1

can also be used to find all the rational points on other quadratic curves Ax2+Bxy+

Cy2 +Dx + Ey = F with integer or rational coefficients A , B , C , D , E , F , provided

that we can find a single rational point (x0, y0) on the curve to start the process. For

example, the circle x2+y2 = 2 contains the rational points (±1,±1) and we can use

one of these as an initial point. Taking the point (1,1) ,

we would consider lines y − 1 =m(x − 1) of slope m

passing through this point. Solving this equation for

y and plugging into the equation x2 + y2 = 2 would

produce a quadratic equation ax2 + bx + c = 0 whose

coefficients are polynomials in the variable m , so these

coefficients would be rational whenever m is rational.

From the quadratic formula x =
(
−b±

√
b2 − 4ac

)
/2a we see that the sum of the two

roots is −b/a , a rational number if m is rational, so if one root is rational then the

other root will be rational as well. The initial point (1,1) on the curve x2+y2 = 2 gives

x = 1 as one rational root of the equation ax2+bx+c = 0, so for each rational value

of m the other root x will be rational as well. Then the equation y − 1 =m(x − 1)

implies that y will also be rational, and hence we obtain a rational point (x,y) on

the curve for each rational value of m . Conversely, if x and y are both rational then

obviously m = (y − 1)/(x − 1) will be rational. Thus one obtains a dense set of

rational points on the circle x2 + y2 = 2, since m can be any rational number. An

exercise at the end of this chapter is to work out the formulas explicitly.
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If instead of x2 + y2 = 2 we consider the circle x2 + y2 = 3 then there aren’t

any obvious rational points. In fact this circle contains no rational points at all. For if

there were a rational point, this would yield a solution of the equation a2 + b2 = 3c2

by integers a , b , and c . We can assume a , b , and c have no common factor. Then

a and b can’t both be even, otherwise the left side of the equation would be even,

forcing c to be even, so a , b , and c would have a common factor of 2. To complete

the argument we look at the equation modulo 4. (This means that we consider the

remainders obtained after division by 4.) The square of an even number has the form

(2n)2 = 4n2 , which is 0 modulo 4, while the square of an odd number has the form

(2n + 1)2 = 4n2 + 4n + 1, which is 1 modulo 4. Thus, modulo 4, the left side of

the equation is either 0+ 1, 1+ 0, or 1+ 1 since a and b are not both even. So the

left side is either 1 or 2 modulo 4. However, the right side is either 3 · 0 or 3 · 1

modulo 4. We conclude that there can be no integer solutions of a2 + b2 = 3c2 .

The technique we just used to show that a2 + b2 = 3c2 has no integer solutions

can be used in many other situations as well. The underlying reasoning is that if an

equation with integer coefficients has an integer solution, then this gives a solution

modulo n for all numbers n . For solutions modulo n there are only a finite number

of possibilities to check, although for large n this is a large finite number. If one can

find a single value of n for which there is no solution modulo n , then the original

equation has no integer solutions. However, this implication is not reversible, as it

is possible for an equation to have solutions modulo n for every number n and still

have no actual integer solutions. A concrete example is the equation 2x2 + 7y2 = 1.

This obviously has no integer solutions, yet it does have solutions modulo n for each

n , although this is certainly not obvious. Note that the ellipse 2x2 + 7y2 = 1 does

contain rational points such as (1/3,1/3) and (3/5,1/5) . These can in fact be used

to show that 2x2 + 7y2 = 1 has solutions modulo n for each n , as we will show in

Chapter 6 when we study congruences in more detail.

In Chapter 6 we will also find a complete answer to the question of when the circle

x2 + y2 = n contains rational points. It turns out that there are rational points on

this circle only when there are integer points on it, and we will see that the existence

of integer solutions of x2+y2 = n depends heavily on the prime factorization of n .

Namely, we will show that x2+y2 = n has integer solutions exactly when each prime

factor of n of the form 4k+ 3 occurs to an even power in the prime factorization of

n .
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Rational Points on a Sphere

As another application of the same idea, we can find all the rational points on

the sphere x2 + y2 + z2 = 1, the triples (x,y, z) of rational numbers that satisfy

this equation. To do this we consider a line from the north pole (0,0,1) to a point

(u,v,0) in the xy -plane. This line intersects the sphere at some point (x,y, z) , and

we want to find formulas expressing x , y , and z in terms of u and v . To do this we

use the following figure:

Suppose we look at the vertical plane containing the triangle ONQ . From our earlier

analysis of rational points on a circle of radius 1 we know that if the segment OQ

has length |OQ| = r , then |OP ′| = 2r
r2+1

and |PP ′| = r2−1
r2+1

. From the right triangle

OBQ we see that u2 + v2 = r 2 since u = |OB| and v = |BQ| . The triangle OBQ is

similar to the triangle OAP ′ . Since the length of OP ′ is
2

r2+1
times the length of OQ

we conclude from similar triangles that

x = |OA| =
2

r 2 + 1
|OB| =

2

r 2 + 1
·u =

2u

u2 + v2 + 1

and

y = |AP ′| =
2

r 2 + 1
|BQ| =

2

r 2 + 1
· v =

2v

u2 + v2 + 1

Also we have

z = |PP ′| =
r 2 − 1

r 2 + 1
=
u2 + v2 − 1

u2 + v2 + 1
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Summarizing, we have expressed x , y , and z in terms of u and v by the formulas

x =
2u

u2 + v2 + 1
y =

2v

u2 + v2 + 1
z =

u2 + v2 − 1

u2 + v2 + 1

These formulas imply that we get a rational point (x,y, z) on the sphere x2+y2+z2 =

1 for each pair of rational numbers (u,v) . We get all rational points on the sphere in

this way (except for the north pole (0,0,1) , of course) since it is possible to express

u and v in terms of x , y , and z by the formulas

u =
x

1− z
v =

y

1− z

which one can easily verify by substituting into the previous formulas.

Here is a short table giving a few rational points on the sphere and the corre-

sponding integer solutions of the equation a2 + b2 + c2 = d2 :

(u,v) (x,y, z) (a, b, c, d)

(1,1) (2/3,2/3,1/3) (2,2,1,3)

(2,2) (4/9,4/9,7/9) (4,4,7,9)
(1,3) (2/11,6/11,9/11) (2,6,9,11)

(2,3) (2/7,3/7,6/7) (2,3,6,7)
(1,4) (1/9,4/9,8/9) (1,4,8,9)

As with rational points on the circle x2 + y2 = 1, rational points on the sphere

x2 +y2 + z2 = 1 are dense, so there are lots of them scattered all over the sphere.

In linear algebra courses one is often called upon to create unit vectors (x,y, z)

by taking a given vector and rescaling it to have length 1 by dividing it by its length.

For example, the vector (1,1,1) has length
√

3 so the corresponding unit vector is

(1/
√

3,1/
√

3,1/
√

3) . It is rare that this process produces unit vectors having rational

coordinates, but we now have a method for creating as many rational unit vectors as

we like.

Incidentally, there is a name for the correspondence we have described between

points (x,y, z) on the unit sphere and points (u,v) in the plane: it is called stereo-

graphic projection. One can think of the sphere and the plane as being made of clear

glass, and one puts one’s eye at the north pole of the sphere and looks downward

and outward in all directions to see points on the sphere projected onto points in the

plane, and vice versa. The north pole itself does not project onto any point in the

plane, but points approaching the north pole project to points approaching infinity

in the plane, so one can think of the north pole as corresponding to an imaginary

infinitely distant “point” in the plane. This geometric viewpoint somehow makes in-

finity less of a mystery, as it just corresponds to a point on the sphere, and points on

a sphere are not very mysterious. (Though in the early days of polar exploration the

north pole may have seemed very mysterious and infinitely distant!)
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Pythagorean Triples and Quadratic Forms

There are many questions one can ask about Pythagorean triples (a, b, c) . For

example, we could begin by asking which numbers actually arise as the numbers a ,

b , or c in some Pythagorean triple. It is sufficient to answer the question just for

primitive Pythagorean triples, since the remaining ones are obtained just by multi-

plying by arbitrary positive integers. We know all primitive Pythagorean triples arise

from the formula

(a, b, c) = (2pq,p2 − q2, p2 + q2)

where p and q have no common factor and are not both odd. Determining whether

a given number can be expressed in the form 2pq , p2 − q2 , or p2 + q2 is a special

case of the general question of deciding when an equation Ap2+ Bpq+Cq2 = n has

an integer solution p , q , for given integers A , B , C , and n . Expressions of the form

Ax2 + Bxy + Cy2 are called quadratic forms. These will be the main topic studied

in Chapters 4–6, where we will develop some general theory addressing the question

of what values a quadratic form takes on when all the numbers involved are integers.

For now, let us just look at the special cases at hand.

First let us consider which numbers occur as a or b in primitive Pythagorean

triples (a, b, c) . A trivial case is the equation 02 + 12 = 12 which shows that 0 and

1 can be realized by the triple (0,1,1) which is primitive, so let us focus on realizing

numbers bigger than 1. If we look at the earlier table of Pythagorean triples we see

that all the numbers up to 15 can be realized as a or b in primitive triples except for

2, 6, 10, and 14. This might lead us to guess that the numbers realizable as a or b

in primitive Pythagorean triples are the numbers not of the form 4k+ 2, or in other

words, numbers not congruent to 2 modulo 4. This is indeed true, and can be proved

as follows. First note that since 2pq is even, p2 − q2 must be odd, otherwise both

a and b would be even, violating primitivity. Now, every odd number is expressible

in the form p2 − q2 since 2k+ 1 = (k+ 1)2 − k2 , so in fact every odd number is the

difference between two consecutive squares. Taking p = k + 1 and q = k yields a

primitive triple since k and k+1 always have opposite parity and no common factors.

This takes care of realizing odd numbers. For even numbers, they would have to be

expressible as 2pq with p and q of opposite parity, which forces pq to be even so

2pq is a multiple of 4 and hence cannot be of the form 4k+ 2. On the other hand, if

we take p = 2k and q = 1 then 2pq = 4k with p and q having opposite parity and

no common factors.

To summarize, we have shown that all positive numbers 2k+1 and 4k occur as a

or b in primitive Pythagorean triples but none of the numbers 4k+2 occur. To finish

the story, note that a number a = 4k+ 2 which can’t be realized in a primitive triple

can be realized by a nonprimitive triple just by taking a triple (a, b, c) with a = 2k+1

and doubling each of a , b , and c . Thus all numbers can be realized as a or b in

Pythagorean triples (a, b, c) .
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Now let us ask which numbers c can occur in Pythagorean triples (a, b, c) , so we

are trying to find a solution of p2+q2 = c for a given number c . Pythagorean triples

(p, q, r ) give solutions when c is equal to a square r 2 , but we are asking now about

arbitrary numbers c . It suffices to figure out which numbers c occur in primitive

triples (a, b, c) , since by multiplying the numbers c in primitive triples by arbitrary

numbers we get the numbers c in arbitrary triples. A look at the earlier table shows

that the numbers c that can be realized by primitive triples (a, b, c) seem to be fairly

rare: only 5, 13, 17, 25, 29, 37, 41, 53, 61, 65, and 85 occur in the table. These

are all odd, and in fact they are all congruent to 1 modulo 4. This always has to

be true because p and q are of opposite parity, so one of p2 and q2 is congruent

to 0 modulo 4 while the other is congruent to 1, hence p2 + q2 is congruent to 1

modulo 4. More interesting is the fact that most of the numbers on the list are prime

numbers, and the ones that aren’t prime are products of earlier primes in the list:

25 = 5 · 5, 65 = 5 · 13, 85 = 5 · 17. From this somewhat slim evidence one might

conjecture that the numbers c occurring in primitive Pythagorean triples are exactly

the numbers that are products of primes congruent to 1 modulo 4. The first prime

satisfying this condition that isn’t on the original list is 73, and this is realized as

p2 + q2 = 82 + 32 , in the triple (48,55,73) . The next two primes congruent to 1

modulo 4 are 89 = 82 + 52 and 97 = 92 + 42 , so the conjecture continues to look

good. Proving the general conjecture is not easy, however, and we will take up this

question in Chapter 6 when we fully answer the question of which numbers can be

expressed as the sum of two squares.

Another question one can ask about Pythagorean triples is, how many are there

where two of the three numbers differ by only 1? In the earlier table there are

several: (3,4,5) , (5,12,13) , (7,24,25) , (20,21,29) , (9,40,41) , (11,60,61) , and

(13,84,85) . As the pairs of numbers that are adjacent get larger, the correspond-

ing right triangles are either approximately 45-45-90 right triangles as with the triple

(20,21,29) , or long thin triangles as with (13,84,85) . To analyze the possibilities,

note first that if two of the numbers in a triple (a, b, c) differ by 1 then the triple has

to be primitive, so we can use our formula (a, b, c) = (2pq,p2−q2, p2+q2) . If b and

c differ by 1 then we would have (p2+q2)−(p2−q2) = 2q2 = 1 which is impossible.

If a and c differ by 1 then we have p2 + q2 − 2pq = (p − q)2 = 1 so p − q = ±1,

and in fact p− q = +1 since we must have p > q in order for b = p2 − q2 to be pos-

itive. Thus we get the infinite sequence of solutions (p, q) = (2,1), (3,2), (4,3), · · ·

with corresponding triples (4,3,5), (12,5,13), (24,7,25), · · · . Note that these are the

same triples we obtained earlier that realize all the odd values b = 3,5,7, · · · .

The remaining case is that a and b differ by 1. Thus we have the equation

p2 − 2pq− q2 = ±1. The left side doesn’t factor using integer coefficients, so it’s not

so easy to find integer solutions this time. In the table there are only the two triples

(4,3,5) and (20,21,29) , with (p, q) = (2,1) and (5,2) . After some trial and error one



Chapter 0 Preview 11

could find the next solution (p, q) = (12,5) which gives the triple (120,119,169) . Is

there a pattern in the solutions (2,1), (5,2), (12,5)? One has the numbers 1,2,5,12,

and perhaps it isn’t too much of a stretch to notice that the third number is twice the

second plus the first, while the fourth number is twice the third plus the second. If

this pattern continued, the next number would be 29 = 2 · 12 + 5, giving (p, q) =

(29,12) , and this does indeed satisfy p2 − 2pq − q2 = 1, yielding the Pythagorean

triple (696,697,985) . These numbers are increasing rather rapidly, and the next case

(p, q) = (70,29) yields an even bigger Pythagorean triple (4060,4059,5741) . Could

there be other solutions of p2−2pq−q2 = ±1 with smaller numbers that we missed?

We will develop tools in Chapters 4 and 5 to find all the integer solutions, and it will

turn out that the sequence we have just discovered gives them all.

Although the quadratic form p2 − 2pq − q2 does not factor using integer coeffi-

cients, it can be simplified slightly be rewriting it as (p−q)2−2q2 . Then if we change

variables by setting
x = p − q

y = q

we obtain the quadratic form x2 − 2y2 . Finding integer solutions of x2 − 2y2 = n is

equivalent to finding integer solutions of p2 − 2pq − q2 = n since integer values of

p and q give integer values of x and y , and conversely, integer values of x and y

give integer values of p and q since when we solve for p and q in terms of x and y

we again get equations with integer coefficients:

p = x +y

q = y

Thus the quadratic forms p2 − 2pq − q2 and x2 − 2y2 are completely equivalent,

and finding integer solutions of p2 − 2pq − q2 = ±1 is equivalent to finding integer

solutions of x2 − 2y2 = ±1.

The equation x2−2y2 = ±1 is an instance of the equation x2−Dy2 = ±1 which

is known as Pell’s equation (although sometimes this term is used only when the right

hand side of the equation is +1 and the other case is called the negative Pell equation).

This is a very famous equation in number theory which has arisen in many different

contexts going back hundreds of years. We will develop techniques for finding all

integer solutions of Pell’s equation for arbitrary values of D in Chapters 4 and 5. It

is interesting that certain fairly small values of D can force the solutions to be quite

large. For example for D = 61 the smallest positive integer solution of x2−61y2 = 1

is the rather large pair

(x,y) = (1766319049,226153980)

As far back as the eleventh and twelfth centuries mathematicians in India knew how to

find this solution. It was rediscovered in the seventeenth century by Fermat in France,



Chapter 0 Preview 12

who also gave the smallest solution of x2 − 109y2 = 1, the even larger pair

(x,y) = (158070671986249,15140424455100)

The way that the size of the smallest solution of x2 − Dy2 = 1 depends upon D is

very erratic and is still not well understood today.

Pythagorean Triples and Complex Numbers

There is another way of looking at Pythagorean triples that involves complex

numbers, surprisingly enough. The starting point here is the observation that a2+b2

can be factored as (a + bi)(a − bi) where i =
√
−1. If we rewrite the equation

a2 + b2 = c2 as (a + bi)(a − bi) = c2 then since the right side of the equation is a

square, we might wonder whether each term on the left side would have to be a square

too. For example, in the case of the triple (3,4,5) we have (3+ 4i)(3− 4i) = 52 with

3+4i = (2+i)2 and 3−4i = (2−i)2 . So let us ask optimistically whether the equation

(a+bi)(a−bi) = c2 can be rewritten as (p+qi)2(p−qi)2 = c2 with a+bi = (p+qi)2

and a−bi = (p−qi)2 . We might hope also that the equation (p+qi)2(p−qi)2 = c2

was obtained by simply squaring the equation (p + qi)(p − qi) = c . Let us see what

happens when we multiply these various products out:

a+ bi = (p + qi)2 = (p2 − q2)+ (2pq)i

hence a = p2 − q2 and b = 2pq

a− bi = (p − qi)2 = (p2 − q2)− (2pq)i

hence again a = p2 − q2 and b = 2pq

c = (p + qi)(p − qi) = p2 + q2

Thus we have miraculously recovered the formulas for Pythagorean triples that we

obtained earlier by geometric means (with a and b switched, which doesn’t really

matter):

a = p2 − q2 b = 2pq c = p2 + q2

Of course, our derivation of these formulas just now depended on several assumptions

that we haven’t justified, but it does suggest that looking at complex numbers of the

form a + bi where a and b are integers might be a good idea. There is a name for

complex numbers of this form a+bi with a and b integers. They are called Gaussian

integers, since the great mathematician and physicist C. F. Gauss made a thorough

algebraic study of them some 200 years ago. We will develop the basic properties

of Gaussian integers in Chapter 7, in particular explaining why the derivation of the

formulas above is valid.

Diophantine Equations

Equations like x2+y2 = z2 or x2−Dy2 = 1 that involve polynomials with inte-

ger coefficients, and where the solutions sought are required to be integers, are called
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Diophantine equations after the Greek mathematician Diophantus (ca. 250 A.D.) who

wrote a book about these equations that was very influential when European mathe-

maticians started to consider this topic much later in the 1600s. Usually Diophantine

equations are very hard to solve because of the restriction to integer solutions. The

first really interesting case is quadratic Diophantine equations. By the year 1800 there

was quite a lot known about the quadratic case, and we will be focusing on this case

in this book.

Diophantine equations of higher degree than quadratic are much more challeng-

ing to understand. Probably the most famous one is xn+yn = zn where n is a fixed

integer greater than 2. When the French mathematician Fermat in the 1600s was read-

ing about Pythagorean triples in his copy of Diophantus’ book he made a marginal note

that, in contrast with the equation x2 + y2 = z2 , the equation xn + yn = zn has no

solutions with positive integers x,y, z when n > 2 and that he had a marvelous proof

which unfortunately the margin was too narrow to contain. This is one of many state-

ments that he claimed were true but never wrote proofs of for public distribution, nor

have proofs been found among his manuscripts. Over the next century other math-

ematicians discovered proofs for all his other statements, but this one was far more

difficult to verify. The issue is clouded by the fact that he only wrote this statement

down the one time, whereas all his other important results were stated numerous

times in his correspondence with other mathematicians of the time. So perhaps he

only briefly believed he had a proof. In any case, the statement has become known

as Fermat’s Last Theorem. It was finally proved in the 1990s by Andrew Wiles, using

some very deep mathematics developed over the preceding couple decades.

We have seen that finding integer solutions of x2+y2 = z2 is equivalent to finding

rational points on the circle x2+y2 = 1, and in the same way finding integer solutions

of xn+yn = zn is equivalent to finding rational points on the curve xn+yn = 1. For

even values of n > 2 this curve looks like a flattened out circle while for odd n it has

a rather different shape, extending out to infinity in the second and fourth quadrants,

asymptotic to the line y = −x :

Fermat’s Last Theorem is equivalent to the statement that these curves have no ra-

tional points except their intersections with the coordinate axes, where either x or
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y is 0. It is curious that these curves only contain a finite number of rational points

(either two points or four points, depending on whether n is odd or even) whereas

quadratic curves like x2+y2 = n either contain no rational points or an infinite dense

set of rational points.

Exercises

1. (a) Make a list of the 16 primitive Pythagorean triples (a, b, c) with c ≤ 100,

regarding (a, b, c) and (b,a, c) as the same triple.

(b) How many more would there be if we allowed nonprimitive triples?

(c) How many triples (primitive or not) are there with c = 65?

2. (a) Find all the positive integer solutions of x2−y2 = 512 by factoring x2−y2 as

(x + y)(x −y) and considering the possible factorizations of 512.

(b) Show that the equation x2 −y2 = n has only a finite number of integer solutions

for each value of n > 0.

(c) Find a value of n > 0 for which the equation x2−y2 = n has at least 100 different

positive integer solutions.

3. (a) Show that there are only a finite number of Pythagorean triples (a, b, c) with a

equal to a given number n .

(b) Show that there are only a finite number of Pythagorean triples (a, b, c) with c

equal to a given number n .

4. Find an infinite sequence of primitive Pythagorean triples where two of the numbers

in each triple differ by 2.

5. Find a right triangle whose sides have integer lengths and whose acute angles are

close to 30 and 60 degrees by first finding the irrational value of r that corresponds to

a right triangle with acute angles exactly 30 and 60 degrees, then choosing a rational

number close to this irrational value of r .

6. Find a right triangle whose sides have integer lengths and where one of the nonhy-

potenuse sides is approximately twice as long as the other, using a method like the

one in the preceding problem. (One possible answer might be the (8,15,17) triangle,

or a triangle similar to this, but you should do better than this.)

7. Find a rational point on the sphere x2+y2+z2 = 1 whose x , y , and z coordinates

are nearly equal.

8. (a) Derive formulas that give all the rational points on the circle x2 + y2 = 2 in

terms of a rational parameter m , the slope of the line through the point (1,1) on the

circle. (The value m = ∞ should be allowed as well, yielding the point (1,−1) .) The

calculations may be a little messy, but they work out fairly nicely in the end to give

x =
m2 − 2m− 1

m2 + 1
, y =

−m2 − 2m+ 1

m2 + 1
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(b) Using these formulas, find five different rational points on the circle in the first

quadrant, and hence five solutions of a2 + b2 = 2c2 with positive integers a , b , c .

(c) The equation a2 + b2 = 2c2 can be rewritten as c2 = (a2 + b2)/2, which says that

c2 is the average of a2 and b2 , or in other words, the squares a2 , c2 , b2 form an

arithmetic progression. One can assume a < b by switching a and b if necessary.

Find four such arithmetic progressions of three increasing squares where in each case

the three numbers have no common divisors.

9. (a) Find formulas that give all the rational points on the upper branch of the hyper-

bola y2 − x2 = 1.

(b) Can you find any relationship between these rational points and Pythagorean

triples?

10. (a) For integers x , what are the possible values of x2 modulo 8?

(b) Show that the equation x2 − 2y2 = ±3 has no integer solutions by considering

this equation modulo 8.

(c) Show that there are no primitive Pythagorean triples (a, b, c) with a and b differing

by 3.

11. Show that for every Pythagorean triple (a, b, c) the product abc must be divisible

by 60. (It suffices to show that abc is divisible by 3, 4, and 5.)
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Chapter 1. The Farey Diagram

Our goal is to use geometry to study numbers. Of the various kinds of numbers,

the simplest are integers, along with their ratios, the rational numbers. The large

figure below shows a very interesting diagram displaying rational numbers and certain

relations between them that we will be exploring. This diagram, along with several

variants of it that will be introduced later, is known as the Farey diagram. The origin

of the name will be explained when we get to one of these variants.

0/1

1/1

1/1

1/2

1/2

2/1

2/1

1/0

1 /3

1 /3

3 /1

3 /1

1/4
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4/1

2 /7
7 /2
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2/5
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3/5

5/3

5/3

3/4

3/4

4/3

4/3

3 /7
7 /3

4 /7

7 /4

5 /77 /5

4 /5
5 /4

5/8
8/5

3 /8
8 /3

1/5
5/1

2/3

2/3

3/2

3/2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

What is shown here is not the whole diagram but only a finite part of it. The actual

diagram has infinitely many curvilinear triangles, getting smaller and smaller out near

the boundary circle. The diagram can be constructed by first inscribing the two big

triangles in the circle, then adding the four triangles that share an edge with the two

big triangles, then the eight triangles sharing an edge with these four, then sixteen

more triangles, and so on forever. With a little practice one can draw the diagram

without lifting one’s pencil from the paper: First draw the outer circle starting at the

left or right side, then the diameter, then make the two large triangles, then the four

next-largest triangles, etc.

The vertices of all the triangles are labeled with fractions a/b , including the
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fraction 1/0 for ∞ , according to the following scheme. In the upper half of the

diagram first label the vertices of the big triangles 0/1, 1/1, and 1/0 as shown. Then

by induction, if the labels at the two ends of the long edge

of a triangle are a/b and c/d , the label on the third vertex

of the triangle is
a+c
b+d . This fraction is called the mediant

of a/b and c/d .

The labels in the lower half of the diagram follow the

same scheme, starting with the labels 0/1, −1/1, and

−1/0 on the large triangle. Using −1/0 instead of 1/0

as the label of the vertex at the far left means that we are regarding +∞ and −∞ as

the same. The labels in the lower half of the diagram are the negatives of those in the

upper half, and the labels in the left half are the reciprocals of those in the right half.

The labels occur in their proper order around the circle, increasing from −∞ to

+∞ as one goes around the circle in the counterclockwise direction. To see why this is

so, it suffices to look at the upper half of the diagram where all numbers are positive.

What we want to show is that the mediant
a+c
b+d is always a number between

a
b and

c
d

(hence the term “mediant”). Thus we want to see that if
a
b >

c
d then

a
b >

a+c
b+d >

c
d .

Since we are dealing with positive numbers, the inequality
a
b >

c
d is equivalent to

ad > bc , and
a
b >

a+c
b+d is equivalent to ab + ad > ab + bc which follows from

ad > bc . Similarly,
a+c
b+d >

c
d is equivalent to ad + cd > bc + cd which also follows

from ad > bc .

We will show in the next chapter that the mediant rule for labeling vertices in the

diagram automatically produces labels that are fractions in lowest terms. It is not

immediately apparent why this should be so. For example, the mediant of 1/3 and

2/3 is 3/6, which is not in lowest terms, and the mediant of 2/7 and 3/8 is 5/15,

again not in lowest terms. Somehow cases like this don’t occur in the diagram.

Another non-obvious fact about the diagram is that all rational numbers occur

eventually as labels of vertices. This will be shown in the next chapter as well.
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Farey Series

We can build the set of rational numbers by starting with the integers and then

inserting in succession all the halves, thirds, fourths, fifths, sixths, and so on. Let us

look at what happens if we restrict to rational numbers between 0 and 1. Starting

with 0 and 1 we first insert 1/2, then 1/3 and 2/3, then 1/4 and 3/4, skipping 2/4

which we already have, then inserting 1/5, 2/5, 3/5, and 4/5, then 1/6 and 5/6, etc.

This process can be pictured as in the following diagram:

−−−

0

1
−−−

1

1

−−−

1

2

−−−

1

3

−−−

1

4

−−−

1

5

−−−

1

6

−−−

1

7
−−−

2

7
−−−

3

7
−−−

4

7
−−−

5

7
−−−

6

7

−−−

5

6

−−−

2

5
−−−

3

5
−−−

4

5

−−−

3

4

−−−

2

3

The interesting thing to notice is:

Each time a new number is inserted, it forms the third vertex of a triangle whose

other two vertices are its two nearest neighbors among the numbers already listed,

and if these two neighbors are a/b and c/d then the new vertex is exactly the

mediant
a+c
b+d

.

The discovery of this curious phenomenon in the early 1800s was initially attributed

to a geologist and amateur mathematician named Farey, although it turned out that

he was not the first person to have noticed it. In spite of this confusion, the sequence

of fractions a/b between 0 and 1 with denominator less than or equal to a given

number n is usually called the nth Farey series Fn . For example, here is F7 :

0

1

1

7

1

6

1

5

1

4

2

7

1

3

2

5

3

7

1

2

4

7

3

5

2

3

5

7

3

4

4

5

5

6

6

7

1

1

These numbers trace out the up-and-down path across the bottom of the figure above.

For the next Farey series F8 we would insert 1/8 between 0/1 and 1/7, 3/8 between

1/3 and 2/5, 5/8 between 3/5 and 2/3, and finally 7/8 between 6/7 and 1/1.
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There is a cleaner way to draw the preceding diagram using straight lines in a

square:

−−−

0

1
−−−

1

1
−−−

1

2
−−−

1

3
−−−

2

3
−−−

1

4 −−−

2

5
−−−

3

5
−−−

3

4

One can construct this diagram in stages, as indicated in the sequence of figures

below. Start with a square together with its diagonals and a vertical line from their

intersection point down to the bottom edge of the square. Next, connect the resulting

midpoint of the lower edge of the square to the two upper corners of the square and

drop vertical lines down from the two new intersection points this produces. Now add

a W-shaped zigzag and drop verticals again. It should then be clear how to continue.

A nice feature of this construction is that if we start with a square whose sides have

length 1 and place this square so that its bottom edge lies along the x -axis with the

lower left corner of the square at the origin, then the construction assigns labels to

the vertices along the bottom edge of the square that are exactly the x coordinates of

these points. Thus the vertex labeled 1/2 really is at the midpoint of the bottom edge

of the square, and the vertices labeled 1/3 and 2/3 really are 1/3 and 2/3 of the way

along this edge, and so forth. In order to verify this fact the key observation is the
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following: For a vertical line segment in the diagram whose lower endpoint is at the

point
(a
b ,0

)
on the x -axis, the upper endpoint is at

the point
(a
b
, 1
b

)
. This is obviously true at the first

−−−

a
0b

( ),

−−−

a

b −−−
1

b
( ),

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

a c

b d

1
( ),

−−−

c

d −−−
1

d
( ),

−−−

c
0d

( ),

+

+ −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−b d+

stage of the construction, and it continues to hold

at each successive stage since for a quadrilateral

whose four vertices have coordinates as shown in

the figure at the right, the two diagonals intersect

at the point
( a+c
b+d ,

1
b+d

)
. For example, to verify that

( a+c
b+d ,

1
b+d

)
is on the line from

(a
b ,0

)
to

( c
d ,

1
d

)
it

suffices to show that the line segments from
(a
b ,0

)

to
( a+c
b+d ,

1
b+d

)
and from

( a+c
b+d ,

1
b+d

)
to

( c
d ,

1
d

)
have

the same slope. These slopes are

1/(b + d)− 0

(a+ c)/(b + d)− a/b
·
b(b + d)

b(b + d)
=

b

b(a+ c)− a(b + d)
=

b

bc − ad

and
1/d− 1/(b + d)

c/d− (a+ c)/(b + d)
·
d(b + d)

d(b + d)
=

b + d− d

c(b + d)− d(a+ c)
=

b

bc − ad

so they are equal. The same argument works for the other diagonal, just by inter-

changing
a
b

and
c
d

.

Going back to the square diagram, this fact that we have just shown implies that

the successive Farey series can be obtained by taking the vertices that lie above the

line y =
1
2

, then the vertices above y =
1
3

, then above y =
1
4

, and so on. Here we

are assuming the two properties of the Farey diagram that will be shown in the next

chapter, that all rational numbers occur eventually as labels on vertices, and that these

labels are always fractions in lowest terms.
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The Upper Half-Plane Farey Diagram

In the square diagram depicting the Farey series, the most important thing for our

purposes is the triangles, not the vertical lines. We can get rid of all the vertical lines

by shrinking each one to its lower endpoint, converting each triangle into a curvilinear

triangle with semicircles as edges, as shown in the diagram below.

−−−

0

1
−−−

1

1
−−−
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−−−
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3
−−−
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4
−−−
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5 −−−
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5
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3

5
−−−

3

4
−−−

4

5

This looks more like a portion of the Farey diagram we started with at the beginning of

the chapter, but with the outer boundary circle straightened into a line. The advantage

of the new version is that the labels on the vertices are exactly in their correct places

along the x -axis, so the vertex labeled
a
b is exactly at the point

a
b on the x -axis.

This diagram can be enlarged so as to include similar diagrams for fractions be-

tween all pairs of adjacent integers, not just 0 and 1, all along the x -axis:
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2
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3

--------

We can also put in vertical lines at the integer points, extending upward to infinity.

These correspond to the edges having one endpoint at the vertex 1/0 in the original

Farey diagram.

We could also form a linear version of the full Farey diagram from copies of the

square:
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Relation with Pythagorean Triples

Next we describe a variant of the circular Farey diagram that is closely related

to Pythagorean triples. Recall from Chapter 0 that rational points (x,y) on the unit

circle correspond to rational points p/q on the x -axis by means of lines through the

point (0,1) on the circle. In formulas, (x,y) = (
2pq
p2+q2 ,

p2−q2

p2+q2 ) . Using this correspon-

dence, we can label the rational points on the circle by the corresponding rational

points on the x -axis and then construct a new Farey diagram in the circle by filling in

triangles by the mediant rule just as before.

The result is a version of the circular Farey diagram that is rotated by 90 degrees

to put 1/0 at the top of the circle, and there are also some perturbations of the

positions of the other vertices and the shapes of the triangles. The next figure shows

an enlargement of the new part of the diagram, with the vertices labeled by both the

fraction p/q and the coordinates (x,y) of the vertex:
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The Determinant Rule for Edges

The construction we have described for the Farey diagram involves an inductive

process, where more and more triangles are added in succession. With a construction

like this it is not easy to tell by a simple calculation whether or not two given rational

numbers a/b and c/d are joined by an edge in the diagram. Fortunately there is such

a criterion:

Two rational numbers a/b and c/d are joined by an edge in the Farey diagram

exactly when the determinant ad−bc of the matrix
(
a c
b d

)
is ±1 . This applies also

when one of a/b or c/d is ±1/0 .

We will prove this in the next chapter. What it means in terms of the standard Farey

diagram is that if one were to start with the upper half of the xy -plane and insert

vertical lines through all the integer points on the x -axis, and then insert semicircles

perpendicular to the x -axis joining each pair of rational points a/b and c/d such
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that ad−bc = ±1, then no two of these vertical lines or semicircles would cross, and

they would divide the upper half of the plane into non-overlapping triangles. This

is really quite remarkable when you think about it, and it does not happen for other

values of the determinant besides ±1. For example, for determinant ±2 the edges

would be the dotted lines in the figure below. Here there are three lines crossing in

each triangle of the original Farey diagram, and these lines divide each triangle of the

Farey diagram into six smaller triangles.

Exercises

1. This problem involves another version of the Farey diagram, or at least the positive

part of the diagram, the part consisting of the triangles whose vertices are labeled by

fractions p/q with p ≥ 0 and q ≥ 0. In this variant of the diagram the vertex labeled

p/q is placed at the point (q,p) in the plane. Thus p/q is the slope of the line through

the origin and (q,p) . The edges of this new Farey diagram are straight line segments

connecting the pairs of vertices that are connected in the original Farey diagram. For

example there is a triangle with vertices (1,0) , (0,1) , and (1,1) corresponding to the

big triangle in the upper half of the circular Farey diagram.

What you are asked to do in this problem is just to draw the portion of the new Farey

diagram consisting of all the triangles whose vertices (q,p) satisfy 0 ≤ q ≤ 5 and

0 ≤ p ≤ 5. Note that since fractions p/q labeling vertices are always in lowest terms,

the points (q,p) such that q and p have a common divisor greater than 1 are not

vertices of the diagram.

A parenthetical comment: With this model of the Farey diagram the operation of

forming the mediant of two fractions just corresponds to standard vector addition

(a, b) + (c, d) = (a + c, b + d) , which may make the mediant operation seem more

natural.
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2. Compute the Farey series F10 .
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Chapter 2. Continued Fractions

Here are two typical examples of continued fractions:

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

7 1

1
2

16
+

−−−

1
3

2
+

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2 +

−−−

1
1

4
+

To compute the value of a continued fraction one starts in the lower right corner and

works one’s way upward. For example in the continued fraction for
7

16
one starts with

3 +
1
2
=

7
2

, then taking 1 over this gives
2
7

, and adding the 2 to this gives
16
7

, and

finally 1 over this gives
7

16
.

Here is the general form of a continued fraction:

To write this in more compact form on a single line one can write it as

p

q
= a0 +

1
�
ր
a1
+ 1
�
ր
a2
+ · · · + 1

�
ր
an

For example:

7

16
= 1
�
ր
2+

1
�
ր
3+

1
�
ր
2

67

24
= 2+ 1

�
ր
1+

1
�
ր
3+

1
�
ր
1+

1
�
ր
4

This way of writing continued fractions with upward-pointing diagonal arrows is in-

tended to be a more legible version of the classical notation

a0 +
1

a1+

1

a2+
· · ·

1

an

often found in older books. A more abbreviated notation common in other books is

simply [a0 ; a1, a2, · · · , an] , although we will not use this notation here.

To compute the continued fraction for a given rational number one starts in the

upper left corner and works one’s way downward, as the following example shows:

If one is good at mental arithmetic and the numbers aren’t too large, only the final

form of the answer needs to be written down:
67
24
= 2+ 1�ր1+

1�ր3+
1�ր1+

1�ր4 .
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The Euclidean Algorithm

The process for computing the continued fraction for a given rational number is

known as the Euclidean Algorithm. It consists of repeated

division, at each stage dividing the previous remainder

into the previous divisor. The procedure for 67/24 is

shown at the right. Note that the numbers in the shaded

box are the numbers ai in the continued fraction. These

=67 2 24 19+.

=24 1 19 5+.

=19 3 5 4+.

=5 1 4 1+.

=4 4 1 0+.
are the quotients of the successive divisions. They are

sometimes called the partial quotients of the original frac-

tion.

One of the classical uses for the Euclidean algorithm is to find the greatest com-

mon divisor of two given numbers. If one applies the algorithm to two numbers

p and q , dividing the smaller into the larger, then the remainder into the first di-

visor, and so on, then the greatest common divisor of p

and q turns out to be the last nonzero remainder. For ex-

ample, starting with p = 72 and q = 201 the calculation

is shown at the right, and the last nonzero remainder is

3, which is the greatest common divisor of 72 and 201.

(In fact the fraction 201/72 equals 67/24, which explains

=201 2 72 57+.

=72 1 57 15+.

=57 3 15 12+.

=15 1 12 3+.

=12 4 3 0+.

why the successive quotients for this example are the same as in the preceding ex-

ample.) It is easy to see from the displayed equations why 3 has to be the greatest

common divisor of 72 and 201, since from the first equation it follows that any divi-

sor of 72 and 201 must also divide 57, then the second equation shows it must divide

15, the third equation then shows it must divide 12, and the fourth equation shows

it must divide 3, the last nonzero remainder. Conversely, if a number divides the last

nonzero remainder 3, then the last equation shows it must also divide the 12, and

the next-to-last equation then shows it must divide 15, and so on until we conclude

that it divides all the numbers not in the shaded rectangle, including the original two

numbers 72 and 201. The same reasoning applies in general.

A more obvious way to try to compute the greatest common divisor of two num-

bers would be to factor each of them into a product of primes, then look to see which

primes occurred as factors of both, and to what power. But to factor a large number

into its prime factors is a very laborious and time-consuming process. For example,

even a large computer would have a hard time factoring a number of a hundred digits

into primes, so it would not be feasible to find the greatest common divisor of a pair

of hundred-digit numbers this way. However, the computer would have no trouble at

all applying the Euclidean algorithm to find their greatest common divisor.

Having seen what continued fractions are, let us now see what they have to do with

the Farey diagram. Some examples will illustrate this best, so let us first look at the

continued fraction for 7/16 again. This has 2,3,2 as its sequence of partial quotients.
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We use these three numbers to build a strip of three large triangles subdivided into

2, 3, and 2 smaller triangles, from left to right:

−−−

1

0

−−−

0

1

−−−

1

1 −−−

1

2

2

−−−

4

9
−−−

7
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−−−
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3

3

−−−

2

2

5
−−−

3

7

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

7 1

1
2

16
+

−−−

1
3

2
+

We can think of the diagram as being formed from three “fans”, where the first fan is

made from the first 2 small triangles, the second fan from the next 3 small triangles,

and the third fan from the last 2 small triangles. Now we begin labeling the vertices

of this strip. On the left edge we start with the labels 1/0 and 0/1. Then we use the

mediant rule for computing the third label of each triangle in succession as we move

from left to right in the strip. Thus we insert, in order, the labels 1/1, 1/2, 1/3, 2/5,

3/7, 4/9, and finally 7/16.

Was it just an accident that the final label was the fraction 7/16 that we started

with, or does this always happen? Doing more examples should help us decide. Here

is a second example:
−−−

1

0

−−−
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−−−
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−−−
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−−−
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7
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−−−−−−−−−−

=−−−

9 1

1
3
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+

−−−

1
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4
+

Again the final vertex on the right has the same label as the fraction we started with.

The reader is encouraged to try more examples to make sure we are not rigging things

to get a favorable outcome by only choosing examples that work.

In fact this always works for fractions p/q between 0 and 1. For fractions larger

than 1 the procedure works if we modify it by replacing the label 0/1 with the initial

integer a0/1 in the continued fraction a0+
1�րa1

+ 1�րa2
+· · ·+ 1�րan . This is illustrated

by the 67/24 example:

−−−

1

0

−−−

2

4

1

1

−−−

3

1

1

−−−

14

5

−−−

67

24
−−−

39

14
−−−

53

19
−−−

5

2
−−−

8

3

3

−−−

11

4
−−−

25

9

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

2 +

−−−

1
1

4
+

For comparison, here is the corresponding strip for the reciprocal, 24/67:
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Now let us see how all this relates to the Farey diagram. Since the rule for labeling

vertices in the triangles along the horizontal strip for a fraction p/q is the mediant

rule, each of the triangles in the strip is a triangle in the Farey diagram, somewhat

distorted in shape, and the strip of triangles can be regarded as a sequence of adjacent

triangles in the diagram. Here is what this looks like for the fraction 7/16 in the

circular Farey diagram, slightly distorted for the sake of visual clarity:
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Convergents: , , −−−

7

 16
,

In the strip of triangles for a fraction p/q there is a zigzag path from 1/0 to p/q

that we have indicated by the heavily shaded edges. The vertices that this zigzag path

passes through have a special significance. They are the fractions that occur as the

values of successively larger initial portions of the continued fraction, as illustrated

in the following example:
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=−−−

67

1
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24

+
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−−−

1
1

4
+

4
11/

5
14/

24
67/

These fractions are called the convergents for the given fraction. Thus the convergents

for 67/24 are 2, 3, 11/4, 14/5, and 67/24 itself.

From the preceding examples one can see that each successive vertex label pi/qi

along the zigzag path for a continued fraction
p
q = a0 +

1�րa1
+ 1�րa2

+ · · · + 1�րan is
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computed in terms of the two preceding vertex labels according to the rule

pi
qi
=
aipi−1 + pi−2

aiqi−1 + qi−2

This is because the mediant rule is being applied ai times, ‘adding’ pi−1/qi−1 to the

previously obtained fraction each time until the next label pi/qi is obtained.

γ

γ

1

γ

γ

It is interesting to see what the zigzag paths corresponding to continued fractions

look like in the upper half-plane Farey diagram. The next figure shows the simple

example of the continued fraction for 3/8. We can see here that the five triangles

of the strip correspond to the four curvilinear triangles lying directly above 3/8 in

the Farey diagram, plus the fifth ‘triangle’ extending upward to infinity, bounded on

the left and right by the vertical lines above 0/1 and 1/1, and bounded below by the

semicircle from 0/1 to 1/1.
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This example is typical of the general case, where the zigzag path for a continued

fraction
p
q = a0+

1�րa1
+ 1�րa2

+· · ·+ 1�րan becomes a ‘pinball path’ in the Farey diagam,

starting down the vertical line from 1/0 to a0/1, then turning left across a1 triangles,

then right across a2 triangles, then left across a3 triangles, continuing to alternate

left and right turns until reaching the final vertex p/q . Two consequences of this are:

(1) The convergents are alternately smaller than and greater than p/q .

(2) The triangles that form the strip of triangles for p/q are exactly the triangles in

the Farey diagram that lie directly above the point p/q on the x -axis.
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Here is a general statement describing the relationship between continued frac-

tions and the Farey diagram that we have observed in all our examples so far:

Theorem 2.1. The convergents for a continued fraction
p
q = a0+

1�րa1
+1�րa2

+· · ·+1�րan
are the vertices along a zigzag path consisting of a finite sequence of edges in the Farey

diagram, starting at 1/0 and ending at p/q . The path starts along the edge from 1/0

to a0/1 , then turns left across a fan of a1 triangles, then right across a fan of a2

triangles, etc., finally ending at p/q .

In particular, since every positive rational number has a continued fraction ex-

pansion, we see that every positive rational number occurs eventually as the label of

some vertex in the positive half of the diagram. All negative rational numbers then

occur as labels in the negative half.

Proof of the Theorem: The continued fraction
p
q
= a0 +

1�րa1
+ 1�րa2

+ · · · + 1�րan deter-

mines a strip of triangles:

γ

γ

γ

γ

We will show that the label pn/qn on the final vertex in this strip is equal to p/q , the

value of the continued fraction. Replacing n by i , we conclude that this holds also

for each initial seqment a0+
1�րa1

+ 1�րa2
+· · ·+ 1�րai of the continued fraction. This is

just saying that the vertices pi/qi along the strip are the convergents to p/q , which

is what the theorem claims.

To prove that pn/qn = p/q we will use 2× 2 matrices. Consider the product

P =

(
1 a0

0 1

)(
0 1

1 a1

)(
0 1

1 a2

)
· · ·

(
0 1

1 an

)

We can multiply this product out starting either from the left or from the right. Sup-

pose first that we multiply starting at the left. The initial matrix is

(
1 a0

0 1

)
and we

can view the two columns of this matrix as the two fractions 1/0 and a0/1 labeling

the left edge of the strip of triangles. When we multiply this matrix by the next matrix

we get (
1 a0

0 1

)(
0 1

1 a1

)
=

(
a0 1+ a0a1

1 a1

)
=

(
p0 p1

q0 q1

)

The two columns here give the fractions at the ends of the second edge of the zigzag

path. The same thing happens for subsequent matrix multiplications, as multiplying

by the next matrix in the product takes the matrix corresponding to one edge of the
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zigzag path to the matrix corresponding to the next edge:
(
pi−2 pi−1

qi−2 qi−1

)(
0 1

1 ai

)
=

(
pi−1 pi−2 + aipi−1

qi−1 qi−2 + aiqi−1

)
=

(
pi−1 pi
qi−1 qi

)

In the end, when all the matrices have been multiplied, we obtain the matrix corre-

sponding to the last edge in the strip from pn−1/qn−1 to pn/qn . Thus the second

column of the product P is pn/qn , and what remains is to show that this equals the

value p/q of the continued fraction a0 +
1�րa1

+ 1�րa2
+ · · · + 1�րan .

The value of the continued fraction a0 +
1�րa1

+ 1�րa2
+ · · · + 1�րan is computed by

working from right to left. If we let ri/si be the value of the tail 1�րai+1�րai+1
+· · ·+1�րan

of the continued fraction, then rn/sn = 1/an and we have

ri
si
=

1

ai +
ri+1

si+1

=
si+1

aisi+1 + ri+1

and finally
p

q
= a0 +

r1

s1
=
a0s1 + r1

s1

In terms of matrices this implies that we have
(
rn
sn

)
=

(
1

an

)
,

(
0 1

1 ai

)(
ri+1

si+1

)
=

(
si+1

ri+1 + aisi+1

)
=

(
ri
si

)

and

(
1 a0

0 1

)(
r1

s1

)
=

(
r1 + a0s1

s1

)
=

(
p

q

)

This means that when we multiply out the product P starting from the right, then the

second columns will be successively

(
rn
sn

)
,

(
rn−1

sn−1

)
, · · · ,

(
r1

s1

)
and finally

(
p

q

)
.

We already showed this second column is

(
pn
qn

)
, so p/q = pn/qn and the proof is

complete. ⊔⊓

An interesting fact that can be deduced from the preceding proof is that for a

continued fraction 1�րa1
+ 1�րa2

+ · · ·+ 1�րan with no initial integer a0 , if we reverse the

order of the numbers ai , this leaves the denominator unchanged. For example

1
�
ր
2+

1
�
ր
3+

1
�
ր
4 =

13

30
and 1

�
ր
4+

1
�
ր
3+

1
�
ր
2 =

7

30

To see why this must always be true we use the operation of transposing a matrix to in-

terchange its rows and columns. For a 2×2 matrix this just amounts to interchanging

the upper-right and lower-left entries:

(
a c

b d

)T
=

(
a b

c d

)

Transposing a product of matrices reverses the order of the factors: (AB)T = BTAT ,

as can be checked by direct calculation. In the product
(

0 1

1 a1

)(
0 1

1 a2

)
· · ·

(
0 1

1 an

)
=

(
pn−1 pn
qn−1 qn

)
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the individual matrices on the left side of the equation are symmetric with respect to

transposition, so the transpose of the product is obtained by just reversing the order

of the factors:
(

0 1

1 an

)(
0 1

1 an−1

)
· · ·

(
0 1

1 a1

)
=

(
pn−1 qn−1

pn qn

)

Thus the denominator qn is unchanged, as claimed.

There is also a fairly simple relationship between the numerators. In the example

of 13/30 and 7/30 we see that the product of the numerators, 91, is congruent to

1 modulo the denominator. In the general case the product of the numerators is

pnqn−1 and this is congruent to (−1)n+1 modulo the denominator qn . To verify this,

we note that the determinant of each factor

(
0 1

1 ai

)
is −1 so since the determinant

of a product is the product of the determinants, we have pn−1qn − pnqn−1 = (−1)n ,

which says that pnqn−1 is congruent to (−1)n+1 modulo qn .

Determinants Determine Edges

We constructed the Farey diagram by an inductive procedure, inserting successive

edges according to the mediant rule, but there is another rule that can be used to

characterize the edges in the diagram:

Theorem 2.2. In the Farey diagram, two vertices labeled a/b and c/d are joined by

an edge if and only if the determinant ad− bc of the matrix
(
a c
b d

)
is equal to ±1 .

Proof : First we show that for an arbitrary edge in the di-

agram joining a/b to c/d , the associated matrix
(
a c
b d

)

has determinant ±1. This is obviously true for the edges

in the two largest triangles in the circular version of the

diagram. For the smaller triangles we proceed by induc-

tion. The figure at the right shows the three matrices cor-

responding to the edges of one of these smaller triangles.

By induction we assume we know that ad−bc = ±1 for

the long edge of the triangle. Then the determinant con-

dition holds also for the two shorter edges of the triangle since a(b+d)−b(a+ c) =

ad− bc and (a+ c)d− (b + d)c = ad− bc .

Before proving the converse let us pause to apply what we have shown so far to

deduce a basic fact about the Farey diagram that was mentioned but not proved when

we first constructed the diagram:

Corollary 2.3. The mediant rule for labeling the vertices in the Farey diagram always

produces labels a/b that are fractions in lowest terms.

Proof : Consider an edge joining a vertex labeled a/b to some other vertex labeled

c/d . We know from the argument given above that ad − bc = ±1. This equation
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implies that a and b can have no common divisor greater than 1 since any common

divisor of a and b must divide the products ad and bc , hence also the difference

ad− bc = ±1, but the only divisors of ±1 are ±1. ⊔⊓

Now we return to proving the converse half of the theorem, which says that there

is an edge joining a/b to c/d whenever ad−bc = ±1. To do this we will examine how

all the edges emanating from a fixed vertex a/b are related. To begin, if a/b = 0/1

then the matrices

(
0 c

1 d

)
with determinant ±1 are the matrices

(
0 ±1

1 d

)
, and

these correspond exactly to the edges in the diagram from 0/1 to ±1/d . There is

a similar exact correspondence for the edges from 1/0. For the other vertices a/b ,

the example a/b = 5/8 is shown in the left half of the figure below. The first edges

drawn to this vertex come from 2/3 and 3/5, and after this all the other edges from

5/8 are drawn in turn. As one can see, they are all obtained by adding (5,8) to (2,3)

or (3,5) repeatedly. If we choose any one of these edges from 5/8, say the edge to

2/3 for example, then the edges from 5/8 have their other endpoints at the fractions

(2 + 5k)/(3 + 8k) as k ranges over all integers, with positive values of k giving the

edges on the upper side of the edge to 2/3 and negative values of k giving the edges

on the lower side of the edge to 2/3.

The same thing happens for an arbitrary value of a/b as shown in the right half of

the figure, where a/b initially arises as the mediant of c/d and e/f . In this case if

we choose the edge to c/d as the starting edge, then the other edges go from a/b to

(c + ka)/(d+ kb) . In particular, when k = −1 we get the edge to (c − a)/(d− b) =

(a− c)/(b − d) = e/f .

To finish the argument we need to know how the various matrices
(
a x
b y

)
of deter-

minant ay −bx = ±1 having the same first column are related. This can be deduced

from the following result about integer solutions of linear equations with integer co-

efficients:

Lemma 2.4. Suppose a and b are integers with no common divisor greater than

1 . If one solution of ay − bx = n is (x,y) = (c, d) , then the general solution is

(x,y) = (c + ka,d+ kb) for k an arbitrary integer.
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The proof will use the same basic argument as is used in linear algebra to show

that the general solution of a system of nonhomogeneous linear equations is obtained

from any particular solution by adding the general solution of the associated system

of homogeneous equations.

Before giving the proof let us introduce a convenient bit of standard terminology.

If two integers a and b have no common divisor greater than 1 then a and b are

said to be coprime. One can also say that a is coprime to b , or symmetrically, b is

coprime to a . A commonly used synonym for coprime is relatively prime.

Proof : One solution (x,y) = (c, d) of ay−bx = n is given. For an arbitrary solution

(x,y) we look at the difference (x0, y0) = (x−c,y−d) . This satisfies ay0−bx0 = 0,

or in other words, ay0 = bx0 . Since a and b are coprime, the equation ay0 = bx0

implies that x0 must be a multiple of a and y0 must be a multiple of b , in fact the

same multiple in both cases so that the equation becomes a(kb) = b(ka) . Thus we

have (x0, y0) = (ka, kb) for some integer k . Thus every solution of ay − bx = n

has the form (x,y) = (c + x0, d + y0) = (c + ka,d + kb) , and it is clear that these

formulas for x and y give solutions for all values of k . ⊔⊓

Now we can easily finish the proof of the theorem. The lemma in the cases n = ±1

implies that the edges in the Farey diagram with a/b at one endpoint account for all

matrices
(
a x
b y

)
of determinant ay − bx = ±1. ⊔⊓

There is some ambiguity in the correspondence between edges of the Farey di-

agram and matrices
(
a c
b d

)
of determinant ±1. For one thing, either column of the

matrix can be multiplied by −1, changing the sign of the determinant without chang-

ing the value of the fractions a/b and c/d . This ambiguity can be eliminated by

choosing all of a , b , c , and d to be positive for edges in the upper half of the circular

Farey diagram, and choosing just the numerators a and c to be negative for edges in

the lower half of the diagram. The only other ambiguity is that both
(
a c
b d

)
and

(
c a
d b

)

correspond to the same edge. This ambiguity can be eliminated by orienting the edges

by placing an arrowhead on each edge pointing from the vertex corresponding to the

first column of the matrix to the vertex corresponding to the second column. Chang-

ing the orientation of an edge switches the two columns of the matrix, which changes

the sign of the determinant.

The identity matrix
(

1 0
0 1

)
has determinant +1

and corresponds to the edge from 1/0 to 0/1 ori-

ented from left to right in the circular diagram. We

can use this orientation to give orientations to all

other edges when we build the diagram using the

mediant rule. In the upper half of the diagram this

makes all edges be oriented toward the right, or in
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other words from a/b to c/d with a/b > c/d . With this orientation, all the cor-

responding matrices have determinant +1 since
(

1 0
0 1

)
has determinant +1 and we

have seen that the determinant doesn’t change when we add new edges by the me-

diant rule. When we use the mediant rule to construct the lower half of the diagram

we have to start with −1/0 instead of 1/0. This means that we are starting with the

matrix
(
−1 0
0 1

)
instead of

(
1 0
0 1

)
. Since the determinant of

(
−1 0
0 1

)
is −1, this means

that the edges in the lower half of the diagram, when oriented toward the right as in

the upper half, correspond to matrices of determinant −1.

The Diophantine Equation ax+by=n

The Euclidean algorithm and continued fractions can be used to compute all the

integer solutions of a linear equation ax + by = n where a , b , and n are given

integers. We can assume neither a nor b is zero, otherwise the equation is rather

trivial. Changing the signs of x or y if necessary, we can rewrite the equation in the

form ax − by = n where a and b are both positive.

If a and b have greatest common divisor d > 1, then since d divides a and b

it must divide ax − by , so d must divide n if the equation is to have any solutions

at all. If d does divide n we can divide both sides of the equation by d to get a new

equation of the same type as the original one and having the same solutions, but with

the new coefficients a and b being coprime. For example, the equation 6x−15y = 21

reduces in this way to the equation 2x − 5y = 7. Thus we can assume from now on

that a and b are coprime.

The Lemma from a page or two back shows how to find the general solution of

ax−by = n once we have found one particular solution. To find a particular solution

it suffices to do the case n = 1 since if we have a solution of ax − by = 1, we can

multiply x and y by n to get a solution of ax − by = n . For small values of a

and b a solution of ax − by = 1 can be found more or less by inspection since the

equation ax − by = 1 says that we have a multiple of a that is 1 greater than a

multiple of b . For example, for the equation 2x−5y = 1 the smallest multiples of 2

that is one greater than a multiple of 5 is 2 · 3 > 5 · 1, so a solution of 2x − 5y = 1

is (x,y) = (3,1) . A solution of 2x − 5y = 7 is then (x,y) = (21,7) . By the earlier

Lemma, the general solution of 2x−5y = 7 is (x,y) = (21+5k,7+2k) for arbitrary

integers k . The smallest positive solution is (6,1) , obtained by setting k = −3. This

means we could also write the general solution as (6+ 5k,1+ 2k) .

Solutions of ax − by = 1 always exist when a and b are coprime, and a way to

find one is to find an edge in the Farey diagram with a/b at one end of the edge. This

can be done by using the Euclidean algorithm to compute the strip of triangles from

1/0 to a/b . As an example, let us solve 67x−24y = 1. We already computed the strip

of triangles for 67/24 earlier in the chapter. The vertex preceding 67/24 in the zigzag

path is 14/5 and this vertex lies above 67/24 so we have 14/5 > 67/24 and hence
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the matrix
(

14 67
5 24

)
has determinant +1. (One can easily distinguish determinant +1

from determinant −1 by computing just the last digit of the determinant.) Thus we

have 14 · 24− 5 · 67 = 1 so one solution of 67x− 24y = 1 is (x,y) = (−5,−14) and

the general solution is (x,y) = (−5 + 24k,−14+ 67k) . We could also use the edge

from 53/19 to 67/24, so
(

67 53
24 19

)
has determinant +1, yielding another formula for

the general solution (19+ 24k,53+ 67k) .

From a geometric point of view, finding the integer solutions of ax + by = n is

finding the points on the line ax + by = n in the xy -plane having both coordinates

integers. The points in the plane having both coordinates integers form a square grid

called the integer lattice. Thus we wish to see which points in the integer lattice lie

on the line ax + by = n . This equation can be written in the form y = mx + b

where the slope m and the y -intercept b are both rational. Conversely, an equation

y = mx + b with m and b rational can be written as an equation ax + by = n

with a , b , and n integers by multiplying through by a common denominator of m

and b . Sometimes the equation ax + by = n has no integer solutions, as we have

seen, namely when n is not a multiple of the greatest common divisor of a and b , for

example the equation 2x+2y = 1. In these cases the line ax+by = n passes through

no integer lattice points. In the opposite case that there does exist an integer solution,

there are infinitely many, and they correspond to integer lattice points spaced at equal

intervals along the line.

Infinite Continued Fractions

We have seen that all rational numbers can be represented as continued fractions

a0 +
1�րa1

+ 1�րa2
+ · · · + 1�րan , but what about irrational numbers? It turns out that

these can be represented as infinite continued fractions a0 +
1�րa1

+ 1�րa2
+ 1�րa3

+ · · · .

A simple example is 1�ր1+
1�ր1+

1�ր1+ · · · , or in its expanded form:

−−−−−−−−−−−−−−−−−

1

+

−−−−−−−−−−−−−−−−−−−−−−−−

1

1

1
−−−−−−−−−−

1

+1

+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1

1 +

. . .

The corresponding strip of triangles is infinite:
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55
−−−

13

21

−−−
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34
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−−−
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−−−

5

8

−−−

3

5
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Notice that these fractions after 1/0 are the successive ratios of the famous Fibonacci

sequence 0,1,1,2,3,5,8,13,21, · · · where each number is the sum of its two prede-

cessors. The sequence of convergents is thus 0/1,1/1,1/2,2/3,3/5,5/8,8/13, · · ·,

the vertices along the zigzag path. The way

this zigzag path looks in the standard Farey

diagram is shown in the figure at the right.

What happens when we follow this path far-

ther and farther? The path consists of an

infinite sequence of semicircles, each one

shorter than the preceding one and sharing

a common endpoint. The left endpoints of

the semicircles form an increasing sequence

of numbers which have to be approaching a certain limiting value x . We know x has

to be finite since it is certainly less than each of the right-hand endpoints of the semi-

circles, the convergents 1/1,2/3,5/8, · · ·. Similarly the right endpoints of the semi-

circles form a decreasing sequence of numbers approaching a limiting value y greater

than each of the left-hand endpoints 0/1,1/2,3/5, · · ·. Obviously x ≤ y . Is it pos-

sible that x is not equal to y ? If this happened, the infinite sequence of semicircles

would be approaching the semicircle from x to y . Above this semicircle there would

then be an infinite number of semicircles, all the semicircles in the infinite sequence.

Between x and y there would have to be a rational numbers p/q (between any two

real numbers there is always a rational number), so above this rational number there

would be an infinite number of semicircles, hence an infinite number of triangles in

the Farey diagram. But we know that there are only finitely many triangles above any

rational number p/q , namely the triangles that appear in the strip for the continued

fraction for p/q . This contradiction shows that x has to be equal to y . Thus the

sequence of convergents along the edges of the infinite strip of triangles converges to

a unique real number x . (This is why the convergents are called convergents.)

This argument works for arbitrary infinite continued fractions, so we have shown

the following general result:

Proposition 2.5. For every infinite continued fraction a0+
1�րa1

+ 1�րa2
+ 1�րa3

+· · · the

convergents converge to a unique limit.

This limit is by definition the value of the infinite continued fraction. There is a

simple method for computing the value in the example involving Fibonacci numbers.

We begin by setting

x = 1
�
ր
1+

1
�
ր
1+

1
�
ր
1+ · · ·

Then if we take the reciprocals of both sides of this equation we get

1

x
= 1+ 1

�
ր
1+

1
�
ր
1+

1
�
ր
1+ · · ·
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The right side of this equation is just 1+ x , so we can easily solve for x :

1

x
= 1+ x

1 = x + x2

x2 + x − 1 = 0

x =
−1±

√
5

2

We know x is positive, so this rules out the negative root and we are left with the final

value x = (−1+
√

5)/2. (This number, approximately .618, goes by the name of the

golden ratio because of its many interesting and beautiful properties.)

Proposition 2.6. Every irrational number has an expression as an infinite continued

fraction, and this continued fraction is unique.

Proof : In the Farey diagram consider the vertical line L going upward from a given

irrational number x on the x -axis. The lower endpoint of L is not a vertex of the

Farey diagram since x is irrational. Thus as we move downward along L we cross a

sequence of triangles, entering each triangle by crossing its upper edge and exiting

the triangle by crossing one of its two lower edges. When we exit one triangle we

are entering another, the one just below it, so the sequence of triangles and edges

we cross must be infinite. The left and right endpoints of the edges in the sequence

must be approaching the single point x by the argument we gave in the preceding

proposition, so the edges themselves are approaching x . Thus the triangles in the

sequence form a single infinite strip consisting of an infinite sequence of fans with

their pivot vertices on alternate sides of the strip. The zigzag path along this strip

gives a continued fraction for x .

For the uniqueness, we have seen that an infinite continued fraction for x cor-

responds to a zigzag path in the infinite strip of triangles lying above x . This set

of triangles is unique so the strip is unique, and there is only one path in this strip

that starts at 1/0 and then does left and right turns alternately, starting with a left

turn. The initial turn must be to the left because the first two convergents are a0 and

a0 +
1
a1

, with a0 +
1
a1
> a0 since a1 > 0. After the path traverses the first edge, no

subsequent edge of the path can go along the border of the strip since this would

entail two successive left turns or two successive right turns. ⊔⊓

The arguments we have just given can be used to prove a fact about the standard

Farey diagram that we have been taking more or less for granted. This is the fact that

the triangles in the diagram completely cover the upper halfplane. In other words,

every point (x,y) with y > 0 lies either in the interior of some triangle or on the

common edge between two triangles. To see why, consider the vertical line L in the

upper halfplane through the given point (x,y) . If x is an integer then (x,y) is on

one of the vertical edges of the diagram. Thus we can assume x is not an integer
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and hence L is not one of the vertical edges of the diagram. The line L will then be

contained in the strip of triangles corresponding to the continued fraction for x . This

is a finite strip if x is rational and an infinite strip if x is irrational. In either case

the point (x,y) , being in L , will be in one of the triangles of the strip or on an edge

separating two triangles in the strip. This proves what we wanted to prove.

To compute the infinite continued fraction a0+
1�րa1

+ 1�րa2
+ 1�րa3

+· · · for a given

irrational number x we can follow the same procedure as for rational numbers, but it

doesn’t terminate after a finite number of steps. Recall the original example that we

did:

−−−−−−−−−−−−−−−−−

−−−−−−−−−−

=−−−

67

1

1
3

24

+3 +

−−−−−−−−−−−−−−−−−−−−−−−−

1

1

−−−−

19

24

+

−−−−−−−−

1
1 +

1 +
2 + = −−−−

1

1924
2 +

−−−

1
1

4
+

−−−−−

1

/

519/

= −−−−−−−−

1

195
2 +

/
= −−−−−−−−

1
2 +

−−−−−−−−

1
1 +

54/

45/

= −−−−−−−−−−−−

1
2 +

3 +
−−−−−−−−

1
1 +

= −−−−−−−−−−−−

1
2 + = 2 +

The sequence of steps is the following:

(1) Write x = a0 + r1 where a0 is an integer and 0 ≤ r1 < 1

(2) Write 1/r1 = a1 + r2 where a1 is an integer and 0 ≤ r2 < 1

(3) Write 1/r2 = a2 + r3 where a2 is an integer and 0 ≤ r3 < 1

and so on, repeatedly. Thus one first finds the largest integer a0 ≤ x , with r1 the

‘remainder’, then one inverts r1 and finds the greatest integer a1 ≤ 1/r1 , with r2 the

remainder, etc.

Here is how this works for x =
√

2:

(1)
√

2 = 1+(
√

2−1) where a0 = 1 since
√

2 is between 1 and 2. Before going on to

step (2) we have to compute
1
r1
=

1√
2−1

. Multiplying numerator and denominator

by
√

2+ 1 gives
1√

2−1
=

1√
2−1

·
√

2+1√
2+1

=
√

2+ 1. This is the number we use in the

next step.

(2)
√

2+ 1 = 2+ (
√

2− 1) since
√

2+ 1 is between 2 and 3.

Notice that something unexpected has happened: The remainder r2 =
√

2−1 is exactly

the same as the previous remainder r1 . There is then no need to do the calculation

of
1
r2
=

1√
2−1

since we know it will have to be
√

2+ 1. This means that the next step

(3) will be exactly the same as step (2), and the same will be true for all subsequent

steps. Hence we get the continued fraction

√
2 = 1+ 1

�
ր
2+

1
�
ր
2+

1
�
ր
2+ · · ·

We can check this calculation by finding the value of the continued fraction in the same

way that we did earlier for 1�ր1+
1�ր1+

1�ր1+ · · · . First we set x = 1�ր2+
1�ր2+

1�ր2+ · · · .
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Taking reciprocals gives 1/x = 2 + 1�ր2 +
1�ր2 +

1�ր2 + · · · = 2 + x . This leads to the

quadratic equation x2+2x−1 = 0, which has roots x = −1±
√

2. Since x is positive

we can discard the negative root. Thus we have −1+
√

2 = 1�ր2+
1�ր2+

1�ր2+· · · . Adding

1 to both sides of this equation gives the formula for
√

2 as a continued fraction.

We can get good rational approximations to
√

2 by computing the convergents

in its continued fraction 1 + 1�ր2 +
1�ր2 +

1�ր2 + · · · . It’s a little easier to compute the

convergents in 2 + 1�ր2 +
1�ր2 +

1�ր2 + · · · = 1 +
√

2 and then subtract 1 from each of

these. For 2+ 1�ր2+
1�ր2+

1�ր2+ · · · there is a nice pattern to the convergents:

2

1
,

5

2
,

12

5
,

29

12
,

70

29
,

169

70
,

408

169
,

985

408
, · · ·

Notice that the sequence of numbers 1,2,5,12,29,70,169, · · · is constructed in a way

somewhat analogous to the Fibonacci sequence, except that each number is twice the

preceding number plus the number before that. (It’s easy to see why this has to be

true, because each convergent is constructed from the previous one by inverting the

fraction and adding 2.) After subtracting 1 from each of these fractions we get the

convergents to
√

2: √
2 = 1.41421356 · · ·

1/1 = 1.00000000 · · ·

3/2 = 1.50000000 · · ·

7/5 = 1.40000000 · · ·

17/12 = 1.41666666 · · ·

41/29 = 1.41379310 · · ·

99/70 = 1.41428571 · · ·

239/169 = 1.41420118 · · ·

577/408 = 1.41421568 · · ·

We can compute the continued fraction for
√

3 by the same method as for
√

2,

but something slightly different happens:

(1)
√

3 = 1 + (
√

3 − 1) since
√

3 is between 1 and 2. Computing
1√
3−1

, we have

1√
3−1

=
1√

3−1
·
√

3+1√
3+1

=
√

3+1
2

.

(2)
√

3+1
2

= 1+ (
√

3−1
2
) since the numerator

√
3+1 of

√
3+1
2

is between 2 and 3. Now

we have a remainder r2 =
√

3−1
2

which is different from the previous remainder

r1 =
√

3 − 1, so we have to compute
1
r2
=

2√
3−1

, namely
2√
3−1

=
2√
3−1

·
√

3+1√
3+1

=
√

3+ 1.

(3)
√

3+ 1 = 2+ (
√

3− 1) since
√

3+ 1 is between 2 and 3.

Now this remainder r3 =
√

3− 1 is the same as r1 , so instead of the same step being

repeated infinitely often, as happened for
√

2, the same two steps will repeat infinitely

often. This means we get the continued fraction
√

3 = 1+ 1
�
ր
1+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+ · · ·
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Checking this takes a little more work than before. We begin by isolating the part of

the continued fraction that repeats periodically, so we set

x = 1
�
ր
1+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+ · · ·

Taking reciprocals, we get

1

x
= 1+ 1

�
ր
2+

1
�
ր
1+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+ · · ·

Subtracting 1 from both sides gives

1

x
− 1 = 1

�
ր
2+

1
�
ր
1+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+ · · ·

The next step will be to take reciprocals of both sides, so before doing this we rewrite

the left side as
1−x
x . Then taking reciprocals gives

x

1− x
= 2+ 1

�
ր
1+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+ · · ·

Hence
x

1− x
− 2 = 1

�
ր
1+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+ · · · = x

Now we have the equation
x

1−x − 2 = x which can be simplified to the quadratic

equation x2+2x−2 = 0, with roots x = −1±
√

3. Again the negative root is discarded,

and we get x = −1+
√

3. Thus
√

3 = 1+x = 1+ 1�ր1+
1�ր2+

1�ր1+
1�ր2+

1�ր1+
1�ր2+ · · · .

To simplify the notation we will write a bar over a block of terms in a continued

fraction that repeat infinitely often, for example

√
2 = 1+ 1�ր2 and

√
3 = 1+ 1�ր1+

1�ր2

It is true in general that for every positive integer n that is not a square, the

continued fraction for
√
n has the form a0 +

1�րa1
+ 1�րa2

+ · · · + 1�րak . The length of

the period can be large, for example

√
46 = 6+ 1�ր1+

1�ր3+
1�ր1+

1�ր1+
1�ր2+

1�ր6+
1�ր2+

1�ր1+
1�ր1+

1�ր3+
1�ր1+

1�ր12

This example illustrates two other curious facts about the continued fraction for an

irrational number
√
n :

(i) The last term of the period (12 in the example) is always twice the integer a0 (the

initial 6).

(ii) If the last term of the period is omitted, the preceding terms in the period form

a palindrome, reading the same backwards as forwards.

We will see in Chapter 4 why these two properties have to be true.

It is natural to ask exactly which irrational numbers have continued fractions that

are periodic, or at least eventually periodic, like for example

1�ր2+
1�ր4+

1�ր3+
1�ր5+

1�ր7 =
1�ր2+

1�ր4+
1�ր3+

1�ր5+
1�ր7+

1�ր3+
1�ր5+

1�ր7+
1�ր3+

1�ր5+
1�ր7+· · ·

The answer is given by a theorem of Lagrange from around 1766:
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Theorem 2.7 (Lagrange’s Theorem). The irrational numbers whose continued frac-

tions are eventually periodic are exactly the numbers of the form a + b
√
n where a

and b are rational numbers, b 6= 0 , and n is a positive integer that is not a square.

These numbers a + b
√
n are called quadratic irrationals because they are roots

of quadratic equations with integer coefficients. The easier half of the theorem is the

statement that the value of an eventually periodic infinite continued fraction is always

a quadratic irrational. This can be proved by showing that the method we used for

finding a quadratic equation satisfied by an eventually periodic continued fraction

works in general. Rather than following this purely algebraic approach, however, we

will develop a more geometric version of the procedure in the next chapter, so we

will wait until then to give the argument that proves this half of Lagrange’s Theorem.

The more difficult half of the theorem is the assertion that the continued fraction

expansion of every quadratic irrational is eventually periodic. It is not at all apparent

from the examples of
√

2 and
√

3 why this should be true in general, but in Chapter 5

we will develop some theory that will make it clear.

What can be said about the continued fraction expansions of irrational numbers

that are not quadratic, such as
3
√

2, π , or e , the base for natural logarithms? It

happens that e has a continued fraction whose terms have a very nice pattern, even

though they are not periodic or eventually periodic:

e = 2+ 1
�
ր
1+

1
�
ր
2+

1
�
ր
1

︸ ︷︷ ︸
+1
�
ր
1+

1
�
ր
4+

1
�
ր
1

︸ ︷︷ ︸
+1
�
ր
1+

1
�
ր
6+

1
�
ր
1

︸ ︷︷ ︸
+· · ·

where the terms are grouped by threes with successive even numbers as middle de-

nominators. Even simpler are the continued fractions for certain numbers built from

e that have arithmetic progressions for their denominators:

e− 1

e+ 1
= 1
�
ր
2+

1
�
ր
6+

1
�
ր
10+

1
�
ր
14+ · · ·

e2 − 1

e2 + 1
= 1
�
ր
1+

1
�
ր
3+

1
�
ր
5+

1
�
ր
7+ · · ·

The continued fractions for e and (e − 1)/(e + 1) were discovered by Euler in 1737

while the formula for (e2 − 1)/(e2 + 1) was found by Lambert in 1766 as a special

case of a slightly more complicated formula for (ex − 1)/(ex + 1) .

For
3
√

2 and π , however, the continued fractions have no known pattern. For π

the continued fraction begins

π = 3+ 1
�
ր
7+

1
�
ր
15+

1
�
ր
1+

1
�
ր
292+ · · ·

Here the first four convergents are 3, 22/7, 333/106, and 355/113. We recognize

22/7 as the familiar approximation 3
1
7

to π . The convergent 355/113 is a particularly

good approximation to π since its decimal expansion begins 3.14159282 whereas

π = 3.14159265 · · ·. It is no accident that the convergent 355/113 obtained by

truncating the continued fraction just before the 292 term gives a good approximation
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to π since it is a general fact that a convergent immediately preceding a large term in

the continued fraction always gives an especially good approximation. This is because

the next jump in the zigzag path in the Farey diagram will be rather small since it

crosses a fan with a large number of triangles, and all succeeding jumps will of course

be smaller still.

There are nice continued fractions for π if one allows numerators larger than 1,

as in the following formula discovered by Euler:

π = 3+ 12

�
ր
6+

32

�
ր
6+

52

�
ր
6+

72

�
ր
6+ · · ·

However, it is the continued fractions with numerator 1 that have the nicest proper-

ties, so we will not consider the more general sort in this book.

Exercises

1. (a) Compute the values of the continued fractions 1�ր1 +
1�ր3 +

1�ր5 +
1�ր7 and

1�ր1+
1�ր1+

1�ր1+
1�ր1+

1�ր1+
1�ր2 .

(b) Compute the continued fraction expansions of 19/44 and 101/1020.

2. (a) Compute the continued fraction for 38/83 and display the steps of the Euclidean

algorithm as a sequence of equations involving just integers.

(b) For the same number 38/83 compute the associated strip of triangles (with large

triangles subdivided into fans of smaller triangles), including the labeling of the ver-

tices of all the triangles.

(c) Take the continued fraction 1�րa1
+ 1�րa2

+ · · · + 1�րan you got in part (a) and reverse

the order of the numbers ai to get a new continued fraction 1�րan+ 1�րan−1
+· · ·+ 1�րa1

.

Compute the value p/q of this continued fraction, and also compute the strip of

triangles for this fraction p/q .

3. Let pn/qn be the value of the continued fraction 1�րa1
+1�րa2

+· · ·+1�րan where each of

the n terms ai is equal to 2. For example, p1/q1 = 1/2 and p2/q2 =
1�ր2+

1�ր2 = 2/5.

(a) Find equations expressing pn and qn in terms of pn−1 and qn−1 , and use these

to write down the values of pn/qn for n = 1,2,3,4,5,6,7.

(b) Compute the strip of triangles for p7/q7 .

4. (a) A rectangle whose sides have lengths 13 and 48 can be partitioned into squares

in the following way:

Determine the lengths of the sides of all the squares, and relate the numbers of squares

of each size to the continued fraction for 13/48.
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(b) Draw the analogous figure decomposing a rectangle of sides 19 and 42 into

squares, and relate this to the continued fraction for 19/42.

5. This exercise is intended to illustrate the proof of the first theorem in this chapter

in the concrete case of the continued fraction 1�ր2+
1�ր3+

1�ր4+
1�ր5 .

(a) Write down the product A1A2A3A4 =

(
0 1

1 a1

)(
0 1

1 a2

)(
0 1

1 a3

)(
0 1

1 a4

)
as-

sociated to 1�ր2+
1�ր3+

1�ր4+
1�ր5 .

(b) Compute the four matrices A1 , A1A2 , A1A2A3 , A1A2A3A4 and relate these to the

edges of the zigzag path in the strip of triangles for 1�ր2+
1�ր3+

1�ր4+
1�ր5 .

(c) Compute the four matrices A4 , A3A4 , A2A3A4 , A1A2A3A4 and relate these to the

successive fractions that one gets when one computes the value of 1�ր2+
1�ր3+

1�ր4+
1�ր5 ,

namely 1�ր5 , 1�ր4+
1�ր5 , 1�ր3+

1�ր4+
1�ր5 , and 1�ր2+

1�ր3+
1�ր4+

1�ր5 .

6. (a) Find all integer solutions of the equations 40x + 89y = 1 and 40x + 89y = 5.

(b) Find another equation ax + by = 1 with integer coefficients a and b that has an

integer solution in common with 40x + 89y = 1. [Hint: use the Farey diagram.]

7. There is a close connection between the Diophantine equation ax+by = n and the

congruence ax ≡ n mod b , where the symbol ≡ means “is congruent to”. Namely,

if one has a solution (x,y) to ax + by = n then ax ≡ n mod b , and conversely,

if one has a number x such that ax ≡ n mod b then this means that ax − n is a

multiple of b , say k times b , so ax − n = kb or equivalently ax − kb = n so one

has a solution of ax + by = n with y = −k .

Using this viewpoint, find all integers x satisfying the congruence 31x ≡ 1 mod 71,

and then do the same for the congruence 31x ≡ 10 mod 71. Are the solutions unique

mod 71, i.e., unique up to adding multiples of 71?

8. Compute the values of the following infinite continued fractions:

(a) 1�ր4

(b) 1�րk for an arbitrary positive integer k .

(c) 1�ր2+
1�ր3 and 1�ր1+

1�ր2+
1�ր3

(d) 1�ր1+
1�ր2+

1�ր1+
1�ր6 and 1�ր1+

1�ր4+
1�ր1+

1�ր2+
1�ր1+

1�ր6

(e) 1�ր2+
1�ր3+

1�ր5

9. Compute the continued fractions for
√

5 and
√

23.

10. Compute the continued fractions for
√
n2 + 1 and

√
n2 +n where n is an arbi-

trary positive integer.
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Chapter 3. Linear Fractional Transformations

One thing one notices about the various versions of the Farey diagram is their

symmetry. For the circular Farey diagram the symmetries are the reflections across

the horizontal and vertical axes and the 180 degree rotation about the center. For the

standard Farey diagram in the upper halfplane there are symmetries that translate

the diagram by any integer distance to the left or the right, as well as reflections

across certain vertical lines, the vertical lines through an integer or half-integer point

on the x -axis. The Farey diagram could also be drawn to have 120 degree rotational

symmetry and three reflectional symmetries.

Our purpose in this chapter is to study all possible symmetries of the Farey diagram,

where we interpret the word “symmetry” in a broader sense than the familiar meaning

from Euclidean geometry. For our purposes, symmetries will be invertible transfor-

mations that take vertices to vertices, edges to edges, and triangles to triangles. There

are simple algebraic formulas for these more general symmetries, and these formulas

lead to effective means of calculation. One of the applications will be to computing

the values of periodic or eventually periodic continued fractions.

From linear algebra one is familiar with the way in which 2 × 2 matrices
(
a b
c d

)

correspond to linear transformations of the plane R2 , transformations of the form

T

(
x

y

)
=

(
a b

c d

)(
x

y

)
=

(
ax + by

cx + dy

)

In our situation we are going to restrict a, b, c, d, x, y to be integers. Then by asso-

ciating to a pair (x,y) the fraction x/y one obtains a closely related transformation

T

(
x

y

)
=
ax + by

cx + dy
=
a
(x
y

)
+ b

c
(x
y

)
+ d

If we set z = x/y then T can also be written in the form

T(z) =
az + b

cz + d

Such a transformation is called a linear fractional transformation since it is defined

by a fraction whose numerator and denominator are linear functions.

In the formula T(x/y) = (ax+by)/(cx+dy) there is no problem with allowing

x/y = ±1/0 just by setting (x,y) = (±1,0) , and the result is that T(±1/0) = a/c .

The value T(x/y) = (ax + by)/(cx + dy) can also be ±1/0, when (x,y) = (d,−c)

and the matrix has determinant ad−bc = ±1. This means that T defines a function
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from vertices of the Farey diagram to vertices of the Farey diagram. We would like T

to take edges of the diagram to edges of the diagram, and the following result gives a

condition for this to happen.

Proposition 3.1. If the matrix
(
a b
c d

)
has determinant ±1 then the associated linear

fractional transformation T takes each pair of vertices in the Farey diagram that lie

at the ends of an edge of the diagram to another such pair of vertices.

Proof : We showed in Chapter 1 that two vertices labeled p/q and r/s are joined by

an edge in the diagram exactly when ps − qr = ±1, or in other words when the ma-

trix
(
p r
q s

)
has determinant ±1. The two columns of the product matrix

(
a b
c d

)(
p r
q s

)

correspond to the two vertices T(p/q) and T(r/s) , by the definition of matrix mul-

tiplication: (
a b
c d

)(
p r
q s

)
=

(
ap + bq ar + bs
cp + dq cr + ds

)

The proposition can then be restated as saying that if
(
a b
c d

)
and

(
p r
q s

)
each have

determinant ±1 then so does their product
(
a b
c d

)(
p r
q s

)
. But it is a general fact about

determinants that the determinant of a product is the product of the determinants.

(This is easy to prove by a direct calculation in the case of 2 × 2 matrices.) So the

product of two matrices of determinant ±1 has determinant ±1. ⊔⊓

As notation, we will use LF(Z) to denote the set of all linear fractional transfor-

mations T(x/y) = (ax + by)/(cx + dy) with coefficients a,b, c, d in Z such that

the matrix
(
a b
c d

)
has determinant ±1. (Here Z is the set of all integers.)

Changing the matrix
(
a b
c d

)
to its negative

(
−a −b
−c −d

)
produces the same linear frac-

tional transformation since (−ax−by)/(−cx−dy) = (ax+by)/(cx+dy) . This is

in fact the only way that different matrices can give the same linear fractional transfor-

mation T , as we will see later in this chapter. Note that changing
(
a b
c d

)
to its negative(

−a −b
−c −d

)
does not change the determinant. Thus each linear fractional transformation

in LF(Z) has a well-defined determinant, either +1 or −1. Later in this chapter we

will also see how the distinction between determinant +1 and determinant −1 has a

geometric interpretation in terms of orientations.

A useful fact about LF(Z) is that each transformation T in LF(Z) has an inverse

T−1 in LF(Z) because the inverse of a 2× 2 matrix is given by the formula

(
a b

c d

)−1

=
1

ad− bc

(
d −b

−c a

)

Thus if a,b, c, d are integers with ad − bc = ±1 then the inverse matrix also has

integer entries and determinant ±1. The factor
1

ad−bc is ±1 so it can be ignored since

the matrices
(
a b
c d

)
and −

(
a b
c d

)
determine the same linear fractional transformation,

as we observed in the preceding paragraph.
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The preceding proposition says that each linear fractional transformation T in

LF(Z) not only sends vertices of the Farey diagram to vertices, but also edges to edges.

It follows that T must take triangles in the diagram to triangles in the diagram, since

triangles correspond to sets of three vertices, each pair of which forms the endpoints

of an edge. Since each transformation T in LF(Z) has an inverse in LF(Z) , this implies

that T gives a one-to-one (injective) and onto (surjective) transformation of vertices,

and also of edges and triangles. For example, if two edges e1 and e2 have the same

image T(e1) = T(e2) then we must have T−1(T(e1)
)
= T−1(T(e2)

)
or in other words

e1 = e2 , so T cannot send two different edges to the same edge, which means it is

one-to-one on edges. Also, every edge e1 is the image T(e2) of some edge e2 since

we can write e1 = T
(
T−1(e1)

)
and let e2 = T

−1(e1) . The same reasoning works with

vertices and triangles as well as edges.

A useful property of linear fractional transformations that we will use repeatedly

is that the way an element of LF(Z) acts on the Farey diagram is uniquely determined

by where a single triangle is sent. This is because once one knows where one triangle

goes, this uniquely determines where the three adjacent triangles go, and this in turn

determines where the six new triangles adjacent to these three go, and so on.

Seven Types of Transformations

We will now give examples illustrating seven different ways that elements of LF(Z)

can act on the Farey diagram.

(1) The transformation T(x/y) = y/x with

matrix
(

0 1
1 0

)
gives a reflection of the circu-

lar Farey diagram across its vertical axis

of symmetry. This is a reflection across

a line perpendicular to an edge of the

diagram.

(2) The reflection across the horizon-

tal axis of symmetry is the element

T(x/y) = −x/y with matrix
(
−1 0
0 1

)
.

This is a reflection across an edge of the

diagram.

(3) If we compose the two preceding re-

flections we get the transformation T(x/y) =

−y/x with matrix
(

0 1
−1 0

)
. This rotates the Farey diagram 180 degrees about its cen-

ter, interchanging 1/0 and 0/1 and also interchanging 1/1 and −1/1. Thus it rotates

the diagram 180 degrees about the centerpoint of an edge.

(4) Consider T(x/y) = y/(y − x) corresponding to the matrix
(

0 1
−1 1

)
. This has the

effect of “rotating” the triangle 〈1/0,0/1,1/1〉 about its centerpoint, taking 1/0 to
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0/1, 0/1 to 1/1 and 1/1 back to 1/0. The whole Farey diagram is then “rotated”

about the same point.

(5) Next let T(x/y) = x/(x + y) , corresponding to the matrix
(

1 0
1 1

)
. In particu-

lar T(0/1) = 0/1, so 0/1 is a fixed point of T , a point satisfying T(z) = z . Also

we have T(1/0) = 1/1 and more generally T(1/n) = 1/(n + 1) . Thus the triangle

〈0/1,1/0,1/1〉 is taken to the triangle 〈0/1,1/1,1/2〉 . This implies that T is a “rota-

tion” of the Farey diagram about the vertex 0/1, taking each triangle with 0/1 as a

vertex to the next triangle in the clockwise direction about this vertex.

(6) A different sort of behavior is exhibited by T(x/y) = (2x + y)/(x + y) corre-

sponding to
(

2 1
1 1

)
. To visualize T as a transformation of the Farey diagram let us

look at the infinite strip
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−−−
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8
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We claim that T translates the whole strip one unit to the right. To see this, notice

first that since T takes 1/0 to 2/1, 0/1 to 1/1, and 1/1 to 3/2, it takes the triangle

〈1/0,0/1,1/1〉 to the triangle 〈2/1,1/1,3/2〉 . This implies that T takes the triangle

just to the right of 〈1/0,0/1,1/1〉 to the triangle just to the right of 〈2/1,1/1,3/2〉 ,

and similarly each successive triangle is translated one unit to the right. The same

argument shows that each successive triangle to the left of the original one is also

translated one unit to the right. Thus the whole strip is translated one unit to the

right.

(7) Using the same figure as in the preceding example, consider the transformation

T(x/y) = (x + y)/x corresponding to the matrix
(

1 1
1 0

)
. This sends the triangle

〈1/0,0/1,1/1〉 to 〈1/1,1/0,2/1〉 which is the next triangle to the right in the infinite

strip. Geometrically, T translates the first triangle half a unit to the right and reflects

it across the horizontal axis of the strip. It follows that the whole strip is translated

half a unit to the right and reflected across the horizontal axis. Such a motion is

sometimes referred to as a glide-reflection. Notice that performing this motion twice

in succession yields a translation of the strip one unit to the right, the transformation

in the preceding example.

Thus we have seven types of symmetries of the Farey diagram: reflections across

an edge or a line perpendicular to an edge; rotations about the centerpoint of an

edge or a triangle, or about a vertex; and translations and glide-reflections of periodic

infinite strips. (Not all periodic strips have glide-reflection symmetries.) It is a true

fact, though we won’t prove it here, that every element of LF(Z) acts on the Farey
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diagram in one of these seven ways, except for the identity transformation T(x/y) =

x/y of course.

Specifying Where a Triangle Goes

As we observed earlier, the action of an element of LF(Z) on the Farey diagram is

completely determined by where it sends a single triangle. Now we will see that there

always exists an element of LF(Z) sending any triangle to any other triangle, and in

fact, one can do this specifying where each individual vertex of the triangle goes.

As an example, suppose we wish to find an element T of LF(Z) that takes the

triangle 〈2/5,1/3,3/8〉 to the triangle 〈5/8,7/11,2/3〉 , preserving the indicated or-

dering of the vertices, so T(2/5) = 5/8, T(1/3) = 7/11, and T(3/8) = 2/3. For

this problem to even make sense we might want to check first that these really are

triangles in the Farey diagram. In the first case, 〈2/5,1/3〉 is an edge since the matrix(
2 1
5 3

)
has determinant 1, and there is a triangle joining this edge to 3/8 since 3/8 is

the mediant of 2/5 and 1/3. For the other triangle, the determinant of
(

5 2
8 3

)
is −1

and the mediant of 5/8 and 2/3 is 7/11.

As a first step toward constructing the desired transformation T we will do some-

thing slightly weaker: We construct a transformation T taking the edge 〈2/5,1/3〉 to

the edge 〈5/8,7/11〉 . This is rather easy if we first notice the general fact that the

transformation T(x/y) = (ax+by)/(cx+dy) with matrix
(
a b
c d

)
takes 1/0 to a/c

and 0/1 to b/d . Thus the transformation T1 with matrix
(

2 1
5 3

)
takes 〈1/0,0/1〉

to 〈2/5,1/3〉 , and the transformation T2 with matrix
(

5 7
8 11

)
takes 〈1/0,0/1〉 to

〈5/8,7/11〉 . Then the product

T2T
−1
1 =

(
5 7

8 11

)(
2 1

5 3

)−1

takes 〈2/5,1/3〉 first to 〈1/0,0/1〉 and then to 〈5/8,7/11〉 . Doing the calculation, we

get (
5 7

8 11

)(
2 1

5 3

)−1

=

(
5 7

8 11

)(
3 −1

−5 2

)
=

(
−20 9

−31 14

)

This takes the edge 〈2/5,1/3〉 to the edge 〈5/8,7/11〉 , but does it do the right thing

on the third vertex of the triangle 〈2/5,1/3,3/8〉 , taking it to the third vertex of

〈5/8,7/11,2/3〉? This is not automatic since there are always two triangles containing

a given edge, and in this case the other triangle having 〈5/8,7/11〉 as an edge is

〈5/8,7/11,12/19〉 since 12/19 is the mediant of 5/8 and 7/11. In fact, if we compute

what our T does to 3/8 we get
(
−20 9

−31 14

)(
3

8

)
=

(
12

19

)

so we don’t have the right T yet. To fix the problem, notice that we have a little

flexibility in the choice of a matrix
(
a b
c d

)
taking 1/0 to a/c and 0/1 to b/d since
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we can multiply either column by −1 without affecting the fractions a/b and c/d . It

doesn’t matter which column we multiply by −1 since multiplying both columns by

−1 multiplies the whole matrix by −1 which doesn’t change the associated element

of LF(Z) , as noted earlier. In the case at hand, suppose we change the sign of the first

column of
(

5 7
8 11

)
. Then we get

(
−5 7

−8 11

)(
2 1

5 3

)−1

=

(
−5 7

−8 11

)(
3 −1

−5 2

)
=

(
−50 19

−79 30

)

This fixes the problem since
(
−50 19

−79 30

)(
3

8

)
=

(
2

3

)

Here is a general statement summarizing what we saw in this one example:

Proposition 3.2. (a) For any two triangles 〈p/q, r/s, t/u〉 and 〈p′/q′, r ′/s′, t′/u′〉 in

the Farey diagram there is a unique element T in LF(Z) taking the first triangle to the

second triangle preserving the ordering of the vertices, so T(p/q) = p′/q′ , T(r/s) =

r ′/s′ , and T(t/u) = t′/u′ .

(b) The matrix
(
a b
c d

)
representing a given transformation T in LF(Z) is unique except

for replacing it by
(
−a −b
−c −d

)
.

Proof : As we saw in the example above, there is a composition T2T
−1
1 taking the edge

〈p/q, r/s〉 to 〈p′/q′, r ′/s′〉 , where T1 has matrix
(
p r
q s

)
and T2 has matrix

(
p′ r ′

q′ s′

)
.

If this composition T2T
−1
1 does not take t/u to t′/u′ we modify T2 by changing the

sign of one of its columns, say the first column. Thus we change
(
p′ r ′

q′ s′

)
to
(
−p′ r ′

−q′ s′

)
,

which equals the product
(
p′ r ′

q′ s′

)(
−1 0
0 1

)
. The matrix

(
−1 0
0 1

)
corresponds to the trans-

formation R(x/y) = −x/y reflecting the Farey diagram across the edge 〈1/0,0/1〉 .

Thus we are replacing T2T
−1
1 by T2RT

−1
1 , inserting a reflection that interchanges the

two triangles containing the edge 〈1/0,0/1〉 . By inserting R we change where the

composition T2T
−1
1 sends the third vertex t/u of the triangle 〈p/q, r/s, t/u〉 , so we

can guarantee that t/u is taken to t′/u′ . This proves part (a).

For part (b), note first that the transformation T determines the values T(1/0) =

a/c and T(0/1) = b/d . The fractions a/c and b/d are in lowest terms (because

ad− bc = ±1) so this means that we know the two columns of the matrix
(
a b
c d

)
up

to multiplying either or both columns by −1. We need to check that changing the

sign of one column without changing the sign of the other column gives a different

transformation. It doesn’t matter which column we change since
(
−a b
−c d

)
= −

(
a −b
c −d

)
.

As we saw in part (a), changing the sign in the first column amounts to replacing T

by the composition TR , but this is a different transformation from T since it has a

different effect on the triangles containing the edge 〈1/0,0/1〉 . ⊔⊓
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Continued Fractions Again

Linear fractional transformations can be used to compute the values of periodic

or eventually periodic continued fractions, and to see that these values are always

quadratic irrational numbers. To illustrate this, consider the periodic continued frac-

tion

1
�
ր
2+

1
�
ր
3+

1
�
ր
1+

1
�
ր
4

The associated periodic strip in the Farey diagram is the following:

We would like to compute the element T of LF(Z) that gives the rightward translation

of this strip that exhibits the periodicity. A first guess is the T with matrix
(

4 19
9 43

)

since this sends 〈1/0,0/1〉 to 〈4/9,19/43〉 . This is actually the correct T since it

sends the vertex 1/1 just to the right of 1/0, which is the mediant of 1/0 and 0/1,

to the vertex (4+ 19)/(9+ 43) just to the right of 4/9, which is the mediant of 4/9

and 19/43. This is a general fact since
(
a b
c d

)(
1
1

)
=
(
a+b
c+d

)
.

The sequence of fractions labeling the vertices along the zigzag path in the strip

moving toward the right are the convergents to 1�ր2+
1�ր3+

1�ր1+
1�ր4 . Call these con-

vergents z1, z2, · · · and their limit z . When we apply the translation T we are taking

each convergent to a later convergent in the sequence, so both the sequence {zn} and

the sequence {T(zn)} converge to z . Thus we have

T(z) = T(limzn) = limT(zn) = z

where the middle equality uses the fact that T is continuous. (Note that a linear

fractional transformation T(z) =
az+b
cz+d is defined for real values of z , not just rational

values z = x/y , when T(x/y) = (ax + by)/(cx + dy) = (a xy + b)/(c
x
y + d) .)

In summary, what we have just argued is that the value z of the periodic continued

fraction satisfies the equation T(z) = z , or in other words,
4z+19
9z+43

= z . This can be

rewritten as 4z+19 = 9z2+43z , which simplifies to 9z2+39z−19 = 0. Computing

the roots of this quadratic equation, we get

z =
−39±

√
392 + 4 · 9 · 19

18
=
−39± 3

√
132 + 4 · 19

18
=
−13±

√
245

6
=
−13± 7

√
5

6

The positive root is the one that the right half of the infinite strip converges to, so we

have
−13+ 7

√
5

6
= 1
�
ր
2+

1
�
ր
3+

1
�
ր
1+

1
�
ր
4
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Incidentally, the other root (−13 − 7
√

5)/6 has an interpretation in terms of the di-

agram as well: It is the limit of the numbers labeling the vertices of the zigzag path

moving off to the left rather than to the right. This follows by the same sort of argu-

ment as above.

If a periodic continued fraction has period of odd length, the transformation

giving the periodicity is a glide-reflection of the periodic strip rather than a translation.

As an example, consider

1
�
ր
1+

1
�
ր
2+

1
�
ր
3

Here the periodic strip is

The transformation T with matrix
(

2 7
3 10

)
takes 〈1/0,0/1〉 to 〈2/3,7/10〉 and the

mediant 1/1 of 1/0 and 0/1 to the mediant 9/13 of 2/3 and 7/10 so this transfor-

mation is a glide-reflection of the strip. The equation T(z) = z becomes
2z+7

3z+10
= z

which simplifies to 3z2+8z−7 = 0 with roots (−4±
√

37)/3. The positive root gives

−4+
√

37

3
= 1
�
ր
1+

1
�
ր
2+

1
�
ր
3

Continued fractions that are only eventually periodic can be treated in a similar

fashion. For example, consider

1
�
ր
2+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+

1
�
ր
3

The corresponding infinite strip is

In this case if we discard the triangles corresponding to the initial nonperiodic part of

the continued fraction, 1�ր2+
1�ր2 , and then extend the remaining periodic part in both

directions, we obtain a periodic strip that is carried to itself by the glide-reflection T

taking 〈1/2,2/5〉 to 〈8/19,27/64〉 :
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We can compute T as the composition 〈1/2,2/5〉→〈1/0,0/1〉→ 〈8/19,27/64〉 cor-

responding to the product

(
8 27

19 64

)(
1 2

2 5

)−1

=

(
8 27

19 64

)(
5 −2

−2 1

)
=

(
−14 11

−33 26

)

Since this transformation takes 3/7 to the mediant (8+27)/(19+64) , it is the glide-

reflection we want. Now we solve T(z) = z . This means
−14z+11
−33z+26

= z , which reduces

to the equation 33z2 − 40z + 11 = 0 with roots z = (20 ±
√

37)/33. Both roots are

positive, and we want the smaller one, (20−
√

37)/33, because along the top edge of

the strip the numbers decrease as we move to the right, approaching the smaller root,

and they increase as we move to the left, approaching the larger root. Thus we have

(20−
√

37)/33 = 1
�
ր
2+

1
�
ր
2+

1
�
ր
1+

1
�
ր
2+

1
�
ր
3

Notice that
√

37 occurs in both this example and the preceding one where we

computed the value of 1�ր1+
1�ր2+

1�ր3 . This is not just an accident. It had to happen

because to get from 1�ր1+
1�ր2+

1�ր3 to 1�ր2+
1�ր2+

1�ր1+
1�ր2+

1�ր3 one adds 2 and inverts,

then adds 2 and inverts again, and each of these operations of adding an integer

or taking the reciprocal takes place within the set Q(
√

37) of all numbers of the

form a+b
√

37 with a and b rational. More generally, this argument shows that any

eventually periodic continued fraction whose periodic part is 1�ր1+
1�ր2+

1�ր3 has as

its value some number in Q(
√

37) . However, not all irrational numbers in Q(
√

37)

have eventually periodic continued fractions with periodic part 1�ր1+
1�ր2+

1�ր3 . For

example, the continued fraction for
√

37 itself is 6 + 1�ր12 , with a different periodic

part. (Check this by computing the value of this continued fraction.)

One Half of Lagrange’s Theorem

The procedure we have used in these examples works in general for any irrational

number z whose continued fraction is eventually periodic. From the periodic part of

the continued fraction one constructs a periodic infinite strip in the Farey diagram,

where the periodicity is given by a linear fractional transformation T(z) =
az+b
cz+d with

integer coefficients, with T either a translation or a glide-reflection of the strip. As

we argued in the first example, the number z satisfies the equation T(z) = z . This

becomes the quadratic equation az + b = cz2 + dz with integer coefficients, or in

simpler form, cz2 + (d − a)z − b = 0. By the quadratic formula, the roots of this

equation have the form A + B
√
n for some rational numbers A and B and some
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integer n . We know that the real number z is a root of the equation so n can’t be

negative, and it can’t be a square since z is irrational.

Thus we have an argument that proves one half of Lagrange’s Theorem, the state-

ment that a number whose continued fraction is periodic or eventually periodic is a

quadratic irrational. There is one technical point that should be addressed, however.

Could the leading coefficient c in the quadratic equation cz2 + (d − a)z − b = 0 be

zero? If this were the case then we couldn’t apply the quadratic formula to solve

for z , so we need to show that c cannot be zero. We do this in the following way. If

c were zero the equation would become the linear equation (d − a)z − b = 0. If the

coefficient of z in this equation is nonzero, we have only one root, z = b/(d− a) , a

rational number contrary to the fact that z is irrational since its continued fraction is

infinite. Thus we are left with the possibility that c = 0 and a = d , so the equation

for z reduces to the equation b = 0. Then the transformation T would have the form

T(z) =
az
a = z so it would be the identity transformation. However we know it is a

genuine translation or a glide-reflection, so it is not the identity. We conclude from

all this that c cannot be zero, and the technical point is taken care of.

Orientations

Elements of LF(Z) are represented by integer matrices
(
a b
c d

)
of determinant ±1.

The distinction between determinant +1 and −1 has a very nice geometric interpreta-

tion in terms of orientations, which can be described in terms of triangles. A triangle

in the Farey diagram can be oriented by choosing either the clockwise or counter-

clockwise ordering of its three vertices. An element T of LF(Z) takes each triangle

to another triangle in a way that either preserves the two possible orientations or

reverses them.

For example, among the seven types of transformations we looked at earlier, only

reflections and glide-reflections reverse the orientations of triangles. Note that if a

transformation T preserves the orientation of one triangle, it has to preserve the

orientation of the three adjacent triangles, and then of the triangles adjacent to these,

and so on for all the triangles. Similarly, if the orientation of one triangle is reversed

by T , then the orientations of all triangles are reversed.

Proposition 3.3. A transformation T(x/y) = (ax + by)/(cx + dy) in LF(Z) pre-

serves orientations of triangles in the Farey diagram when the determinant ad − bc

is +1 and reverses the orientations when the determinant is −1 .
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Proof : We will first prove a special case and then deduce the general case from the

special case. The special case is that a,b, c, d are all positive or zero. The transforma-

tion T with matrix
(
a b
c d

)
takes the edge 〈1/0,0/1〉 in the circular Farey diagram to the

edge 〈a/c, b/d〉 , and if a,b, c, d are all positive or zero, this edge lies in the upper half

of the diagram. Since T(1/1) = (a+b)/(c+d) , the triangle 〈1/0,0/1,1/1〉 is taken to

the triangle 〈a/c, b/d, (a+b)/(c +d)〉 whose third vertex (a+b)/(c+d) lies above

the edge 〈a/c, b/d〉 , by the way the Farey diagram was constructed using mediants,

since we assume a,b, c, d are positive or zero. We know that the edge 〈a/c, b/d〉 is

oriented to the right if ad − bc = +1 and to the left if ad − bc = −1. This means

that T preserves the orientation of the triangle 〈1/0,0/1,1/1〉 if the determinant is

+1 and reverses the orientation if the determinant is −1.

This proves the special case.

The general case can be broken into two subcases, according to whether the edge

〈a/c, b/d〉 lies in the upper or the lower half of the diagram. If 〈a/c, b/d〉 lies in the

upper half of the diagram, then after multiplying one or both columns of
(
a b
c d

)
by

−1 if necessary, we will be in the special case already considered. Multiplying both

columns by −1 doesn’t affect T . Multiplying one column by −1 corresponds to first

reflecting across the edge 〈1/0,0/1〉 , as we have seen earlier. Modifying T in this

way changes the sign of the determinant and it also changes whether T preserves or

reverses orientation, so the special case already proved implies the case that T takes

〈1/0,0/1〉 to an edge in the upper half of the diagram.

The remaining possibility is that T takes the edge 〈1/0,0/1〉 to an edge in the

lower half of the diagram. In this case if we follow T by reflection across the edge

〈1/0,0/1〉 we get a new transformation taking 〈1/0,0/1〉 to an edge in the upper half

of the diagram. As before, composing with this reflection changes T from orientation-

preserving to orientation-reversing and vice versa, and it also changes the sign of the

determinant since the matrix
(
a b
c d

)
is changed to

(
−1 0
0 1

)(
a b
c d

)
=
(
−a −b
c d

)
, so this case

follows from the previous case. ⊔⊓

As we noted in Chapter 2, to determine whether a matrix representing an element

of LF(Z) has determinant +1 or −1 it suffices to compute just the last digit of the
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determinant, and this can be done using just the last digit of the entries in the matrix.

This is easy to do in one’s head even if the entries in the matrix have many digits.

We will let LF+(Z) denote the elements of LF(Z) corresponding to matrices of

determinant +1.

Proposition 3.4. For any two edges 〈p/q, r/s〉 and 〈p′/q′, r ′/s′〉 of the Farey diagram

there exists a unique element T ∈ LF+(Z) taking the first edge to the second edge

preserving the ordering of the vertices, so T(p/q) = p′/q′ and T(r/s) = r ′/s′ .

Proof : We already know that there exists an element T in LF(Z) with T(p/q) = p′/q′

and T(r/s) = r ′/s′ , and in fact there are exactly two choices for T which are distin-

guished by which of the two triangles containing 〈p′/q′, r ′/s′〉 a triangle containing

〈p/q, r/s〉 is sent to. One of these choices will make T preserve orientation and the

other will make T reverse orientation. So there is only one choice where the determi-

nant is +1. ⊔⊓

Exercises

1. Find a formula for the linear fractional transformation that rotates the triangle

〈0/1,1/2,1/1〉 to 〈1/1,0/1,1/2〉 .

2. Find the linear fractional transformation that reflects the Farey diagram across the

edge 〈1/2,1/3〉 (so in particular, the transformation takes 1/2 to 1/2 and 1/3 to

1/3).

3. Find a formula for the linear fractional transformation that reflects the upper half-

plane version of the Farey diagram across the vertical line x = 3/2.

4. Find an infinite periodic strip of triangles in the Farey diagram such that the

transformation
(

0 1
1 2

)
is a glide-reflection along this strip and the transformation(

0 1
1 2

)(
0 1
1 2

)
=
(

1 2
2 5

)
is a translation along this strip.

5. Let T be an element of LF(Z) with matrix
(
a b
c d

)
. Show that the composition

T
(
−1 0
0 1

)
T−1 is the reflection across the edge 〈a/c, b/d〉 = T

(
〈1/0,0/1〉

)
.

For each of the remaining six problems, compute the value of the given periodic or

eventually periodic continued fraction by first drawing the associated infinite strip of

triangles, then finding a linear fractional transformation T in LF(Z) that gives the

periodicity in the strip, then solving T(z) = z .

6. 1�ր2+
1�ր5

7. 1�ր2+
1�ր1+

1�ր1

8. 1�ր1+
1�ր1+

1�ր1+
1�ր1+

1�ր1+
1�ր2

9. 2+ 1�ր1+
1�ր1+

1�ր4
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10. 2+ 1�ր1+
1�ր1+

1�ր1+
1�ր4

11. 1�ր1+
1�ր1+

1�ր2+
1�ր3
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Chapter 4. Quadratic Forms

Finding Pythagorean triples is answering the question, When is the sum of two

squares equal to a square? More generally one can ask, Exactly which numbers are

sums of two squares? In other words, when does an equation x2 + y2 = n have

integer solutions, and how can one find these solutions? The brute force approach of

simply plugging in values for x and y leads to the following list of all solutions for

n ≤ 50 (apart from interchanging x and y ):

1 = 12 + 02, 2 = 12 + 12, 4 = 22 + 02, 5 = 22 + 12, 8 = 22 + 22, 9 = 32 + 02,

10 = 32 + 12, 13 = 32 + 22, 16 = 42 + 02, 17 = 42 + 12, 18 = 32 + 32,

20 = 42 + 22, 25 = 52 + 02 = 42 + 32, 26 = 52 + 12, 29 = 52 + 22, 32 = 42 + 42,

34 = 52 + 32, 36 = 62 + 02, 37 = 62 + 12, 40 = 62 + 22, 41 = 52 + 42,

45 = 62 + 32, 49 = 72 + 02, 50 = 52 + 52 = 72 + 12

Notice that in some cases there is more than one solution for a given value of n .

Our first goal will be to describe a more efficient way to find the integer solutions of

x2 + y2 = n and to display them graphically in a way that sheds much light on their

structure. The technique for doing this will work not just for the function x2 + y2

but also for any function Q(x,y) = ax2+bxy + cy2 , where a , b , and c are integer

constants. Such a function Q(x,y) with at least one of the coefficients a,b, c nonzero

is called a quadratic form, or sometimes just a form for short.

Solving x2 + y2 = n amounts to representing n in the form of the sum of two

squares. More generally, solving Q(x,y) = n is called representing n by the form

Q(x,y) . So the overall goal is to solve the representation problem: Which numbers n

are represented by a given form Q(x,y) , and how does one find such representations.

Before starting to describe the method for displaying the values of a quadratic

form graphically let us make a preliminary observation: If the greatest common divisor

of two integers x and y is d , then Q(x,y) = d2Q(xd ,
y
d ) where the greatest common

divisor of
x
d and

y
d is 1. Hence it suffices to find the values of Q on primitive pairs

(x,y) , the pairs whose greatest common divisor is 1, and then multiply these values

by arbitrary squares d2 . Thus the real problem is to find the primitive representations

of a number n by a form Q(x,y) , or in other words, to find the primitive solutions

of Q(x,y) = n .

Primitive pairs (x,y) correspond almost exactly to fractions x/y that are re-

duced to lowest terms, the only ambiguity being that both (x,y) and (−x,−y) cor-

respond to the same fraction x/y . However, this ambiguity does not affect the value

of a quadratic form Q(x,y) = ax2 + bxy + cy2 since Q(x,y) = Q(−x,−y) . This

means that we can regard Q(x,y) as being essentially a function f(x/y) . Notice

that we are not excluding the possibility (x,y) = (1,0) which corresponds to the

“fraction” 1/0.
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The Topograph

We already have a nice graphical representation of the rational numbers x/y and

1/0 as the vertices in the Farey diagram. Here is a picture of the diagram with the

so-called dual tree superimposed:

0/1

1/1

1/1

1/2

1/2

2/1

2/1

1/0

1 /3

1 /3

3 /1

3 /1

1/4

1/4

4/1

4/1

2/5

2/5

5/2

5/2

3/5

3/5

5/3

5/3

3/4

3/4

4/3

4/3

2/3

2/3

3/2

3/2

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

The dual tree has a vertex in the center of each triangle of the Farey diagram, and it

has an edge crossing each edge of the Farey diagram. (The upper half of the dual tree

actually looks like it could be the branch system of a real tree, with the lower half its

reflection in still water or perhaps its root system.) As with the Farey diagram, we can

only draw a finite part of the dual tree. The actual dual tree has branching that repeats

infinitely often, an unending bifurcation process with smaller and smaller twigs.

The tree divides the interior of the large circle into regions, each of which is

adjacent to one vertex of the original diagram. We can write the value Q(x,y) in

the region adjacent to the vertex x/y . This is shown in the figure below for the

quadratic form Q(x,y) = x2 +y2 , where to unclutter the picture we no longer draw

the triangles of the original Farey diagram.



Chapter 4 Quadratic Forms 61

For example the 13 in the region adjacent to the fraction 2/3 represents the value

22 + 32 , and the 29 in the region adjacent to 5/2 represents the value 52 + 22 .

For a quadratic form Q this picture showing the values Q(x,y) is called the

topograph of Q . It turns out that there is a very simple method for computing the

topograph from just a very small amount of initial data. This method is based on the

following:

Arithmetic Progression Rule. If the values of Q(x,y) in

the four regions surrounding an edge in the tree are p , q ,

r , and s as indicated in the figure, then the three numbers

p , q + r , s form an arithmetic progression.

p

q

r

s

We can check this in the topograph of x2+y2 shown above. Consider for exam-

ple one of the edges separating the values 1 and 2. The values in the four regions

surrounding this edge are 1,1,2,5 and the arithmetic progression is 1,1+ 2,5. For

an edge separating the values 1 and 5 the arithmetic progression is 2,1+ 5,10. For

an edge separating the values 5 and 13 the arithmetic progression is 2,5 + 13,34.

And similarly for all the other edges.

The arithmetic progression rule implies that the values of Q in the three regions

surrounding a single vertex of the tree determine the values in all other regions, by

starting at the vertex where the three adjacent values are known and working one’s

way outward in the dual tree. The easiest place to start for a quadratic form Q(x,y) =

ax2 + bxy + cy2 is with the three values Q(1,0) = a , Q(0,1) = c , and Q(1,1) =

a+ b + c for the three fractions 1/0, 0/1, and 1/1. Here are two examples:
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In the first case we start with the values 1 and 2 together with the 3 just above them.

These determine the value 9 above the 2 via the arithmetic progression 1, 2+ 3, 9.

Similarly the 6 above the 1 is determined by the arithmetic progression 2, 1 + 3,

6. Next one can fill in the 19 next to the 9 we just computed, using the arithmetic

progression 3, 2+ 9, 19, and so on for as long as one likes.

The procedure for the other form x2 − 2y2 is just the same, but here there are

negative as well as positive values. The edges that separate positive values from

negative values will be important later, so we have indicated these edges by special

shading.

Perhaps the most noticeable thing in both the examples x2 + 2y2 and x2 − 2y2

is the fact that the values in the lower half of the topograph are the same as those in

the upper half. We could have predicted in advance that this would happen because

Q(x,y) = Q(−x,y) whenever Q(x,y) has the form ax2 + cy2 , with no xy term.

The topograph for x2 +y2 has even more symmetry since the values of x2 +y2 are

unchanged when x and y are switched, so the topograph has left-right symmetry as

well.

Here is a general observation: The three values around one vertex of the topo-

graph can be specified arbitrarily. For if we are given three numbers a , b , c then the

quadratic form ax2 + (c −a− b)xy + by2 takes these three values for (x,y) equal

to (1,0) , (0,1) , (1,1) .

Proof of the Arithmetic Progression Rule: Let the two vertices of the Farey diagram

corresponding to the values q and r have labels x1/y1 and x2/y2 as in the figure

below. Then by the mediant rule for labeling vertices, the labels on the p and s regions

are the fractions shown. Note that these labels are correct even when x1/y1 = 1/0

and x2/y2 = 0/1.
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For a quadratic form Q(x,y) = ax2 + bxy + cy2 we then have

s = Q(x1 + x2, y1 + y2) = a(x1 + x2)
2 + b(x1 + x2)(y1 +y2)+ c(y1 +y2)

2

= ax2
1 + bx1y1 + cy

2
1︸ ︷︷ ︸

Q(x1, y1) = q

+ax2
2 + bx2y2 + cy

2
2︸ ︷︷ ︸

Q(x2, y2) = r

+ (· · ·)

Similarly we have

p = Q(x1 − x2, y1 −y2) = ax
2
1 + bx1y1 + cy

2
1︸ ︷︷ ︸

Q(x1, y1) = q

+ax2
2 + bx2y2 + cy

2
2︸ ︷︷ ︸

Q(x2, y2) = r

− (· · ·)

The terms in (· · ·) are the same in both cases, namely the terms involving both sub-

scripts 1 and 2. If we compute p+ s by adding the two formulas together, the terms

(· · ·) will therefore cancel, leaving just p+ s = 2(q+r) . This equation can be rewrit-

ten as (q + r)− p = s − (q + r) , which just says that p,q + r , s forms an arithmetic

progression. ⊔⊓

Periodic Separator Lines

For most quadratic forms that take on both positive and negative values, such as

x2 − 2y2 , there is another way of drawing the topograph that reveals some hidden

and unexpected properties. For the form x2 − 2y2 there is a zigzag path of edges in

the topograph separating the positive and negative values, and if we straighten this

path out to be a line, called the separator line, what we see is the following infinitely

repeated pattern:
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To construct this, one can first build the separator line starting with the three values

Q(1,0) = 1, Q(0,1) = −2, and Q(1,1) = −1. Place these as shown in part (a) of the

figure below, with a horizontal line segment separating the positive from the negative

values.

To extend the separator line one step farther to the right, apply the arithmetic progres-

sion rule to compute the next value 2 using the arithmetic progression −2,1 − 1,2.

Since this value 2 is positive, we place it above the horizontal line and insert a vertical

edge to separate this 2 from the 1 to the left of it, as in (b) of the figure. Now we

repeat the process with the next arithmetic progression 1,2− 1,1 and put the new 1

above the horizontal line with a vertical edge separating it from the previous 2, as

shown in (c). At the next step we compute the next value −2 and place it below the

horizontal line since it is negative, giving (d). One more step produces (e) where we see

that further repetitions will produce a pattern that repeats periodically as we move to

the right. The arithmetic progression rule also implies that it repeats periodically to

the left, so it is periodic in both directions:

Thus we have the periodic separator line. To get the rest of the topograph we can

then work our way upward and downward from the separator line, as shown in the

original figure. As one moves upward from the separator line, the values of Q become

larger and larger, approaching +∞ monotonically, and as one moves downward the

values approach −∞ monotonically. The reason for this will become clear in the next

chapter when we discuss something called the Monotonicity Property.
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An interesting property of this form x2− 2y2 that is evident from its topograph

is that it takes on the same negative values as positive values. This would have been

hard to predict from the formula x2 − 2y2 . Indeed, for the similar-looking quadratic

form x2−3y2 the negative values are quite different from the positive values, as one

can see in its straightened-out topograph:

Continued Fractions Once More

There is a close connection between the topograph for a quadratic form x2−dy2

and the infinite continued fraction for
√
d when d is a positive integer that is not a

square. In fact, we will see that the topograph can be used to compute the continued

fraction for
√
d . As an example let us look at the case d = 2. The relevant portion

of the topograph for x2 − 2y2 is the strip along the line separating the positive and

negative values:

This is a part of the dual tree of the Farey diagram. If we superimpose the triangles

of the Farey diagram corresponding to this part of the dual tree we obtain an infinite

strip of triangles:

� 2� 1

1212 12 12

� 2� 1 � 2� 1 � 2� 1

−−−

1

1
−−−

4

3
−−−

7

5
−−−

24

17
−−−

41

29

−−−

1

0
−−−

2

1
−−−

3

2
−−−

10

7
−−−

17

12
−−−

58

41
−−−

99

70

−−−

0

1

Ignoring the dotted triangles to the left, the infinite strip of triangles corresponds to

the infinite continued fraction 1+ 1�ր2 . We could compute the value of this continued

fraction by the method in Chapter 2, but there is an easier way using the quadratic
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form x2 − 2y2 . For fractions
x
y labeling the vertices along the infinite strip, the

corresponding values n = x2−2y2 are either ±1 or ±2. We can rewrite the equation

x2 − 2y2 = n as
(x
y

)2
= 2 +

n
y2 . As we go farther and farther to the right in the

infinite strip, both x and y are getting larger and larger while n only varies through

finitely many values, namely ±1 and ±2, so the quantity
n
y2 is approaching 0. The

equation
(x
y

)2
= 2+

n
y2 then implies that

(x
y

)2
is approaching 2, so we see that

x
y is

approaching
√

2. Since the fractions
x
y are also approaching the value of the infinite

continued fraction 1+ 1�ր2 that corresponds to the infinite strip, this implies that the

value of the continued fraction 1+ 1�ր2 is
√

2.

Here is another example, for the quadratic form x2 − 3y2 , showing how
√

3 =

1+ 1�ր1+
1�ր2 .

� 3� 2

11 1 1

� 3� 2 � 3� 2 � 3� 2

−−−

1

1
−−−

3

2
−−−

5

3
−−−

12

7
−−−

19

11

−−−

1

0
−−−

2

1
−−−

7

4
−−−

26

15

−−−

0

1

After looking at these two examples one can see that it is not really necessary to draw

the strip of triangles, and one can just read off the continued fraction directly from

the periodic separator line. Let us illustrate this by considering the form x2 − 10y2 :

� 6� 9

6 661 9 10 9 1

� 10 � 6� 9� 6� 1 � 10� 9

−−−

1

0

−−−

0

1

If one moves toward the right along the horizontal line starting at a point in the edge

separating the
1
0

region from the
0
1

region, one first encounters 3 edges leading off

to the right (downward), then 6 edges leading off to the left (upward), then 6 edges

leading off to the right, and so on. This means that the continued fraction for
√

10 is

3+ 1�ր6 .

Here is a more complicated example showing how to compute the continued frac-

tion for
√

19 from the form x2 − 19y2 :



Chapter 4 Quadratic Forms 67

� 15 � 10� 18

6 6 651 5 9 9 1

� 15 � 10� 18� 19 � 19� 18� 3� 2� 3 � 15� 10

From this we read off that
√

19 = 4+ 1�ր2+
1�ր1+

1�ր3+
1�ր1+

1�ր2+
1�ր8 .

In the next chapter we will prove that the topograph of the form x2−dy2 always

has a periodic separator line whenever d is a positive integer that is not a square. As

in the examples above, this separator line always includes the edge of the dual tree

separating the vertices 1/0 and 0/1 since the form takes the positive value +1 on 1/0

and the negative value −d on 0/1. The periodicity then implies that the continued

fraction for
√
d has the form

√
d = a0 +

1�րa1
+ 1�րa2

+ · · · + 1�րan

with the periodic part starting immediately after the initial term a0 . In addition to

being periodic, the separator line also has mirror symmetry with respect to reflection

across the vertical line corresponding to the edge connecting 1/0 to 0/1 in the Farey

diagram. This is because the form x2 − dy2 has no xy term, so replacing x/y by

−x/y does not change the value of the form. Once the separator line has symmetry

with respect to this vertical line, the periodicity forces it to have mirror symmetry with

respect to an infinite sequence of vertical lines, as illustrated in the following figure

for the form x2 − 19y2 :

In particular, these mirror symmetries imply that the continued fraction
√
d = a0 +

1�րa1
+ 1�րa2

+ · · · + 1�րan

always has two special properties:

(a) an = 2a0 .

(b) The intermediate terms a1, a2, · · · , an−1 form a palindrome, reading the same

forward as backward.

Thus in
√

19 = 4+ 1�ր2+
1�ր1+

1�ր3+
1�ր1+

1�ր2+
1�ր8 the final 8 is twice the initial 4, and

the intermediate terms 2,1,3,1,2 form a palindrome. These special properties held

also in the earlier examples, but were less apparent because there were fewer terms

in the repeated part of the continued fraction.
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In some cases there is an additional kind of symmetry along the separator line,

as illustrated for the form x2 − 13y2 :

As before there is a horizontal translation giving the periodicity and there are mirror

symmetries across vertical lines, but now there is an extra glide-reflection along the

strip that interchanges the positive and negative values of the form. Performing this

glide-reflection twice in succession gives the translational periodicity. Notice that

there are also 180 degree rotational symmetries about the points marked with dots

on the separator line, and these rotations account for the palindromic middle part of

the continued fraction

√
13 = 3+ 1�ր1+

1�ր1+
1�ր1+

1�ր1+
1�ր6

The fact that the periodic part has odd length corresponds to the separator strip

having the glide-reflection symmetry. We could rewrite the continued fraction to have

a periodic part of even length by doubling the period,

√
13 = 3+ 1�ր1+

1�ր1+
1�ր1+

1�ր1+
1�ր6+

1�ր1+
1�ր1+

1�ր1+
1�ր1+

1�ր6

and this corresponds to ignoring the glide-reflection and just considering the trans-

lational periodicity.

We have been using quadratic forms x2−dy2 to compute the continued fractions

for irrational numbers
√
d , but everything works just the same for irrational numbers

√
p/q if one uses the quadratic form qx2 − py2 in place of x2 − dy2 . Following the

same reasoning as before, if the equation qx2−py2 = n is rewritten as q
( x
y

)2
= p+ n

y2

then we see that as we move out along the periodic separator line the numbers x

and y approach infinity while n cycles through finitely many values, so the term
n
y2 approaches 0 and the fractions

x
y approach a number z satisfying qz2 = p , so

z =
√
p/q . This argument depends of course on the existence of a periodic separator

line, and we will prove in the next chapter that forms qx2−py2 always have a periodic

separator line, assuming that
√
p/q is not a rational number, i.e., that p and q are

not both squares.

Here are two examples. For the first one we use the form 3x2 − 7y2 to compute

the continued fraction for
√

7/3.
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This gives
√

7/3 = 1+ 1�ր1+
1�ր1+

1�ր8+
1�ր1+

1�ր1+
1�ր2 . For the second example we use

10x2 − 29y2 to compute the continued fraction for
√

29/10,

with the result that
√

29/10 = 1+ 1�ր1+
1�ր2+

1�ր2+
1�ր1+

1�ր2 . The period of odd length

here corresponds to the existence of the glide-reflection and 180 degree rotation sym-

metries.

As one can see in these examples, the palindrome property and the relation an =

2a0 still hold for the continued fractions for irrational numbers
√
p/q assuming that

a0 > 0, which is equivalent to the condition p/q > 1 since a0 is the integer part

of
√
p/q . Fractions p/q less than 1 can easily be dealt with just by inverting them,

interchanging p and q . Inverting a continued fraction a0 +
1�րa1

+ 1�րa2
+ · · · + 1�րan

changes it to 1�րa0
+1�րa1

+ 1�րa2
+ · · · + 1�րan . For example, from the earlier computation

of
√

7/3 we obtain
√

3/7 = 1�ր1+
1�ր1+

1�ր1+
1�ր8+

1�ր1+
1�ր1+

1�ր2 .

One might ask whether the irrational numbers
√
p/q are the only numbers having

a continued fraction a0 +
1�րa1

+ 1�րa2
+ · · · + 1�րan or 1�րa0

+ 1�րa1
+ 1�րa2

+ · · · + 1�րan
satisfying the palindrome property and the relation an = 2a0 . The answer is yes, and

it would not be hard to prove this using the methods we are developing in this book.

Pell’s Equation

We encountered the equation x2−dy2 = 1 briefly in Chapter 0. It is traditionally

called Pell’s equation, and the similar equation x2 − dy2 = −1 is sometimes called

Pell’s equation as well, or else the negative Pell’s equation. If d is a square then the

equations are not very interesting since in this case d can be incorporated into the y2

term, so one is looking at the equations x2 − y2 = 1 and x2 − y2 = −1, which have

only the trivial solutions (x,y) = (±1,0) for the first equation and (x,y) = (0,±1)

for the second equation, since these are the only cases when the difference between

two squares is ±1. We will therefore assume that d is not a square in what follows.

As an example let us look at the equation x2 − 19y2 = 1. We drew a portion of

the periodic separator line for the form x2 − 19y2 earlier, and here it is again with

some of the fractional labels x/y shown as well.
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Ignoring the label 741/170 for the moment, the other fractional labels are the first

few convergents for the continued fraction for
√

19 that we computed before, 4 +

1�ր2+
1�ր1+

1�ր3+
1�ր1+

1�ր2+
1�ր8 . These fractional labels are the labels on the vertices

of the zigzag path in the infinite strip of triangles in the Farey diagram, which we can

imagine being superimposed on the separator line in the figure. The fractional label

we are most interested in is the 170/39 because this is the label on a region where

the value of the form x2 − 19y2 is 1. This means exactly that (x,y) = (170,39) is

a solution of x2 − 19y2 = 1. In terms of continued fractions, the fraction 170/39 is

the value of the initial portion 4+ 1�ր2+
1�ր1+

1�ր3+
1�ր1+

1�ր2 of the continued fraction

for
√

19, with the final term of the period omitted.

Since the topograph of x2 − 19y2 is periodic along the separator line, there are

infinitely many different solutions of x2 − 19y2 = 1 along the separator line. Go-

ing toward the left just gives the negatives −x/y of the fractions x/y to the right,

changing the signs of x or y , so it suffices to see what happens toward the right. One

way to do this is to use the linear fractional transformation that gives the periodicity

translation toward the right. This transformation sends the edge 〈1/0,0/1〉 of the

Farey diagram to the edge 〈170/39,741/170〉 . Here 741/170 is the value of the con-

tinued fraction 4+ 1�ր2+
1�ր1+

1�ր3+
1�ր1+

1�ր2+
1�ր4 obtained from the continued fraction

for
√

19 by replacing the final number 8 in the period by one-half of its value, 4.

The figure above shows why this is the right thing to do. We get an infinite sequence

of larger and larger positive solutions of x2 − 19y2 = 1 by applying the periodicity

transformation with matrix
(

170 741
39 170

)
to the vector (1,0) . For example,

(
170 741

39 170

)(
170

39

)
=

(
57799

13260

)

so the next solution of x2−19y2 = 1 after (170,39) is (57799,13260) , and we could

compute more solutions if we wanted. Obviously they are getting large rather quickly.

The two 170’s in the matrix
(

170 741
39 170

)
can hardly be just a coincidence. Notice

also that the entry 741 factors as 19 · 39 which hardly seems like it should be just a

coincidence either. Let’s check that these numbers had to occur. In general, for the

form x2 − dy2 let us suppose that we have found the first solution (x,y) = (p, q)

after (1,0) for Pell’s equation x2 − dy2 = 1, so p2 − dq2 = 1. Then based on the

previous example we suspect that the periodicity transformation is the transformation
(
p dq

q p

)(
x

y

)
=

(
px + dqy

qx + py

)
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To check that this is correct the main thing to verify is that this transformation pre-

serves the values of the quadratic form. When we plug in (px + dqy,qx + dy) for

(x,y) in x2 − dy2 we get

(px + dqy)2−d(qx + py)2

= p2x2 + 2pdqxy + d2q2y2 − dq2x2 − 2pdqxy − dp2y2

= (p2 − dq2)x2 − d(p2 − dq2)y2

= x2 − dy2 since p2 − dq2 = 1

so the transformation
(
p dq
q p

)
does preserve the values of the form. Also it takes 1/0

to p/q , and its determinant is p2 − dq2 = 1, so it has to be the translation giving

the periodicity along the separator line. (We haven’t actually proved yet that periodic

separator lines always exist for forms x2−dy2 , but we will do this in the next chapter.)

Are there other solutions of x2−19y2 = 1 besides the ones we have just described

that occur along the separator line? The answer is No because we will see in the next

chapter that as one moves away from the separator line in the topograph, the values

of the quadratic form change in a monotonic fashion, steadily increasing toward +∞

as one moves upward above the separator line, and decreasing steadily toward −∞

as one moves downward below the separator line. Thus the value 1 occurs only along

the separator line itself. Also we see that the value −1 never occurs, which means

that the equation x2 − 19y2 = −1 has no integer solutions.

For an example where x2 − dy2 = −1 does have solutions, let us look again at

the earlier example of x2 − 13y2 .

The first positive solution (x,y) = (p, q) of x2 − 13y2 = −1 corresponds to the

value −1 in the middle of the figure. This is determined by the continued fraction

p/q = 3+1�ր1+
1�ր1+

1�ր1+
1�ր1 = 18/5, so we have (p, q) = (18,5) . The matrix

(
p dq
q p

)
in

this case is
(

18 65
5 18

)
with determinant 182−13·52 = −1 so this gives the glide-reflection

along the periodic separator line taking 1/0 to 18/5 and 0/1 to 65/18. The smallest

positive solution of x2 − 13y2 = +1 is obtained by applying this glide-reflection to

(18,5) , which gives
(

18 65

5 18

)(
18

5

)
=

(
324+ 325

90+ 90

)
=

(
649

180

)

Repeated applications of the glide-reflection will give solutions of x2 − 13y2 = +1

and x2 − 13y2 = −1 alternately.
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Exercises

1. Draw the topograph for the form Q(x,y) = 2x2 + 5y2 , showing all the values of

Q(x,y) ≤ 60 in the topograph, with the associated fractional labels x/y . If there

is symmetry in the topograph, you only need to draw one half of the topograph and

state that the other half is symmetric.

2. Do the same for the form Q(x,y) = 2x2 + xy + 2y2 , in this case displaying all

values Q(x,y) ≤ 40 in the topograph.

3. Do the same for the form Q(x,y) = x2 −y2 , showing all the values between +30

and −30 in the topograph, but omitting the labels x/y this time.

4. For the form Q(x,y) = 2x2 − xy + 3y2 do the following:

(a) Draw the topograph, showing all the values Q(x,y) ≤ 30 in the topograph, and

including the labels x/y .

(b) List all the values Q(x,y) ≤ 30 in order, including the values when the pair (x,y)

is not primitive.

(c) Find all the integer solutions of Q(x,y) = 24, both primitive and nonprimitive.

(And don’t forget that quadratic forms always satisfy Q(x,y) = Q(−x,−y) .)

5. Determine the periodic separator line in the topograph for each of the following

quadratic forms (you do not need to include the fractional labels x/y ):

(a) x2 − 7y2 (b) 3x2 − 4y2 (c) x2 + xy −y2

6. Using your answers in the preceding problem, write down the continued fraction

expansions for
√

7, 2
√

3/3, and (−1+
√

5)/2.

7. For the following quadratic forms, draw enough of the topograph, starting with the

edge separating the 1/0 and 0/1 regions, to locate the periodic separator line, and

include the separator line itself in your topograph.

(a) x2 + 3xy +y2 (b) 6x2 + 18xy + 13y2 (c) 37x2 − 104xy + 73y2

8. Use a quadratic form to compute continued fractions for the following pairs of

numbers:

(a) (3+
√

6)/2 and (3−
√

6)/2 (b) (11+
√

13)/6 and (11−
√

13)/6

(c) (14+
√

7)/9 and (14−
√

7)/9

9. For the quadratic form x2 − 14y2 do the following things:

(a) Draw the separator line in the topograph and compute the continued fraction for
√

14.

(b) Find the smallest positive integer solutions of x2−14y2 = 1 and x2−14y2 = −1,

if these equations have integer solutions.

(c) Find the linear fractional transformation that gives the periodicity translation along

the separator line and use this to find a second positive solution of x2 − 14y2 = 1.

(d) Determine the integers n with |n| ≤ 12 such that the equation x2−14y2 = n has
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an integer solution. (Don’t forget the possibility that there could be solutions (x,y)

that aren’t primitive.)

10. For the quadratic form x2 − 29y2 do the following things:

(a) Draw the separator line and compute the continued fraction for
√

29.

(b) Find the smallest positive integer solution of x2 − 29y2 = −1.

(c) Find a glide-reflection symmetry of the separator line and use this to find the

smallest positive integer solution of x2 − 29y2 = 1.

11. Compute the periodic separator line for the form x2 − 43y2 and use this to find

the continued fraction for
√

43.
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Chapter 5. The Classification of Quadratic Forms

We can divide quadratic forms Q(x,y) = ax2+bxy+cy2 into four broad classes

according to the signs of the values Q(x,y) , where as always we restrict x and y to

integers. We will always assume at least one of the coefficients a,b, c is nonzero, so

Q is not identically zero, and we will always assume (x,y) is not (0,0) . There are

four possibilities:

(I) Q(x,y) takes on both positive and negative values but not 0. In this case

we call Q a hyperbolic form.

(II) Q(x,y) takes on both positive and negative values and also 0. Then we call

Q a 0 -hyperbolic form.

(III) Q(x,y) takes on only positive values or only negative values. Then we call

Q elliptic.

(IV) Q takes on the value 0 and either positive or negative values, but not both.

Then Q is called parabolic.

The hyperbolic-elliptic-parabolic terminology is motivated in part by what the level

curves ax2 + bxy + cy2 = k are, where we now allow x and y to take on all real

values so that one gets actual curves. The level curves are hyperbolas in cases (I) and

(II), and ellipses in case (III). In case (IV), however, the level curves are not parabolas as

one might guess, but straight lines. Case (IV) will be the least interesting of the four

cases.

There is an easy way to distinguish the four types of forms ax2 + bxy + cy2 in

terms of their discriminants ∆ = b2 − 4ac . As we will show later in the chapter:

(I) If ∆ is positive but not a square then Q is hyperbolic.

(II) If ∆ is positive and a square then Q is 0-hyperbolic.

(III) If ∆ is negative then Q is elliptic.

(IV) If ∆ is zero then Q is parabolic.

Discriminants turn out to play a central role in the theory of quadratic forms. A

natural question to ask is whether every integer occurs as the discriminant of some

form, and this is easy to answer. For a form ax2+bxy +cy2 we have ∆ = b2−4ac ,

and this is congruent to b2 mod 4. A square such as b2 is always congruent to 0

or 1 mod 4, so the discriminant of a form is always congruent to 0 or 1 mod 4.

Conversely, for every integer ∆ congruent to 0 or 1 mod 4 there exists a form whose

discriminant is ∆ since:

x2 − ky2 has discriminant ∆ = 4k

x2 + xy − ky2 has discriminant ∆ = 4k+ 1

Here k can be positive, negative, or zero. The forms x2−ky2 and x2+xy−ky2 are

called the principal quadratic forms of these discriminants.
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We will analyze each of the four types of forms in turn, but before doing this let

us make a few preliminary general comments.

In the arithmetic progression rule for labeling the four regions surrounding an

edge of the topograph, we can label the edge by the common

increment h = (q + r) − p = s − (q + r) as in the figure at

the right. The edge can be oriented by an arrow showing the

direction in which the progression increases by h . Changing

the sign of h corresponds to changing the orientation of the edge. In the special case

that h happens to be 0 the orientation of the edge is irrelevant and can be omitted.

The values of the increment h along the boundary of a region in the topograph

have the interesting property that they also form an arithmetic progression when all

these edges are oriented in the same direction, and the amount by which h increases

as we move from one edge to the next is 2p where p is the label on the region adjacent

to all these edges:





We will call this property the Second Arithmetic Progression Rule. To see why it is true,

start with the edge labeled h in the figure, with the adjacent regions labeled p and

q . The original Arithmetic Progression Rule then gives the value p+q+h in the next

region to the right. From this we can deduce that the label on the edge between the

regions labeled p and p+q+h must be h+2p since this is the increment from q to

p+ (p+q+h) . Thus the edge label increases by 2p when we move from one edge to

the next edge to the right, so by repeated applications of this fact we see that we have

an arithmetic progression of edge labels all along the border of the region labeled p .

Another thing worth noting at this point is something that we will refer to as the

Monotonicity Property: If the three labels p , q , and h adjacent to an edge are all posi-

tive, then so are the three labels for the next two edges

in front of this edge (orienting these edges as shown in

the figure), and the new labels are larger than the old

labels. It follows that when one continues forward out

this part of the topograph, all the labels become mono-

tonically larger the farther one goes. Similarly, when

the original three labels are negative, all the labels be-

come larger and larger negative, by the same principle

applied to the negative −Q(x,y) of the original form

Q(x,y) .



Chapter 5 Classification of Quadratic Forms 76

Proposition 5.1. If an edge in the topograph of Q(x,y) is labeled h with adjacent

regions labeled p and q , then the quantity h2 − 4pq is equal to the discriminant of

Q(x,y) .

Proof : For the given form Q(x,y) = ax2+bxy+cy2 , the regions 1/0 and 0/1 in the

topograph are labeled a and c , and the edge in the topograph

separating these two regions has h = b since the 1/1 region is

labeled a+b+ c . So the statement of the proposition is correct

for this edge. For other edges we proceed by induction, moving

farther and farther out the tree. For the induction step suppose

we have two adjacent edges labeled h and k as in the figure, and

suppose inductively that the discriminant equals h2−4pq . We have r = p+q+h , and

from the second arithmetic progression rule we know that k = h+ 2q . Then we have

k2−4qr = (h+2q)2−4q(p+q+h) = h2+4hq+4q2−4pq−4q2−4hq = h2−4pq ,

which means that the result holds for the edge labeled k as well. ⊔⊓

Hyperbolic Forms

Perhaps the most interesting of the four types of quadratic forms are the hy-

perbolic forms. We will show that these all have a periodic separator line as in the

examples x2 − dy2 and qx2 − py2 that we looked at earlier.

Theorem 5.2. For a hyperbolic form Q(x,y) the edges of the topograph for which

the two adjacent regions are labeled by numbers of opposite sign form a line which

is infinite in both directions, and the topograph is periodic along this line.

Proof : Since the form is hyperbolic, all regions of the topograph have labels that are

either positive or negative, never zero. There must exist two regions of opposite sign

since Q is hyperbolic, and by moving along a path in the topograph joining these two

regions we will somewhere encounter two adjacent regions of opposite sign. Thus

there must exist edges whose two adjacent regions have opposite sign. Let us call

these edges separating edges. If we apply the discriminant formula ∆ = h2 − 4pq in

preceding proposition to a separating edge, we see that ∆ must be positive since p

and q are nonzero and have opposite sign, so −4pq is positive while h2 is positive

or zero. Thus a hyperbolic form must have positive discriminant.

At an end of a separating edge the value of Q in the next region must be either

positive or negative since Q does not take the value 0:

This implies that exactly one of the two edges at the end of the first separating edge

is also a separating edge. Repeating this argument, we see that each separating edge
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is part of a line of separating edges that is infinite in both directions (and the edges

that lead off from this line are not separating edges).

As we move off this line of separating edges the values of Q are steadily increasing

through positive integers on the positive side and steadily decreasing through negative

integers on the negative side, by the monotonicity property, so there are no other

separating edges that are not on this line.

It remains to prove that the topograph is periodic along the separator line. We

can assume all the edges along the separator line are oriented in the same direction

by changing the signs of the h values if necessary. For an edge of the separator line

labeled h with adjacent regions labeled p and −q with p > 0 and q > 0, we know

that h2 + 4pq is equal to the discriminant ∆ . From the equation ∆ = h2 + 4pq

we obtain the inequalities |h| <
√
∆ , p ≤ ∆/4, and q ≤ ∆/4. Thus there are only

finitely many possible values for h , p , and q along the separator line. Hence there

are only finitely many possible combinations of values h , p , and q at each edge on

the separator line. Since the separator line is infinite, it follows that there must be

two edges on the line that have the same values of h , p , and q . Since the topograph

is uniquely determined by the three labels h , p , q at a single edge, the translation

of the line along itself that takes one edge to another edge with the same three labels

must preserve all the labels on the line. This shows that the separator line is periodic,

including the values of Q along this line. ⊔⊓

Conceivably there might be just a single region on one side of the separator line,

but this doesn’t actually happen. There must be edges leading away from the sep-

arating line on both the side where the form is positive and on the side where it is

negative, because if there was just a single region on one side of the line, the sec-

ond arithmetic progression rule would say that the h labels along the line formed an

infinite arithmetic progression, contradicting the fact that these values are periodic.

Here is an interesting consequence of the periodicity of the separator line:

Corollary 5.3. For a hyperbolic form Q(x,y) = ax2 + bxy + cy2 , if the equation

ax2 + bxy + cy2 = n has one integer solution then it has infinitely many integer

solutions.

Proof : Suppose (x,y) is a solution of Q(x,y) = n . If (x,y) is a primitive pair, then

the number n appears in the topograph of Q infinitely many times, via the periodicity

of the separator line, so there are infinitely many solutions in this case. If (x,y) is

not primitive then it is m times a primitive pair (x′, y ′) with Q(x′, y ′) = n/m2 .

This latter equation has infinitely many solutions as we just saw, so after replacing

these solutions (x′, y ′) by (x,y) = (mx′,my ′) we get infinitely many solutions of

Q(x,y) = n . ⊔⊓

In Chapter 3 we gave an argument that showed that infinite continued fractions
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that are eventually periodic always represent quadratic irrational numbers. This is

one half of Lagrange’s Theorem, and now we can prove the other half, the converse

statement:

Theorem 5.4. The continued fraction expansion of every quadratic irrational is even-

tually periodic.

Proof : A quadratic irrational number α has the form A + B
√
n where A and B are

rational numbers and n is a positive integer that is not a square. Letting α be the

conjugate A − B
√
n of α , we see that α and α are roots of the quadratic equation

(x−α)(x−α) = x2− (α+α)x+αα = x2−2Ax+ (A2−nB2) = 0 whose coefficients

are rational numbers. After multiplying through by a common denominator we can

replace this equation by an equation ax2+bx+c = 0 with integer coefficients having

α and α as roots. The leading coefficient a is nonzero since it arose from a leading

coefficient 1 by multiplying by a common denominator, which is not zero.

From the quadratic equation ax2 + bx + c = 0 we obtain a quadratic form

Q(x,y) = ax2 + bxy + cy2 with the same coefficients a,b, c . From the factor-

ization of ax2 + bx + c as a(x −α)(x − α) we see that Q(x,y) can be factored as

a(x−αy)(x−αy) since in both cases this just amounts to saying that b = −a(α+α)

and c = aαα . Let us show that the quadratic form Q is hyperbolic. It cannot take

on the value 0 at an integer pair (x,y) 6= (0,0) since if a(x − αy)(x − αy) = 0

then one of the factors would have to be zero, but we assume a is nonzero, and if

one of the other two factors was zero we would have α = x/y or α = x/y where

x/y is rational, contradicting the assumption that α and α are irrational. To see

that Q takes on both positive and negative values we again use its factorization as

a(x − αy)(x − αy) . The two lines x = αy and x = αy in the xy -plane divide

the plane into four regions since α ≠ α , and the sign of a(x−αy)(x−αy) changes

whenever we cross one of these two lines from one region to an adjacent region. Since

each region contains points (x,y) with integer coordinates, this means that Q(x,y)

takes on both positive and negative values at integer pairs (x,y) .

Since Q is hyperbolic, its topograph contains a periodic line separating the posi-

tive and negative values. This corresponds to a strip in the Farey diagram which is infi-

nite in both directions. The fractions xn/yn labeling the vertices along this strip have

both xn and yn approaching ±∞ as n goes to ±∞ . (The only way this could fail for a

path consisting of an infinite sequence of distinct edges in the dual tree would be if all

the edges from some point onward bordered the 1/0 or 0/1 region, which is not the

case here since periodic separator lines have only a finite number of their edges bor-

dering a given region.) The values Q(xn, yn) = ax
2
n+bxnyn+cy

2
n = kn are bounded,

ranging over a finite set along the strip. Thus the numbers a(xn/yn)
2+b(xn/yn)+c =

kn/y
2
n approach 0 as n goes to ±∞ , so at one end of the strip we have xn/yn ap-

proaching one root α and at the other end we have xn/yn approaching the other
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root α . Joining either end of the strip to 1/0 in the Farey diagram then gives infinite

strips corresponding to infinite continued fractions for α and α that are eventually

periodic. ⊔⊓

Let us look at an example to illustrate the procedure in the proof of this theorem.

We will use a quadratic form to compute the continued fractions for the two quadratic

irrationals α =
10+

√
2

14
and α =

10−
√

2
14

. The equation (x − α)(x − α) = 0 is then

x2 −
10
7
x +

1
2
= 0, so with integer coefficients this becomes 14x2 − 20x + 7 = 0. The

associated quadratic form is 14x2−20xy+7y2 . To compute the topograph we start

with the three values at 1/0, 0/1, and 1/1 and work toward the separator line:

This figure lies in the upper half of the circular Farey diagram where the fractions

x/y are positive, so if we follow the separator line out to the right we approach the

smaller of the two roots of 14x2 − 20x + 7 = 0, which is
10−

√
2

14
, and if we follow the

separator line to the left we approach the larger root,
10+

√
2

14
. To get the continued

fraction for the smaller root we follow the path in the figure that starts with the edge

between 1/0 and 0/1, then zigzags up to the separator line, then goes out this line

to the right. If we straighten this path out it looks like the following:

The continued fraction is therefore

10−
√

2

14
= 1
�
ր
1+

1
�
ր
1+

1
�
ր
1+

1
�
ր
1+

1
�
ր
2

It is not actually necessary to redraw the straightened-out path since in the original

form of the topograph we can read off the sequence of left and right “side roads” as

we go along the path, the sequence LRLRLLRR where L denotes a side road to the

left and R a side road to the right. This sequence determines the continued fraction.

For the other root
10+

√
2

14
the straightened-out path has the following shape:
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The sequence of side roads is LRRRRLLRR so the continued fraction is

10+
√

2

14
= 1
�
ր
1+

1
�
ր
4+

1
�
ր
2

A natural question to ask is whether every periodic line in the dual tree of the

Farey diagram is the separator line of some hyperbolic form. The answer is yes, and

in fact the form is unique up to multiplication by a constant, which does not affect the

separator line. We can compute the form by the following procedure. First compute a

linear fractional transformation T that realizes the periodicity for the given periodic

line. Next write down the equation T(z) = z for the fixed points of T at the two ends

of the periodic line. This equation simplifies to a quadratic equation az2+bz+c = 0,

and then the quadratic form ax2 + bxy + cy2 will be the form we want, with the

given periodic line as its separator line.

To illustrate the procedure let us find a quadratic form whose periodic separator

line is the following:

From the vertex labels we see that the translation giving the periodicity has matrix(
25 84

36 121

)
so it is the transformation T(z) = (25z+ 84)/(36z+ 121) . The fixed points

of T are determined by setting this equal to z . The resulting equation simplifies to

25z + 84 = 36z2 + 121z and then 36z2 + 96z − 84 = 0 or just 3z2 + 8z − 7 = 0.

The roots α and α of this equation are the fixed points, but we do not actually have

to compute them since we know the quadratic form we want is ax2 + bxy + cy2 =

a(x−αy)(x−αy) which in this example is just 3x2+8xy −7y2 . To check this we

can compute the separator line of this form:

This provides a realization of the given periodic line as the separator line in the to-

pograph of a quadratic form. Any constant multiple of this form would also have the

same separator line.

We could have simplified the calculation slightly by noting that the periodic line

we started with is taken to itself by a glide reflection that moves the line only half

as far along itself as the translation T that we used. This glide reflection is T ′(z) =

(2z+7)/(3z+10) and it has the same fixed points as T so we could use the equation
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T ′(z) = z instead of T(z) = z . This gives 2z + 7 = 3z2 + 10z which simplifies

immediately to 3z2 + 8z − 7 = 0.

Notice that the separator line for 3x2 + 8xy − 7y2 is not symmetric under re-

flection across any vertical line, unlike all the separator lines we have seen up to this

point. This is the simplest example without this mirror symmetry property since the

periodic strips associated to continued fractions 1�րa1
and 1�րa1

+ 1�րa2
obviously have

mirror symmetry, as do the strips for continued fractions 1�րa1
+ 1�րa2

+ 1�րa3
if two of

the numbers a1, a2, a3 are equal.

Now let us see why this construction always works. Starting with a periodic line

in the dual tree of the Farey diagram, the construction produces a quadratic form

ax2+bxy+cy2 that factors as a(x−αy)(x−αy) where α and α lie at the ends of

the given periodic line. As we saw in the proof of Theorem 5.4, the form is hyperbolic

and its separator line also has ends at α and α . The only thing remaining to verify

is that this separator line is the same as the periodic line we started with. This is a

consequence of the following general fact:

Lemma 5.5. Given two irrational numbers α and β there is a unique line in the dual

tree of the Farey diagram whose endpoints are α and β .

Proof : To see that there is at least one line joining α and β let us look in the upper

half-plane model of the Farey diagram, where the edges of the diagram are semicircles

with their endpoints on the x axis. There is also such a semicircle with endpoints α

and β . Call this semicircle S . Since we assume α and β are irrational, the endpoints

of S are not vertices of the diagram. If S intersects some triangle in the diagram,

it crosses this triangle from one edge of the triangle to another edge since it cannot

intersect the same edge in more than one point. (If S intersected the edge in two

points, this would mean the complete circle formed by S and its reflection across the

x axis would intersect the complete circle containing the edge in at least four points,

but if two circles in the plane intersect in more than two points, they must coincide,

which would mean that S is an edge of the diagram, which it isn’t.) The collection

of all triangles in the diagram that are crossed by S forms an infinite strip in the

diagram, infinite in both directions, converging to α and β at its two ends. This strip

corresponds to a line in the dual tree joining α and β .

Suppose now that there are two different lines L1 and L2 in the dual tree that join

α and β . Suppose first that L1 and L2 have no edges in common. Then there is an

edge in the dual tree such that removing this edge from the tree produces two pieces,

one containing L1 and the other containing L2 . Dual to this removed edge of the tree

is an edge E in the Farey diagram (we have in mind the circular Farey diagram now)

with L1 lying on one side of E and L2 lying on the other side. Since the endpoints

of E are rational numbers on the boundary circle of the Farey diagram, they must be

distinct from the endpoints of L1 and L2 which are the irrational numbers α and β .
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Since L1 and L2 lie on opposite sides of E , this means the endpoints of L1 and L2

must be four distinct points, two on each side of E . This contradicts the assumption

that both L1 and L2 join α to β . Thus the possibility that L1 and L2 have no edges

in common cannot occur.

The remaining possibility is that L1 and L2 have at least one edge in common.

Since we assume L1 is not equal to L2 this implies that there is an edge e in the

intersection of L1 and L2 where L1 and L2 diverge, so at one end of e the two abutting

edges are e1 lying in L1 and e2 lying in L2 . Dual to e , e1 , and e2 are the three edges

of one triangle of the Farey diagram. Complementary to this triangle are three pieces

of the Farey diagram, each of which contains at least one end of one of the lines L1 and

L2 . This means that L1 and L2 together have at least three ends, but this contradicts

our assumption that the ends of L1 and L2 are the two numbers α and β . ⊔⊓

Elliptic Forms

An elliptic quadratic form Q(x,y) takes on only positive or only negative values

at integer pairs (x,y) 6= (0,0) . The positive and negative cases are equivalent since

one can switch from one to the other just by putting a minus sign in front of Q .

Thus it suffices to consider the case that Q takes on only positive values, and we will

assume we are in this case from now on. We will also generally assume when we look

at topographs of elliptic forms that the orientations of the edges are chosen so as to

give positive h -values, unless we state otherwise.

Let p be the minimum value taken on by Q , and consider

a region of the topograph where Q takes the value p . All the

edges having one endpoint at this region are oriented away

from the region, by the arithmetic progression rule and the

assumption that p is the minimum value of Q . The mono-

tonicity property then implies that all edges farther away from

the p region are also oriented away from the region, and the

values of Q increase as one moves away from the region.

For the edges making up the border of the p region we

know that the h -labels on these edges form an arithmetic pro-

gression with increment 2p , provided that we temporarily re-orient these edges so

that they all point in the same direction. There are two possibilities for this arithmetic

progression:

(I) Some edge bordering the p region has the label h = 0. The topograph then has the

form shown in the first figure below, with the orientations on edges that give positive

h -labels. An example of such a form is px2+qy2 . We call the 0-labeled edge a source

edge since all other edges are oriented away from this edge.
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This takes care of the first case. The second case is:

(II) No edge bordering the p region has label h = 0. Since the labels on these edges

form an arithmetic progression, there must be some vertex where the terms in the

progression change sign. Then when we orient the edges to give positive h -labels,

all three edges meeting at this vertex will be oriented away from the vertex, as in the

second figure above. We call this a source vertex since all edges in the topograph are

oriented away from this vertex.

The fact that the three edges leading from a source vertex all point away from the

vertex is equivalent to the three triangle inequalities

p < q + r q < p + r r < p + q

In the case of a source edge one of these inequalities becomes an

equality r = p + q .

Proposition 5.6. Elliptic forms have negative discriminant.

Proof : In the case of a source edge with the label h = 0 separating regions labeled p

and q , the discriminant is ∆ = h2 − 4pq = −4pq , which is negative. In the case of

a source vertex with adjacent regions labeled p,q, r , the edge between the p and q

regions is labeled h = p + q − r so we have

∆ = h2 − 4pq = (p + q − r)2 − 4pq

= p2 + q2 + r 2 − 2pq − 2pr − 2qr

= p(p − q − r)+ q(q − p − r)+ r(r − p − q)

In the last line the three quantities in parentheses are negative by the triangle inequal-

ities, so ∆ is negative. ⊔⊓

Parabolic and 0-Hyperbolic Forms

These are the forms whose topograph has at least one region labeled 0. By the

second arithmetic progression rule, each edge adjacent to the 0 region has the same

label h , and the labels on the regions adjacent to the 0 region form an arithmetic

progression. The discriminant is ∆ = h2 , a square.
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A special case is h = 0. Then the topograph is as shown in the next figure, and the

form is parabolic with discriminant ∆ = h2 = 0. Notice that the topograph is periodic

along the 0 region since it consists of the same tree pattern repeated infinitely often.

An example of a form with this topograph is Q(x,y) = qx2 . Notice that q is uniquely

determined by the topograph since it is the value of the form closest to 0, both alge-

braically in terms of absolute value and geometrically in the topograph.

The remaining case is that h is nonzero, so the discriminant ∆ = h2 is a positive

square. The arithmetic progression of values of Q adjacent to the 0 region is not con-

stant, so it includes both positive and negative num-

bers, and hence Q is 0-hyperbolic. If the arithmetic

progression includes the value 0, this gives a second

0 region adjacent to the first one, and the topograph

is as shown at the right. This is the topograph of

the form Q(x,y) = qxy , with the two 0 regions at

x/y = 1/0 and 0/1.

If the arithmetic progression of values of Q ad-

jacent to the 0 region does not include 0, there will

be an edge separating the positive from the negative values in the progression. We

can extend this separating edge to a line of separating edges as we did with hyperbolic

forms, but the extension will eventually have to terminate with a second 0 region, oth-

erwise the reasoning we used in the hyperbolic case would yield two edges along this

line having the same h and the same positive and negative labels on the two adjacent

regions, which would force the line to be periodic and hence extend infinitely far in

both directions, which is impossible since it began at a 0 region at one end. Thus

the topograph contains a finite separator line connecting two 0 regions. An example

of such a form is Q(x,y) = qxy − py2 = (qx − py)y which has the value 0 at

x/y = 1/0 and at x/y = p/q . Here we must have |q| > 1 for the two 0 regions to
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be nonadjacent. The separator line follows the strip of triangles in the Farey diagram

corresponding to the continued fraction for p/q . For example, for p/q = 2/5 the

topograph of the form 5xy − 2y2 = (5x − 2y)y is the following:

This completes our description of what parabolic and 0-hyperbolic forms look

like. As we have seen, the discriminants of these forms are squares. The converse is

also true:

Proposition 5.7. If the discriminant of a form Q(x,y) is a square, then Q(x,y) = 0

for some pair of integers (x,y) 6= (0,0) so Q is either parabolic or 0 -hyperbolic.

Proof : Suppose first that the form Q(x,y) = ax2 + bxy + cy2 happens to have

a = 0. Then Q(1,0) = 0 so we are done in this case (and note that ∆ = b2 , a

square). So we can assume that a 6= 0. The equation aX2 + bX + c = 0 then has

roots X = (−b ±
√
b2 − 4ac)/2a . If b2 − 4ac is a square, this means the roots are

rational. If X = p/q is a rational root then a(p/q)2 + b(p/q) + c = 0 and hence

ap2 + bpq + cq2 = 0 so Q takes the value 0 at a pair (p, q) with q 6= 0. ⊔⊓

In particular, this shows the discriminant of a hyperbolic form is not a square.

Since we showed earlier that a hyperbolic form has positive discriminant, this com-

pletes the characterization of the four types of forms in terms of their discriminants.

Equivalence of Forms

In the pictures of topographs we have drawn, we often omit the fractional labels

x/y for the regions in the topograph since the more important information is of-

ten just the values Q(x,y) of the form. This leads to the idea of considering two

quadratic forms to be equivalent if their topographs “look the same” when the labels

x/y are disregarded. For a precise definition, one can say that quadratic forms Q1

and Q2 are equivalent if there is a vertex v1 in the topograph of Q1 and a vertex v2

in the topograph of Q2 such that the values of Q1 in the three regions surrounding

v1 are equal to the values of Q2 in the three regions surrounding v2 . Since the three

values around a vertex determine all the other values in a topograph, this guarantees

that the topographs look the same everywhere, if the labels x/y are omitted.

An alternative definition of equivalence of forms would be to say that two forms

are equivalent if there is a linear fractional transformation in LF(Z) that takes the
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topograph of one form to the topograph of the other form. This is really the same

as the first definition since there is a vertex of the topograph in the center of each

triangle of the Farey diagram and we know that elements of LF(Z) are determined by

where they send a triangle, so if two topographs each have a vertex surrounded by

the same triple of numbers, there is an element of LF(Z) taking one topograph to the

other, and conversely.

A topograph and its mirror image correspond to equivalent forms since the mirror

image topograph has the same three labels around each vertex as at the corresponding

vertex of the original topograph. For example, switching the variables x and y reflects

the circular Farey diagram across its vertical axis and hence reflects the topograph of a

form Q(x,y) to the topograph of the equivalent form Q(y,x) . As another example,

the forms ax2+bxy+cy2 and ax2−bxy+cy2 are equivalent since they are related

by changing (x,y) to (−x,y) , reflecting the Farey diagram across its horizontal axis,

with a corresponding reflection of the topograph.

For parabolic forms it is easy to describe what all the different equivalence classes

are since we have seen exactly what their topographs look like: There is a single region

labeled 0 and all the regions adjacent to this have the same label q , which can be

any integer. The integer q thus determines the equivalence class, so there is one

equivalence class of parabolic forms for each integer q , with the form qx2 being one

element of this equivalence class.

Parabolic forms are the ones with discriminant zero, but for the other three types

of forms something different happens:

Theorem 5.8. There are only a finite number of equivalence classes of forms with a

given nonzero discriminant.

Proof : Consider first the case of forms of positive discriminant. These are either

hyperbolic or 0-hyperbolic. Hyperbolic forms have a separator line. For an edge in

the separator line labeled h with adjacent regions labeled p > 0 and −q < 0 we have

∆ = h2 + 4pq , so each of the quantities |h| , p , and q is bounded in size by ∆ . This

means that for fixed ∆ there are only finitely many possibilities for h , p , and q for

each edge of the separator line, hence just finitely many possible combinations of h ,

p , and −q for each edge, so there are just finitely many possibilities for the form, up

to equivalence. The same reasoning applies also to 0-hyperbolic forms that have a

separating edge in their topograph. The only ones that do not have a separating edge

are the ones with two adjacent regions labeled 0. In this case the edge separating

these two regions has h2 = ∆ since p = q = 0 for this edge. Hence h = ±
√
∆ and

we can change the sign by changing the orientation of the edge. Thus the form is

determined up to equivalence by ∆ .

For forms of negative discriminant we can assume we are dealing with positive

elliptic forms since a form Q and its negative −Q have the same discriminant. If
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a positive elliptic form has a source edge in its topograph, this edge has h = 0 so

∆ = −4pq where p and q are the values of Q in the adjacent regions. For fixed

∆ there are only finitely many choices of p and q satisfying ∆ = −4pq . Hence, up

to equivalence there are only finitely many positive elliptic forms of discriminant ∆
having a source edge. In the other case of a source vertex surrounded by values p,q, r

of the form, we obtained the formula ∆ = p(p − q− r)+ q(q−p− r)+ r(r −p − q)
with the three quantities in parentheses being negative, so p+q+ r ≤ |∆| and hence

there are only finitely many possibilities for p , q , and r for each ∆ . ⊔⊓

As an example, let us determine all the quadratic forms of discriminant 60, up

to equivalence. Two obvious forms of discriminant 60 are x2−15y2 and 3x2−5y2 ,

whose separator lines consist of periodic repetitions of the following two patterns:

From the topographs it is apparent that these two forms are not equivalent, and also

that the negatives of these two forms, −x2 + 15y2 and −3x2 + 5y2 , give two more

inequivalent forms, for a total of four equivalence classes so far. To see whether

there are others we use the formula ∆ = 60 = h2 + 4pq relating the values p and

−q along an edge labeled h in the separator line, with p > 0 and q > 0. The various

possibilities are listed in the table below. Note that the equation 60 = h2+4pq implies

that h has to be even. (In fact, the formula ∆ = h2−4ac implies that h and ∆ always

have the same parity.)

h pq (p, q)

0 15 (1,15), (3,5), (5,3), (15,1)

2 14 (1,14), (2,7), (7,2), (14,1)

4 11 (1,11), (11,1)
6 6 (1,6), (2,3), (3,2), (6,1)

Each pair of values for (p, q) in the table occurs at some edge along the separator

line in one of the two topographs shown above, or the negatives of these topographs.

Hence every form of discriminant 60 is equivalent to one of these four. If it had

not been true that all the possibilities in the table occurred in the topographs of the

forms we started with, we could have used these other possibilities for h , p , and q to

generate new topographs and hence new forms, eventually exhausting all the finitely

many possibilities.

The procedure in this example works for all hyperbolic forms. One makes a list

of all the solutions of ∆ = h2 + 4pq with p > 0 and q > 0, then one constructs

separator lines that realize all the resulting pairs (p, q) . The different separator lines

correspond exactly to the different equivalence classes of forms of discriminant ∆ .

Each solution (h,p, q) gives a form px2+hxy −qy2 . These are organized into “cy-
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cles” corresponding to the pairs (p,−q) occurring along one of the periodic separator

lines. Thus in the preceding example with ∆ = 60 the14 pairs (p, q) in the table give

rise to the four cycles along the four different separator lines.

Note that a hyperbolic form ax2 + bxy + cy2 belongs to one of these cycles for

the discriminant ∆ = b2 − 4ac exactly when a > 0 and c < 0 since a and c are the

numbers p and −q lying on opposite sides of an edge of the separator line (namely

when x/y = 1/0 or 0/1).

If we superimpose the separator line of a hyperbolic form on the associated in-

finite strip in the Farey diagram, we see that the forms within a cycle correspond to

the edges of the Farey diagram that lie in the strip and join one border of the strip to

the other. For example, for the form 3x2 − 5y2 we obtain the following picture, with

fans of two triangles alternating with fans of three triangles:

The number of forms within a given cycle can be fairly large in general. The situation

can be improved somewhat by considering only the “most important” forms in the

cycle, namely the forms that correspond to those edges in the strip that separate pairs

of adjacent fans, indicated by heavier lines in the figure. In terms of the topograph

itself these are the edges in the separator line whose two endpoints have edges leading

away from the separator line on opposite sides. The forms corresponding to these

edges are traditionally called the reduced forms within the given equivalence class. In

the example of discriminant 60 these are the forms with (p, q) = (1,6) , (6,1) , (3,2) ,

and (2,3) . These are the forms x2+6xy −6y2 , 6x2+6xy −y2 , 3x2+6xy −2y2 ,

and 2x2 + 6xy − 3y2 .

Now let us consider the analogous problem of finding all the equivalence classes of

positive elliptic quadratic forms of a given discriminant. This turns out to be a simpler

process since it can be done without drawing any topographs. At a

source vertex or edge in the topograph for such a form Q let the

smaller two of the three adjacent values of Q be a ≤ c , with the

edge between them labeled h ≥ 0, so that the third adjacent value

of Q is a + c − h . The form is then equivalent to the form ax2 +

hxy + cy2 . Since a and c are the smallest values of Q we have

a ≤ c ≤ a+c−h , and the latter inequality implies that h ≤ a . Thus

we have the inequalities 0 ≤ h ≤ a ≤ c . Note that these inequalities
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imply the three triangle inequalities at the source vertex or edge: a+ c − h ≤ a+ c ,

a < c + (a+ c − h) , and c < a+ (a + c − h) . For the discriminant ∆ = −D we have

D = 4ac − h2 , so we are seeking solutions of

4ac = h2 +D with 0 ≤ h ≤ a ≤ c

The number h must have the same parity as D , and we can bound the choices for h by

the inequalities 4h2 ≤ 4a2 ≤ 4ac = D+h2 which imply 3h2 ≤ D , or h2 ≤ D/3. Thus

every positive elliptic form is equivalent to a form ax2+hxy+cy2 with 4ac = h2+D

and 0 ≤ h ≤ a ≤ c . An elliptic form satisfying these conditions is called reduced. Two

different reduced elliptic forms with the same discriminant are never equivalent since

a and c are the labels on the two regions in the topograph where the form takes its

smallest values, and h is determined by a , c , and D via the formula 4ac = h2 +D .

As an example, when D = 260 we must have h even and h2 ≤ 260/3 so h must

be 0, 2, 4, 6, or 8. The corresponding values of a and c that are possible can then be

computed from the equation 4ac = 260+h2 , always keeping in mind the requirement

that h ≤ a ≤ c . The possibilities are shown in the following table:

h ac (a, c)

0 65 (1,65), (5,13)
2 66 (2,33), (3,22), (6,11)

4 69 —

6 74 —

8 81 (9,9)

Thus every positive elliptic form of discriminant −260 is equivalent to one of the

reduced forms x2 + 65y2 , 5x2 + 13y2 , 2x2 + 2xy + 33y2 , 3x2 + 2xy + 22y2 ,

6x2 + 2xy + 11y2 , or 9x2 + 8xy + 9y2 , and no two of these reduced forms are

equivalent to each other.

Symmetries

We have observed that some topographs are symmetric in various ways. To give

a precise meaning to this term, let us say that a symmetry of a form Q (or its to-

pograph) is a transformation T in LF(Z) that leaves all the values of Q unchanged,

so Q(T(x,y)) = Q(x,y) for all pairs (x,y) . For example, every hyperbolic form

has a periodic separator line, which means there is a symmetry that translates the

separator line along itself. If T is the symmetry translating by one period in either

direction, then all the positive and negative powers of T are also translational sym-

metries. Strictly speaking, the identity transformation is always a symmetry but we

will often ignore this trivial symmetry.

Some hyperbolic forms also have mirror symmetry, where the symmetry is re-

flection across a line perpendicular to the separator line. This reflector line could

contain one of the edges leading off the separator line, or it could be halfway between

two consecutive edges leading off the separator line on the same side. If a reflector
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line lies halfway between two adjacent edges leading off the separator line for a form

px2+hxy−qy2 this corresponds to having h = 0 as in the first figure below, so the

form is just px2 − qy2 .

On the other hand if the reflector line contains an edge leading off the separator

line then either h = p or h = q as in the second and third figures, so the form is

px2 + pxy − qy2 or px2 + qxy − qy2 . In the earlier example with discriminant

∆ = 60 there were fourteen forms occurring along the separator lines, and eight

of these correspond to mirror symmetries: the four with h = 0 and the four with

(p, q) = (2,7) , (7,2) , (1,6) , and (6,1) . Each of the four equivalence classes of forms

contains two forms exhibiting the mirror symmetries.

For hyperbolic forms these two types of symmetries, the periodicity translations

and the mirror symmetries across lines perpendicular to the separator line, are the

only possible types of symmetries. This is because every symmetry must take positive

values of the form to positive values, and negative values to negative values, so the

symmetry must carry the separator line to itself, and it is a fairly obvious fact that all

symmetries of a line are either translations along the line or reflections across some

point on the line, exchanging the two ends of the line and reversing its orientation.

If the separator line has a mirror symmetry then because of periodicity there

has to be at least one reflector line in each period, but in fact there are two reflector

lines in each period. To see this, let τ denote the translation by one period and let

ρ be a reflection across a reflector line L . If x is the point on the separator line

halfway between L and τ(L) , then τ(ρ(x)) = x . Since τρ reverses orientation it

must therefore be a reflection across the line through x perpendicular to the separator

line, halfway between L and τ(L) . Thus there are at least two reflector lines in each

period. There cannot be more than two since the composition of the reflections across

two adjacent reflector lines is a translation through twice the distance between the

separator lines, so the distance between adjacent reflector lines must be half a period.

Some elliptic forms also have symmetries. The source vertex

or edge must be taken to itself by any symmetry since the smallest

values of the form occur around this one vertex or edge. It is easy

to determine the symmetries of an elliptic form ax2 + hxy + cy2

that is reduced, so 0 ≤ h ≤ a ≤ c . As one can see by looking at

the figure to the right, symmetries occur when one or more of these

three inequalities become equalities. When h = 0 one has a source

edge and this has a mirror symmetry across the line perpendicular
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to the source edge. When a = c one has a mirror symmetry across the central edge.

And when h = a we have a+c−h = c so there is a mirror symmetry across the edge

separating the two regions with these labels.

Certain combinations of these equalities are also possible. If h = 0 and a =

c so the form is a(x2 + y2) there are mirror symmetries across the source edge

as well as across the line perpendicular to this edge, and the composition of these

two reflections is a 180 degree rotational symmetry about the midpoint of the edge.

Another possibility is that h = a = c so the form is a(x2 + xy + y2) and all three

values of the form around the lower vertex in the diagram are equal. Then there is a

120 degree rotational symmetry about this source vertex as well as mirror symmetries

across the three adjacent edges. These are the only combinations that can occur since

we must have 0 < a so 0 = h = a is impossible.

For elliptic forms this exhausts all the possible symmetries since if we have strict

inequalities 0 < h < a < c then the values of the form in the four regions shown in

the diagram above are all distinct.

One conclusion that can be drawn from the preceding analysis is that mirror

symmetries in a topograph do not occur at just a random place in the topograph. For

a hyperbolic form they must occur at an edge in the separator line, and for an elliptic

form they can only occur at the source vertex or edge.

Traditionally, a form whose topograph has mirror symmetry is called “ambigu-

ous” although there is really nothing about the form that is ambiguous in the usual

sense of the word, unless perhaps it is the fact that such a form is indistinguishable

from its mirror image.

Among the examples of hyperbolic forms we have considered there were some

whose topograph had a “symmetry” which was a glide-reflection along the separator

line that had the effect of changing each value to its negative rather than preserving

the values. These are not actual symmetries according to the definition above, so

let us call such a transformation that takes each value of a form to its negative a

skew symmetry . (Compare this with skew-symmetric matrices in linear algebra which

equal the negative of their transpose.) Skew symmetries might also be called “anti-

symmetries”.

There is one other type of skew symmetry, a 180 degree rotation about a point of

the separator line. Examples of forms with this sort of skew symmetry also occurred

in Chapter 4, the forms x2 − 13y2 and 10x2 − 29y2 .

The following pictures show forms whose separator lines have all the possible

combinations of symmetries and skew symmetries. The first form has all four types:

translations, mirror symmetries, glide-reflections, and rotations. The next three forms

have only one type of symmetry besides translations, while the last form has only

translational symmetries.
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It is not possible to have two of the three non-translational symmetries without having

the third since the composition of two of these symmetry types gives the third type.

One can see this by considering the effect of a symmetry or skew symmetry on the

orientation of the plane and the orientation of the separator line. The four possible

combinations distinguish the four types of transformations according to the following

chart, where + denotes orientation-preserving and − denotes orientation-reversing.

plane orientation line orientation

translation + +

rotation + −

glide reflection − +

reflection − −

The Class Number

If the topographs of two forms are mirror images of each other, then the forms are

equivalent, according to the definitions we have given. Of course, if a topograph has

mirror symmetry then it is the same as its mirror image, but when there is no mirror

symmetry it is sometimes desirable to distinguish a topograph from its mirror image.

In order to do this one uses a more refined notion of equivalence in which two forms

are considered equivalent only if there is an orientation-preserving transformation in

LF(Z) taking the topograph of one form to the topograph of the other. In this case the

forms are called properly equivalent. This more refined notion might also be called

“oriented equivalence”. For forms with mirror symmetry, an equivalence that reverses

orientation can always be converted to one that preserves orientation by composing
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it with a mirror symmetry, so there is no distinction between the two concepts in this

case. But a form without mirror symmetry is not properly equivalent to its mirror

image.

To illustrate the distinction, let us look at the earlier example of discriminant

∆ = −260 where we saw that there were six equivalence classes of forms. Small

portions of the topographs of these six elliptic forms are shown below.

In the first two topographs the central edge is a source edge, and in the other four the

lower vertex is a source vertex. Whenever there is a source edge the topograph has a

mirror symmetry across a line perpendicular to the source edge. When there is source

vertex there is a mirror symmetry only when at least two of the three surrounding

values of the form are equal, as in the third and sixth topographs above, but not the

fourth or fifth topographs. Thus the mirror images of the fourth and fifth topographs

correspond to two more quadratic forms which are not equivalent to them under any

orientation-preserving transformation. To obtain an explicit formula for the mirror

image forms we can just interchange the a and c terms in ax2 + bxy + cy2 , which

corresponds to interchanging x and y , reflecting the topograph across a vertical line.

Alternatively we could change the sign of b , corresponding to changing the sign of

either x or y and thus reflecting the topograph across a horizontal line.

The net result of all this is that with the more refined notion of proper equivalence

there are eight proper equivalence classes of forms of discriminant −260. In general,

if the number of equivalence classes in a given discriminant whose topographs do not

have mirror symmetry is r , then the number of proper equivalence classes is r more

than the number of equivalence classes.

Another refinement in the classification of quadratic forms is to restrict attention

just to forms that are not multiples of other forms. In other words, one considers only

the forms ax2 + bxy + cy2 for which a , b , and c have no common divisor greater

than 1. Such forms are called primitive. Multiplying a form by a constant d multiplies

its discriminant by d2 , so non-primitive forms of discriminant ∆ exist exactly when

∆ is a square times another discriminant. For example, when ∆ = −12 = 4(−3) one

has the primitive form x2+ 3y2 as well as the non-primitive form 2x2+ 2xy + 2y2 .

A discriminant which is not equal to a square times another discriminant is called

a fundamental discriminant. For example, 8 is a fundamental discriminant even
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though it is divisible by a square, 4, since the other factor 2 is not the discrimi-

nant of any form, as it is not congruent to 0 or 1 mod 4. Fundamental discriminants

are those for which every form is primitive.

The number of proper equivalence classes of primitive forms of a given discrim-

inant is called the class number for that discriminant, where in the case of elliptic

forms one considers only those with positive values. The class number equals the

number of (non-proper) equivalence classes if every form of that discriminant has

mirror symmetry and there are no non-primitive forms. In particular, if all forms of

the given discriminant are equivalent, then the class number is 1 since in this case

all forms are equivalent to the principal form, and this is primitive and has mirror

symmetry. For fundamental discriminants the converse is also true: class number 1

implies all forms of that discriminant are equivalent since they are all properly equiv-

alent. An example when the class number is 1 but not all forms are equivalent is

the non-fundamental discriminant ∆ = −12, where all forms are equivalent to either

x2 + 3y2 or 2x2 + 2xy + 2y2 .

The question of which discriminants have class number 1 has been much studied.

For elliptic forms the following nine fundamental discriminants have class number 1:

∆ = −3, −4, −7, −8, −11, −19, −43, −67, −163

In addition there are four more which are not fundamental: −12, −16, −27, −28. It

was conjectured by Gauss around 1800 that there are no other negative discriminants

of class number 1. Over a century later in the 1930s it was shown that there is at

most one more, and then in the 1950s and 60s Gauss’s conjecture was finally proved

completely.

The situation for positive discriminants with class number 1 is not as well un-

derstood. Computations show that there are many more such discriminants, even

among fundamental discriminants, and the evidence seems to suggest there are in

fact infinitely many. However, this has not been proved.

For each of the negative discriminants of class number 1 listed above it is very

easy to check that all forms are equivalent. For example when ∆ = −163 we must have

h odd with h2 ≤ 163/3 so the only possibilities are h = 1,3,5,7. From the equation

4ac = 163 + h2 the corresponding values of ac are 41,43,47,53 which all happen

to be primes, and since a ≤ c this forces a to be 1 in each case. But since h ≤ a this

means h must be 1, and we obtain the single quadratic form x2 + xy + 41y2 .

The corresponding polynomial x2+x+41 has a curious property discovered by

Euler: For each x = 0,1,2,3, · · · ,39 the value of x2+x+41 is a prime number. Here

are these forty primes:

41 43 47 53 61 71 83 97 113 131 151 173 197 223 251 281 313 347 383 421

461 503 547 593 641 691 743 797 853 911 971 1033 1097 1163 1231 1301

1373 1447 1523 1601
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Notice that the successive differences between these numbers are 2,4,6,8,10, · · · .

The next number in the sequence after 1601 would be 1681 = 412 , not a prime.

(Write x2 +x + 41 as x(x + 1)+ 41 to see why x = 40 must give a nonprime value.)

A similar thing happens for the other values of D . The nontrivial cases are listed in

the table below.

D

7 x2 + x + 2 2

11 x2 + x + 3 3 5

19 x2 + x + 5 5 7 11 17

43 x2 + x + 11 11 13 17 23 31 41 53 67 83 101

67 x2 + x + 17 17 19 23 29 37 47 59 73 89 107 127 149 173 199 227 257

It is interesting that these lists, including the one for x2 + x + 41, account for all

primes less than 100 except 79.

Just for fun, suppose one asks about the next 40 values of x2 + x + 41 after the

value 412 when x = 40. The next value, when x = 41, is 1763 = 41 · 43, also not a

prime. After this the next two values are primes, then comes 2021 = 43·47, then four

primes, then 2491 = 47 ·53, then six primes, then 3233 = 53 ·61, then eight primes,

then 4331 = 61 · 71, then ten primes, then 5893 = 71 · 83. This last number was for

x = 76, and the next four values are prime as well for x = 77, 78, 79, 80, completing

the second forty values. But then the pattern breaks down when x = 81 where one

gets the value 6683 = 41 ·163. Thus, before the breakdown, not only were we getting

sequences of 2, 4, 6, 8, 10 primes but the non-prime values were the products of two

successive terms in the original sequence of prime values 41, 43, 47, 53, 61, · · · .

All this seems quite surprising, even if the nice patterns do not continue forever.

We usually focus on elliptic and hyperbolic forms since their behavior is much

more interesting than for the other two types. Parabolic forms are extremely simple

since they are all equivalent to one-variable forms ax2 , and different values of a

give different equivalence classes since a is the value closest to 0. Just slightly more

subtle are 0-hyperbolic forms, whose classification we now describe.

As we saw in our initial discussion of 0-hyperbolic forms, their topographs con-

tain two regions labeled 0 and the labels on the regions adjacent to each 0-region

form an arithmetic progression with increment q , where the discriminant is ∆ = q2 .

These arithmetic progressions can also be thought of as congruence classes mod q .

The sign of q does not affect the arithmetic progression, so we may assume it is posi-

tive. Either one of the two arithmetic progressions adjacent to a 0-region determines

the form up to equivalence since two successive terms in the progression together

with the 0 in the adjacent region give the three values of the form around a vertex in

the topograph.

The form qxy − py2 has discriminant q2 and has −p as one term of the arith-

metic progression adjacent to the 0-region x/y = 1/0, namely in the region x/y =
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0/1. Thus every 0-hyperbolic form of discriminant q2 is equivalent to one of these

forms qxy − py2 . Since only the mod q value of p affects the arithmetic progres-

sion, we may assume 0 ≤ p < q . The number of equivalence classes of 0-hyperbolic

forms of discriminant q2 is therefore at most q . However, the number of equivalence

classes could be smaller since each form has two 0-regions and hence two arithmetic

progressions, which could be the same or different. Since either arithmetic progres-

sion determines the form, if the two progressions are the same then the topograph

must have a mirror symmetry interchanging the two 0-regions. This always happens

if the two 0-regions touch, for example, which is the case p = 0 so the form is qxy .

If we let r denote the number of forms without mirror symmetry then the number of

equivalence classes of 0-hyperbolic forms of discriminant q2 is q − r . On the other

hand, the number of proper equivalence classes is simply q .

It is possible to figure out exactly when there is a mirror symmetry interchanging

the 0-regions. As we observed in the earlier discussion of 0-hyperbolic forms, the

second 0-region for qxy −py2 is at x/y = p/q and the separator line (in the cases

when the 0-regions do not touch) runs down the middle of the strip in the Farey

diagram for the continued fraction for p/q . Mirror symmetry in the topograph is

equivalent to mirror symmetry in this strip, which is equivalent in turn to the terms

in the continued fraction forming a palindrome with an odd number of terms (since

the strip must have an odd number of fans if it has mirror symmetry). As we saw in

Chapter 2, reversing the order of the terms in a continued fraction for p/q changes

p to p′ where pp′ ≡ ±1 mod q , with the sign being + when the continued fraction

has an odd number of terms. This is assuming that p and q are coprime so that p/q

is in lowest terms. Thus in these cases the condition for mirror symmetry is p2 ≡ 1

mod q . This always has the solutions p ≡ ±1 mod q , and if q is prime these are

the only solutions. For nonprime q there can be other solutions. For example when

q = 15 the solutions are p ≡ ±1,±4 mod 15.

In the cases that p and q have greatest common divisor d > 1 we can factor d

out of the form qxy −py2 to get a 0-hyperbolic form of smaller discriminant q2/d2

which can be checked for mirror symmetry in the same way.

It is possible for a 0-hyperbolic form to have a 180 degree rotational skew sym-

metry. This happens when the strip along the separating line is palindromic and has

an even number of fans, which means p2 ≡ −1 mod q . The only time the same form

has both a mirror symmetry and a rotational skew symmetry is when 1 ≡ −1 mod q

so q must be 1 or 2.

Charting All Forms

We have used the Farey diagram to study individual quadratic forms through

their topographs, but the diagram also appears in another way when one seeks a

global picture of all forms simultaneously, as we will now see.
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Quadratic forms are defined by formulas ax2+bxy+cy2 , and our point of view

will be to regard the coefficients a , b , and c as parameters that vary over all integers

independently. It is natural to consider the triples (a, b, c) as points in 3-dimensional

Euclidean space R3 , and more specifically as points in the integer lattice Z3 consisting

of points (a, b, c) whose coordinates are integers. We will exclude the origin (0,0,0)

since this corresponds to the trivial form that is identically zero. Instead of using the

traditional (x,y, z) as coordinates for R3 we will use (a, b, c) , but since a and c

play a symmetric role as the coefficients of the squared terms x2 and y2 in a form

ax2 +bxy + cy2 we will position the a and c axes in a horizontal plane, with the b

axis vertical, perpendicular to the ac plane. Here is a figure showing the location of

a few forms:

Along each ray starting at the origin and passing through a lattice point (a, b, c)

there are infinitely many lattice points (ka, kb, kc) for positive integers k . If a , b ,

and c have a common divisor greater than 1 we can first cancel this common divisor

to get a primitive triple (a, b, c) corresponding to a primitive form ax2+bxy +cy2 ,

with all the other lattice points on the ray through (a, b, c) being the positive integer

multiples of this. Thus primitive forms correspond exactly to rays from the origin

passing through lattice points. These are the same as rays passing through points

(a, b, c) with rational coordinates since denominators can always be eliminated by

multiplying the coordinates by the least common multiple of the denominators.

Since the discriminant ∆ = b2 − 4ac plays such an important role in the clas-

sification of forms, let us see how this fits into the picture in (a, b, c) coordinates.

When b2−4ac is zero we have the special class of parabolic forms, and the points in

R
3 satisfying the equation b2 − 4ac = 0 form a

double cone with the common vertex of the two

cones at the origin. The double cone intersects

the ac plane in the a and c axes. The central

axis of the double cone itself is the line a = c in

the ac plane. Points (a, b, c) inside either cone
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have b2 − 4ac < 0 so the lattice points inside the cones correspond to elliptic forms.

Positive elliptic forms have a > 0 and c > 0 so they lie inside the cone projecting

to the first quadrant of the ac plane. We call this the positive cone. Inside the other

cone are the negative elliptic forms, those with a < 0 and c < 0. Outside the cones

is a single region consisting of points with b2 − 4ac > 0 so the lattice points here

correspond to hyperbolic forms and 0-hyperbolic forms.

If one slices the positive cone via a vertical plane perpendicular to the axis of the

cone such as the plane a+ c = 1, then the intersection of the cone with this plane is

an ellipse which we denote E .

The top and bottom points of E are (a, b, c) =
(1

2
,±1,

1
2

)
so its height is 2. The left

and right points of E are (1,0,0) and (0,0,1) so its width is
√

2. Thus E is somewhat

elongated vertically. If we wanted, we could compress the vertical coordinate to make

E a circle, but there is no special advantage to doing this.

When we project a lattice point (a, b, c) corresponding to a primitive positive

elliptic form along the ray to the origin passing through (a, b, c) , this ray intersects

the plane a+ c = 1 in the point (a/(a+ c), b/(a+ c), c/(a+ c)) since the sum of the

first and third coordinates of this point is 1. This point lies inside the ellipse E and has

rational coordinates. Conversely, every point inside E with rational coordinates is the

radial projection of a unique primitive positive elliptic form, obtained by multiplying

the coordinates of the point by the least common multiple of their denominators.

Thus the rational points inside E parametrize primitive positive elliptic forms. We

shall use the notation [a, b, c] to denote both the form ax2 + bxy + cy2 and the

corresponding rational point (a/(a + c), b/(a + c), c/(a + c)) inside E . The figure

below shows some examples, including a few parabolic forms on E itself.
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In this figure the lines radiating out from the points [1,0,0] and [0,0,1] consist of

the points [a, b, c] with a fixed ratio a/b or b/c . The ratios a/c are fixed along

vertical lines. Two out of three of these ratios determine the third since
a
b ·

b
c =

a
c .

Of special interest are the reduced primitive elliptic forms [a, b, c] , which are

those satisfying 0 ≤ b ≤ a ≤ c where a , b , and c have no common divisor. These

correspond to the points inside the ellipse lying in the triangle with vertices [1,1,1] ,

[1,0,1] , and [0,0,1] , whose edges correspond to one of the three inequalities 0 ≤

b ≤ a ≤ c becoming an equality, so b = 0 for the lower edge, a = c for the vertical

edge, and a = b for the hypotenuse.

Just as rational points inside the ellipse E correspond to primitive positive elliptic

forms, the rational points on E itself correspond to primitive positive parabolic forms.

As we know, every parabolic form is equivalent to the form ax2 for some nonzero

integer a . For this to be primitive means that a = ±1, so every positive primitive

parabolic form is equivalent to x2 . Equivalent forms are those that can be obtained

from each other by a change of variable replacing (x,y) by (px + qy, rx + sy) for

some integers p,q, r , s satisfying ps−qr = ±1. For the form x2 this means that the

primitive positive parabolic forms are the forms (px+qy)2 = p2x2+2pqxy+q2y2

for any pair of coprime integers p and q . In [a, b, c] notation this is [p2,2pq,q2] ,
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defining a point on the ellipse E .

More concisely, we could label the rational point on E corresponding to the form

(px + qy)2 just by the fraction p/q . Thus at the left and right sides of E we have

the fractions 1/0 and 0/1 corresponding to the forms x2 and y2 , while at the top

and bottom of E we have 1/1 and −1/1 corresponding to (x + y)2 and (x − y)2 =

(−x +y)2 .

Note that changing the signs of both p and q does not change the form (px + qy)2

or the fraction p/q . In the first quadrant of the ellipse the fractions p/q increase

monotonically from 0/1 to 1/1 since the ratio b/c equals 2p/q and b is increasing

while c is decreasing so 2p/q is increasing, and hence also p/q . Similarly in the

second quadrant the values of p/q increase from 1/1 to 1/0 since we have b/a =

2q/p which decreases as b decreases and a increases. In the lower half of the ellipse

we have just the negatives of the values in the upper half since the sign of b has

changed from plus to minus.

Thus the labeling of the rational points of E by fractions p/q seems very similar

to the labeling of vertices in the circular Farey diagram. As we saw near the end of

Chapter 1, if the Farey diagram is drawn with 1/0 at the top of the unit circle in the xy

plane, then the point labeled p/q has coordinates (x,y) = ((2pq/(p2 + q2), (p2 −

q2)/(p2 + q2)) . After rotating the circle to put 1/0 on the left side by replacing

(x,y) by (−y,x) this becomes ((q2 − p2)/(p2 + q2),2pq/(p2 + q2)) . Here the y -

coordinate 2pq/(p2 + q2) is the same as the b -coordinate of the point of E labeled

p/q , namely the point (a, b, c) = (p2/(p2 + q2),2pq/(p2 + q2), q2/(p2 + q2)) . Since

the vertical coordinates of points in either the left or right half of the circle or the

ellipse E determine the horizontal coordinates uniquely, this means that the labeling

of points of E by fractions p/q is really the same as in the circular Farey diagram.

Let us return now to the general picture of how forms ax2 + bxy + cy2 are
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represented by points (a, b, c) in R
3 . As we know, a change of variables by a linear

transformation T sending (x,y) to T(x,y) = (px + qy, rx + sy) where p,q, r , s

are integers with ps − qr = ±1 transforms each form into another equivalent form.

To see the effect of this change of variables on the coefficients (a, b, c) of a form

Q(x,y) = ax2 + bxy + cy2 we do a simple calculation:

Q(px + qy, rx + sy) = a(px + qy)2 + b(px + qy)(rx + sy)+ c(rx + sy)2

= (ap2 + bpr + cr 2)x2 + (2apq + bps + bqr + 2crs)xy

+ (aq2 + bqs + cs2)y2

This means that the (a, b, c) coordinates of points in R
3 are transformed by T∗

according to the formula

T∗(a, b, c) = (p2a+ prb + r 2c,2pqa+ (ps + qr)b + 2rsc, q2a+ qsb + s2c)

For fixed values of p,q, r , s this T∗ is a linear transformation of the variables a,b, c .

Its matrix is 

p2 pr r 2

2pq ps + qr 2rs

q2 qs s2




Since T∗ is a linear transformation, it takes lines to lines and planes to planes, but T∗

also has another special geometric property. Since equivalent forms have the same

discriminant, this means that each surface defined by an equation b2−4ac = k for k

a constant is taken to itself by T∗ . In particular, the double cone b2−4ac = 0 is taken

to itself, and in fact each of the two cones separately is taken to itself since one cone

consists of positive parabolic forms and the other cone of negative parabolic forms (as

one can see just by looking at the coefficients a and c ), and positive parabolic forms

are never equivalent to negative parabolic forms. When k > 0 the surface b2−4ac = k

is a hyperboloid of one sheet and when k < 0 it is a hyperboloid of two sheets. In

the case of two sheets the lattice points on one sheet give positive elliptic forms and

those on the other sheet give negative elliptic forms.

Since T∗ takes lines through the origin to lines through the origin and it takes the

double cone b2 − 4ac = 0 to itself, this means that T∗ gives a transformation of the

ellipse E to itself, taking rational points to rational points since rational points on E

correspond to lattice points on the cones. Regarding E as the boundary circle of the

Farey diagram, we know that linear fractional transformations give symmetries of the

Farey diagram, also taking rational points on the boundary circle to rational boundary

points. And in fact, the transformation of this circle defined by T∗ is exactly one of

these linear fractional transformations. This is because T∗ takes the parabolic form

(dx + ey)2 to the form (d(px + qy)+ e(rx + sy))2 = ((dp + er)x + (dq + es)y)2

so in the fractional labeling of points of E this says T∗(d/e) = (pd + re)/(qd + se)

which is a linear fractional transformation. If we write this using the variables x and

y instead of d and e it would be T∗(x/y) = (px+ry)/(qx+ sy) . This is not quite
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the same as the linear fractional transformation T(x/y) = (px + qy)/(rx + sy)

defined by the original change of variables T(x,y) = (px+ qy, rx+ sy) , but rather

T∗ is obtained from T by transposing the matrix of T , interchanging the off-diagonal

terms q and r .

Via radial projection, the transformation T∗ determines a transformation not

just of E but of the interior of E in the plane a+ c = 1 as well. This transformation,

which we still call T∗ for simplicity, takes lines inside E to lines inside E since T∗

takes planes through the origin to planes through the

origin. This leads us to consider a “linear” version of

the Farey diagram in which each circular arc of the orig-

inal Farey diagram is replaced by a straight line segment

joining the two endpoints of the circular arc. These line

segments divide the interior of E into triangles, just as

the original Farey diagram divides the disk into curvi-

linear triangles. The transformation T∗ takes each of

these triangles onto another triangle, analogous to the

way that linear fractional transformations provide sym-

metries of the original Farey diagram.

Suppose we divide each triangle of the linear Farey

diagram into six smaller triangles as in the figure at the

right. The transformation T∗ takes each of these small

triangles onto another small triangle since it takes lines

to lines. One of these small triangles is the triangle de-

fined by the inequalities 0 ≤ b ≤ a ≤ c that we con-

sidered earlier. The fact that every positive primitive

elliptic form is equivalent to exactly one reduced form,

corresponding to a rational point in this special trian-

gle, is now visible geometrically as the fact that there is

always exactly one transformation T∗ taking a given small triangle in the subdivided

linear Farey diagram to this one special small triangle.

Elliptic forms whose topograph contains a source edge are equivalent to forms

ax2+cy2 so these are the forms corresponding to rational points on the edges of the

linear Farey diagram, shown in black in the figure above. These are the forms whose

topograph has a symmetry reflecting across a line perpendicular to the source edge.

(This line is just the edge in the Farey diagram containing the given form.) The other

type of reflectional symmetry in the topograph of an elliptic form is reflection across

an edge of the topograph. Forms with this sort of symmetry correspond to rational

points in the blue and green edges in the preceding figure, the edges we added to

subdivide the Farey diagram into the smaller triangles. The blue and green edges

are distinguished by whether the two equal values of the form in the three regions
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surrounding the source vertex occur for the smallest value of the form (blue edges) or

the next-to-smallest value (green edges). Note that the blue edges form the dual tree

of the Farey diagram.

Let us now turn our attention to hyperbolic and 0-hyperbolic forms, which cor-

respond to integer lattice points that lie outside the two cones. As a preliminary

observation, note that for a point (a, b, c) outside the double cone there are exactly

two planes in R3 that are tangent to the double cone and pass through (a, b, c) . Each

of these planes is tangent to the double cone along a whole line through the origin.

The two tangent planes through (a, b, c) are determined by their intersection with

the plane a+ c = 1, which consists of two lines tangent to the ellipse E . These two

lines can either intersect or be parallel. The latter possibility occurs when the point

(a, b, c) lies in the plane a + c = 0, so the two tangent planes intersect in a line in

this plane.

As a simple example, if the point (a, b, c) we start with happens to lie on the b axis,

then the tangent planes are the ab plane and the bc plane. These intersect the plane

a+ c = 1 in the two vertical tangent lines to the ellipse E .

Our goal will be to show the following:

Proposition 5.9. Let Q(x,y) = ax2 + bxy + cy2 be a form of positive discriminant,

either hyperbolic or 0 -hyperbolic. Then the two points where the tangent lines to E

determined by (a, b, c) touch E are the points diametrically opposite the two points

that are the endpoints of the separator line in the topograph of Q in the case that Q

is hyperbolic, or the two points labeling the regions in the topograph of Q where Q

takes the value zero in the case that Q is 0 -hyperbolic.

Proof : We begin with a few preliminary remarks that will allow us to treat both the

hyperbolic and 0-hyperbolic cases in the same way. A form Q(x,y) = ax2 + bxy +

cy2 of positive discriminant can always be factored as (px + qy)(rx + sy) since

if a = 0 we have the factorization y(bx + cy) and if a ≠ 0 then the associated

quadratic equation ax2 + bx + c = 0 has positive discriminant so it has two distinct

real roots α and β , leading to the factorization ax2+bxy+cy2 = a(x−αy)(x−βy)

which can be rewritten as (px+qy)(rx+ sy) by incorporating a into either factor.

If Q is hyperbolic then the discriminant is not a square and hence the factorization

(px + qy)(rx + sy) will involve coefficients that are quadratic irrationals. If Q is
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0-hyperbolic then the discriminant is a square so the roots α and β are rational and

we obtain a factorization of Q as (px + qy)(rx + sy) with rational coefficients. In

fact we can take p,q, r , s to be integers in this case since we know every 0-hyperbolic

form is equivalent to a form y(bx + cy) so we can obtain the given form Q from

y(bx+cy) by replacing x and y by certain linear combinations dx+ey and fx+gy

with integer coefficients d, e, f , g .

The points where the tangent planes touch the double cone correspond to forms

of discriminant zero, with coefficients that may not be integers or even rational. A

simple way to construct two such forms from a given form Q = (px + qy)(rx+ sy)

is just to take the squares of the two linear factors, so we obtain the two forms (px+

qy)2 and (rx+ sy)2 , each of discriminant zero. We will show that each of these two

forms lies on the line of tangency for one of the two tangent planes determined by Q .

To do this for the case of (px+qy)2 we consider the line L in R3 passing through

the two points corresponding to the forms (px+qy)(rx+ sy) and (px+qy)2 . We

claim that L consists of the forms

Qt = (px + qy)
[
(1− t)(rx + sy)+ t(px + qy)

]

as t varies over all real numbers. When t = 0 or t = 1 we obtain the two forms

Q0 = (px + qy)(rx + sy) and Q1 = (px + qy)
2 so these forms lie on L . Also, we

can see that the forms Qt do form a straight line in R3 by rewriting the formula for

Qt in (a, b, c) coordinates, where it becomes:

(a, b, c) =
(
pr(1− t)+ p2t, (ps + qr)(1− t)+ 2pqt, qs(1− t)+ q2t

)

This defines a line since p,q, r , s are constants, so each coordinate is a linear function

of t . Since the forms Qt factor as the product of two linear factors, they have non-

negative discriminant for all t . This means that L does not go into the interior of

either cone. It also does not pass through the origin since if it did, it would have to be

a subset of the double cone since it contains the form Q1 which lies in the double cone.

From these facts we deduce that L must be a tangent line to the double cone. Hence

the plane containing L and the origin must be tangent to the double cone along the

line containing the origin and Q1 . The same reasoning shows that the other tangent

plane that passes through (px + qy)(rx + sy) intersects the double cone along the

line containing the origin and (rx + sy)2 .

The labels of the points of E corresponding to the forms (px + qy)2 and (rx +

sy)2 are p/q and r/s according to the convention we have adopted. On the other

hand, when the form (px+qy)(rx+sy) is hyperbolic the ends of the separator line

in its topograph are at the two points where this form is zero, which occur when x/y

is −q/p and −s/r . These are the negative reciprocals of the previous two points p/q

and r/s so they are the diametrically opposite points in E . Similarly when (px +

qy)(rx + sy) is 0-hyperbolic the vertices of the Farey diagram where it is zero are

at −q/p and −s/r , again diametrically opposite p/q and r/s . ⊔⊓
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It might have been nicer if the statement of the previous Proposition did not

involve passing to diametrically opposite points, but to achieve this we would have had

to use a different rule for labeling the points of E , with the label p/q corresponding

to the form (qx−py)2 instead of (px+qy)2 . This 180 degree rotation of the labels

would put the negative labels in the upper half of E rather than the lower half, which

doesn’t seem like such a good idea.

Next let us investigate how hyperbolic and 0-hyperbolic forms are distributed

over the lattice points outside the double cone b2 − 4ac . This is easier to visualize if

we project such points radially into the plane a + c = 1. This only works for forms

ax2+bxy+cy2 with a+c > 0, but the forms with a+c < 0 are just the negatives of

these so they give nothing essentially new. The forms with a+ c = 0 will be covered

after we deal with those with a+ c > 0.

Forms with a + c > 0 that are hyperbolic or 0-hyperbolic correspond via radial

projection to points in the plane a + c = 1 outside the ellipse E . Each such point

determines a pair of tangent lines to E intersecting at the given point.

For a 0-hyperbolic form (px + qy)(rx + sy) the points of tangency in E have

rational labels p/q and r/s . We know that every 0-hyperbolic form is equivalent to

a form y(rx+ sy) with a = 0, so p/q = 0/1 and one line of tangency is the vertical

line tangent to E on the right side. The form y(rx + sy) corresponds to the point

(0, r , s) in the plane a = 0 tangent to the double cone. Projecting radially into the

vertical tangent line to E , we obtain the points (0, r/s,1) , where r/s is an arbitrary

rational number. Thus 0-hyperbolic forms are dense in this vertical tangent line to E .

Choosing any rational number r/s , the other tangent line for the form y(rx + sy)

is tangent to E at the point labeled r/s .

An arbitrary 0-hyperbolic form (px + qy)(rx + sy) is obtained from one with

p/q = 0/1 by applying a linear fractional transformation T taking 0/1 to p/q , so

the vertical tangent line to E at 0/1 is taken to the tangent line at p/q , and the dense

set of 0-hyperbolic forms in the vertical tangent line is taken to a dense set of 0-

hyperbolic forms in the tangent line at p/q . Thus we see that the 0-hyperbolic forms

in the plane a + c = 1 consist of all the rational points on all the tangent lines to E

at rational points p/q of E .

In the case of a hyperbolic form ax2+bxy +cy2 with a+c > 0 the two tangent

lines intersect E at a pair of conjugate quadratic irrationals, the negative reciprocals of

the roots α and α of the equation ax2+bx+c = 0. Since α determines α uniquely,

one tangent line determines the other uniquely, unlike the situation for 0-hyperbolic

forms whose rational tangency points p/q and r/s can be varied independently. A

consequence of this uniqueness for hyperbolic forms is that each of the two tangent

lines contains only one rational point, the intersection point of the two lines, since any

other rational point would correspond to another form having one of its tangent lines

the same as for ax2 + bxy + cy2 and the other tangent line different, contradicting
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the previous observation that each tangent line for a hyperbolic form determines the

other. (The hypothetical second form would also be hyperbolic since the common

tangency point for the two forms is not a rational point on E .)

The points in the plane a + c = 1 that correspond to 0-hyperbolic forms are

dense in the region of this plane outside E since for an arbitrary point in this region

we can first take the two tangent lines to E through this point and then take a pair

of nearby lines that are tangent at rational points of E since points in E with rational

labels are dense in E . It is also true that points in the plane a+c = 1 that correspond

to hyperbolic forms are dense in the region outside E . To see this we can proceed

in two steps. First consider the case of a point in this region whose two tangent

lines to E are tangent at irrational points of E . These two irrational points are the

endpoints of an infinite strip in the Farey diagram that need not be periodic. However

we can approximate this strip by a periodic strip by taking a long finite segment of

the infinite strip and then repeating this periodically at each end. This means that the

given point in the region outside E lies arbitrarily close to points corresponding to

hyperbolic forms. Finally, a completely arbitrary point in the region outside E can be

approximated by points whose tangent lines to E touch E at irrational points since

irrational numbers are dense in real numbers.

It remains to consider hyperbolic and 0-hyperbolic forms (px + qy)(rx + sy)

corresponding to points (a, b, c) in the plane a + c = 0. Such a form determines

a line through the origin in this plane, and the tangent planes to the double cone

that intersect in this line intersect the plane a + c = 1 in two parallel lines tangent

to E at two diametrically opposite points p/q and −q/p . Thus the form is (px +

qy)(qx − py) , up to a constant multiple. If p/q is rational this is a 0-hyperbolic

form. Examples are:

— xy with vertical tangents to E at 1/0 and 0/1.

— x2 −y2 = (x +y)(x −y) with horizontal tangents to E at 1/1 and −1/1.

— 2x2−3xy−2y2 = (2x+y)(x−2y) with parallel tangents at 2/1 and −1/2.

If p/q and −q/p are conjugate quadratic irrationals then we have a hyperbolic form

ax2 + bxy + cy2 = a(x −α)(x −α) where αα = −1 since c = −a when a+ c = 0.

Thus α and α are negative reciprocals of each other that are interchanged by 180

degree rotation of E . As examples we have:

x2 + xy − y2 =
(
x −

−1+
√

5

2
y
)(
x −

−1−
√

5

2
y
)

2x2 + xy − 2y2 = 2
(
x −

−1+
√

17

4
y
)(
x −

−1−
√

17

4
y
)

One can consider a pair of parallel tangent lines to E as the limit of a pair of inter-

secting tangents where the point of intersection moves farther and farther away from

E in a certain direction which becomes the direction of the pair of parallel tangents.
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Exercises

1. Find a hyperbolic quadratic form whose periodic separator line has the following

pattern:

2. (a) Find two elliptic forms ax2 + cy2 that have the same discriminant but take on

different sets of values. Draw enough of the topographs of the two forms to make it

apparent that they do not have exactly the same sets of values. Include the source

vertex or source edge in the topographs. (Remember that the topograph only shows

the values Q(x,y) for primitive pairs (x,y) .)

(b) Do the same thing with hyperbolic forms ax2 + cy2 . Include the separator lines

in their topographs.

3. (a) Show the quadratic form Q(x,y) = 92x2−74xy+15y2 is elliptic by computing

its discriminant.

(b) Find the source vertex or edge in the topograph of this form.

(c) Using the topograph of this form, find all the integer solutions of 92x2 − 74xy +

15y2 = 60, and explain why your list of solutions is a complete list. (There are exactly

four pairs of solutions ±(x,y) , three of which will be visible in the topograph.)

4. (a) Show that if a quadratic form Q(x,y) = ax2 + bxy + cy2 can be factored

as a product (Ax + By)(Cx + Dy) with A,B,C,D integers, then Q takes the value

0 at some pair of integers (x,y) 6= (0,0) , hence Q must be either 0-hyperbolic or

parabolic. Show also, by a direct calculation, that the discriminant of this form is a

square.

(b) Find a 0-hyperbolic form Q(x,y) such that Q(1,5) = 0 and Q(7,2) = 0 and draw

a portion of the topograph of Q that includes the two regions where Q = 0.

5. Determine the number of equivalence classes of quadratic forms of discriminant

∆ = 120 and list one form from each equivalence class.

6. Do the same thing for ∆ = 61.

7. (a) Find the smallest positive nonsquare discriminant for which there is more than

one equivalence class of forms of that discriminant. (In particular, show that all

smaller discriminants have only one equivalence class.)

(b) Find the smallest positive nonsquare discriminant for which there are two inequiv-

alent forms of that discriminant, neither of which is simply the negative of the other.

8. (a) For positive elliptic forms of discriminant ∆ = −D , verify that the smallest

value of D for which there are at least two inequivalent forms of discriminant −D is

D = 12.
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(b) If we add the requirement that all forms under consideration are primitive, then

what is the smallest D?

9. Determine all the equivalence classes of positive elliptic forms of discriminants

−67, −104, and −347.

10. (a) Determine all the equivalence classes of 0-hyperbolic forms with discrimi-

nant 49.

(b) Determine which equivalence class in part (a) each of the forms Q(x,y) = 7xy −

py2 for p = 0,1,2,3,4,5,6 belongs to.

11. Show that the principal forms x2−dy2 and x2+xy −dy2 of discriminants 4d

and 4d+ 1 have topographs with mirror symmetry.

12. Show that if a form takes the same value on two adjacent regions of its topograph,

then these regions are both adjacent to the source vertex or edge when the form is

elliptic, or both lie along the separator line when the form is hyperbolic.

13. In this extended exercise the goal will be to show that the only negative even

discriminants with class number 1 are −4, −8, −12, −16, and −28. (Note that of

these, only −4 and −8 are fundamental discriminants.) The strategy will be to exhibit

an explicit reduced primitive form Q different from the principal form x2 +dy2 for

each discriminant −4d with d > 4 except d = 7. This will be done by breaking the

problem into several cases, where in each case a form Q will be given and you are

to show that this form has the desired properties, namely it is of discriminant −4d ,

primitive, reduced, and different from the principal form. You should also check that

the cases considered cover all possibilities.

(a) Suppose d is not a prime power. Then it can be factored as d = ac where 1 < a < c

and a and c are coprime. In this case let Q be the form ax2 + cy2 .

(b) The form ax2 + 2xy + cy2 will work provided that d + 1 factors as d+ 1 = ac

where a and c are coprime and 1 < a < c . If d is odd, for example a power of an odd

prime, then d+1 is even so it has such a factorization d+1 = ac unless d+1 = 2n .

(c) If d = 2n the cases we need to consider are n ≥ 3 since we assume d > 4. When

n = 3 take Q to be 3x2 + 2xy + 3y2 and when n ≥ 4 take Q to be 4x2 + 4xy +

(2n−2 + 1)y2 .

(d) When d + 1 = 2n the cases of interest are n ≥ 3. When n = 3 we have d = 7

which is one of the allowed exceptions with class number 1. When n = 4 we have

d = 15 and 3x2 + 5y2 works as in part (a). When n = 5 we have d = 31 and we take

the form 5x2+4xy +7y2 . When n ≥ 6 we use the form 8x2+ 6xy + (2n−3+ 1)y2 .
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Chapter 6. Representations by Quadratic Forms

With the various things we have learned about quadratic forms so far, let us

return to the basic representation problem of determining what values a given form

Q(x,y) = ax2 + bxy + cy2 can take on when x and y are integers, or in other

words, which numbers can be represented in the form ax2 +bxy + cy2 . Remember

that it suffices to restrict attention to the values in the topograph since these are the

values for primitive pairs (x,y) , and to get all other values one just multiplies the

values in the topograph by arbitrary squares. We focus on the forms that are either

elliptic or hyperbolic, as these are the most interesting cases.

As we will see through a series of examples, the type of answer one gets for

the representation problem varies from quite simple to slightly complicated to quite

complicated indeed.

Three Levels of Complexity

As a first example let us try to find a general pattern in the values of the form

x2 + y2 . In view of the symmetry of the topograph for this form it suffices to look

just in the first quadrant of the topograph. A piece of this quadrant is shown in the

figure at the right, somewhat distorted to squeeze

more numbers into the picture. What is shown is



all the numbers in the topograph that are less than

100. At first glance it may be hard to detect any

patterns here. Both even and odd numbers occur,

but none of the even numbers are divisible by 4 so

they are all twice an odd number, and in fact an odd

number that appears in the topograph. Considering

the odd numbers, one notices they are all congruent

to 1 mod 4 and not 3 mod 4, which is the other

possibility for odd numbers. On the other hand, not all odd numbers congruent to 1

mod 4 appear in the topograph. Up to 100, the ones that are missing are 9, 21, 33,

45, 49, 57, 69, 77, 81, and 93. Each of these has at least one prime factor congruent

to 3 mod 4, while all the odd numbers that do appear have all their prime factors

congruent to 1 mod 4. Conversely, all products of primes congruent to 1 mod 4 are

in the topograph.

This leads us to guess that the following statements might be true:

Conjecture. The numbers that appear in the topograph of x2 + y2 are precisely the

numbers n = 2ap1p2 · · ·pk where a ≤ 1 and each pi is a prime congruent to 1

mod 4 . Consequently the values of the quadratic form Q(x,y) = x2 + y2 as x

and y range over all integers (not just the primitive pairs) are exactly the numbers

n =m2p1p2 · · ·pk where m is an arbitrary integer and each pi is either 2 or a prime

congruent to 1 mod 4 .
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In both statements the index k denoting the number of prime factors pi is al-

lowed to be zero as well as any positive integer. The restriction a ≤ 1 in the first

statement disappears in the second statement since for nonprimitive representations

we can multiply by arbitrary squares which allows us to realize all powers of 2.

We will prove the conjecture later in the chapter. A weaker form of the conjecture

can be proved just by considering congruences mod 4 as follows. An even number

squared is congruent to 0 mod 4 and an odd number squared is congruent to 1

mod 4, so x2 + y2 must be congruent to 0, 1, or 2 mod 4. Moreover, the only way

that x2 + y2 can be 0 mod 4 is for both x and y to be even, which cannot happen

for primitive pairs. Thus all numbers in the topograph must be congruent to 1 or 2

mod 4. This says that the odd numbers in the topograph are congruent to 1 mod 4

and the even numbers are each twice an odd number.

However, these simple observations say nothing about the role played by primes

and prime factorizations, nor do they include any positive assertions about which

numbers actually are represented by x2 + y2 . It definitely takes more work to show

for example that every prime p = 4k+1 can be represented as the sum of two squares.

Let us look at a second example to see whether the same sorts of patterns occur,

this time for the form Q(x,y) = x2+2y2 . Here is a portion of its topograph showing

all values less than 100:

Again the even values are just the doubles of the odd values. The odd prime values

are 3,11,17,19,41,43,59,67,73,83,89,97 and the other odd values are all possible

products of these primes. The odd prime values are not determined by their values

mod 4 in this case, but instead by their values mod 8 since these values are all con-

gruent to 1 or 3 mod 8. Apart from this change, the answer to the representation

problem for x2 + 2y2 is completely analogous to the answer for x2 + y2 . Namely,

the numbers represented primitively by x2+2y2 are the numbers n = 2ap1p2 · · ·pk

with a ≤ 1 and each pi a prime congruent to 1 or 3 mod 8. Using congruences mod 8

we could easily prove the weaker statement that all numbers represented primitively

by x2 + 2y2 must be congruent to 1,2,3, or 6 mod 8, so all odd numbers in the
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topograph must be congruent to 1 or 3 mod 8 and all even numbers must be twice

an odd number.

These two examples were elliptic forms, but the same sort of behavior can occur

for hyperbolic forms as we see in the next example, the form x2− 2y2 . The negative

values of this form happen to be just the negatives of the positive values, so we need

only show the positive values in the topograph:

Here the primes that occur are 2 and primes congruent to ±1 modulo 8. The non-

prime values that occur are the products of primes congruent to ±1 modulo 8 and

twice these products. Again there is a weaker statement that can be proved using just

congruences mod 8.

In these three examples the guiding principle was to look at prime factorizations

and at primes modulo certain numbers, the numbers 4, 8, and 8 in the three cases.

Notice that these numbers are just the absolute values of the discriminants −4, −8,

and 8. Looking at primes modulo |∆| turns out to be a key idea for all quadratic

forms.

Another example of the same sort is the form x2+xy +y2 of discriminant −3.

This time it is the prime 3 that plays a special role rather than 2.

We only have to draw one-sixth of the topograph because of all the symmetries. Notice

that all the values are odd, so the prime 2 plays no role here. Since the discriminant

is −3 we are led to consider congruences mod 3. The primes in the topograph are
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3 and the primes congruent to 1 mod 3 (which in particular excludes the prime 2),

namely the primes 7,13,19,31,37,43,61,67,73,79,97. The nonprime values are the

products of these primes with the restriction that the prime 3 never has an exponent

greater than 1. This is analogous to the prime 2 never having an exponent greater

than 1 in the preceding examples. In all four examples the “special” primes whose

exponents are restricted are just the prime divisors of the discriminant. This is a

general phenomenon, that primes dividing the discriminant behave differently from

those that do not.

A special feature of the discriminants −4, −8, 8, and −3 is that in each case all

forms of that discriminant are equivalent. We will see that the representation problem

always has the same type of answer for discriminants with a single equivalence class

of forms.

Before going on to the next level of complexity let us digress to describe a nice

property that forms of the first level of complexity have. As we know, if a form Q(x,y)

represents an integer n then it also represents any multiple m2n . The converse is

not always true however. For example the form 2x2 + 7y2 represents 9 (when x

and y both equal 1) but obviously does not represent 1. Nevertheless, this converse

property does hold for forms such as those in the preceding four examples where the

numbers represented (primitively or not) by the form are exactly the numbers n that

can be factored as n = m2p1p2 · · ·pk for primes pi satisfying certain conditions

and m an arbitrary integer. This is because if a number n has a factorization of this

type then we can cancel any square factor of n and the result still has a factorization

of the same type.

Let us apply this “square-cancellation” property in the case of the form x2+y2 to

determine the numbers n such that the circle x2 +y2 = n contains a rational point,

and hence, as in Chapter 0, an infinite dense set of rational points. Suppose first that

the circle x2 +y2 = n contains a rational point, so after putting the two coordinates

over a common denominator the point is (x,y) =
(a
c ,

b
c

)
. The equation x2 + y2 = n

then becomes a2 + b2 = c2n . This means that the equation x2 + y2 = c2n has

an integer solution. Then the square-cancellation property implies that the original

equation x2 + y2 = n has an integer solution. Thus we see that if there are rational

points on the circle x2 + y2 = n then there are integer points on it. This is not

something that is true for all quadratic curves, as shown again by the example of the

ellipse 2x2 + 7y2 = 1 which has rational points such as
( 1

3
,

1
3

)
but no integer points.

From the solution to the representation problem for x2 +y2 we deduce that the

circle x2 + y2 = n contains rational points exactly when n = m2p1p2 · · ·pk where

m is an arbitrary integer and each pi is either 2 or a prime congruent to 1 mod 4.

The first few values of n satisfying this condition are 1,2,4,5,8,9,10,13,16,17,

18,20, · · · .
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Now let us consider some examples with a second level of complexity. First con-

sider the form x2 − 10y2 whose positive values less than 100 are shown in the fol-

lowing topograph:

There is no need to show any more of the negative values since these will just be the

negatives of the positive values. The prime values less than 100 are 31,41,71,79,89.

These are the primes congruent to ±1 or ±9 modulo 40, the discriminant. However,

in contrast to what happened in the previous examples, there are many nonprime val-

ues that are not products of these prime values. The prime factors of these nonprime

values are 2,3,5,13,37,43, none of which occur in the topograph. Rather miracu-

lously, these prime values are realized instead by another form 2x2 − 5y2 having

the same discriminant as x2 − 10y2 . Here is the topograph of this companion form

2x2 − 5y2 :


Again the negative values are just the negatives of the positive values. The prime

values this form takes on are 2 and 5, which are the prime divisors of the dis-

criminant 40, along with primes congruent to ±3 and ±13 modulo 40, namely

3,13,37,43,53,67,83.

Apart from the primes 2 and 5 that divide the discriminant 40, the possible val-

ues of primes modulo 40 are ±1,±3,±7,±9,±11,±13,±17,±19 since even numbers

and multiples of 5 are excluded. There are 16 different congruence classes here, and

exactly half of them, 8, are realized by one or the other of the two forms x2 − 10y2

and 2x2−5y2 , with 4 classes realized by each form. The other 8 congruence classes

are not realized by any form of discriminant 40 since every form of discriminant 40

is equivalent to one of the two forms x2 − 10y2 or 2x2 − 5y2 , as is easily checked
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by the methods from the previous chapter.

This turns out to be a general phenomenon valid for all elliptic and hyperbolic

forms: If one excludes the primes that divide the discriminant, then the prime values

of quadratic forms of that discriminant are exactly the primes in half of the possible

congruence classes modulo the discriminant. This will be proved in Theorem 6.7 later

in the chapter.

After further examination of the topographs of the two forms Q1 = x
2 − 10y2

and Q2 = 2x2 − 5y2 it seems that the following statements should be true:

Conjecture. The numbers represented primitively by either Q1 or Q2 are the prod-

ucts (−1)a2b5cp1p2 · · ·pk where a,b, c ≤ 1 and each pi is a prime congruent to

±1,±3,±9 , or ±13 mod 40 . Furthermore, one can determine which form will repre-

sent such a product by the rule that if the number of terms in the product that are

represented by Q2 (namely 2 , 5 , and pi ≡ ±3 or ±13 mod 40 ) is even, then the

number is represented by Q1 and if it is odd then the number is represented by Q2 .

For example, the topograph of Q1 contains the even powers of 3 while the topo-

graph of Q2 contains the odd powers. Another consequence is that the even values

in one topograph are just the doubles of the odd values in the other topograph.

This characterization of numbers represented primitively by these two forms also

implies that no number is represented by both Q1 and Q2 , except 0 of course. How-

ever, for some discriminants it is possible for two non-equivalent forms of that dis-

criminant to represent the same nonzero number, as we will see.

The preceding Conjecture will be proved piece by piece as we gradually develop

the necessary general theory. We will focus first on determining which primes are

represented byQ1 and which by Q2 , where Proposition 6.10 will provide the final

answer. For nonprimes the first sentence of the Conjecture will follow from Theo-

rem 6.13, while the second sentence will use results from Chapter 7.

There is another way of formulating the second half of the Conjecture that is quite

enlightening and turns out generalize to all discriminants. For the sake of simplicity

let us just talk about representing numbers without distinguishing between primitive

and nonprimitive representations. Then the second half of the Conjecture can be

reformulated as the following three statements:

(1) The product of two numbers represented by Q1 is again represented by Q1 .

(2) The product of two numbers represented by Q2 is represented by Q1 .

(3) The product of a number represented by Q1 with a number represented by Q2

is represented by Q2 .

An abbreviated way of writing these statements is by the formulas Q1Q1 = Q1 ,

Q2Q2 = Q1 , and Q1Q2 = Q2 . One can see that these are formally the same as

the rules for addition of integers mod 2: 0+0 = 0, 1+1 = 0, and 0+1 = 1. The two

formulas Q1Q1 = Q1 and Q1Q2 = Q2 say that Q1 serves as an identity element “1”
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for this multiplication operation, and then the formula Q2Q2 = Q1 can be interpreted

as saying that Q2 is equal to its own inverse, so Q2 = Q
−1
2 .

Let us look at another example where the representation problem has an answer

that is qualitatively similar to the preceding example but just a little more complicated,

the case of discriminant −84. Here there are twice as many equivalence classes of

forms, four instead of two, with topographs shown below.



The primes dividing the discriminant −84 are 2, 3, and 7, and these primes are

each represented by one of the forms. For the remaining primes, we will show later

in the chapter that the primes represented by each form are as follows:

• For Q1 the primes p ≡ 1,25,37 mod 84.

• For Q2 the primes p ≡ 19,31,55 mod 84.

• For Q3 the primes p ≡ 11,23,71 mod 84.

• For Q4 the primes p ≡ 5,17,41 mod 84.

This agrees with what is shown in the four topographs above, and one could expand

the topographs to get further evidence that these are the right answers.

One can work out hypothetical rules for multiplying the forms by considering

how products of two primes are represented. For example, 3 is represented by Q2

and 11 is represented by Q3 , while their product 3·11 = 33 is represented by Q4 , so

we might guess that Q2Q3 = Q4 . Some other products that give the same conclusion

are 3 · 2 = 6, 3 · 23 = 69, 7 · 2 = 14, 7 · 11 = 77, 31 · 2 = 62, etc. In the same way

one can determine tentative rules for all the products QiQj . One finds:
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• The principal form Q1 acts as the identity, so Q1Qi = Qi for each i .

• QiQi = Q1 for each i so each Qi equals its own inverse.

• The product of any two out of Q2 , Q3 , Q4 is equal to the third.

These multiplication rules are formally identical to how one would add pairs (m,n) of

integers mod 2 by adding their two coordinates separately. The form Q1 corresponds

to the pair (0,0) and the first of the three rules above becomes the formula (0,0)+

(m,n) = (m,n) . The forms Q2 , Q3 , and Q4 correspond to (1,0) , (0,1) , and (1,1)

in any order, and then the second rule above becomes (m,n)+ (m,n) = (0,0) which

is valid for addition mod 2, while the third rule becomes the fact that the sum of any

two of (1,0) , (0,1) , and (1,1) is equal to the third if we do addition mod 2.

The multiplication rules determine which form represents a given number n by

replacing each prime in the prime factorization of n by the form Qi that represents

it, then multiplying out the resulting product using the three multiplication rules.

For example, for n = 70 = 2 · 5 · 7 we get the product Q3Q4Q2 which equals Q1

and so 70 is represented by Q1 , as the topograph shows. For n = 66 = 2 · 3 · 11

we get Q3Q2Q3 = Q2 and 66 is represented by Q2 . In general, for a number

n = 2a3b7cp1 · · ·pk where each pi is a prime other than 2,3,7 that is represented

by one of the forms Qi , we can determine which form represents n by the follow-

ing steps. First compute the number qi of prime factors of n represented by Qi .

Next compute the sum q1(0,0) + q2(1,0) + q3(0,1) + q4(1,1) = (q2 + q4, q3 + q4)

where (0,0), (1,0), (0,1), (1,1) correspond to Q1,Q2,Q3,Q4 respectively. The re-

sulting sum (m,n) then tells which form represents n .

This description does not require restricting only to primitive representations, but

if we do impose this restriction all that changes is that each of the exponents a,b, c

must be either 0 or 1. For example the numbers 22 , 32 , and 72 are not represented

primitively by any of the four forms since they do not appear in the topographs, but

they are each represented by Q1 nonprimitively since they are squares times 1 which

is represented by Q1 . Similar, 23 ·5 is not represented primitively by any of the forms

but it is represented nonprimitively by Q2 since it is a square times 2 · 5 which is

represented primitively by Q2 .

An interesting feature of all the forms at the first or second level of complexity

that we have examined so far is that their topographs have mirror symmetry. This is

actually a general phenomenon: Whenever all the forms of a given discriminant have

mirror symmetry, then the question of which numbers are represented primitively by

each of these forms has an answer just in terms of the prime factorizations of the

numbers, with congruences modulo the discriminant determining which primes are

represented by each form and with certain multiplication rules for the forms then

determining which form represents a given nonprime.
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Now we move on to the third level of complexity. In the preceding examples it

was possible to determine which numbers are represented by a given form by looking

at primes and which congruence classes they fall into modulo the discriminant. A

consequence of the way the answer was formulated was that no number (except 0)

could be represented by two inequivalent forms of the same discriminant. Both of

these nice properties fail to hold in general, however. An example is provided by

forms of discriminant −56. Two nonequivalent forms of this discriminant are Q1 =

x2 + 14y2 and Q2 = 2x2 + 7y2 , whose topographs are shown below. The primes 23

and 79 are congruent modulo 56, and yet 23 is represented by Q1 since Q1(3,1) =

23, while 79 is represented by Q2 since Q2(6,1) = 79. Also, some non-primes are

represented by both Q1 and Q2 . For example, Q1(1,1) = 15 and Q2(2,1) = 15.

The number of equivalence classes of forms of discriminant −56 is actually 3, and a
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third form with this discriminant, not equivalent to either Q1 or Q2 , is also shown

in the figure, the form Q3 = 3x2 + 2xy + 5y2 . Note that the topograph of Q3 does

not have mirror symmetry, so Q3 counts twice when determining the class number

for discriminant 56, which is therefore 4 rather than 3.

Apart from the primes 2 and 7 that divide the discriminant −56, all other primes

belong to the following 24 congruence classes modulo 56, corresponding to odd

numbers less than 56 not divisible by 7:

1 3 5 9 11 13 15 17 19 23 25 27 29 31 33 37 39 41 43 45 47 51 53 55

The six congruence classes whose prime elements are represented by Q1 or Q2 are

indicated by underlines, and the six congruence classes whose prime elements are

represented by Q3 are indicated by overlines. Primes not represented by any of the

three forms are in the remaining 12 congruence classes.

The new thing that happens in this example is that one cannot tell whether a

prime is represented by Q1 or Q2 just by considering congruence classes mod the

discriminant. We saw this for the pair of primes 23 and 79, and another such pair

visible in the topographs is 71 and 127. By extending the topographs we could find

many more such pairs. One might try using congruences modulo some other number

besides 56, but it is known that this does not help.

Congruences mod 56 suffice to tell which primes are represented by Q3 , but

there is a different sort of novel behavior involving Q3 when we look at representing

products of primes. To illustrate this, observe that the primes 3 and 5 are represented

by Q3 but their product 15 is represented by both Q1 and Q2 . This means there is

some ambiguity about whether the product Q3Q3 should be Q1 or Q2 . The same

thing happens in fact for any pair of numbers represented by Q3 , although in some

cases this involves representations that are not primitive. For example, 5 and 10 are

represented by Q3 and their product 50 is represented by Q1 primitively and by Q2

nonprimitively since Q2 represents 2 and hence also 2 · 52 .

For other products QiQj there seems to be no ambiguity. The principal form Q1

acts as the identity for multiplication, while Q2Q2 = Q1 and Q2Q3 = Q3 , although

this last formula is somewhat odd since it seems to imply that Q3 does not have

a multiplicative inverse since if it did, we could multiply by this inverse to get that

Q2 = Q1 , the identity for multiplication.

It turns out that there is a way out of these difficulties, discovered by Gauss. The

troublesome form Q3 is different from the other forms in this example and in the

preceding examples in that it does not have mirror symmetry. Thus the equivalence

class of Q3 splits into two proper equivalence classes, with Q3 having a mirror image

form Q4 = 3x2 − 2xy + 5y2 obtained from Q3 by changing the sign of either x or

y and hence changing the coefficient of xy to its negative. Using Q4 we can then

resolve the ambiguous product Q3Q3 by setting Q3Q3 = Q2 = Q4Q4 and Q3Q4 = Q1
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so that Q4 is the inverse of Q3 . This means that each Qi has its inverse given by

the mirror image topograph since Q1 and Q2 have mirror symmetry and equal their

own inverses. The rigorous justification for the formulas Q3Q3 = Q2 = Q4Q4 and

Q3Q4 = Q1 will come in Chapter 7, but for the moment one can check that they are

at least consistent with the topographs.

Since Q2
3 = Q2 we have Q4

3 = Q
2
2 = Q1 . This implies that Q3

3 = Q4 , the inverse of

Q3 . Thus all four proper equivalence classes of forms are powers of the single form

Q = Q3 since Q2 = Q2 , Q3 = Q4 , and Q4 = Q1 . Products of these powers Qi are

computed by adding exponents mod 4 since Q4 is the identity. Thus multiplication

of the four forms is formally identical with addition of integers mod 4. The earlier

doubtful formula Q2Q3 = Q3 is resolved to Q2Q3 = Q4 and Q2Q4 = Q3 .

The appearance of the same number in two different topographs is easy to explain

now that we have two forms Q3 and Q4 representing exactly the same numbers. For

example, to find all appearances of the number 15 = 3·5 in the topographs we observe

that its prime factors 3 and 5 appear in the topographs of both Q3 and Q4 so 15

will appear in the topographs of Q3Q3 = Q2 , Q3Q4 = Q1 , and Q4Q4 = Q2 , (although

this last formula gives nothing new). The general procedure for finding which forms

represent a given number n = 2a7bp1 · · ·pk for primes pi different from 2 or 7 is

to replace each prime factor by the power or powers of Q = Q3 that represent it, then

multiply the resulting expressions out by adding the exponents. For prime factors

represented by Q3 we have the choice of replacing these primes by eitherQ1 or Q3 ,

so for the final product we will either get both Q0 and Q2 or both Q1 and Q3 . Since

Q1 and Q3 are equivalent forms, this means that only Q1 and Q2 can represent the

same number.

The prescription we have just described can produce both primitive and non-

primitive representations of n . To get just primitive representations the exponents

a and b must be at most 1, and in addition, whenever a prime pi represented by Q3

appears more than once in the prime factorization of n , we should replace each of its

appearances in the factorization by the same one of Q3 and Q4 . This last condition

will be justified in Chapter 7. For example, the primitive representations of 18 = 2·32

arise just from the products Q2Q
2
3 = Q1 and Q2Q

2
4 = Q1 and not from Q2Q3Q4 = Q2

since this last product corresponds to a nonprimitive representation of 18 by Q2 .

We will show in Chapter 7 that the set CG(∆) of proper equivalence classes of

primitive forms of discriminant ∆ always has a multiplication operation compatible

with multiplying values of forms of that discriminant in the way illustrated by the

preceding examples. This multiplication operation on CG(∆) gives it the structure

of a group, that is, a set with an associative multiplication operation for which there

is an element of the set that functions as an identity for the multiplication, and such

that each element of the set has a multiplicative inverse whose product with the given

element is the identity element. The set CG(∆) with this multiplication is called
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the class group for discriminant ∆ , the word “class” referring to proper equivalence

classes of forms.

The class group has the additional property that the multiplication is commuta-

tive. This makes its algebraic structure much simpler than the typical noncommuta-

tive group. An example of a noncommutative group that we have seen is the group

LF(Z) of linear fractional transformations, where the multiplication comes from mul-

tiplication of 2× 2 matrices, or equivalently, composition of the transformations.

For a given discriminant, if the numbers represented by two forms cannot be

distinguished by congruences mod the discriminant, then these two forms are said to

belong to the same genus. Thus in the preceding example of discriminant −56 the

two forms Q1 and Q2 are of the same genus while Q3 is of a different genus from Q1

and Q2 . Equivalent forms always belong to the same genus, of course. The first two

of the three levels of complexity we have described correspond to the discriminants

where there is only one equivalence class in each genus. For discriminant −56 there

are two different genera (“genera” is the plural of “genus”), but in more complicated

examples there can be large numbers of genera and large numbers of equivalence

classes within a genus.

For negative discriminants there are 101 known discriminants for which each

genus of primitive forms contains only one proper equivalence class, and hence con-

gruences are sufficient to determine exactly which numbers a given form represents.

Most likely this is a complete list, but this has not yet been proven. By contrast, the

number of positive discriminants with this desirable property is likely to be infinite

since the number of discriminants with class number one is already conjectured to be

infinite.

We just saw an example where two non-equivalent forms of the same discriminant

can both represent the same number. However, this does not happen for representa-

tions of 1 or primes:

Proposition 6.1. Let Q1 and Q2 be two forms having the same discriminant. Then if

Q1 and Q2 both represent the same prime p , or if they both represent 1 , then Q1

and Q2 are equivalent.

It follows that the same is true for −p and −1 just by replacing Q1 and Q2 with

−Q1 and −Q2 , which does not change the discriminant.

Proof : Suppose that Q is a form representing a number p that is either 1 or a prime,

hence the representation of p is primitive. The topograph of Q then has a region

labeled p , and we have seen that the h -labels on the edges adjacent to this p -region

form an arithmetic progression with increment 2p when these edges are all oriented

in the same direction. We have the discriminant formula ∆ = h2 − 4pq where h is

the label on one of these edges and q is the value of Q for the region on the other

side of this edge. Since p is nonzero the equation ∆ = h2 − 4pq determines q in
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terms of ∆ and h . This implies that ∆ and the arithmetic progression determine the

form Q up to equivalence since the progression determines p , and any h -value in

the progression then determines the q -value corresponding to this h -value, so Q is

equivalent to px2 + hxy + qy2 .

In the case that p = 1 the increment in the arithmetic progressions is 2p = 2

so the two possible progressions of h -values adjacent to the p -region are the even

numbers and the odd numbers. We know that h has the same parity as ∆ , so ∆ deter-

mines which of the two progressions we have. As we saw in the preceding paragraph,

this implies that the form is determined by ∆ , up to equivalence.

Now we consider the case that p is prime. Let Q1 and Q2 be two forms of the

same discriminant ∆ both representing p . For Q1 choose an edge in its topograph

adjacent to the p -region, with h -label h1 and q -label q1 . For the form Q2 we similarly

choose an edge with associated labels h2 and q2 . Both h1 and h2 have the same parity

as ∆ . We have ∆ = h2
1− 4pq1 = h

2
2 − 4pq2 and hence h2

1 ≡ h
2
2 mod 4p . This implies

h2
1 ≡ h2

2 mod p , so p divides h2
1 − h

2
2 = (h1 + h2)(h1 − h2) . Since p is prime, it

must divide one of the two factors and hence we must have h1 ≡ ±h2 mod p . By

changing the orientations of the edges in the topograph for Q1 or Q2 if necessary,

we can assume that h1 ≡ h2 mod p .

If p is odd we can improve this congruence to h1 ≡ h2 mod 2p since we know

that h1 − h2 is divisible by both p and 2 (since h1 and h2 have the same parity),

hence h1 − h2 is divisible by 2p . The congruence h1 ≡ h2 mod 2p implies that the

arithmetic progression of h -values adjacent to the p -region for Q1 is the same as for

Q2 since 2p is the increment for both progressions. By what we showed earlier, this

implies that Q1 and Q2 are equivalent.

When p = 2 this argument needs to be modified slightly. We still have h2
1 ≡ h

2
2

mod 4p so when p = 2 this becomes h2
1 ≡ h

2
2 mod 8. Since 2p = 4 the four possible

arithmetic progressions of h -values are h ≡ 0, 1, 2, or 3 mod 4. We can interchange

the possibilities 1 and 3 just by reorienting the edges, leaving only the possibilities

h ≡ 0, 1, or 2 mod 4. Since h1 and h2 have the same parity, namely the parity of

∆ , this takes care of the case that h1 and h2 are both odd. The remaining two cases

h ≡ 0,2 mod 4 are distinguished from each other by the congruence h2
1 ≡ h

2
2 mod 8

since (4k)2 ≡ 0 mod 8 and (4k+ 2)2 ≡ 4 mod 8. ⊔⊓

The same argument shows another interesting fact:

Proposition 6.2. If the topograph of a form Q has two regions labeled p where p is

either 1 or a prime, then there is a symmetry of the topograph that takes one region

to the other. Similarly, if there is one region labeled p and another labeled −p then

there is a skew symmetry taking one region to the other.

Proof : Suppose first that there are two regions having the same label p . As we saw

in the proof of the preceding Proposition, each of these regions is adjacent to an edge
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with the same label h and hence the labels q across these edges are also the same.

This means there is a symmetry taking one region labeled p to the other. The other

case is that one region is labeled p and the other −p . This means that Q and −Q

each have a region labeled p so there is an equivalence from Q to −Q taking the p

region for Q to the p region for −Q . This equivalence can be regarded as a skew

symmetry of Q taking the p region to the −p region. ⊔⊓

A Criterion for Representability

Ideally, we would like to determine which numbers are primitively represented

by a given form, but this is quite difficult in general and there seems to be little hope

that a complete answer can be found for all forms. A more approachable question

that we will be able to answer is the following:

Problem. For a given discriminant ∆ , determine all the numbers that are represented

primitively by at least one form of discriminant ∆ .

If it happens that all forms of discriminant ∆ are equivalent, one then knows

which numbers are represented primitively by the individual forms. However, this

situation is rare, especially for elliptic forms where there are only the nine cases ∆ =
−3,−4,−7,−8,−11,−19,−43,−67,−163. For hyperbolic forms there are many more,

but they are still only a small proportion of all positive discriminants.

To begin we will reformulate the problem of primitive representability in a fixed

discriminant as a congruence condition. Suppose a number n is represented primi-

tively by some form Q(x,y) of discriminant ∆ , so n appears in the topograph of Q .

If we look at an edge of the topograph bordering a region labeled n then we obtain

an equation ∆ = h2 − 4nk where h is the label on the edge and k is the label on the

region on the opposite side of this edge. The key observation is then

that the equation ∆ = h2 − 4nk says precisely that ∆ is congruent

to h2 modulo 4n . Notice that if n is negative, “modulo 4n” means

the same thing as “modulo 4|n|” since being divisible by a number

d is equivalent to being divisible by −d when we are considering both positive and

negative numbers.

This in fact gives an exact criterion for primitive representability in a given dis-

criminant:

Proposition 6.3. Let two numbers n and ∆ be given. Then the following two state-

ments are equivalent : (1) There exists a form of discriminant ∆ that represents n

primitively. (2) ∆ is congruent to a square modulo 4n .

Proof : As we saw above, if we have a form of discriminant ∆ representing n prim-

itively then by looking at the topograph we get an equation ∆ = h2 − 4nk for some
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integers h and k , and this equation says that ∆ is the square of h modulo 4n . Con-

versely, suppose that ∆ is the square of some integer h modulo 4n . This means that

h2 − ∆ is an integer times 4n , or in other words h2 − ∆ = 4nk for some k . This

equation can also be written as ∆ = h2−4nk . The three numbers n , h , and k can be

used to construct a form whose topograph contains an edge with these three labels,

for example nx2+hxy +ky2 which has these three labels at the 1/0,0/1 edge. The

discriminant of this form has the desired value ∆ = h2−4nk , and the form represents

n primitively since n appears as the label on a region in the topograph. ⊔⊓

Before proceeding further let us make a simple observation. If a form Q repre-

sents ±1 or ±p for some prime p , then this must be a primitive representation since

if it were nonprimitive then both variables x and y in this representation would be

divisible by the same number d > 1 and hence Q(x,y) would be divisible by d2 ,

which rules out ±1 and ±p for primes p . Thus when we discuss representing ±1 or

±p there will be no need to mention primitivity of the representation.

Also, for the problem of determining which numbers are represented primitively

in a given discriminant it suffices to consider only representations of positive numbers

since changing a form to its negative does not change the discriminant.

Let us see what the preceding proposition implies for small values of n . For

n = 1 it says that there is a form of discriminant ∆ representing 1 if and only if ∆
is a square modulo 4. The squares modulo 4 are 0 and 1, and we already know that

discriminants of forms are always congruent to 0 or 1 modulo 4. So we conclude

that for every possible value of the discriminant there exists a form that represents 1.

This isn’t really new information, however, since the principal form x2 + dy2 or

x2 + xy + dy2 represents 1 and there is a principal form for each discriminant.

In the next case n = 2 we will get some new information. The possible values of

the discriminant modulo 8 are 0,1,4,5, and the squares modulo 8 are 0,1,4 since

02 = 0, (±1)2 = 1, (±2)2 = 4, (±3)2 ≡ 1, and (±4)2 ≡ 0. Thus 2 is not represented

by any form of discriminant congruent to 5 modulo 8, but for all other values of the

discriminant there is a form representing 2. Explicit forms doing this are:

∆ = 8k : 2x2 − ky2

∆ = 8k+ 1 : 2x2 + xy − ky2

∆ = 8k+ 4 : 2x2 + 2xy − ky2

Moving on to the next case n = 3, the discriminants modulo 12 are 0,1,4,5,8,9

and the squares modulo 12 are 0,1,4,9 since 02 = 0, (±1)2 = 1, (±2)2 = 4, (±3)2 =

9, (±4)2 ≡ 4, (±5)2 ≡ 1, and (±6)2 ≡ 0. The excluded discriminants are thus those

congruent to 5 or 8 mod 12.

We could continue in this direction, exploring which discriminants have forms

that represent a given number, but this is not really the question we want to answer,
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which is to start with a given discriminant, or even a given form, and decide which

numbers it represents. The sort of answer we are looking for, based on the various

examples we looked at earlier, is also a different sort of congruence condition, with

congruence modulo the discriminant rather than congruence modulo 4n . So there is

more work to be done before we would have the sort of answer we want. Nevertheless,

the representability criterion in the preceding proposition is the starting point.

An interesting consequence of the preceding proposition is the following:

Corollary 6.4. If a number n is represented primitively in discriminant ∆ then so is

every divisor of n .

Proof : This is based on a simple observation that we will use repeatedly:

If a congruence a ≡ b holds mod n then it holds mod d for each divisor d of n .

This is true because if n divides a− b then so does d for each divisor d of n .

Thus if ∆ ≡ h2 mod 4n , for some number h , then ∆ ≡ h2 mod 4d whenever d

divides n since 4d then divides 4n . ⊔⊓

Representing Primes

The preceding corollary suggests a strategy for finding which numbers are rep-

resented primitively in a given discriminant ∆ . First figure out which primes are

represented (recall that representations of primes are automatically primitive), and

then figure out which products of these primes are primitively represented. By the

corollary these two steps will yield all numbers primitively represented in discrimi-

nant ∆ .

Before pursuing this strategy let us first pause to derive a useful fact.

Lemma 6.5. When n is odd, the condition that a discriminant ∆ is congruent to a

square mod 4n is equivalent to ∆ being a square mod n .

Proof : If ∆ ≡ h2 mod 4n then certainly ∆ ≡ h2 mod n , whether n is odd or even.

For the less obvious converse, suppose that ∆ ≡ h2 mod n . We can assume that h

has the same parity as ∆ since if it doesn’t, we simply replace h by h+n which has

the opposite parity from h since n is odd, and then note that (h+n)2 ≡ h2 mod n .

Since we always have ∆ ≡ 0 or 1 mod 4, we must have ∆ = 4k or ∆ = 4k + 1, and

since h has the same parity as ∆ we have h2 = 4l or h2 = 4l+ 1 in these two cases.

In either case ∆ − h2 = 4(k− l) so ∆ − h2 is divisible by 4. It is also divisible by n

by the assumption that ∆ ≡ h2 mod n . Since n is odd, this implies that ∆ − h2 is

divisible by 4n , so ∆ ≡ h2 mod 4n , which finishes the proof of the converse. ⊔⊓

Now we apply the preceding results to the first step of our program, which is to

determine the primes that are represented in a given discriminant. One special case

is easy:



Chapter 6 Representations by Quadratic Forms 125

Proposition 6.6. For each prime p that divides the discriminant ∆ there exists a form

of discriminant ∆ that represents p .

Proof : First we deal with the special case p = 2. If 2 divides ∆ then ∆ is even so it is

not 5 mod 8, hence from our earlier remarks we know there is a form of discriminant

∆ representing 2.

In the remaining cases p is an odd prime dividing ∆ and we wish to show that

∆ ≡ h2 mod 4p for some number h . By the preceding lemma it suffices to find h

satisfying ∆ ≡ h2 mod p . But if p divides ∆ then ∆ ≡ 0 mod p and we can simply

take h = 0. ⊔⊓

At this point it will be convenient to introduce some shorthand notation. For p

an odd prime and a an integer not divisible by p , define the Legendre symbol
(
a
p

)
by

(a
p

)
=

{
+1 if a is a square mod p

−1 if a is not a square mod p

Using this notation we can say:

An odd prime p that does not divide ∆ is representable by some form of discrimi-

nant ∆ if and only if
(
∆
p

)
= 1 .

It will therefore be useful to know how to compute
(
a
p

)
. The following four basic

properties of the Legendre symbol will make this a feasible task:

(1)
(
ab
p

)
=
(
a
p

)(
b
p

)
.

(2)
(
−1
p

)
= +1 if p ≡ 1 mod 4 and

(
−1
p

)
= −1 if p ≡ 3 mod 4.

(3)
(

2
p

)
= +1 if p ≡ ±1 mod 8 and

(
2
p

)
= −1 if p ≡ ±3 mod 8.

(4) If p and q are distinct odd primes then
(
p
q

)
=
(
q
p

)
unless p and q are both

congruent to 3 mod 4, in which case
(
p
q

)
= −

(
q
p

)
.

Property (1), applied repeatedly, reduces the calculation of
(
a
p

)
to the calculation of

(
q
p

)
for the various prime factors q of a . Note that

(
q2

p

)
= +1 so we can immediately

reduce to the case that a is a product of distinct primes. Property (2) will be useful

in dealing with negative discriminants, and property (3) will be used for certain even

discriminants. Property (4), which is by far the most subtle of the four properties,

is called Quadratic Reciprocity. Its proof is considerably more difficult than for the

other three properties and will be given later in this chapter. Proofs of the first three

properties will be obtained along the way.

For a quick illustration of the usefulness of these properties let us see how they

can be used to compute the values of Legendre symbols. Suppose for example that

one wanted to know whether 78 was a square mod 89. The naive approach would

be to list the squares of all the numbers ±1, · · · ,±44 and see whether any of these

was congruent to 78 mod 89, but this would be rather tedious. Since 89 is prime
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we can instead evaluate
(

78
89

)
using the basic properties of Legendre symbols. First

we factor 78 to get
(

78
89

)
=
(

2
89

)(
3

89

)(
13
89

)
. By property (3) we have

(
2

89

)
= +1 since

89 ≡ 1 mod 8. Next we apply reciprocity to get
(

3
89

)
=
(

89
3

)
and

(
13
89

)
=
(

89
13

)

since 89 ≡ 1 mod 4. Next use the fact that
(
a
p

)
depends only on the value of a

mod p to reduce
(

89
3

)
to
(

2
3

)
and

(
89
13

)
to

(
11
13

)
. Using property (3) again we have(

2
3

)
= −1 (confirming the obvious fact that 2 is not a square mod 3). For

(
11
13

)

reciprocity says this equals
(

13
11

)
. This reduces to

(
2

11

)
= −1. Summarizing, we have(

78
89

)
=
(

2
89

)(
3

89

)(
13
89

)
= (+1)(−1)(−1) = +1 so 78 is a square mod 89, although this

method does not actually produce a number x such that x2 ≡ 78 mod 89.

Later in the chapter we will also see how to determine whether a number is a

square mod a nonprime, showing how this reduces to the prime case.

Returning now to quadratic forms, let us see what the basic properties of Legendre

symbols tell us about which primes are represented by the forms discussed at the

beginning of the chapter. In the first four cases the class number is 1 so we will be

determining which primes are represented by the given form.

Example: x2 + y2 with ∆ = −4. This form obviously represents 2, and it represents

an odd prime p exactly when
(
−4
p

)
= +1. Using the first of the four properties we

have
(
−4
p

)
=
(
−1
p

)(
2
p

)(
2
p

)
=
(
−1
p

)
, and the second property says this is +1 exactly

for primes p = 4k+1. Thus we see the primes represented by x2+y2 are 2 and the

primes p = 4k+ 1.

Example: x2 + 2y2 with ∆ = −8. The only prime dividing ∆ is 2, and it is rep-

resentable. For odd primes p we have
(
−8
p

)
=
(
−1
p

)(
2
p

)3
=
(
−1
p

)(
2
p

)
. In the four

cases p ≡ 1,3,5,7 mod 8 this is, respectively, (+1)(+1) , (−1)(−1) , (+1)(−1) , and

(−1)(+1) . We conclude that the primes representable by the form x2 + 2y2 are 2

and primes congruent to 1 or 3 mod 8.

Example: x2 − 2y2 with ∆ = 8. We have
(

8
p

)
=
(

2
p

)3
=
(

2
p

)
so from property (3) we

conclude that the primes represented by x2 − 2y2 are 2 and p ≡ ±1 mod 8.

Example: x2 + xy + y2 with ∆ = −3. The only prime dividing the discriminant is 3

and it is represented. The prime 2 is not represented since ∆ ≡ 5 mod 8. For primes

p > 3 we can evaluate
(
−3
p

)
using quadratic reciprocity, which says that

(
3
p

)
=
(
p
3

)

if p = 4k + 1 and
(

3
p

)
= −

(
p
3

)
if p = 4k + 3. Thus when p = 4k + 1 we have(

−3
p

)
=
(
−1
p

)(
3
p

)
=
(
p
3

)
and when p = 4k+3 we have

(
−3
p

)
= (−1)

(
−
(
p
3

))
so we get(

p
3

)
in both cases. Since

(
p
3

)
only depends on p mod 3, we get

(
p
3

)
= +1 if p ≡ 1

mod 3 and
(
p
3

)
= −1 if p ≡ 2 mod 3. (Since p ≠ 3 we do not need to consider the

possibility p ≡ 0 mod 3.) The conclusion of all this is that the primes represented by

x2 + xy + y2 are 3 and the primes p ≡ 1 mod 3.

Example: ∆ = 40. Here all forms are equivalent to either x2 − 10y2 or 2x2 − 5y2 .

The primes dividing 40 are 2 and 5 so these are both represented by one form or
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the other, and in fact by 2x2 − 5y2 as the topographs showed. For other primes p

we have
(

40
p

)
=
(

2
p

)3( 5
p

)
=
(

2
p

)(
p
5

)
. The factor

(
2
p

)
depends only on p mod 8 and(

p
5

)
depends only on p mod 5, so their product depends only on p mod 40. The

following table lists all the possibilities for congruence classes mod 40 not divisible

by 2 or 5:

1 3 7 9 11 13 17 19 21 23 27 29 31 33 37 39(
p
5

)
+1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1(

2
p

)
+1 −1 +1 +1 −1 −1 +1 −1 −1 +1 −1 −1 +1 +1 −1 +1

The product
(

2
p

)(
p
5

)
is +1 in exactly the eight cases p ≡ 1,3,9,13,27,31,37,39

mod 40. This agrees with our earlier observations based on the topographs. We

conclude that these are the eight congruence classes containing primes (other than 2

and 5) represented by one of the two forms x2 − 10y2 and 2x2 − 5y2 . However, we

have yet to verify our earlier guesses as to which of the two forms represents which

of these eight congruence classes. The results in the next section will allow us to do

this.

Our next goal will be to prove the following general statement that confirms some-

thing that we have observed in many examples so far:

Theorem 6.7. For a non-square determinant ∆ the odd primes not dividing ∆ that are

represented in discriminant ∆ are the odd primes in exactly half of the congruence

classes mod ∆ of numbers coprime to ∆ .

The proof will rely on the following general fact commonly referred to as the

Chinese Remainder Theorem since it was used in ancient Chinese manuscripts to solve

mathematical puzzles of a certain type:

Proposition 6.8. A collection of congruence conditions

x ≡ a1 mod m1

x ≡ a2 mod m2

· · ·

x ≡ ak mod mk

always has a simultaneous solution provided that no two mi ’s have a common divisor

greater than 1 . Moreover such a solution is unique modulo the product m1 · · ·mk .

The condition that the various moduli mi are coprime is definitely a necessary

hypothesis. For example, there is no common solution to the two congruences x ≡ 5

mod 6 and x ≡ 7 mod 15 since the first congruence implies x ≡ 2 mod 3 while the

second congruence implies x ≡ 1 mod 3.

Proof : Let us first prove the existence of a common solution x when there are just two

congruences x ≡ a1 mod m1 and x ≡ a2 mod m2 . In this case the desired number x
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will have the form x = a1+x1m1 = a2+x2m2 for some pair of yet-to-be-determined

numbers x1 and x2 . We can rewrite the equation a1+x1m1 = a2+x2m2 as a2−a1 =

m1x1−m2x2 . From our study of linear Diophantine equations in Chapter 2 we know

that this equation has a solution (x1, x2) with integers x1 and x2 whenever m1 and

m2 are coprime. This gives a simultaneous solution for the original two congruences

x ≡ a1 mod m1 and x ≡ a2 mod m2 , namely x = a1 + x1m1 = a2 + x2m2 .

For more than two congruences we may suppose by induction that we have a

number x = a satisfying all but the last congruence x ≡ ak mod mk . From the

preceding paragraph we know that a number x exists satisfying the two congruences

x ≡ a mod m1 · · ·mk−1 and x ≡ ak mod mk . This gives the desired solution to all

k congruences since a ≡ ai mod mi for each i < k by the inductive hypothesis.

Now we show that a simultaneous solution x of the given set of congruences is

unique modulo m1 · · ·mk . Let y be another solution. Then the difference x − y

is congruent to 0 mod each of the numbers m1, · · · ,mk , which means that it is

divisible by each mi and hence by their product since they have no common factors.

Thus x ≡ y mod m1 · · ·mk . ⊔⊓

There is another way to prove the existence of solutions in the Chinese Remainder

Theorem by slightly more abstract reasoning. For this let us use the notation [a]m to

denote the congruence class of an integer a mod m . Consider the function f defined

by f([a]m1···mk
) = ([a]m1

, · · · , [a]mk
) . The domain of f is the set of congruence

classes mod m1 · · ·mk and the range of f is the set of k -tuples consisting of con-

gruence classes mod m1 up through mk . Both the domain and range of f are finite

sets with m1 · · ·mk elements. It is a simple set theoretic fact that a function from

one finite set S to another finite set T having the same number of elements as S is

one-to-one if and if it is onto (where “one-to-one” means that no two elements of S are

sent by the function to the same element of T , and “onto” means that every element of

T occurs as the image of at least one element of S ). In the last paragraph of the proof

above we showed that the function f is one-to-one. Hence f is also onto, which is the

assertion that the given set of k congruence conditions has a simultaneous solution.

It may be helpful to have a geometric picture to illuminate the Chinese Remainder

Theorem. Consider the case of two simultaneous congruences x ≡ a mod m and

x ≡ b mod n . We can then label the mn unit squares in an m ×n rectangle by the

numbers 1 through mn , starting in the lower left corner and continuing upward to

the right at a 45 degree angle as shown in the following figure for the case of a 4× 9

rectangle:
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Whenever we run over the top edge we jump back to the bottom in order to continue,

and when we reach the right edge we jump back to the left edge. This amounts to

taking congruence classes mod m horizontally and mod n vertically. What the Chi-

nese Remainder Theorem says in this case is that each unit square in the rectangle is

labeled exactly once by a number 1, · · · ,36. Here we are using the fact that 4 and 9

are coprime. (Without the coprimeness some grid points would have no labels while

others would have multiple labels.) As the figure illustrates, specifying a congruence

class mod 36 is equivalent to specifying a pair of congruence classes mod 4 and

mod 9 via the projections onto the two axes.

For the case of three simultaneous congruences there is an analogous picture with

a three-dimensional rectangular box partitioned into unit cubes. More generally, for

k congruences one would be dealing with a k -dimensional box.

To illustrate one way in which the Chinese Remainder Theorem can be used let

us show by an example how a Diophantine equation can have a solution mod n for

each positive integer n and yet not have an actual integer solution. The example

is the equation 2x2 + 7y2 = 1. This obviously has no integer solutions, although

it does have rational solutions such as (x,y) = (1/3,1/3) and (3/5,1/5) . (These

could be found by looking for integer solutions of 2x2+7y2 = z2 , or in other words,

squares z2 in the topograph of 2x2 + 7y2 .) The rational solution (1/3,1/3) will

give an integer solution mod n provided that 3 has a multiplicative inverse “1/3”

mod n , which happens whenever 3 does not divide n . For example for n = 22 a

multiplicative inverse for 3 is 15 since 3 · 15 ≡ 1 mod 22, and this leads to the

solution 2 · 152 + 7 · 152 = 2025 ≡ 1 mod 22. Thus we see that 2x2 + 7y2 = 1 has

a solution mod n whenever 3 does not divide n . Using the other rational solution

(3/5,1/5) in a similar fashion we can solve 2x2 + 7y2 = 1 mod n whenever 5 does

not divide n by finding a multiplicative inverse for 5 mod n . Now if we factor an

arbitrary n as n1n2 where n1 and n2 are coprime and 3 does not divide n1 and

5 does not divide n2 , then solutions (x1, y1) mod n1 and (x2, y2) mod n2 can be

combined by applying the Chinese Remainder Theorem twice to give a pair (x,y) with

(x,y) ≡ (x1, y1) mod n1 and (x,y) ≡ (x2, y2) mod n2 , so we have 2x2 + 7y2 ≡ 1
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mod n1 and mod n2 , hence also mod n .

Let us consider now a special case of the Chinese Remainder Theorem where we

start with a number n factored into primes as n = p
r1

1 · · ·p
rk
k for distinct primes

p1, · · · , pk . We can then consider a set of k congruences x ≡ ai mod mi where now

mi = p
ri
i . Let us now impose the added condition that each ai is not divisible by

the corresponding prime pi . A simultaneous solution x = a for all k congruences

must then be coprime to n since a ≡ ai mod p
ri
i implies a ≡ ai mod pi and we

assume ai is nonzero mod pi so a is also nonzero mod pi . Since this holds for each

i , this says that a is coprime to n . Conversely, if a is coprime to n and satisfies

a set of congruences a ≡ ai mod p
ri
i and hence a ≡ ai mod pi , then ai must be

nonzero mod pi since a is. Thus congruence classes mod n of numbers a coprime

to n are equivalent to congruence classes mod p
ri
i of numbers ai coprime to pi , one

for each i .

In the geometric picture for the case k = 2 with a rectangular array of unit

squares, when we require a1 to be coprime to p1 we are omitting the numbers in

certain vertical columns of squares, the columns whose horizontal coordinate is a

multiple of p1 . Similarly, when we require a2 to be coprime to p2 we omit the num-

bers in the horizontal rows whose vertical coordinate is a multiple of p2 . The numbers

in the boxes that are not omitted are then the numbers coprime to n = p
r1

1 p
r2

2 . Here

is the picture for the case n = 22 · 32 that we showed earlier:

For k = 3 we would be omitting the cubes in certain slices parallel to the three coor-

dinate planes, and similarly for k > 3.

The function which assigns to each positive integer n the number of congru-

ence classes mod n of numbers coprime to n is called the Euler phi function ϕ(n) .

The arguments above involving the Chinese Remainder Theorem show that ϕ(n) =

ϕ(p
r1

1 ) · · ·ϕ(p
rk
k ) when n = p

r1

1 · · ·p
rk
k for distinct primes pi . For a prime p we

have ϕ(pr ) = pr − pr−1 = pr−1(p − 1) since we are counting how many numbers

remain from 1,2, · · · , pr when we delete p,2p, · · · , (pr−1)p = pr . Thus there is an

explicit formula for ϕ(n) in terms of the prime factorization of n .

To prove the earlier theorem about primes represented in a given discriminant
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we will need also the following fact:

Lemma 6.9. For a power qr of an odd prime q exactly half of the congruence classes

mod qr of numbers a not divisible by q satisfy
(
a
q

)
= +1 .

Proof : First we do the case r = 1. The q − 1 nonzero congruence classes mod q are

exactly ±1,±2, · · · ,±(q−1)/2. The squares (±1)2 , (±2)2, · · · , (±(q−1)/2)2 are all

distinct since if a2 ≡ b2 mod q then q divides a2−b2 = (a−b)(a+b) , so since q is

prime it must divide either a− b or a+ b which means that either a ≡ b or a ≡ −b

mod q .

When r > 1 the congruence classes mod qr we are counting are obtained from

the numbers a in the interval [1, q−1] with
(
a
q

)
= +1 by translating these numbers

into the intervals [q + 1,2q − 1] , then [2q + 1,3q − 1] , and so on. Thus we again

obtain half of the congruence classes mod qr of numbers not divisible by q . ⊔⊓

Proof of Theorem 6.7 : Let us write ∆ = ε 2sp
r1

1 p
r2

2 · · ·p
rk
k where ε = ±1, s ≥ 0, and

each pi is an odd prime. (We allow the possibility k = 0 so that ∆ = ε2s .) The

criterion for an odd prime p to be representable in discriminant ∆ is that
(
∆
p

)
=

+1. We have
(
∆
p

)
=
(
ε
p

)(
2
p

)s(p1

p

)r1

· · ·
(
pk
p

)rk
. Quadratic reciprocity implies that

(
p1

p

)r1

· · ·
(
pk
p

)rk
=
(
ω
p

)(
p
p1

)r1

· · ·
(
p
pk

)rk
where ω is +1 or −1 according to whether

there are an even or an odd number of primes pi ≡ 3 mod 4 with odd exponent ri .

Thus we have
(
∆
p

)
=
(
ε
p

)(
ω
p

)(
2
p

)s( p
p1

)r1

· · ·
(
p
pk

)rk
.

By the Chinese Remainder Theorem the congruence class of a number n mod ∆
is uniquely determined by its congruence classes mod 2s and mod q

ri
i for each i , and

these congruence classes can be varied independently. We are interested in numbers

n coprime to ∆ , and we call such numbers n admissible. If we choose for each i

a number ai not divisible by qi (we call such an ai admissible as well) and we also

choose an odd number a if s > 0, then there exists a number n with n ≡ ai mod q
ri
i

for each i and also n ≡ a mod 2s when s > 0. Such an n is admissible since n ≡ ai

mod q
ri
i implies n ≡ ai mod qi .

Now we break the proof up into several cases. The first case is that s = 0, so

∆ is odd and hence ∆ ≡ 1 mod 4. This implies that ε = ω so the formula for
(
∆
p

)

simplifies to
(
p
p1

)r1

· · ·
(
p
pk

)rk
. There must be at least one odd ri since if ε = +1 we

are assuming ∆ is not a square, while if ε = −1 we have ω = −1 which implies the

existence of at least one odd ri .

For all the other indices j ≠ i let us fix a choice of admissible aj mod p
rj
j . Re-

stricting p to be congruent to aj mod p
rj
j determines the value of all the terms in

the product
(
ε
p

)(
ω
p

)(
2
p

)s( p
p1

)r1

· · ·
(
p
pk

)rk
except the one term

(
p
qi

)ri
. By the lemma,

this term will have the value +1 for p in half of the admissible choices of congru-

ence classes for ai mod q
ri
i and −1 for the other half. This means that the product(

p
q1

)r1

· · ·
(
p
ql

)rl
has the value +1 for half the admissible choices for ai and −1 for
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the other half, where we are still keeping the other aj ’s fixed. Since this “half and half”

property holds for each fixed choice of the other aj ’s, it therefore also holds when

all the admissible choices for aj ’s are taken together. Thus we have
(
∆
p

)
= +1 for

exactly half of the admissible congruence classes of numbers p mod ∆ . This proves

the theorem when s = 0.

From now on we can assume s > 0 so ∆ is even and hence s ≥ 2 since ∆ ≡ 0

mod 4.

If some ri is odd we proceed much as in the first case that s = 0. We fix admissible

numbers aj mod p
rj
j for j ≠ i and we also fix an odd number a mod 2s . We again

restrict p to be congruent to aj mod p
rj
j and we also require p to be congruent to a

mod 2s . The latter condition determines
(
ε
p

)
and

(
ω
p

)
since s ≥ 2. It also determines

(
2
p

)s
since this is +1 when s = 2 and when s ≥ 3 we know that

(
2
p

)
depends only

on p mod 8. Now all terms in
(
ε
p

)(
ω
p

)(
2
p

)s( p
p1

)r1

· · ·
(
p
pk

)rk
are determined except

for the one term
(
p
qi

)ri
, so the earlier “half and half” argument works to finish this

case.

The next case is that all the ri ’s are even and s is odd, hence s ≥ 3. The formula

for
(
∆
p

)
then reduces to just

(
ε
p

)(
2
p

)
. The value of this product depends only on p

mod 8. In both the cases ε = +1 and ε = −1 the value of
(
ε
p

)(
2
p

)
is +1 for two of

the four odd numbers mod 8 and −1 for the other two odd numbers. By an argument

like one earlier in the proof, this implies that
(
ε
p

)(
2
p

)
is +1 for p congruent to half

the odd numbers mod 2s and −1 for the other half. Then by the same reasoning
(
∆
p

)

is +1 for p in half the admissible congruence classes mod ∆ and = 1 in the other

half.

The last remaining case is that all ri ’s are even and s is also even. Then
(
∆
p

)
=
(
ε
p

)

and we must have ε = −1 since ∆ is not a square. In this case
(
∆
p

)
is again +1 for p

in half the admissible congruence classes and −1 in the other half. ⊔⊓

Genus and Characters

Recall the term “genus” that was introduced earlier: If two forms of the same

discriminant cannot be distinguished by looking only at their values modulo the dis-

criminant, then one says the two forms have the same genus, or belong to the same

genus. Our aim now is to pin down more precisely what this means.

In an earlier example illustrating the use of Legendre symbols we saw that primes

represented by either of the two forms x2−10y2 and 2x2−5y2 of discriminant 40,

other than the prime divisors 2 and 5 of 40, belong to eight of the sixteen congruence

classes mod 40 not containing numbers divisible by 2 or 5. In four of these eight

cases the product
(
p
5

)(
2
p

)
was (+1)(+1) , namely the cases p ≡ ±1,±9, and in the

other four cases it was (−1)(−1) , namely p ≡ ±3,±13. From the topographs it

appears that the primes p ≡ ±1,±9 are represented by x2−10y2 while p ≡ ±3,±13
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are represented by 2x2 − 5y2 . The following proposition will tell us this is indeed

true, and could be predicted even before looking at the topographs:

Proposition 6.10. Let Q be a form of discriminant ∆ and let p be an odd prime

dividing ∆ . Then the Legendre symbol
(
n
p

)
has the same value for all numbers n in

the topograph of Q that are not divisible by p .

Before proving the proposition let us see how it applies in the case ∆ = 40 with

p = 5. According to the proposition, the value of
(
n
5

)
must be constant in the to-

pograph of each of the forms x2 − 10y2 and 2x2 − 5y2 , leaving aside values of the

forms that are divisible by 5. To determine the value of
(
n
5

)
for each form it therefore

suffices to compute it for a single number n in the topograph not divisible by 5. The

simplest thing is just to compute it for (x,y) = (1,0) or (0,1) . Choosing (1,0) , for

x2−10y2 we have
(

1
5

)
= +1 and for 2x2−5y2 we have

(
2
5

)
= −1. The proposition

then implies that all values n in the topograph of x2 − 10y2 not divisible by 5 have(
n
5

)
= +1, hence n ≡ ±1 mod 5, while for 2x2 − 5y2 we have

(
n
5

)
= −1, hence

n ≡ ±2 mod 5. This implies that when we compute the product
(
p
5

)(
2
p

)
for primes

p ≠ 2,5 represented by x2 − 10y2 we must get (+1)(+1) while for 2x2 − 5y2 we

must get (−1)(−1) since in both cases the product
(
p
5

)(
2
p

)
must equal +1. Thus we

are able to tell exactly which primes each of these two forms represents.

Proof of the Proposition: For an edge in the topograph labeled h with adjacent regions

labeled n and k we have ∆ = h2 − 4nk . If p is a prime dividing ∆ this implies that

4nk ≡ h2 mod p . Thus if neither n nor k is divisible by p and p is odd we have(
4nk
p

)
= +1. Since

(
4nk
p

)
=
(

4
p

)(
n
p

)(
k
p

)
and

(
4
p

)
= +1 this implies

(
n
p

)
=
(
k
p

)
. In

other words, the symbol
(
n
p

)
takes the same value on any two adjacent regions of the

topograph of Q labeled by numbers not divisible by p . To finish the proof we will

use the following fact:

Lemma 6.11. Given a form Q and a prime p dividing the discriminant of Q , then

any two regions in the topograph of Q where the value of Q is not divisible by p can

be connected by a path passing only through such regions.

Assuming this, the proposition easily follows since we have seen that the value

of
(
n
p

)
is the same for any two adjacent regions with label not divisible by p . ⊔⊓

Proof of the Lemma: Let us call regions in the topograph of Q whose label is not

divisible by p good regions, and the other regions bad regions. We can assume that

at least one region is good, otherwise there is nothing to prove. What we will show is

that no two bad regions can be adjacent. Thus a path in the topograph from one good

region to another cannot pass through two consecutive bad regions, and if it does

pass through a bad region then a detour around this region allows this bad region

to be avoided, creating a new path passing through one fewer bad region as in the

following figure:
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By repeating this detouring process as often as necessary we eventually obtain a path

avoiding bad regions entirely, still starting and ending at the same two given good

regions.

To see that no two adjacent regions are bad, suppose this is false, so there are

two adjacent regions whose Q values n and k are both divisible by p . If the edge

separating these two regions is labeled h then we have an equation ∆ = h2 − 4nk ,

and since we assume p divides ∆ this implies that p divides h as well as n and k .

Thus the form nx2+hxy +ky2 is equal to p times another form. This implies that

all regions in the topograph are bad. However we assumed this was not the case, so

we conclude that there are no adjacent bad regions. ⊔⊓

A useful observation is that the value of
(
n
p

)
for numbers n in the topograph of

a form ax2 + bxy + cy2 with discriminant divisible by p can always be determined

just by looking at the coefficients. This is because the coefficients a and c appear

in adjacent regions of the topograph, so if both these coefficients were divisible by

p , this would imply that b was also divisible by p (since p divides b2 − 4ac ) so the

whole form would be divisible by p . Excluding this uninteresting possibility, we see

that at least one of a and c is not divisible by p and we can use this to compute
(
n
p

)
.

Let us look at another example, the discriminant ∆ = −84 = −22 ·3 ·7 with three

different prime factors. For this discriminant there are four different equivalence

classes of forms: Q1 = x
2 + 21y2 , Q2 = 3x2 + 7y2 , Q3 = 2x2 + 2xy + 11y2 , and

Q4 = 5x2 + 4xy + 5y2 . The topographs of these forms were shown earlier in the

chapter. To see which odd primes are represented in discriminant −84 we compute:
(
−84
p

)
=
(
−1
p

)(
3
p

)(
4
p

)(
7
p

)
=
(
−1
p

)(
3
p

)(
7
p

)
=
(
−1
p

)(
p
3

)(
p
7

)

As in the example of ∆ = 40 we can make a table of the values of these Legendre

symbols for the 24 numbers mod 84 that are not divisible by the prime divisors

2,3,7 of 84. Using the fact that the squares mod 3 are (±1)2 = 1 and the squares

mod 7 are (±1)2 = 1, (±2)2 = 4, and (±3)2 ≡ 2, we obtain the table below:

1 5 11 13 17 19 23 25 29 31 37 41(
−1
p

)
+1 +1 −1 +1 +1 −1 −1 +1 +1 −1 +1 +1(

p
3

)
+1 −1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1(

p
7

)
+1 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1 −1

Q1 Q4 Q3 Q4 Q2 Q3 Q1 Q2 Q1 Q4
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43 47 53 55 59 61 65 67 71 73 79 83(
−1
p

)
−1 −1 +1 −1 −1 +1 +1 −1 −1 +1 −1 −1(

p
3

)
+1 −1 −1 +1 −1 +1 −1 +1 −1 +1 +1 −1(

p
7

)
+1 −1 +1 −1 −1 −1 +1 +1 +1 −1 +1 −1

Q2 Q3

The twelve cases when the product
(
−1
p

)(
p
3

)(
p
7

)
is +1 give the congruence classes

of primes not dividing ∆ that are represented by one of the four forms, and we can

determine which form it is by looking at the values of
(
p
3

)
and

(
p
7

)
for each of the four

forms. As noted earlier, these values can be computed directly from the coefficients

of x2 and y2 that are not divisible by 3 for
(
p
3

)
or by 7 for

(
p
7

)
. For example, for

Q2 = 3x2+7y2 the coefficient of y2 tells us that
(
p
3

)
=
(

7
3

)
= +1 and the coefficient

of x2 tells us that
(
p
7

)
=
(

3
7

)
= −1. Thus we have (

(
p
3

)
,
(
p
7

)
) = (+1,−1) for Q2 , and

in a similar way we find that (
(
p
3

)
,
(
p
7

)
) is (+1,+1) for Q1 = x

2 + 21y2 , (−1,+1)

for Q3 = 2x2 + 2xy + 11y2 , and (−1,−1) for Q4 = 5x2 + 4xy + 5y2 .

The table above is called the character table for the discriminant ∆ = −84. Each

row can be regarded as a function assigning a number ±1 to each congruence class of

numbers n having no common divisors with ∆ . Such a function is called a character

for the given discriminant. For each odd prime p dividing ∆ there is a character

given by the Legendre symbol
(
n
p

)
. There is sometimes also a character associated

to the prime 2 in a somewhat less transparent way. In the example ∆ = −84 this

is the character defined by the first row of the table, which assigns the values +1 to

numbers n = 4k+1 and −1 to numbers n = 4k+3. We will denote this character by

χ4 to indicate that its values χ4(n) = ±1 depend only on the value of n mod 4. Thus

χ4(p) =
(
−1
p

)
when p is an odd prime, but χ4(n) is defined for all odd numbers n ,

not just primes. One can check that an explicit formula for χ4 is χ4(n) = (−1)(n−1)/2

although we will not be needing this formula.

In the example with ∆ = 40 the character corresponding to the prime 2 is given by

the second row in the character table, the row labeled
(

2
p

)
. This character associates

the value +1 to an odd number n ≡ ±1 mod 8 and the value −1 when n ≡ ±3 mod

8. We will denote it by χ8 since its values χ8(n) = ±1 depend only on n mod 8. We

have χ8(p) =
(

2
p

)
for all odd primes p , but χ8(n) is defined for all odd numbers n .

There is again an explicit formula χ8(n) = (−1)(n
2−1)/8 that we will not use.

By analogy we can also introduce the notation χp for the earlier character defined

by χp(n) =
(
n
p

)
for p an odd prime not dividing n .

Another case we looked at was ∆ = −56 where there were three inequivalent

forms Q1 = x
2 + 14y2 , Q2 = 2x2 + 7y2 , and Q3 = 3x2 + 2xy + 5y2 . Here we have(

−56
p

)
=
(
−1
p

)(
2
p

)(
7
p

)
=
(

2
p

)(
p
7

)
. The two characters are thus χ8 (with χ8(p) =

(
2
p

)
)

and χ7 (with χ7(p) =
(
p
7

)
). The character table is:
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1 3 5 9 11 13 15 17 19 23 25 27

χ8 +1 −1 −1 +1 −1 −1 +1 +1 −1 +1 +1 −1

χ7 +1 −1 −1 +1 +1 −1 +1 −1 −1 +1 +1 −1(
Q1

Q2

)
Q3 Q3

(
Q1

Q2

)
Q3

(
Q1

Q2

)
Q3

(
Q1

Q2

) (
Q1

Q2

)
Q3

29 31 33 37 39 41 43 45 47 51 53 55

χ8 −1 +1 +1 −1 +1 +1 −1 −1 +1 −1 −1 +1

χ7 +1 −1 −1 +1 +1 −1 +1 −1 −1 +1 +1 −1(
Q1

Q2

)
Q3

From the character table we see that
(

2
p

)(
p
7

)
is (+1)(+1) for p ≡ 1,9,15,23,25,39

mod 56 and (−1)(−1) for p ≡ 3,5,13,19,27,45 mod 56. Thus primes in these

twelve congruence classes are represented in discriminant −56, as are 2 and 7, the

prime divisors of 56. Moreover, from the values of
(
p
7

)
we deduce that primes

p ≡ 1,9,15,23,25,39 mod 56 are represented by Q1 or Q2 while primes p ≡

3,5,13,19,27,45 mod 56 are represented by Q3 . The forms Q1 and Q2 are not

distinguished by characters, and so they belong to the same genus.

Let us consider now how characters can be associated to the prime 2 in general.

Since characters arise from primes that divide the discriminant, this means we are

interested in even discriminants. These are always multiples of 4, so we can write the

discriminant as ∆ = 4δ . The criterion for a number n to be represented primitively

in discriminant ∆ is that ∆ is a square mod 4n , so ∆ = 4δ = h2 − 4nk for some

integers h and k . This equation forces h to be even, say h = 2l , so the condition

becomes 4δ = 4l2−4nk or just δ = l2−nk , that is, δ is a square mod n . By analogy

with the construction of characters for odd primes, we wish to see what the equation

δ = l2 − nk says about values n and k in adjacent regions of a topograph where

neither n nor k is divisible by the prime in question. For the prime 2 this means we

assume n and k are odd.

There will turn out to be six different cases. The first two are when δ is odd, which

means that ∆ is divisible by 4 but not 8. In these two cases we consider congruences

mod 4, the highest power of 2 dividing ∆ . Since δ is odd and both n and k are odd,

the congruence δ ≡ l2−nk mod 4 implies that l must be even, so l2 ≡ 0 mod 4 and

the congruence can be written as nk ≡ −δ mod 4.

Case 1: δ = 4m−1. The congruence condition is then nk ≡ 1 mod 4. This says that

n ≡ k mod 4, otherwise we would have nk ≡ −1 since the only possibilities for n

and k mod 4 are 1 and −1. Thus the previous lemma implies that the character χ4

assigning +1 to integers 4s + 1 and −1 to integers 4s − 1 has the same value for all

odd numbers in the topograph of a form of discriminant ∆ = 4(4m− 1) .

An example for this case is the discriminant ∆ = −84 considered earlier, where

the first row of the character table gave the values for χ4 .
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Case 2: δ = 4m + 1. The difference from the previous case is that the congruence

condition is now nk ≡ −1 mod 4 and hence n ≡ −k mod 4. This means the mod 4

value of odd numbers in the topograph is not constant, and so we do not get a char-

acter for the prime 2. As an example, consider ∆ = −12. Here there is one primitive

form x2 + 3y2 and one non-primitive form 2x2 + 2xy + 2y2 .

As one can see, there are odd numbers in the topograph of x2 + 3y2 congruent to

both 1 and 3 mod 4. We might try to fix this problem by considering odd numbers

mod 8 instead of mod 4 but this does not help since the topograph contains numbers

congruent to each of 1,3,5,7 mod 8. Trying congruences modulo higher powers of

2 does not help either.

The absence of a character for the prime 2 when δ = 4m + 1 could perhaps be

predicted from the calculation of
(
δ
p

)
. Since δ is odd we have δ = p1 · · ·pr for odd

primes pi and
(
δ
p

)
=
(
p1

p

)
· · ·

(
pr
p

)
. This equals

(
p
p1

)
· · ·

(
p
pr

)
since the number of

pi ’s congruent to 3 mod 4 is even when δ = 4m+1. Thus the value of
(
δ
p

)
depends

only on the characters associated to the odd prime factors of ∆ .

There remain the cases that δ is even. The next two cases are when ∆ is divisible

by 8 but not by 16. After that is the case that ∆ is divisible by 16 but not by 32,

and finally the case that ∆ is divisible by 32. In all these cases we will consider

congruences mod 8, so the equation δ = l2 −nk becomes δ ≡ l2 −nk mod 8. Since

δ is now even while n and k are still odd, this congruence implies l is odd, and so

l2 ≡ 1 mod 8 and the congruence can be written as nk ≡ 1− δ mod 8. Since k2 ≡ 1

mod 8 when k is odd, we can multiply both sides of the congruence nk ≡ 1−δ by k

to obtain the equivalent congruence n ≡ (1− δ)k mod 8.

Case 3: δ ≡ 2 mod 8. The congruence is then n ≡ −k mod 8. It follows that in the

topograph of a form of discriminant ∆ = 4(8m+ 2) either the odd numbers must all

be congruent to ±1 mod 8 or they must all be congruent to ±3 mod 8. Thus the

character χ8 which takes the value +1 on numbers 8s±1 and −1 on numbers 8s±3

has a constant value, either +1 or −1, for all odd numbers in the topograph.

An example for this case is ∆ = 40. Here the two rows of the character table

computed earlier gave the values for χ5 and χ8 .
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Case 4: δ ≡ 6 mod 8. Now the congruence n ≡ (1− δ)k mod 8 becomes n ≡ −5k

or n ≡ 3k mod 8. This implies that all odd numbers in the topograph of a form of

discriminant ∆ = 4(8m+6) must be congruent to 1 or 3 mod 8, or they must all be

congruent to 5 or 7 mod 8. The character associated to the prime 2 in this case has

the value +1 on numbers 8s+1 and 8s+3, and the value −1 on numbers 8s+5 and

8s + 7. We have not encountered this character previously, so let us give it the new

name χ′8 . However, it is not entirely new since it is actually just the product χ4χ8 as

one can easily check by evaluating this product on 1,3,5, and 7.

A simple example is ∆ = −8 with class number 1. Here we have
(
δ
p

)
=
(
−2
p

)
=(

−1
p

)(
2
p

)
which equals +1 for p ≡ 1,3 mod 8 and −1 for p ≡ 5,7 mod 8 so this is

just the character χ′8 .

Another example is ∆ = 24 where there are the two forms Q1 = x
2 − 6y2 and

Q2 = 6x2 − y2 . We have
(
δ
p

)
=
(

6
p

)
=
(

2
p

)(
3
p

)
=
(

2
p

)(
−1
p

)(
p
3

)
. The character table

is
1 5 7 11 13 17 19 23

χ′8 +1 −1 −1 +1 −1 +1 +1 −1

χ3 +1 −1 +1 −1 +1 −1 +1 −1

Thus Q1 represents primes p ≡ 1,19 mod 24 and Q2 represents primes p ≡ 5,23

mod 24.

Case 5: δ ≡ 4 mod 8. Now we have the congruence n ≡ −3k mod 8. Thus in

the topograph of a form of discriminant ∆ = 4(8m + 4) all odd numbers must be

congruent to 1 or 5 mod 8, or they must all be congruent to 3 or 7 mod 8. More

simply, one can say that all odd numbers in the topograph must be congruent to 1

mod 4 or they must all be congruent to 3 mod 4. Thus we obtain the character χ4

again.

An example is ∆ = −48 where we have the two forms Q1 = x2 + 12y2 and

Q2 = 3x2 + 4y2 as well as the non-primitive form Q3 = 2x2 + 6y2 . We have
(
δ
p

)
=(

−12
p

)
=
(
−1
p

)(
3
p

)
=
(
p
3

)
. This is the character χ3 . We also have the character χ4 that

we just described. The character table is

1 5 7 11 13 17 19 23 25 29 31 35 37 41 43 47

χ4 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1

χ3 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

In contrast with earlier examples, the representability of a prime p > 3 in discriminant

−48 is determined by one character, χ3 , and the other character χ4 serves only to

decide which of the forms Q1 and Q2 achieves the representation. Note that χ4

says nothing about the non-primitive form Q3 whose values are all even. On the

other hand, from χ3 we can deduce that all values of Q3 not divisible by 3 must be

congruent to 2 mod 3.



Chapter 6 Representations by Quadratic Forms 139

Case 6: δ ≡ 0 mod 8, so ∆ is a multiple of 32. In this case the congruence n ≡ (1−δ)k

mod 8 becomes simply n ≡ k mod 8. Thus all odd numbers in the topograph of a

form of discriminant ∆ = 32m must lie in the same congruence class mod 8. The two

characters χ4 and χ8 can now both occur independently, as shown in the following

chart listing their values on the four classes 1,3,5,7 mod 8:

1 3 5 7

χ4 +1 −1 +1 −1

χ8 +1 −1 −1 +1

As an example consider the discriminant ∆ = −32. Here there are two primitive

forms Q1 = x
2+ 8y2 and Q2 = 3x2+2xy + 3y2 along with one non-primitive form

Q3 = 2x2 + 4y2 . We have
(
δ
p

)
=
(
−8
p

)
=
(
−1
p

)(
2
p

)
with the two factors being the

two independent characters for the prime 2. The full character table is then just a

four-fold repetition of the previous shorter table:

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

χ4 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1 +1 −1

χ8 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1 +1 −1 −1 +1

Q1 Q2 Q1 Q2 Q1 Q2 Q1 Q2

This finishes the analysis of the six cases for characters associated to the prime 2.

It might be worth noting that if one restricts attention to fundamental discriminants

then only the cases 1, 3, and 4 can arise since in the other three cases there always

exist non-primitive forms of the given discriminant.

We have now defined a set of characters for each discriminant ∆ , with one charac-

ter for each odd prime dividing ∆ and either zero, one, or two characters for the prime

2 when ∆ is even. This collection of characters assigns a symbol (±1,±1, · · · ,±1) to

each number n coprime to ∆ , with one coordinate χi(n) = ±1 for each character χi .

Proposition 6.12. For each discriminant ∆ the number of congruence classes mod ∆
having a given symbol (±1,±1, · · · ,±1) is the same for each symbol.

Proof : By the Chinese Remainder Theorem we can regard congruence classes mod ∆
as collections of congruence classes mod a power of a prime for each prime-power

factor of ∆ . Thus it suffices to consider each prime divisor of ∆ separately. Suppose

we change the sign of one coordinate χi(n) = ±1 of the symbol and keep the sign

for the other characters the same. In the case that χi = χp for an odd prime p

dividing ∆ with exponent r we have χp(n) =
(
n
p

)
and we know that there are the

same number of congruence classes mod pr with
(
n
p

)
= +1 as with

(
n
p

)
= −1. This

also holds for the characters χ4 , χ8 , and χ′8 . Thus changing coordinates of a symbol

(±1,±1, · · · ,±1) one at a time never changes the number of congruence classes with

that symbol. ⊔⊓
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Since characters have constant values on all numbers in a topograph coprime to

the discriminant, we can associate a well-defined symbol (±1,±1, · · · ,±1) to each

equivalence class of forms of a given discriminant.

With this terminology we can define a genus to be the collection of all forms

in a given discriminant having the same associated symbol. A priori the number of

genera in discriminant ∆ is therefore 2κ where κ is the number of characters in

discriminant ∆ . However, not all symbols are actually realizable by forms and the

number of non-empty genera is only half as big:

Theorem. The number of genera of primitive forms of discriminant ∆ is 2κ−1 where

κ is the number of characters in discriminant ∆ .

To prove this requires going considerably deeper into the theory than we have

done so far, so we will not attempt it here.

We have used characters to help determine the representability of primes not di-

viding the discriminant. For the finitely many primes that do divide the discriminant,

the forms that represent them can be determined just by examining the various to-

pographs. However, characters can also be used to do this, at least in some cases. Let

us illustrate this by looking again at discriminant −84 where there are three charac-

ters χ4 , χ3 , and χ7 , associated to the three prime divisors 2, 3, and 7 of 84. For

determining which form represents 2 we can use the characters χ3 and χ7 . We have

χ3(2) =
(

2
3

)
= −1 and χ7(2) =

(
2
7

)
= +1. From the earlier character table we see that

of the four forms Q1,Q2,Q3,Q4 only Q3 has this pair of values, so we conclude that

Q3 must be the form that represents 2, and indeed this is what the topographs show.

In a similar way, to check which form represents 3 we use the values χ4(3) = −1 and

χ7(3) = −1, and the character table then says that Q2 must be the form representing

3. For representing 7 we have χ4(7) = −1 and χ3(7) = +1 so it must again be Q2

that represents 7.

Representing Non-primes

We have been focusing on determining which primes are represented in a given

discriminant, and now we turn to the corresponding problem for non-primes. Our

general criterion is that a number n is represented primitively by at least one form of

discriminant ∆ if and only if ∆ is a square mod 4n . As we noted before, this implies

that if n is primitively represented in discriminant ∆ , then so is every divisor of n ,

and in particular every prime divisor. The question we address now is to what extent

the converse holds, that is, if the prime divisors of n are primitively represented, then

is n also primitively represented?

The main result in this subsection will be an answer to this question:

Theorem 6.13. A number n > 1 is primitively represented by at least one form of

discriminant ∆ exactly when n factors as a product n = p
e1

1 p
e2

2 · · ·p
ek
k of powers
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of distinct primes pi each of which is represented by some form of discriminant ∆ ,

where the exponents ei of the primes pi not dividing ∆ are unrestricted, while for

primes pi dividing ∆ we have ei ≤ 1 in the cases that ∆ is a fundamental discriminant.

If ∆ is not a fundamental discriminant the condition on the exponents ei of primes

pi dividing ∆ is more complicated: First write ∆ = psiq with psi the highest power

of pi dividing ∆ . Then if pi is odd the condition on ei is that either (a) ei ≤ s or (b)

ei ≥ s + 1 and s is even and
(
q
pi

)
= +1 . If pi = 2 then the condition on ei is that

either (a) ei ≤ s − 2 or (b) s is even and one of the following three possibilities holds:

(1) ei = s − 1 , (2) ei = s and q = 4l+ 1 , or (3) ei ≥ s + 1 and q = 8l+ 1 .

This finishes the story for the representation problem in the cases of fundamental

discriminants for which all forms are equivalent, such as those at the first level of

complexity that we considered at the beginning of the chapter.

Before proving the theorem let us look at some examples to illustrate the more

complicated case of nonfundamental discriminants.

Example: ∆ = −12. The two forms here are Q1 = x
2+3y2 and the nonprimitive form

Q2 = 2x2 + 2xy + 2y2 . The primes represented in discriminant −12 are 2, 3, and

primes p with
(
−12
p

)
=
(
−3
p

)
=
(
−1
p

)(
3
p

)
=
(
p
3

)
= +1, so these are the primes p ≡ 1

mod 3. The theorem says that the numbers represented primitively in discriminant

−12 are the numbers n = 2a3bp1 · · ·pk with a ≤ 2, b ≤ 1, and each pi a prime

congruent to 1 mod 3. (When we apply the theorem for pi = 2 we have s = 2 and

q = −3, and for pi = 3 we have s = 1.) We can in fact determine which of Q1 and

Q2 is giving these representations. The form Q2 is twice x2 + xy +y2 and we have

already determined which numbers the latter form represents primitively, namely the

products 3bp1 · · ·pk with b ≤ 1 and each prime pi ≡ 1 mod 3. Thus, of the numbers

represented primitively by Q1 or Q2 , the numbers represented primitively by Q2 are

those with a = 1. None of these numbers with a = 1 are represented by Q1 since

x2 + 3y2 is never 2 mod 4, as x2 and y2 must be 0 or 1 mod 4.

Example: ∆ = −28. Here the only two forms up to equivalence are Q1 = x
2+7y2 and

Q2 = 2x2+2xy+4y2 which is not primitive. The primes represented in discriminant

−28 are 2, 7, and odd primes p with
(
−28
p

)
=
(
−1
p

)(
7
p

)
=
(
p
7

)
= +1 so p ≡ 1,2,4

mod 7. According to the theorem the numbers represented primitively by Q1 or Q2

are the numbers n = 2a7bp1 · · ·pk with b ≤ 1 and odd primes pi ≡ 1,2,4 mod 7.

There is no restriction on a since when we apply the theorem with pi = 2 we have

s = 2 and q = −7 = 8l + 1. We can say exactly which numbers are primitively

represented by Q2 since it is twice the form x2 + xy + 2y2 of discriminant −7,

which is a fundamental discriminant of class number 1 so the theorem tells us which

numbers this form represents primitively, namely the numbers 7bp1 · · ·pk with b ≤

1 and primes pi ≡ 1,2,4 mod 7, including now the possibility pi = 2. Thus Q2

represents primitively exactly the numbers 2a7bp1 · · ·pk with a ≥ 1, b ≤ 1 and odd
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primes pi ≡ 1,2,4 mod 7. Hence Q1 must represent primitively at least the numbers

2a7bp1 · · ·pk with a = 0, b ≤ 1, and odd primes pi ≡ 1,2,4 mod 7. These numbers

are all odd since a = 0, but Q1 also represents some even numbers since x2 + 7y2

is even whenever both x and y are odd.

From the topograph we might conjecture that Q1 represents primitively exactly the

numbers 2a7bp1 · · ·pk with a = 0 or a ≥ 3, and with b ≤ 1 and the same odd

primes pi ≡ 1,2,4 mod 7 as before. It is not difficult to exclude a = 1 and a = 2 by

considering the values of x2 + 7y2 mod 4 and mod 8. In the next chapter we will

show that all the conjectured numbers with a ≥ 3 are in fact primitively represented

by Q1 .

Now we turn to proving the theorem, using the familiar criterion that a number

n is primitively represented by at least one form of discriminant ∆ if and only if ∆
is a square mod 4n . As a first step we have:

Lemma 6.14. If a number x is a square mod m1 and is also a square mod m2 where

m1 and m2 are coprime, then x is a square mod m1m2 .

For example, the number 2 is a square mod 7 (since 32 ≡ 2 mod 7) and also mod

17 (since 62 ≡ 2 mod 17) so 2 must also be a square mod 7 · 17 = 119. And in fact

2 ≡ 112 mod 119.

Proof : This will follow from the Chinese Remainder Theorem. Suppose that a number

x is a square mod m1 and is also a square mod m2 where m1 and m2 are coprime.

This means there are numbers a1 and a2 such that x ≡ a2
1 mod m1 and x ≡ a2

2 mod

m2 . By the Chinese Remainder Theorem there exists a number a that is congruent

to a1 mod m1 and to a2 mod m2 . Then x ≡ a2
1 ≡ a

2 mod m1 and x ≡ a2
2 ≡ a

2

mod m2 . This implies x ≡ a2 mod m1m2 since the difference x −a2 is divisible by

both m1 and m2 and hence by their product m1m2 since we assume m1 and m2

are coprime. This shows that x is a square mod m1m2 . ⊔⊓

As a simple application of the preceding lemma we can deduce that if a discrim-

inant ∆ is a square modulo an odd number n then it is a square mod 4n since dis-

criminants are always squares mod 4, being either 0 or 1 mod 4. Earlier we proved



Chapter 6 Representations by Quadratic Forms 143

this fact using a special argument, but now we see that it follows from a more general

principle.

The preceding lemma reduces the problem of primitive representation in a fixed

discriminant to the case of representing prime powers. It remains to reduce further

from prime powers to just primes themselves. For most primes this will be possible

using the following result:

Lemma 6.15. If a number x is a square mod p for an odd prime p not dividing x ,

then x is also a square mod pr for each r > 1 . The corresponding statement for the

prime p = 2 is that if an odd number x is a square mod 8 then x is also a square

mod 2r for each r > 3 .

For example, 2 is a square mod 7 since 2 ≡ 32 mod 7, so 2 is also a square mod

72 , namely 2 ≡ 102 mod 49. It is also a square mod 73 = 343 since 2 ≡ 1082 mod

343. Likewise it must be a square mod 74 , mod 75 , etc. The proof of the lemma will

give a method for refining the initial congruence 2 ≡ 32 mod 7 to each subsequent

congruence 2 ≡ 102 mod 49, 2 ≡ 1082 mod 343, etc.

For the prime p = 2 we have to begin with squares mod 8 since 3 is a square

mod 2 but not mod 4, while 5 is a square mod 4 but not mod 8.

Proof of the Lemma: We will show that if x is a square mod pr then it is also a square

mod pr+1 , assuming r ≥ 1 in the case that p is odd and r ≥ 3 in the case p = 2. By

induction this will prove the lemma.

We begin by assuming that x is a square mod pr , so there is a number y such

that x ≡ y2 mod pr or in other words pr divides x−y2 , say x−y2 = pr l for some

integer l . We seek a number z such that x ≡ z2 mod pr+1 , so it is reasonable to

look for a z with z ≡ y mod pr , or in other words z = y + kpr for some k . Thus

we want to choose k so that x ≡ (y + kpr )2 mod pr+1 . This means we want pr+1

to divide the number

x − (y + kpr )2 = x − (y2 + 2kpry + k2p2r )

= (x −y2)− 2kpry − k2p2r

= pr l− 2kpry − k2p2r

= pr (l− 2ky − k2pr )

For this to be divisible by pr+1 means that p should divide l−2ky −k2pr . Since we

assume r ≥ 1 this is equivalent to p dividing l−2ky , or in other words, l−2ky = pq

for some integer q . Rewriting this as l = 2yk+pq we see that this linear Diophantine

equation with unknowns k and q always has a solution when p is odd since 2y and

p are coprime if p is odd, in view of the fact that p does not divide y since x ≡ y2

mod pr and we assume x is not divisible by p . This finishes the induction step in

the case that p is odd.

When p = 2 this argument breaks down at the last step since the equation l =

2yk+ pq becomes l = 2yk+ 2q and this will not have a solution when l is odd. To
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modify the proof so that it works for p = 2 we would like to get rid of the factor 2

in the equation l = 2yk + pq which arose when we squared y + kpr . To do this,

suppose that instead of trying z = y +k · 2r we try z = y + k · 2r−1 . Then we would

want 2r+1 to divide

x − (y + k · 2r−1)2 = (x −y2)− k · 2ry − k222r−2

= 2r l− k · 2ry − k222r−2

= 2r (l− ky − k22r−2)

Assuming r ≥ 3, this means 2 should divide l− ky , or in other words l = yk+ 2q

for some integer q . The number y is odd since y2 ≡ x mod 2r and x is odd by

assumption. This implies the equation l = yk+ 2q has a solution (k, q) . ⊔⊓

Corollary 6.16. If a prime p not dividing the discriminant ∆ is represented by at

least one form of discriminant ∆ then every power of p is represented primitively in

discriminant ∆ .

Proof : First assume that p is odd. Since we assume p is represented in discriminant

∆ we know that ∆ is a square mod p . The preceding lemma then says that ∆ is a

square mod each power of p , so all powers of p are also represented in discriminant

∆ . For p = 2 the argument is almost the same. In this case the representability of 2

implies that ∆ is a square mod 4p = 8 so the lemma implies that ∆ is also a square

mod all higher powers of 2, so all powers of 2 are represented in discriminant ∆ .

⊔⊓

Now let p be a prime that does divide the discriminant ∆ . In this case we know

there is a form of discriminant ∆ representing p (primitively), and it remains to

determine whether powers of p are also represented primitively.

Lemma 6.17. For a given prime p suppose that a number x divisible by p factors as

psq where p does not divide q , so ps is the largest power of p dividing x . Then:

(a) x is a square mod pr for each r ≤ s .

(b) If r > s and s is odd then x is not a square mod pr .

(c) If r > s and s is even then x is a square mod pr if and only if q is a square mod

pr−s .

Proof : Part (a) is easy since x is 0 mod ps hence also mod pr if r ≤ s , and 0 is

always a square mod anything.

For (b) we assume r > s and s is odd. Suppose psq is a square mod pr , so

psq = y2 + lpr for some integers y and l . Then ps divides y2 + lpr and it divides

lpr (since r > s ) so ps divides y2 . Since s is assumed to be odd and the exponent

of p in y2 must be even, this implies ps+1 divides y2 . It also divides lpr since

s + 1 ≤ r , so from the equation psq = y2 + lpr we conclude that p divides q ,
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contrary to definition of q . This contradiction shows that psq is not a square mod

pr when r > s and s is odd, so statement (b) is proved.

For (c) we assume r > s and s is even. As in part (b), if psq is a square mod pr

we again have an equation psq = y2 + lpr and this implies that ps divides y2 .

Since s is now even, this means y2 = psz2 for some number z . Canceling ps from

psq = y2+ lpr yields an equation q = z2+ lpr−s , which says that q is a square mod

pr−s . Conversely, if q is a square mod pr−s we have an equation q = z2+ lpr−s and

hence psq = psz2+ lpr . Since s is even, this says that psq is a square mod pr . ⊔⊓

Corollary 6.18. Let p be a prime dividing the discriminant ∆ , and let us write ∆ =
psq with ps the highest power of p dividing ∆ . If p is odd then pr is primitively

represented in discriminant ∆ if and only if either (a) r ≤ s or (b) s is even and(
q
p

)
= +1 . If p = 2 then 2r is primitively represented in discriminant ∆ if and only

if either (a) r ≤ s−2 or (b) s is even and one of the following three possibilities holds:

r = s − 1 ; r = s and q = 4k+ 1 ; or r ≥ s + 1 and q = 8k+ 1 .

Proof : When p is odd this follows immediately from the lemma by taking x = ∆ ,

using the fact that q is a square mod powers of p exactly when it is a square mod p .

When p = 2 we need to determine when ∆ is a square mod 4 · 2r = 2r+2 . By

the lemma this happens only when r ≤ s − 2 or when s is even and q (which is odd)

is a square mod 2r+2−s . When r + 2− s = 1, so r = s − 1, every q is a square mod

2r+2−s = 2. When r + 2− s = 2, so r = s , q is a square mod 2r+2−s = 4 only when

q = 4k + 1. And when r + 2 − s ≥ 3, so r ≥ s + 1, q is a square mod 2r+2−s only

when q = 8k+ 1. ⊔⊓

Corollary 6.19. If ∆ is a fundamental discriminant and p is a prime dividing ∆ , then

no power pr with r > 1 is primitively represented in discriminant ∆ .

Proof : First suppose p is odd. Then p2 ≡ 1 mod 4 so if p2 divided a discriminant ∆ ,

the quotient ∆/p2 would be congruent to ∆ mod 4 so it would also be a discriminant.

Thus a fundamental discriminant ∆ can have no odd square factors, so in the preced-

ing corollary we must have s = 1 when p is odd, which implies r ≤ 1 as well. In the

case p = 2 we must have s ≤ 3 if ∆ is a fundamental discriminant since otherwise

∆/4 would also be a discriminant. We cannot have s = 1 since this would mean ∆ ≡ 2

mod 4. If s = 2 then in case (b) of the preceding corollary the possibilities q = 4k+1

and q = 8k + 1 occur only when ∆/4 is a discriminant, so this is ruled out as well.

The only possibility remaining is r = 1. ⊔⊓

Putting together the preceding lemmas and corollaries, we have now proved the

theorem.
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Proof of Quadratic Reciprocity

First let us show that quadratic reciprocity can be expressed more concisely as a

single formula
(p
q

)(q
p

)
= (−1)

[
p−1

2

][
q−1

2

]
(∗)

Here p and q are distinct odd primes. Since they are odd, the fractions
p−1

2
and

q−1
2

are integers. The only way the exponent
[p−1

2

][q−1
2

]
can be odd is for both factors

to be odd, so
p−1

2
= 2k + 1 and

q−1
2
= 2l + 1. These equations can be rewritten as

p = 4k+ 3 and q = 4l+ 3. Thus the only time that the right side of the formula (∗)

can be −1 is when p and q are both congruent to 3 mod 4, and quadratic reciprocity

is the assertion that the left side of (∗) has exactly this property.

There will be three main steps in the proof of quadratic reciprocity. The first is

to derive an explicit algebraic formula for
(
a
p

)
due originally to Euler. The second

step is to use this formula to give a somewhat more geometric interpretation of
(
a
p

)

in terms of the number of dots in a certain triangular pattern. Then the third step is

the actual proof of quadratic reciprocity using symmetry properties of the patterns

of dots. This proof is due to Eisenstein, first published in 1844, simplifying an earlier

proof by Gauss who was the first to give a full proof of quadratic reciprocity.

Step 1. In what follows we will always use p to denote an odd prime, and the symbol

a will always denote an arbitrary nonzero integer not divisible by p . When we write

a congruence such as a ≡ b this will always mean congruence mod p , even if we do

not explicitly say mod p .

Euler’s formula is: (a
p

)
≡ a

p−1
2 mod p

For example, for p = 11 Euler’s formula says
(

2
11

)
= 25 = 32 ≡ −1 mod 11 and(

3
11

)
= 35 = 243 ≡ +1 mod 11. These are the correct values since the squares mod

11 are (±1)2 = 1, (±2)2 = 4, (±3)2 = 9, (±4)2 ≡ 5, and (±5)2 ≡ 3.

Note that Euler’s formula determines the value of
(
a
p

)
uniquely since +1 and −1

are not congruent mod p since p > 2. It is not immediately obvious that the number

a
p−1

2 should always be congruent to either +1 or −1 mod p , but when we prove

Euler’s formula we will see that this has to be true.

As a special case, taking a = −1 in Euler’s formula gives the calculation

(−1

p

)
= (−1)

p−1
2 =

{
+1 if p = 4k+ 1

−1 if p = 4k+ 3

Before proving Euler’s formula we will need to derive a few preliminary general

facts about congruences modulo a prime p . The first fact is that each of the numbers

a = 1,2, · · · , p−1 has a multiplicative inverse mod p . To see why this is true, notice

that each such a is coprime to p , so we know from Chapter 2 that the equation
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ax + py = 1 has an integer solution (x,y) . This equation can be rewritten as the

congruence ax ≡ 1 mod p , which says that x is an inverse for a mod p . Note that

any two choices for x here are congruent mod p since if ax ≡ 1 and ax′ ≡ 1 then

multiplying both sides of ax′ ≡ 1 by x gives xax′ ≡ x , and xa ≡ 1 so we conclude

that x ≡ x′ .

Which numbers equal their own inverse mod p? If a ·a ≡ 1, then we can rewrite

this as a2 − 1 ≡ 0, or in other words (a + 1)(a − 1) ≡ 0. This is certainly a valid

congruence if a ≡ ±1, so suppose that a 6≡ ±1. The factor a + 1 is then not con-

gruent to 0 mod p so it has a multiplicative inverse mod p , and if we multiply the

congruence (a+ 1)(a− 1) ≡ 0 by this inverse, we get a− 1 ≡ 0 so a ≡ 1, contradict-

ing the assumption that a 6≡ ±1. This argument shows that the only numbers among

1,2, · · · , p − 1 that are congruent to their inverses mod p are 1 and p − 1.

An application of this fact is a result known as Wilson’s Theorem:

(p − 1)! ≡ −1 modulo p whenever p is prime.

To see why this is true, observe that in the product (p− 1)! = (1)(2) · · · (p−1) each

factor other than 1 and p − 1 can be paired up with its multiplicative inverse mod

p and these two terms multiply together to give 1 mod p , so the whole product is

congruent to just (1)(p − 1) mod p . Since p − 1 ≡ −1 mod p this gives Wilson’s

Theorem.

Now let us prove the following congruence known as Fermat’s Little Theorem:

ap−1 ≡ 1 mod p whenever p is an odd prime not dividing a .

To see this, note first that the numbers a,2a,3a, · · · , (p−1)a are all distinct mod p

since we know that a has a multiplicative inverse mod p , so in a congruence ma ≡ na

we can multiply both sides by the inverse of a to deduce that m ≡ n . Let us call this

property that ma ≡ na implies m ≡ n the cancellation property for congruences

mod p .

Thus the set {a,2a,3a, · · · , (p − 1)a} is the same mod p as {1,2,3, · · · , p− 1}

since both sets have p−1 elements and neither set contains numbers that are 0 mod

p . If we take the product of all the numbers in each of these two sets we obtain the

congruence

(a)(2a)(3a) · · · (p − 1)a ≡ (1)(2)(3) · · · (p − 1) mod p

We can cancel the factors 2,3, · · · , p− 1 from both sides by repeated applications of

the cancellation property. The result is the congruence ap−1 ≡ 1 claimed by Fermat’s

Little Theorem.

Now we can prove Euler’s formula for
(
a
p

)
. The first case is that

(
a
p

)
= 1, so a is

a square mod p and a ≡ x2 for some x 6≡ 0. In this case we have a
p−1

2 ≡ xp−1 ≡ 1

by Fermat’s Little Theorem. So in this case Euler’s formula
(
a
p

)
≡ a

p−1
2 is valid, both

sides being +1.
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The other case is that
(
a
p

)
= −1 so a is not a square mod p . Observe first that the

congruence xy ≡ a has a solution y mod p for each x 6≡ 0 since x has an inverse

x−1 mod p so we can take y = x−1a . Moreover the solution y is unique mod p since

xy1 ≡ xy2 implies y1 ≡ y2 by the cancellation property. Since we are in the case that

a is not a square mod p the solution y of xy ≡ a satisfies y 6≡ x . Thus the numbers

1,2,3, · · · , p − 1 are divided up into
p−1

2
pairs {x1, y1}, {x2, y2}, · · · , {x p−1

2
, y p−1

2
}

with xiyi ≡ a for each i . Multiplying all these
p−1

2
pairs together, we get

a
p−1

2 ≡ x1y1x2y2 · · ·x p−1
2
y p−1

2

The product on the right is just a rearrangement of (1)(2)(3) · · · (p−1) , and Wilson’s

Theorem says that this product is congruent to −1 mod p . Thus we see that Euler’s

formula
(
a
p

)
≡ a

p−1
2 holds also when

(
a
p

)
= −1, completing the proof in both cases.

A consequence of Euler’s formula is the multiplicative property of Legendre sym-

bols that we stated and used earlier in the chapter:

(ab
p

)
=
(a
p

)(b
p

)

This holds since (ab)
p−1

2 = a
p−1

2 b
p−1

2 .

Step 2. Here our aim is to express the Legendre symbol
(
a
p

)
in more geometric terms.

To begin, consider a rectangle in the first quadrant of the xy -plane that is p units

wide and a units high, with one corner at the origin and the opposite corner at the

point (p,a) . For example for p = 7 and a = 5 we have the picture

We will be interested in points that lie strictly in the interior of the rectangle and

whose coordinates are integers. Points satisfying the latter condition are called lattice

points. The number of lattice points in the interior is then (p − 1)(a− 1) since their

x -coordinates can range from 1 to p − 1 and their y -coordinates from 1 to a − 1,

independently.

The diagonal of the rectangle from (0,0) to (p,a) does not pass through any of

these interior lattice points since we assume that the prime p does not divide a , so
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the fraction a/p , which is the slope of the diagonal, is in lowest terms. (If there were

an interior lattice point on the diagonal, the slope of the diagonal would be a fraction

with numerator and denominator smaller than a and p .) Since there are no interior

lattice points on the diagonal, exactly half of the lattice points inside the rectangle

lie on each side of the diagonal, so the number of lattice points below the diagonal is
1
2
(p − 1)(a− 1) . This is an integer since p is odd, which makes p − 1 even.

A more refined question one can ask is how many lattice points below the diagonal

have even x -coordinate and how many have odd x -coordinate. Here there is no

guarantee that these two numbers must be equal, and indeed if they were equal then

both numbers would have to be
1
4
(p − 1)(a − 1) but this fraction need not be an

integer, for example when p = 7 and a = 4.

We denote the number of lattice points that are below the diagonal and have even

x -coordinate by the letter e . Here is a figure showing the values of e when p = 7 and

a ranges from 1 to 6:

A slightly more complicated example when p = 13 and a goes from 1 to 12 is

shown at the top of the next page.

The way that e varies with a seems somewhat unpredictable. What we will show

is that just knowing the parity of e is already enough to determine the value of the

Legendre symbol via the formula
(a
p

)
= (−1)e

To prove this we first derive a formula for e . The segment of the vertical line

x = u going from the x -axis up to the diagonal has length ua/p since the slope of

the diagonal is a/p . If u is a positive integer the number of lattice points on this line

segment is
⌊ua
p

⌋
, the greatest integer n ≤ ua

p . Now if we add up these numbers of

lattice points for u running through the set of even numbers E = {2,4, · · · , p − 1}

we get

e =
∑

E

⌊
ua

p

⌋
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The way to compute
⌊ua
p

⌋
is to apply the division algorithm for integers, dividing p

into ua to obtain
⌊ua
p

⌋
as the quotient with a remainder that we denote r(u) . Thus

we have the formula

ua = p
⌊
ua

p

⌋
+ r(u) (1)

This formula implies that the number
⌊ua
p

⌋
has the same parity as r(u) since u is

even and p is odd. This relation between parities implies that the number (−1)e that

we are interested in can also be computed as

(−1)e = (−1)
∑
E

⌊
ua
p

⌋
= (−1)

∑
E r(u) (2)

With this last expression in mind we will focus our attention on the remainders r(u) .

The number r(u) lies strictly between 0 and p and can be either even or odd,

but in both cases we can say that (−1)r(u)r(u) is congruent to an even number in

the interval (0, p) since if r(u) is odd, so is (−1)r(u)r(u) and then adding p to this

gives an even number between 0 and p . Thus there is always an even number s(u)

between 1 and p that is congruent to (−1)r(u)r(u) mod p . Obviously s(u) is unique

since no two numbers in the interval (0, p) are congruent mod p .

A key fact about these even numbers s(u) is that they are all distinct as u varies

over the set E . For suppose we have s(u) = s(v) for another even number v in E .

Thus r(u) ≡ ±r(v) mod p , which implies au ≡ ±av mod p in view of the equa-

tion (1) above. We can cancel the a from both sides of this congruence to get u ≡ ±v .

However we cannot have u ≡ −v because the number between 0 and p that is con-

gruent to −v is p−v , so we would have u = p−v which is impossible since u and
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v are even while p is odd. Thus we must have u ≡ +v , hence u = v since these are

numbers strictly between 0 and p . This shows that the numbers s(u) are all distinct.

Now consider the product of all the numbers (−1)r(u)r(u) as u ranges over the

set E . Written out, this is
[
(−1)r(2)r(2)

][
(−1)r(4)r(4)

]
· · ·

[
(−1)r(p−1)r(p − 1)

]
(3)

By equation (1) we have r(u) ≡ ua mod p , so this product is congruent mod p to
[
(−1)r(2)2a

][
(−1)r(4)4a

]
· · ·

[
(−1)r(p−1)(p − 1)a

]

On the other hand, by the definition of the numbers s(u) the product (3) is congruent

mod p to

[s(2)][s(4)] · · · [s(p − 1)]

There are
p−1

2
factors here and they are all distinct even numbers in the interval

(0, p) as we showed in the previous paragraph, so they are just a rearrangement of

the numbers 2,4, · · · , p − 1. Thus we have the congruence
[
(−1)r(2)2a

][
(−1)r(4)4a

]
· · ·

[
(−1)r(p−1)(p − 1)a

]
≡ (2)(4) · · · (p − 1) mod p

We can cancel the factors 2,4, · · · , p−1 from both sides of this congruence to obtain

(−1)
∑
E r(u)a

p−1
2 ≡ 1 mod p

Both the factors (−1)
∑
E r(u) and a

p−1
2 are ±1 mod p and their product is 1 so they

must be equal mod p (using the fact that 1 and −1 are not congruent modulo an odd

prime). By Euler’s formula we have a
p−1

2 ≡
(
a
p

)
mod p , so from the earlier formula

(2) we conclude that
(
a
p

)
= (−1)e . This finishes Step 2 in the proof of quadratic

reciprocity.

Step 3. Now we specialize the value of a to be an odd prime q distinct from p . As

in Step 2 we consider a p × q rectangle.
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We know that
(
q
p

)
= (−1)e where e is the number of lattice points with even x -

coordinate inside the rectangle and below the diagonal. Suppose that we divide the

rectangle into two equal halves separated by the vertical line x =
p
2

. This line does not

pass through any lattice points since p is odd. This vertical line cuts off two smaller

triangles from the two large triangles above and below the diagonal of the rectangle.

Call the lower small triangle L and the upper one U , and let l and u denote the

number of lattice points with even x -coordinate in L and U respectively. We note

that u has the same parity as the number of lattice points with even x -coordinate

in the quadrilateral below U in the right half of the rectangle since each column of

lattice points in the rectangle has q−1 points, an even number. Thus e has the same

parity as l+u , hence (−1)e = (−1)l+u .

The next thing to notice is that rotating the triangle U by 180 degrees about the

center of the rectangle carries it onto the triangle L . This rotation takes the lattice

points in U with even x -coordinate onto the lattice points in L with odd x -coordinate.

Thus we obtain the formula
(
q
p

)
= (−1)t where t is the total number of lattice points

in the triangle L .

Reversing the roles of p and q , we can also say that
(
p
q

)
= (−1)t

′

where t′ is the

number of lattice points in the triangle L′ above the diagonal and below the horizontal

line y =
q
2

bisecting the rectangle. Then t + t′ is the number of lattice points in the

small rectangle formed by L and L′ together. This number is just
[p−1

2

][q−1
2

]
. Thus

we have (q
p

)(p
q

)
= (−1)t(−1)t

′

= (−1)t+t
′

= (−1)

[
p−1

2

][
q−1

2

]

which finally finishes the proof of quadratic reciprocity.

We can also use the geometric interpretation of
(
a
p

)
to prove the formula for

(
2
p

)

that was stated earlier in this chapter, namely

( 2

p

)
=

{
+1 if p = 8k± 1

−1 if p = 8k± 3

We have shown that
(

2
p

)
= (−1)e where e is the number of lattice points inside a

p × 2 rectangle lying below the diagonal and having even x coordinate, as indicated

in the following figure which shows the diagonals for p = 3,5,7, · · · ,17:
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Another way to describe e is to say that it is equal to the number of even integers

in the interval from p/2 to p . We do not need to assume that p is prime in order

to count these points below the diagonals, just that p is odd. One can see what the

pattern is just by looking at the figure: Each time p increases by 2 there is one more

even number at the right end of the interval (p/2, p) , and there may or may not be

one fewer even number at the left end of the interval, depending on whether p is

increasing from 4k− 1 to 4k+ 1 or from 4k+ 1 to 4k+ 3. It follows that the parity

of e depends only on the value of p mod 8 as in the table for p ≤ 17, so e is even

for p ≡ ±1 mod 8 and e is odd for p ≡ ±3 mod 8.
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Exercises

1. For the form Q(x,y) = x2 + xy −y2 do the following things:

(a) Draw enough of the topograph to show all the values less than 100 that occur

in the topograph. This form is hyperbolic and it takes the same negative values as

positive values, so you need not draw all the negative values.

(b) Make a list of the primes less than 100 that occur in the topograph, and a list of

the primes less than 100 that do not occur.

(c) Characterize the primes in the two lists in part (b) in terms of congruence classes

modulo |∆| where ∆ is the discriminant of Q .

(d) Characterize the nonprime values in the topograph in terms of their factorizations

into primes in the lists in part (b).

(e) Summarize the previous parts by giving a simple criterion for which numbers are

representable by the form Q , i.e., the numbers n such that Q(x,y) = n has an

integer solution (x,y) , primitive or not. The criterion should say something like n

is representable if and only if n =m2p1 · · ·pk where each pi is a prime such that ...

(e) Check that all forms having the same discriminant as Q are equivalent to Q .

2. Do the same things for the form x2 + xy + 2y2 , except that this time you only

need to consider values less than 50 instead of 100.

3. For discriminant ∆ = −24 do the following:

(a) Verify that the class number is 2 and find two quadratic forms Q1 and Q2 of

discriminant −24 that are not equivalent.

(b) Draw topographs for Q1 and Q2 showing all values less than 100. (You don’t have

to repeat parts of the topographs that are symmetric.)

(c) Divide the primes less than 100 into three lists: those represented by Q1 , those

represented by Q2 , and those represented by neither Q1 nor Q2 . (No primes are

represented by both Q1 and Q2 .)

(d) Characterize the primes in the three lists in part (c) in terms of congruence classes

modulo |∆| = 24.

(e) Characterize the nonprime values in the topograph of Q1 in terms of their factor-

izations into primes in the lists in part (c), and then do the same thing for Q2 . Your

answers should be in terms of whether there are an even or an odd number of prime

factors from certain of the lists.

(f) Summarize the previous parts by giving a criterion for which numbers are repre-

sentable by the form Q1 and which are representable by Q2 .



Chapter 6 Representations by Quadratic Forms 155

4. This problem will show how things can be more complicated than in the previous

problems.

(a) Show that the number of equivalence classes of forms of discriminant −23 is 2

while the number of proper equivalence classes is 3, and find reduced forms Q1 and

Q2 of discriminant −23 that are not equivalent.

(b) Draw the topographs of Q1 and Q2 up to the value 70. (Again you don’t have to

repeat symmetric parts.)

(c) Find a number n that occurs in both topographs, and find the x and y values that

give Q1(x1, y1) = n = Q2(x2, y2) . (This sort of thing never happens in the previous

problems.)

(d) Find a prime p1 in the topograph of Q1 and a different prime p2 in the topograph

of Q2 such that p1 and p2 are congruent modulo |∆| = 23. (This sort of thing also

never happens in the previous problems.)

5. As a sort of converse to Wilson’s theorem, show that if n is not a prime then (n−1)!

is not congruent to −1 mod n . More precisely, when n > 4 and n is not prime, show

that n divides (n− 1)! , so (n− 1)! ≡ 0 mod n . What happens when n = 4?

6. Determine the values of ∆ for which there exists a quadratic form of discriminant

∆ that represents 5, and also determine the discriminants ∆ for which there does not

exist a form representing 5.

7. Verify that the statement of quadratic reciprocity is true for the following pairs of

primes (p, q) : (3,5) , (3,7) , (3,13) , (5,13) , (7,11) , and (13,17) .

8. (a) There is an example near the end of this chapter that works out which primes

are represented by some form of discriminant 13, using quadratic reciprocity for the

key step. Do the same thing for discriminant 17.

(b) Show that all forms of discriminant 17 are equivalent to the principal form x2 +

xy − 4y2 .

(c) Draw enough of the topograph of x2 + xy − 4y2 to show all values between −70

and 70, and verify that the primes that occur are precisely the ones predicted by your

answer in part (a).

9. Using quadratic reciprocity as in part (a) of the previous problem, figure out which

primes are represented by at least one form of discriminant ∆ for the following values

of ∆ : −3, 8, −20, 21.

10. Consider a discriminant ∆ = q2 , q > 0, corresponding to 0-hyperbolic forms. Us-

ing the description of the topographs of such forms obtained in the previous chapter,

show:

(a) Every number is represented primitively by at least one form of discriminant ∆ ,

so in particular all primes are represented.

(b) The primes represented by a given form of discriminant ∆ are exactly the primes
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in certain congruence classes mod q (and hence also mod ∆ ).

(c) For each of the values q = 1, 2, 7, and 15 determine the class number for discrim-

inant ∆ = q2 and find which primes are represented by the forms in each equivalence

class.

11. Show that the calculation of the Legendre symbol
(
−1
p

)
can also be obtained using

the method in the proof of quadratic reciprocity involving counting certain lattice

points in a (p − 1)× p rectangle.
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Quadratic Fields

Even when one’s primary interest is in integer solutions to equations, it can some-

times be very helpful to consider more general sorts of numbers. For example, when

studying the principal quadratic form x2 −Dy2 of discriminant 4D it can be a great

aid to understanding to allow ourselves to factor this form as (x+y
√
D)(x−y

√
D) .

Here we allow D to be negative as well as positive, in which case we would be moving

into the realm of complex numbers.

To illustrate this idea, consider the case D = −1, so the form is x2 + y2 which

we are factoring as (x + yi)(x − yi) . Writing a number n as a sum a2 + b2 is then

equivalent to factoring it as (a+bi)(a−bi) . For example 5 = 22+12 = (2+ i)(2− i) ,

and 13 = 32 + 22 = (3+ 2i)(3− 2i) , so 5 and 13 are no longer prime when we allow

factorizations using numbers a+bi . Sometimes a nonprime number such as 65 can

be written as the sum of two squares in more than one way: 65 = 82 + 12 = 42 + 72 ,

so it has factorizations as (8 + i)(8 − i) and (4 + 7i)(4 − 7i) . This becomes more

understandable if one uses the factorization

65 = 5 · 13 = (2+ i)(2− i)(3+ 2i)(3− 2i)

If we combine these four terms as (2− i)(3 + 2i) = 8+ i and (2+ i)(3 − 2i) = 8− i

we get the representation 65 = 82 + 12 = (8+ i)(8− i) , whereas if we combine them

as (2+ i)(3+2i) = 4+7i and (2− i)(3−2i) = 4−7i we get the other representation

65 = 42 + 72 = (4+ 7i)(4− 7i) .

Thus we will consider the set

Z[
√
D] = {x +y

√
D
∣∣ x,y ∈ Z }

which consists of real numbers if D > 0 and complex numbers if D < 0. We will

always assume D is not a square, so Z[
√
D] is not just Z . When D = −1 we have

Z[
√
D] = Z[i] , and numbers a+ bi in Z[i] are known as Gaussian integers.

We will also have occasion to consider numbers x + y
√
D where x and y are

allowed to be rational numbers, not just integers. The set of all such numbers is

Q(
√
D) = {x +y

√
D
∣∣ x,y ∈ Q }

Here round parentheses are used instead of square brackets as a way of emphasizing

that Q(
√
D) is a field while Z[

√
D] is only a ring. In other words, in Q(

√
D) we can

perform all four of the basic arithmetic operations of addition, subtraction, multipli-

cation, and division, whereas in Z[
√
D] only the first three operations are possible

in general. (Multiplicative inverses of nonzero elements of Q(
√
D) are given by the

formula (x + y
√
D)−1 =

x−y
√
D

x2−Dy2 .)
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Prime Factorization

The ring Z[
√
D] is useful for factoring the form x2−Dy2 as (x+y

√
D)(x−y

√
D) .

For this form the discriminant ∆ = 4D is 0 mod 4, and it would be nice to treat also

the discriminants ∆ = 4d+ 1 ≡ 1 mod 4, when the principal form is x2 +xy −dy2 .

This can be factored as

x2 + xy − dy2 =
(
x +

1+
√

1+ 4d

2
y
)(
x +

1−
√

1+ 4d

2
y
)

To simplify the notation we let ω = (1 +
√

1+ 4d)/2 and ω = 1 −
√

1+ 4d)/2, the

conjugate of ω , so the factorization becomes x2 + xy − dy2 = (x +ωy)(x +ωy) .

The quadratic equation satisfied by ω is ω2 −ω−d = 0. Thus ω2 =ω+d and this

allows the product of two numbers of the form m + nω to be written in the same

form. In other words, the set

Z[ω] = {x +yω | x,y ∈ Z }

is closed under multiplication and hence is a ring, just like Z[
√
D] .

For example, when d = −1 we have ω = (1+
√
−3)/2 and the elements of Z[ω]

form a lattice of equilateral triangles in the xy -plane:

+1

0 11 2 3 4

ω +2 ω +3 ωω

+1 2ω +2 2ω+1 2ω 2ω

�

�+2 2ω�+3 2ω�+4 2ω�

�1 2ω �2 2ω �3 2ω �4 2ω� �1 2ω 2ω��2 2ω�

�1 ω �2 ω �3 ω �4 ω�1 ω � ω��2 ω��3 ω�

+1 ω�+2 ω�+3 ω�+4 ω�

2�3�4�

The picture for larger negative values of d is similar but stretched in the vertical

direction. In these cases the xy -plane is just the plane of complex numbers. When d

is positive we can still draw the same figure but this is just a schematic representation

of Z[ω] since all the numbers in Z[ω] are real numbers in this case.

Elements of Z[ω] can always be written in the form m+nω = (a+b
√

1+ 4d)/2

for suitable integers a and b . Here a and b must have the same parity since this

is true for ω = (1 +
√

1+ 4d)/2 and hence for any integer multiple nω , and then

adding an arbitrary integer m to nω preserves the equal parity condition since it

adds an even integer to a . Conversely, if two integers a and b have the same parity

then (a + b
√

1+ 4d)/2 lies in Z[ω] since by adding or subtracting a suitable even

integer from a we can reduce to the case a = b when one has a multiple of ω . Notice
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that having both a and b even is equivalent to (a+b
√

1+ 4d)/2 lying in Z[
√

1+ 4d] ,

so Z[
√

1+ 4d] is a subring of Z[ω] . In the figure above we can see that Z[
√

1+ 4d]

consists of the even rows, the numbers m+nω with n even.

To have a unified notation for both the cases Z[
√
D] and Z[ω] let us define R∆

to be Z[
√
D] when the discriminant ∆ is 4D and Z[ω] when ∆ is 4d + 1. We will

often write elements of R∆ using lower case Greek letters, for example α = x+y
√
D

or α = x +yω .

The main theme of this chapter will be how elements of R∆ factor into ‘primes’

within R∆ . For example, if a prime p in Z happens to be representable as p =

x2 − Dy2 then this is saying that p is no longer prime in Z[
√
D] since it factors

as p = (x + y
√
D)(x − y

√
D) = αα for α = x + y

√
D . Of course, we should say

precisely what we mean by a ‘prime’ in Z[
√
D] or Z[ω] . For an ordinary integer

p > 1, being prime means that p is divisible only by itself and 1. If we allow negative

numbers, we can ‘factor’ a prime p as (−1)(−p) , but this should not count as a

genuine factorization, otherwise there would be no primes at all in Z . In R∆ things

can be a little more complicated because of the existence of units in R∆ , the nonzero

elements ε in R∆ whose inverse ε−1 also lies in R∆ . For example, in the Gaussian

integers Z[i] there are four obvious units, ±1 and ±i , since (i)(−i) = 1. We will see

in a little while that these are the only units in Z[i] . Having four units in Z[i] instead

of just ±1 complicates the factorization issue slightly, but not excessively so.

For positive values of ∆ things are somewhat less tidy because there are always

infinitely many units in R∆ . For example, in Z[
√

2] the number ε = 3 + 2
√

2 is a

unit because (3 + 2
√

2)(3 − 2
√

2) = 1. All the powers of 3 + 2
√

2 are therefore also

units, and there are infinitely many of them since 3+2
√

2 > 1 so (3+2
√

2)n→∞ as

n→∞ .

Whenever ε is a unit in R∆ we can factor any number α in R∆ as α = (αε)(ε−1) .

If we allowed this as a genuine factorization there would be no primes in R∆ , so it

is best not to consider it as a genuine factorization. This leads us to the following

definition: An element α of R∆ is said to be prime in R∆ if it is neither 0 nor a unit,

and if whenever we have a factorization of α as α = βγ with both β and γ in R∆ ,

then it must be the case that either β or γ is a unit in R∆ . Not allowing units as

primes is analogous to the standard practice of not considering 1 to be a prime in Z .

If we replace R∆ by Z in the definition of primeness above, we get the condition

that an integer a in Z is prime if its only factorizations are the trivial ones a =

(a)(1) = (1)(a) and a = (−a)(−1) = (−1)(−a) , which is what we would expect.

This definition of primeness also means that we are allowing negative primes as the

negatives of the positive primes in Z .

A word of caution: An integer p in Z can be prime in Z but not prime in Z[
√
D] .

For example, in Z[i] we have the factorization 5 = (2 + i)(2 − i) , and as we will be

able to verify soon, neither 2+ i nor 2− i is a unit in Z[i] . Hence by our definition 5
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is not a prime in Z[i] , even though it is prime in Z . Thus one always has to be careful

when speaking about primeness to distinguish “prime in Z” from “prime in R∆ ”.

Having defined what we mean by primes in R∆ it is then natural to ask whether

every nonzero element of R∆ that is not a unit can be factored as a product of primes,

and if so, is this factorization in any way unique? As we will see, the existence of

prime factorizations is fairly easy to prove, but the uniqueness question is much more

difficult and subtle. To clarify what the uniqueness question means, notice first that

if we have a unit ε in R∆ we can always modify a factorization α = βγ to give another

factorization α = (εβ)(ε−1γ) . This is analogous to writing 6 = (2)(3) = (−2)(−3) in

Z . This sort of nonuniqueness is unavoidable, but it is also not too serious a problem.

So when we speak of factorization in R∆ being unique, we will always mean unique

up to multiplying the factors by units.

A fruitful way to study factorizations in R∆ is to relate them to factorizations in

Z by means of the function N :R∆→Z defined by N(α) = αα . Thus in the two cases

R∆ = Z[
√
D] and R∆ = Z[ω] we have

N(x +y
√
D) = (x +y

√
D)(x −y

√
D) = x2 −Dy2

N(x + yω) = (x +yω)(x +yω) = x2 + xy − dy2

The number N(α) is called the norm of α . Notice that when the discriminant is

negative, so α is a complex number which can be written as a+ bi for real numbers

a and b , the norm of α is just αα = (a + bi)(a − bi) = a2 + b2 , the square of the

distance from α to the origin in the complex plane. When the discriminant is negative

the norm can be negative so it does not have a nice geometric interpretation in terms

of distance, but it will be quite useful in spite of this.

The reason the norm is useful for studying factorizations is that it satisfies the

following multiplicative property:

Proposition 7.1. N(αβ) = N(α)N(β) for all α and β in R∆ .

Proof : We will deduce multiplicativity of the norm from multiplicativity of the conju-

gation operation, the fact that αβ = αβ . The argument will apply more generally to

all elements of Q(
√
D) for any integer D that is not a square. To verify that αβ = αβ ,

write α = x + y
√
D and β = z +w

√
D , so that αβ = (xz + ywD)+ (xw + yz)

√
D .

Then

αβ = (xz +ywD)− (xw +yz)
√
D = (x −y

√
D)(z −w

√
D) = αβ

Now for the norm we have N(αβ) = (αβ)(αβ) = αβαβ = ααββ = N(α)N(β) ⊔⊓

Using the multiplicative property of the norm we can derive a simple criterion for

recognizing units:
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Proposition 7.2. An element ε ∈ R∆ is a unit if and only if N(ε) = ±1 .

Proof : Suppose ε is a unit, so its inverse ε−1 also lies in R∆ . Then N(ε)N(ε−1) =

N(εε−1) = N(1) = 1. Since both N(ε) and N(ε−1) are elements of Z , this forces

N(ε) to be ±1. For the converse, the inverse of an element ε in R∆ is ε−1 = ε/N(ε)

since multiplying this by ε gives 1. Hence if N(ε) = ±1 we have ε−1 = ±ε which is

an element of R∆ if ε is, so ε is a unit. ⊔⊓

When ∆ is negative there are very few units in R∆ . In the case of Z[
√
D] the

equation N(x + y
√
D) = x2 − Dy2 = ±1 has very few integer solutions, namely, if

D = −1 there are only the four solutions (x,y) = (±1,0) and (0,±1) while if D < −1

there are only the two solutions (x,y) = (±1,0) . Thus the only units in Z[i] are ±1

and ±i , and the only units in Z[
√
D] for D < −1 are ±1. In the case of Z[ω] one

can see from the earlier figure of Z[ω] when d = −1 that there are six lattice points

of distance 1 from the origin, giving the six units ±1, ±ω , and ±(ω− 1) . These are

the powers ωn for n = 0,1,2,3,4,5 since ω2 =ω− 1 and ω3 = −1, hence ω6 = 1.

When d < −1 the only units in Z[ω] are ±1 since the lattice is stretched vertically

so there are only two lattice points of distance 1 from the origin.

The situation for R∆ with ∆ positive is quite different. For Z[
√
D] we are looking

for solutions of x2 − Dy2 = ±1 with D > 0, while for Z[ω] the corresponding

equation is x2+xy −dy2 = ±1 with d > 0. We know from our study of topographs

of hyperbolic forms that these equations have infinitely many integer solutions since

the value 1 occurs along the periodic separator line in the topograph of the principal

form when (x,y) = (1,0) , so it appears infinitely often by periodicity. For some

values of D or d the number −1 also appears along the separator line, and then it

too appears infinitely often. Thus when ∆ > 0 the ring R∆ has infinitely many units

ε = x + y
√
D or x +yω , with arbitrarily large values of x and y .

There is a nice interpretation of units in R∆ as symmetries of the topograph of the

principal form of discriminant ∆ , as we shall now describe. A unit ε in R∆ defines

a transformation Tε of R∆ by the formula Tε(α) = εα . In the case of Z[
√
D] , if

ε = p + q
√
D then

Tε(x +y
√
D) = (p + q

√
D)(x +y

√
D) = (px +Dqy)+ (qx + py)

√
D)

while for Z[ω] , if ε = p + qω we have

Tε(x +yω) = (p + qω)(x +yω) = (px + qyω
2)+ (qx + py)ω)

= (px + dqy)+ (qx + (p + q)y)ω

since ω2 =ω+d . In both cases we see that Tε is a linear transformation of x and y ,

with matrix
(
p Dq
q p

)
in the first case and

(
p dq
q p+q

)
in the second case. The determinants

in the two cases are p2−Dq2 and p2+pq−dq2 which equal N(ε) and hence are ±1

since ε is a unit. Thus Tε defines a linear fractional transformation giving a symmetry
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of the Farey diagram. Since N(εα) = N(ε)N(α) we see that Tε is an orientation-

preserving symmetry of the topograph of the norm form when N(ε) = +1 and an

orientation-reversing skew symmetry when N(ε) = −1. The symmetry corresponding

to the ‘universal’ unit ε = −1 is just the identity since
−x
−y =

x
y .

When ∆ < 0 the only interesting cases are ∆ = −3, when Tε for ε = ω is a

120 degree rotation of the topograph, and ∆ = −4 when Tε for ε = i rotates the

topograph by 180 degrees.

When ∆ > 0 there is a fundamental unit ε corresponding to the ±1 in the topo-

graph of the norm form at the vertex p/q with smallest positive values of p and q .

When N(ε) = +1 the transformation Tε is then the translation giving the periodicity

along the separating line since it is an orientation-preserving symmetry. In the oppo-

site case N(ε) = −1 the transformation Tε is an orientation-reversing skew symmetry

so it must be a glide reflection along the separator line by half a period.

Proposition 7.3. If ∆ > 0 then the units in R∆ are the elements ±εn for n ∈ Z , where

ε is the fundamental unit.

Proof : The units appear along the separator line at the regions x/y where the norm

form takes the value ±1. From our previous comments, these are the points Tnε (1/0)

as n varies over Z . Since Tε is multiplication by ε , the power Tnε is multiplication

by εn . Thus the values ±1 occur at the regions labeled x/y for εn = x + y
√
D or

εn = x+yω . The units are therefore the elements ±εn where the ± comes from the

fact that the topograph does not distinguish between (x,y) and (−x,−y) . ⊔⊓

The conjugation operation in R∆ sending α to α also gives a symmetry of the

topograph of the norm form since N(α) = N(α) . Conjugation in Z[
√
D] sends x +

y
√
D to x − y

√
D so in the Farey diagram it is reflection across the edge joining

1/0 and 0/1. Conjugation in Zω sends x + yω to x + yω = (x + y) −ω since

ω = 1 −ω , so conjugation fixes the vertex 1/0 and interchanges 0/1 and −1/1 by

reflecting across the line perpendicular to the edge from 0/1 to −1/1.

Proposition 7.4. All symmetries and skew symmetries of the topograph of the norm

form are obtainable as combinations of conjugation and the transformations Tε as-

sociated to units ε in R∆ .

Proof : It will suffice to reduce an arbitrary symmetry or skew symmetry T to the

identity by composing with conjugation and transformations Tε . If T is a skew sym-

metry we must have ∆ > 0 with −1 appearing along the separator line as well as +1.

Composing T with a glide reflection Tε then converts T into a symmetry, so we may

assume T is a symmetry from now on. If T reverses orientation of the Farey diagram

we may compose it with conjugation to reduce further to the case that T preserves

orientation. When ∆ < 0 the only possibility for T is then the identity except when

∆ = −4 and T = Tε for ε = i , or when ∆ = −3 and T = Tε for ε = ω or ω2 . If
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∆ > 0 the only possibility for T is a translation along the separator line, which is Tε

for some unit ε . ⊔⊓

Now we begin to study primes and prime factorizations in R∆ . First we have a

useful fact:

Proposition 7.5. If the norm N(α) of an element α in R∆ is prime in Z then α is

prime in R∆ .

For example, when we factor 5 as (2+ i)(2− i) in Z[i] , this proposition implies

that both factors are prime since the norm of each is 5, which is prime in Z .

Proof : Suppose an element α in R∆ has a factorization α = βγ , hence N(α) =

N(β)N(γ) . If N(α) is prime in Z , this forces one of N(β) and N(γ) to be ±1,

hence one of β and γ is a unit. This means α is a prime since it cannot be 0 or a

unit, as its norm is a prime. ⊔⊓

The converse of this proposition is not generally true. For example the num-

ber 3 has norm 9, which is not prime in Z , and yet 3 is prime in Z[i] since if we

had a factorization 3 = αβ in Z[i] with neither α nor β a unit, then the equation

N(α)N(β) = N(3) = 9 would imply that N(α) = ±3 = N(β) , but there are no ele-

ments of Z[i] with norm ±3 since the equation x2+y2 = ±3 has no integer solutions.

Now we can prove that prime factorizations always exist:

Proposition 7.6. Every nonzero element of R∆ that is not a unit can be factored as a

product of primes in R∆ .

Proof : We argue by induction on |N(α)| . Since we are excluding 0 and units, the

induction starts with the case |N(α)| = 2. In this case α must itself be a prime by the

preceding proposition since 2 is prime in Z . For the induction step, if α is a prime

there is nothing to prove. If α is not prime, it factors as α = βγ with neither β nor

γ a unit, so |N(β)| > 1 and |N(γ)| > 1. Since N(α) = N(β)N(γ) , it follows that

|N(β)| < |N(α)| and |N(γ)| < |N(α)| . By induction, both β and γ are products of

primes in R∆ , hence their product α is also a product of primes. ⊔⊓

Let us investigate how to compute a prime factorization by looking at the case

of Z[i] . Assuming that factorizations of Gaussian integers into primes are unique

(up to units), which we will prove later, here is a procedure for finding the prime

factorization of a Gaussian integer α = a+ bi :

(1) Factor the integer N(α) = a2 + b2 into primes pk in Z .

(2) Determine how each pk factors into primes in Z[i] .

(3) By the uniqueness of prime factorizations, the primes found in step (2) will be

factors of either a+bi or a−bi since they are factors of (a+bi)(a−bi) , so all

that remains is to test which of the prime factors of each pk are factors of a+bi .
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To illustrate this with a simple example, let us see how 3+ i factors in Z[i] . We have

N(3+ i) = (3+ i)(3− i) = 10 = 2 · 5. These two numbers factor as 2 = (i+ i)(1− i)

and 5 = (2+ i)(2− i) . These are prime factorizations in Z[i] since N(1± i) = 2 and

N(2± i) = 5, both of which are primes in Z . Now we test whether for example 1+ i

divides 3+ i by dividing:

3+ i

1+ i
=
(3+ i)(1− i)

(1+ i)(1− i)
=

4− 2i

2
= 2− i

Since the quotient 2−i is a Gaussian integer, we conclude that 1+i is a divisor of 3+i

and we have the factorization 3+ i = (1+ i)(2− i) . This is the prime factorization of

3+ i since we have already noted that both 1+ i and 2− i are primes in Z[i] .

For a more complicated example consider 244 + 158i . For a start, this factors

as 2(122 + 79i) . Since 122 and 79 have no common factors in Z we can’t go any

farther by factoring out ordinary integers. We know that 2 factors as (1 + i)(1 − i)

and these two factors are prime in Z[i] since their norm is 2. It remains to factor

122 + 79i . This has norm 1222 + 792 = 21125 = 53 · 132 . Both 5 and 13 happen

to factor in Z[i] , namely 5 = (2 + i)(2 − i) and 13 = (3+ 2i)(3 − 2i) , and these are

prime factorizations since the norms of 2± i and 3± 2i are 5 and 13, primes in Z .

Thus we have the prime factorization

(122+ 79i)(122− 79i) = 53 · 132 = (2+ i)3(2− i)3(3+ 2i)2(3− 2i)2

Now we look at the factors on the right side of this equation to see which ones are

factors of 122+ 79i . Suppose for example we test whether 2+ i divides 122+ 79i :

122+ 79i

2+ i
=
(122+ 79i)(2− i)

(2+ i)(2− i)
=

323+ 36i

5

This is not a Gaussian integer, so 2 + i does not divide 122 + 79i . Let’s try 2 − i

instead:
122+ 79i

2− i
=
(122+ 79i)(2+ i)

(2− i)(2+ i)
=

165+ 280i

5
= 33+ 56i

So 2−i does divide 122+79i . In fact, we can expect that (2−i)3 will divide 122+79i ,

and it can be checked that it does. In a similar way one can check whether 3+ 2i or

3 − 2i divides 122+ 79i , and one finds that it is 3 − 2i that divides 122+ 79i , and

in fact (3 − 2i)2 divides 122 + 79i . After these calculations one might expect that

122+ 79i was the product (2 − i)3(3 − 2i)2 , but upon multiplying this product out

one finds that it is the negative of 122+ 79i , so

122+ 79i = (−1)(2− i)3(3− 2i)2

The factor −1 is a unit, so it could be combined with one of the other factors, for

example changing one of the factors 2− i to i−2. Alternatively, we could replace the

factor −1 by i2 and then multiply each 3−2i factor by i to get the prime factorization

122+ 79i = (2− i)3(2+ 3i)2
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Hence for 244+ 158i we have the prime factorization

244+ 158i = (1+ i)(1− i)(2− i)3(2+ 3i)2

The method in this example for computing prime factorizations in Z[i] depended

on unique factorization. When unique factorization fails, things are more compli-

cated. One of the simplest instances of this is in Z[
√
−5] where we have the factor-

izations

6 = (2)(3) = (1+
√
−5)(1−

√
−5)

The only units in Z[
√
−5] are ±1, so these two factorizations do not differ just by

units. We can see that 2, 3, and 1±
√
−5 are prime in Z[

√
−5] by looking at norms.

Using the formula N(x+y
√
−5) = x2+5y2 we see that the norms of 2, 3, and 1±

√
−5

are 4, 9, and 6, so if one of 2, 3, or 1±
√
−5 was not a prime, it would have a factor of

norm 2 or 3 since these are the only numbers that occur in nontrivial factorizations

of 4, 9, and 6 in Z . However, the equations x2+5y2 = 2 and x2+5y2 = 3 obviously

have no integer solutions so there are no elements of Z[
√
−5] of norm 2 or 3. Thus

in Z[
√
−5] the number 6 has two prime factorizations that do not differ merely by

units.

What is secretly going on in this example is that x2+5y2 is not the only quadratic

form of discriminant −20, up to equivalence. Another form of the same discriminant

is 2x2+2xy+3y2 , and this form takes on the values 2 and 3 that the form x2+5y2

omits, even though x2+5y2 does take on the value 6 = 2·3. Here are the topographs

of these two forms, with prime values circled.
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The boxed nonprime values in the topograph of x2 + 5y2 give rise to nonunique

prime factorizations like the two factorizations of 6 given above. For example 14 =

(2)(7) = (3 +
√
−5)(3 −

√
−5) . Some numbers occur in boxes twice, leading to three

different prime factorizations. Thus 21 factors into primes in Z[
√
−5] as 3 · 7, as

(1+2
√
−5)(1−2

√
−5) and as (4+

√
−5)(4−

√
−5) . Another example is 69 = 3 ·23 =

(7+ 2
√
−5)(7− 2

√
−5) = (8+

√
−5)(8−

√
−5) .

The question of how a prime p in Z factors in R∆ can be rephrased in terms of

the norm form x2 −Dy2 or x2 + xy − dy2 , according to the following result:

Proposition 7.7. Let p be a prime in Z . Then:

(a) If either p or −p is represented by the norm form for R∆ , so N(α) = ±p for

some α in R∆ , then p factors in R∆ as p = ±αα and both these factors are prime in

R∆ .

(b) If neither p nor −p is represented by the norm form then p remains prime in

R∆ .

In statement (a) note that when ∆ < 0 the norm only takes positive values, so if a

positive prime p factors in R∆ it must factor as p = αα , never as −αα . However for

∆ > 0 the opposite can be true. For example for Z[
√

3] the topograph of x2 − 3y2

(shown in Chapter 4) contains the value −2 but not 2, so the prime 2 factors as

−(1+
√

3)(1−
√

3) in Z[
√

3] but not as αα .

Proof : For part (a), if p = ±N(α) , then p factors in R∆ as p = ±αα = ±N(α) . The

two factors are prime since their norm is ±p which is prime in Z by assumption.

For (b), if p is not a prime in R∆ then it factors in R∆ as p = αβ with neither

α nor β a unit. Then N(p) = p2 = N(α)N(β) with neither N(α) nor N(β) equal to

±1, hence we must have N(α) = N(β) = ±p . The equation N(α) = ±p says that the

norm form represents ±p . Thus if the norm form represents neither p nor −p then

p must be prime in R∆ . ⊔⊓

Proposition 7.8. If R∆ has unique factorization into primes then the only primes in

R∆ are the primes described in (a) or (b) of the preceding proposition (or units times

these primes).

Proof : Let α be an arbitrary prime in R∆ . The norm n = N(α) = αα is an integer in

Z so it can be factored as a product n = p1 · · ·pk of primes in Z . By the preceding

proposition each pi either stays prime in R∆ or factors as a product ±αiαi of two

primes in R∆ . This gives a factorization of n into primes in R∆ . A second factoriza-

tion of n into primes in R∆ can be obtained from the formula n = αα by factoring

α into primes since the first factor α is already prime by assumption. (In fact if α

is prime then α will also be a prime, but we don’t need to know this.) If we have

unique factorization in R∆ then the prime factor α of the second prime factorization

will have to be one of the prime factors in the first prime factorization of n , or a unit
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times one of these primes. Thus α will be a unit times a prime of one of the two types

described in the previous proposition. ⊔⊓

We have seen that prime factorizations in R∆ may not be unique (even up to units)

but there is one special situation in which they are:

Proposition 7.9. The factorization of a prime p in Z into primes in R∆ is always

unique up to units.

Proof : If p is prime in R∆ then uniqueness is automatic. If p is not prime in R∆
then it has a prime factorization p = ±αα and we want to show that any other prime

factorization is the same as this one, up to units. Note that a prime factorization of

p in R∆ cannot have more than two factors since N(p) = p2 is the product of two

primes in Z .

Suppose that we have a factorization p = βγ with β and γ prime in R∆ . Both

β and γ have norm ±p , so in the topograph of the norm form the number p or −p

appears in the regions corresponding to β and γ as well as α and α . By Proposi-

tion 6.2 there is a symmetry or skew symmetry of the topograph taking the α region

to the β region. By Proposition 7.4 this symmetry or skew symmetry is realizable by

a combination of conjugation and multiplication by units, hence β is a unit times α

or α . Interchanging α and α if necessary, we may assume that β is a unit times

α . The equation ±αα = βγ then implies that γ is a unit times α . Thus the two

factorizations differ only by units. ⊔⊓

There are two qualitatively different ways in which a prime p can factor as the

product of two primes in R∆ . The distinction is illustrated by the factorizations 2 =

(1+ i)(1− i) and 5 = (2+ i)(2− i) in Z[i] . The two factors 1+ i and 1− i differ only

by multiplication by a unit since −i(1 + i) = 1 − i . However, 2+ i and 2− i do not

differ just by a unit since multiplying 2+ i by the units i , −1, and −i gives −1+ 2i ,

−2− i , and 1− 2i , none of which equals 2− i . The terminology usually used for this

distinction is to say that 2 is ramified in Z[i] while 5 is not ramified in Z[i] .

Unique Factorization via the Euclidean Algorithm

Our goal now is to show that unique factorization holds for the Gaussian integers

Z[i] , and in a few other cases as well. The plan will be to see that Gaussian inte-

gers have a Euclidean algorithm much like the Euclidean algorithm in Z , then deduce

unique factorization from this Euclidean algorithem.

In order to prove that prime factorizations are unique we will use the following

special property that holds in Z and in some of the rings R∆ as well:

(∗) If a prime p divides a product ab then p must divide either a or b .

One way to prove this for Z would be to consider the prime factorization of ab , which

can be obtained by factoring each of a and b into primes separately. Then if the prime
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p divides ab , it would have to occur in the prime factorization of ab , hence it would

occur in the prime factorization of either a or b , which would say that p divides a

or b .

This argument assumed implicitly that the prime factorization of ab was unique.

Thus the property (∗) is a consequence of unique factorization into primes. But the

property (∗) also implies that prime factorizations are unique. To see why, consider

two factorizations of a number n > 1 into positive primes:

n = p1p2 · · ·pk = q1q2 · · ·ql

We can assume k ≤ l by interchanging the pi ’s and qi ’s if necessary. We want to

argue that if (∗) holds for each pi , then the qi ’s are just a permutation of the pi ’s

and in particular k = l . The argument to prove this goes as follows. Consider first

the prime p1 . This divides the product q1(q2 · · ·ql) so by property (∗) it divides

either q1 or q2q3 · · ·ql . In the latter case, another application of (∗) shows that p1

divides either q2 or q3q4 · · ·ql . Repeating this argument as often as necessary, we

conclude that p1 must divide at least one qi . After permuting the qi ’s we can assume

that p1 divides q1 . We are assuming all the pi ’s and qi ’s are positive, so the fact that

the prime p1 divides the prime q1 implies that p1 equals q1 . We can then cancel

p1 and q1 from the equation p1p2 · · ·pk = q1q2 · · ·ql to get p2 · · ·pk = q2 · · ·ql .

Now repeat the argument to show that p2 equals some remaining qi which we can

assume is q2 after a permutation. After further repetitions we eventually reach the

point that the final pk is a product of the remaining qi ’s. But then since pk is prime

there could only be one remaining qi , so we would have k = l and pk = qk , finishing

the argument.

If we knew the analog of property (∗) held for primes in R∆ we could make

essentially the same argument to show that unique factorization holds in R∆ . The only

difference in the argument would be that we would have to take units into account.

The argument would be exactly the same up to the point where we concluded that p1

divides q1 . Then the fact that q1 is prime would not say that p1 and q1 were equal,

but only that q1 is a unit times p1 , so we would have an equation q1 = ep1 with e

a unit. Then we would have p1p2 · · ·pk = ep1q2 · · ·ql . Canceling p1 would then

yield p2p3 · · ·pk = eq2q3 · · ·ql . The product eq2 is prime if q2 is prime, so if we

let q′2 = eq2 we would have p2p3 · · ·pk = q
′
2q3 · · ·ql . The argument could then be

repeated to show eventually that the qi ’s are the same as the pi ’s up to permutation

and multiplication by units, which is what unique factorization means.

Since the property (∗) implies unique factorization, it will not hold in R∆ when

R∆ does not have unique factorization. For a concrete example consider Z[
√
−5] .

Here we had nonunique prime factorizations 6 = 2 · 3 = (1 +
√
−5)(1 −

√
−5) . The

prime 2 thus divides the product (1 +
√
−5)(1 −

√
−5) but it does not divide either

factor 1±
√
−5 since (1±

√
−5)/2 is not an element of Z[

√
−5] .
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Our task now is to prove the property (∗) without using unique factorization.

As we saw in Chapter 2, an equation ax+by = 1 always has integer solutions (x,y)

whenever a and b are coprime integers. This fact can be used to show that property

(∗) holds in Z . To see how, suppose that a prime p divides a product ab . It will

suffice to show that if p does not divide a then it must divide b . If p does not

divide a , then since p is prime, p and a are coprime. This implies that the equation

px + ay = 1 is solvable with integers x and y . Now multiply this equation by b to

get an equation b = pbx+aby . The number p divides the right side of this equation

since it obviously divides pbx and it divides ab by assumption. Hence p divides b ,

which is what we wanted to show.

The fact that equations ax + by = 1 in Z are solvable whenever a and b are

coprime can be deduced from the Euclidean algorithm, in the following way. What

the Euclidean algorithm gives is a method for starting with two positive integers α0

and α1 and constructing a sequence of positive integers αi and βi satisfying the

equations

α0 = β1α1 +α2

α1 = β2α2 +α3

...

αn−2 = βn−1αn−1 +αn

αn−1 = βnαn +αn+1

αn = βn+1αn+1

From these equations we can deduce two consequences:

(1) αn+1 divides α0 and α1 .

(2) The equation αn+1 = α0x +α1y is solvable in Z .

To see why (1) is true, note that the last equation implies that αn+1 divides αn . Then

the next-to-last equation implies that αn+1 divides αn−1 , and the equation before this

then implies that αn+1 divides αn−2 , and so on until one deduces that αn+1 divides

all the αi ’s and in particular α0 and α1 .

To see why (2) is true, observe that each equation before the last one allows

an αi to be expressed as a linear combination of αi−1 and αi−2 , so by repeatedly

substituting in, one can express each αi in terms of α0 and α1 as a linear combination

xα0+yα1 with integer coefficients x and y , so in particular αn+1 can be represented

in this way, which says that the equation αn+1 = α0x +α1y is solvable in Z .

Now if we assume that α0 and α1 are coprime then αn+1 must by 1 by statement

(1), and by statement (2) we get integers x and y such that α0x + α1y = 1, as we

wanted.

Putting all the preceding arguments together, we see that the Euclidean algorithm

in Z implies unique factorization in Z .
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A very similar argument works in R∆ provided that one has a Euclidean algorithm

to produce the sequence of equations above starting with any nonzero pair of elements

α0 and α1 in R∆ . The only difference in the more general case is that αn+1 might not

be 1, but only a unit in R∆ . Thus one would apply statements (1) and (2) to a pair α0 ,

α1 whose only common divisors were units, hence αn+1 would be a unit, and then

the equation αn+1 = α0x + α1y could be modified by multiplying through by α−1
n+1

to get an equation 1 = α0x +α1y with a solution x,y in R∆ . As we have seen, this

would imply unique factorization in R∆ .

Let us show now that there is a Euclidean algorithm in the Gaussian integers Z[i] .

The key step is to be able to find, for each pair of nonzero Gaussian integers α0 and

α1 , two more Gaussian integers β1 and α2 such that α0 = β1α1 +α2 with α2 being

‘smaller’ than α1 . We measure ‘smallness’ of complex numbers by computing their

distance to the origin in the complex plane. For a complex number α = x + yi this

distance is
√
x2 + y2 . Here x2+y2 is just the norm N(α) when x and y are integers,

so we could measure the size of a Gaussian integer α by
√
N(α) . However it is simpler

just to use N(α) without the square root, so this is what we will do.

Thus our goal is to find an equation α0 = β1α1 + α2 with N(α2) < N(α1) ,

starting from two given nonzero Gaussian integers α0 and α1 . If we can always do

this, then by repeating the process we can construct a sequence of αi ’s and βi ’s where

the successive αi ’s have smaller and smaller norms. Since these norms are positive

integers, they cannot keep decreasing infinitely often, so eventually the process will

reach an αi of norm 0, hence this αi will be 0 and the Euclidean algorithm will end

in a finite number of steps, as it should.

The equation α0 = β1α1+α2 is saying that when we divide α1 into α0 , we obtain

a quotient β1 and a remainder α2 . What we want is for the remainder α2 to have a

smaller norm than α1 . To get an idea how we can do this let us look instead at the

equivalent equation
α0

α1

= β1 +
α2

α1

If we were working with ordinary integers, the quotient β1 would be the integer part

of the rational number α0/α1 and α2/α1 would be the remaining fractional part. For

Gaussian integers we do something similar, but instead of taking β1 to be the ‘integer

part’ of α0/α1 we take it to be the closest Gaussian integer to α0/α1 .

Here is an example, where we choose α0 to be 12 + 15i and α1 to be 5 + 2i .

Then:

α0

α1

=
12+ 15i

5+ 2i
=
(12+ 15i)(5− 2i)

(5+ 2i)(5− 2i)
=

90+ 51i

29
= (3+ 2i)+

3− 7i

29

Here in the last step we chose 3+ 2i as β1 because 3 is the closest integer to 90/29

and 2 is the closest integer to 51/29. Having found a likely candidate for β1 , we can

use the equation α0 = β1α1 +α2 to find α2 . This equation is

12+ 15i = (3+ 2i)(5+ 2i)+α2 = (11+ 16i)+α2
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hence α2 = 1−i . Notice that N(1−i) = 2 < N(5+2i) = 29 so we have N(α2) < N(α1)

as we wanted.

Will the process of choosing β1 as the nearest Gaussian integer to the ‘Gaussian

rational’ α0/α1 always lead to an α2 with N(α2) < N(α1)? The answer is yes because

if we write the quotient α2/α1 in the form x+yi for rational numbers x and y (so

in the example above we have x+yi =
3

29
+
−7
29
i ) then having β1 the closest Gaussian

integer to α0/α1 says that |x| ≤ 1
2

and |y| ≤ 1
2

, so

N
(α2

α1

)
= x2 +y2 ≤

1

4
+

1

4
< 1

and hence

N(α2) = N
(α2

α1

·α1

)
= N

(α2

α1

)
N(α1) < N(α1)

This shows that there is a general Euclidean algorithm in Z[i] , hence Z[i] has unique

factorization.

Just as an exercise let us finish carrying out the Euclidean algorithm for α0 =

12+ 15i and α1 = 5+ 2i . The next step is to divide α2 = 1− i into α1 = 5+ 2i :

5+ 2i

1− i
=
(5+ 2i)(1+ i)

(1− i)(1+ i)
=

3+ 7i

2
= (1+ 3i)+

1+ i

2

Notice that the fractions 3/2 and 7/2 are exactly halfway between two consecutive

integers, so instead of choosing 1+ 3i for the closest integer to (3+ 7i)/2 we could

equally well have chosen 2+ 3i , 1+ 4i , or 2+ 4i . Let us stick with the choice 1+ 3i

and use this to calculate the next αi :

5+ 2i = (1+ 3i)(1− i)+α3 = (4+ 2i)+α3

hence α3 = 1. The final step would be simply to write 1− i = (1− i)1+ 0. Thus the

full Euclidean algorithm gives the following equations:

12+ 15i = (3+ 2i)(5+ 2i)+ (1− i)

5+ 2i = (1+ 3i)(1− i)+ 1

1− i = (1− i)(1)+ 0

In particular, since the last nonzero remainder is 1, a unit in Z[i] , we deduce that

this is the greatest common divisor of 12+15i and 5+2i , where ‘greatest’ means ‘of

greatest norm’. In other words 12+ 15i and 5 + 2i have no common divisors other

than units.

The equations that display the results of carrying out the Euclidean algorithm can

be used to express the last nonzero remainder in terms of the original two numbers:

1 = (5+ 2i)− (1+ 3i)(1− i)

= (5+ 2i)− (1+ 3i)[(12+ 15i)− (3+ 2i)(5+ 2i)]

= −(1+ 3i)(12+ 15i)+ (−2+ 11i)(5+ 2i)
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If it had happened that the last nonzero remainder was a unit other than 1, we could

have expressed this unit in terms of the original two Gaussian integers, and then

multiplied the equation by the inverse of the unit to get an expression for 1 in terms

of the original two Gaussian integers.

Having shown that prime factorizations in Z[i] are unique, let us see what this

implies about the representation problem for the form x2 + y2 . Since x2 + y2 is

the norm N(x + yi) , determining whether x2 + y2 = n has an integer solution for

a given n is equivalent to determining which integers n are norms of elements of

Z[i] . Since the norm is multiplicative and all elements of Z[i] factor into primes, we

obtain all norms by taking all products of norms of primes in Z[i] . Using the unique

factorization property, we know that primes in Z[i] have norms that are either the

ordinary primes 2 and p = 4k+1 or the squares p2 of primes p = 4k+3. From this

it follows that the numbers n > 1 represented by x2 + y2 are exactly the numbers

whose prime factorization contains primes p = 4k + 3 only to even powers. This

agrees with the answer we got in Chapter 6, but the only nontrivial result from that

chapter we have used here is the fact that all primes p = 4k + 1 are represented by

x2 +y2 .

Going further, we can also answer the more subtle question of which numbers

have primitive representations by x2 +y2 . Thus we must weed out the nonprimitive

representations n = x2 + y2 = N(x + yi) . These are the ones for which both x

and y are divisible by some prime p in Z , which is the same as saying that x + yi

is divisible by p in Z[i] . In the prime factorization of x + yi in Z[i] this is saying

that we have either a prime factor p = 4k+ 3 or we have both factors α and α of a

factorization of a prime p = 2 or p = 4k+ 1.

To see what remains after these nonprimitive representations are excluded, con-

sider the prime factorization n = 2ap
k1

1 · · ·pkmm in Z , where the pi ’s are distinct odd

primes. For a primitive representation n = x2 + y2 = (x + yi)(x − yi) we cannot

have any pi be a prime p = 4k+3 since this would give p as a factor of x+yi in the

prime factorization of (x +yi)(x −yi) in Z[i] . Furthermore, we cannot have a ≥ 2

since in Z[i] we have the prime factorization 2 = (1+ i)(1− i) with 1− i = i(1+ i)

so the two prime factors of 2 in Z[i] are the same up to units, hence if 22 was a

factor of (x + yi)(x − yi) in Z[i] we would have 2 = αα as a factor of x + yi ,

forcing the representation to be nonprimitive. Thus we have shown that for primitive

representations we must have a ≤ 1 and pi ≡ 1 mod 4 for each pi .

Conversely, suppose each pi has the form 4k + 1 and hence factors as αiαi in

Z[i] . Then if we let x+yi = (1+i)aα
k1

1 · · ·αkmm with a ≤ 1, we have a representation

x2 + y2 = N(x + yi) = 2ap
k1

1 · · ·pkmm = n and this is primitive since no αi is a unit

times αi , as one can see by writing αi as a+ bi since we cannot have a = ±b , else

αi would not be prime.
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For negative discriminants it is not difficult to figure out exactly which of the

rings R∆ have a Euclidean algorithm. Recall that this means that for each pair of

nonzero elements α0 and α1 in R∆ there should exist elements β and α2 such that

α0 = βα1 + α2 and N(α2) < N(α1) . Since α2 is determined by α0 , α1 , and β , this

is equivalent to saying that there should exist an element β in R∆ such that N(α0 −

βα1) < N(α1) . The last inequality can be rewritten as N(
α0

α1
− β) < 1. Geometrically

this is saying that every point
α0

α1
in the plane should be within a distance less than 1

of a point in the lattice R∆ . We can check this by seeing whether the interiors of all

circles of radius 1 centered at points of R∆ completely cover the plane.

For Z[
√
D] with D < 0 the critical case D = −3 is shown in the first figure below,

where the triangle is an equilateral triangle of side length 1.

Here the four circles of radius 1 centered at 0, 1,
√
−3, and 1+

√
−3 intersect at the

point (1+
√
−3)/2 so this point

α0

α1
is not within a distance less than 1 of an element

of Z[
√
−3] and therefore the Euclidean algorithm fails in Z[

√
−3] . For D < −3 the

lattice Z[
√
D] is stretched vertically so the Euclidean algorithm fails in these cases

too. For D = −2 the lattice is compressed vertically so Z[
√
−2] does have a Euclidean

algorithm.

The case of Z[ω] for ω = (1+
√

1+ 4d)/2 with d < 0 is illustrated in the right

half of the figure above. Here the second row of disks are at height
√
|1+ 4d|/2 above

the first row, so from the figure we see that the condition we need is that this height

should be less than 1 +
√

3
2

. Thus we need
√
|1+ 4d| < 2 +

√
3. Squaring both sides

gives |1+ 4d| < 7+ 4
√

3 which is satisfied only in the cases d = −1,−2,−3.

In summary, we have shown the following result:

Proposition 7.10. The only negative discriminants ∆ for which R∆ has a Euclidean

algorithm are ∆ = −3,−4,−7,−8,−11 .

Notice that these are the first five negative discriminants.

For even negative discriminants it is easy to prove that unique factorization fails

in all cases when there is no Euclidean algorithm:

Proposition 7.11. Unique factorization fails in Z[
√
D] whenever D < −2 , and it also

fails when D > 0 and D ≡ 1 modulo 4 .

Proof : The number D2 − D factors in Z[
√
D] as (D +

√
D)(D −

√
D) , and it also
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factors as D(D − 1) . The number 2 divides either D or D − 1 since one of these

two consecutive integers must be even. However, 2 does not divide either D+
√
D or

D −
√
D in Z[

√
D] since (D ±

√
D)/2 is not an element of Z[

√
D] as the coefficient of

√
D in this quotient is not an integer. If we knew that 2 was prime in Z[

√
D] we would

then have two distinct factorizations of D2 −D into primes in Z[
√
D] : One obtained

by combining prime factorizations of D and D − 1 in Z[
√
D] and the other obtained

by combining prime factorizations of D +
√
D and D −

√
D . The first factorization

would contain the prime 2 and the second would not.

It remains to check that 2 is a prime in Z[
√
D] in the cases listed. If it is not

a prime, then it factors as 2 = αβ with neither α nor β a unit, so we would have

N(α) = N(β) = ±2. Thus the equation x2−Dy2 = ±2 would have an integer solution

(x,y) . This is clearly impossible if D = −3 or any negative integer less than −3. If

D > 0 and D ≡ 1 modulo 4 then if we look at the equation x2 −Dy2 = ±2 modulo

4 it becomes x2 −y2 ≡ 2, but this is impossible since x2 and y2 are congruent to 0

or 1 modulo 4, so x2 −y2 is congruent to 0, 1, or −1. ⊔⊓

This proposition says in particular that unique factorization fails in Z[
√
−3] ,

Z[
√
−7] , and Z[

√
−11] , but when we enlarge these three rings to Z[ω] for ω equal to

1+
√
−3

2
,

1+
√
−7

2
, and

1+
√
−11

2
we do have unique factorization. A similar thing happens

when we enlarge Z[
√
−8] to Z[

√
−2] . In all these cases the enlargement replaces a

nonfundamental discriminant by one which is fundamental.

One might wonder whether there are other ways to enlarge Z[
√
D] to make prime

factorization unique when it is not unique in Z[
√
D] itself. Without changing things

too drastically, suppose we just tried a different choice of ω besides (1+
√

1+ 4d)/2.

In order to do multiplication within the set Z[ω] of numbers x +yω with x and y

integers one must be able to express ω2 as mω+n , so ω must satisfy a quadratic

equation ω2 −mω − n = 0. This has roots (m ±
√
m2 + 4n)/2, so we see that

larger denominators than 2 in the definition of ω will not work. If m is even, say

m = 2k , then ω becomes k ±
√
k2 +n , with no denominators at all and we are

back in the situation of Z[
√
D] . If m is odd, say m = 2k + 1, then ω is

(
2k + 1 ±√

4k2 + 4k+ 1+ 4n
)
/2, which can be written as k+(1±

√
1+ 4d)/2 so the ring Z[ω]

in this case would be the same as when we chose ω = (1+
√

1+ 4d)/2.

It is known that there are only nine negative discriminants for which R∆ has

unique factorization, the discriminants

∆ = −3,−4,−7,−8,−11,−19,−43,−67,−163

These are exactly the nine negative discriminants for which all quadratic forms of

that discriminant are equivalent. This is not an accident since the usual way one

determines whether unique factorization holds is by proving that unique factorization

holds precisely when all forms of the given discriminant are equivalent.
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For positive discriminants the norm form is hyperbolic so it takes on both positive

and negative values. The Euclidean algorithm is then modified so that in the equations

αi−1 = βiαi +αi+1 it is required that |N(αi+1)| < |N(αi)| . It is known that there are

exactly 16 positive discriminants for which there is a Euclidean algorithm in R∆ :

∆ = 5,8,12,13,17,21,24,28,29,33,37,41,44,57,73,76

The determination of this list is much more difficult than for negative discriminants

since the norm no longer has the nice geometric meaning of the square of the distance

to the origin in the plane.

There are many positive discriminants, probably infinitely many in fact, for which

R∆ has unique factorization even though there is no Euclidean algorithm. The discrim-

inants less than 100 with this property are 53,56,61,69,77,88,89,92,93,97.

To conclude this section we will illustrate further the usefulness of unique prime

factorization in R∆ by an extended example in which we finish the determination

of which numbers are represented primitively by the form x2 + 7y2 . We studied

this problem in an example in Chapter 6 and found that a necessary condition for a

number n to be primitively represented by x2 + 7y2 was that n factors into primes

as n = 2a7bp
k1

1 · · ·pkmm where a = 0 or a ≥ 3, b ≤ 1, and the pi ’s are distinct odd

primes congruent to 1, 2, or 4 mod 7. Now we will show the converse, that each

n having such a factorization is primitively represented by x2 + 7y2 . This includes

the curious fact that all powers of 2 starting with 8 have such a representation. For

example 8 = 12 + 7 · 12 , 16 = 32 + 7 · 12 , 32 = 52 + 7 · 12 , 64 = 12 + 7 · 32 ,

128 = 112 + 7 · 12 , 256 = 92 + 7 · 52 , 512 = 132 + 7 · 72 , 1024 = 312 + 7 · 32 ,

2048 = 52+7 ·172 , 4096 = 572+7 ·112 , 8192 = 672+7 ·232 , 16384 = 472+7 ·452 ,

and 32768 = 1812 + 7 · 12 . As we will see, these are the unique primitive solutions

with positive x and y in each case. Without the primitivity requirement solutions

are much easier to construct just by repeated doubling of the solutions for n = 8 and

n = 16, so for example 32 = 22+7 ·22 , 64 = 62+7 ·22 , 128 = 42+7 ·42 , and so on.

The form x2 + 7y2 is the norm form in Z[
√
−7] , but rather than using Z[

√
−7]

which does not have the unique factorization property we will use the larger ring Z[ω]

for ω = (1+
√
−7)/2 which does have unique factorization. This implies in particular

that all primes in Z[ω] are obtained by factoring primes in Z . Primes in Z that do

not appear in the topograph of the norm form x2 +xy + 2y2 remain prime in Z[ω]

while primes that do appear factor as p = αα . The methods of Chapter 6 show that

the primes p that factor as αα are 7 (the only prime dividing the discriminant) which

factors as (
√
−7)(−

√
−7) and primes p ≡ 1,2,4 mod 7. This includes p = 2 which

has the factorization 2 = ωω . For odd primes the factorization actually takes place

in Z[
√
−7] since otherwise we would have p = a+b

√
−7

2
·
a−b

√
−7

2
=

a2+7b2

4
with a and

b both odd, so a2 and b2 would be 1 mod 8 making a2 + 7b2 zero mod 8 which

would mean p was even.
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For factorizations p = αα we will need to know whether α and α differ only

by a unit. Since the only units in Z[ω] are ±1 this is easy to figure out. In the

factorization of 7 as (
√
−7)(−

√
−7) the two factors differ by a unit. In all other cases

the two factors
a+b

√
−7

2
and

a−b
√
−7

2
do not differ just by a unit (that is, just by a sign)

since both a and b must be nonzero.

With n = 2a7bp
k1

1 · · ·pkmm as before, let pi factor as pi = αiαi . In the cases

a ≥ 3 let x and y be defined by the equation

x +y
√
−7 = 2ωa−2(

√
−7)bα

k1

1 · · ·αkmm

The reason for including the factor 2 on the right side of the equation is to guarantee

that x and y are integers since ωa−2 , as an element of Z[ω] , might have a denomi-

nator of 2. (We already noted that each αi lies in Z[
√
−7] .) When we take the norm

of x +y
√
−7 we get

x2 + 7y2 = 4 · 2a−27bp
k1

1 · · ·pkmm

so we have a solution of x2 + 7y2 = n . All that remains to check is that this is a

primitive solution when a ≥ 3 and b ≤ 1. This is where the unique factorization

property in Z[ω] will be used strongly.

Suppose that some prime p divides both x and y , hence p divides x + y
√
−7

in Z[ω] . There are several cases to consider:

• If p remains prime in Z[ω] then it cannot divide x +y
√
−7 since it does not

divide any of the prime factors of x +y
√
−7.

• If p = pi for some i then since p = αiαi , for p to divide x + y
√
−7 implies

that αi divides x +y
√
−7, which it doesn’t since αi is not a unit times αi .

• If p = 7 then it does not divide x + y
√
−7 since we assume b ≤ 1.

• If p = 2 we can divide the formula for x + y
√
−7 by 2 to obtain a formula

w + z
√
−7 =ωa−2(

√
−7)bα

k1

1 · · ·αkmm with both w and z integers. Since we assume

a ≥ 3 this means N(x + y
√
−7) is divisible by 8 so N(w + z

√
−7) = w2 + 7z2 is

divisible by 2. This implies that w and z have the same parity. If they are both even

then 2 = ωω would divide the right side of the formula for w + z
√
−7, hence ω

would divide it, a contradiction. If w and z are both odd then
w+z

√
−7

2
would be an

element of Z[ω] so 2 would again divide w+z
√
−7 leading to the same contradiction.

Thus we have found a primitive solution of x2 + 7y2 = n in the cases a ≥ 3.

When a = 0 we can omit the term 2ωa−2 from the formula for x+y
√
−7 and follow

the same line of reasoning, with a few resulting simplifications in the argument. The

only difference occurs at the very last step, where we check that 2 does not divide

x +y
√
−7 by noting that neither ω nor ω divides (

√
−7)bα

k1

1 · · ·αkmm .

We stated earlier that the equation x2+7y2 = 2k has only one primitive solution

with x and y positive. To see this, factor this equation as (x+y
√
−7)(x−y

√
−7) =

ωkωk . By unique factorization, x + y
√
−7 must equal ±ωlωm for some l and m
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with l+m = k . Choosing m = 1 gives the primitive solution ±2ωk−2 that we found

above, and the conjugate of this solution with l = 1 is another primitive solution.

Choosing l = 0 or m = 0 gives a solution in Z[ω] but not in Z[
√
−7] , otherwise

multiplying this solution by 2 = ωω would give the nonprimitive solution ±2ωk

or ±2ωk of x2 + 7y2 = 2k+2 , contradicting our earlier proof that this solution is

primitive. When l > 1 and m > 1 with l ≠m we get nonprimitive solutions obtained

from the known primitive solutions for a smaller value of k by multiplying by a power

of 2. When l = m we get the nonprimitive solution x = 2l , y = 0. Thus we have

shown that there are at most four primitive solutions. The signs of x and y can

be changed arbitrarily, so if we take x and y to be positive the number of primitive

solutions reduces to one.

A historical footnote: In the early 1900s the number theorist Ramanujan observed

that the Diophantine equation x2 + 7 = 2k has solutions for k = 3,4,5,7,15 and he

conjectured that there were no solutions for larger k . In terms of the preceding

example this is saying that the only solutions of x2 + 7y2 = 2k with y = 1 occur

in these five cases. Ramanujan’s conjecture was later proved in a paper by Skolem,

Chowla, and Lewis published in 1959.

The Correspondence Between Forms and Ideals

So far in this chapter we have focused on principal forms, and now we begin

to extend what we have done to arbitrary forms. For principal forms we began by

factoring them as a product of two linear factors whose coefficients involved square

roots, for example the factorization x2−Dy2 = (x+
√
Dy)(x−

√
Dy) in the case of

discriminant ∆ = 4D . For a general form Q(x,y) = ax2+bxy+cy2 of discriminant

∆ the corresponding factorization is a(x − αy)(x − αy) where α is a root of the

quadratic equation ax2 + bx + c = 0. Thus we have

ax2 + bxy + cy2 = a
(
x −

−b +
√
∆

2a
y
)(
x −

−b −
√
∆

2a
y
)

An equivalent equation that will be more convenient for our purposes is obtained by

multiplying both sides by the coefficient a to obtain

a(ax2 + bxy + cy2) =
(
ax +

b +
√
∆

2
y
)(
ax +

b −
√
∆

2
y
)

Notice that now in each of the two linear factors on the right the coefficients of x and

y lie in the ring R∆ since b must have the same parity as ∆ , so if ∆ = 4D we can

eliminate the denominator 2 in the coefficient of y to obtain an element of Z[
√
D]

while if ∆ = 4d+1 the fraction lies in Z[ω] since b is odd. Another thing to observe

is that the right side of the equation is just the norm N
(
ax + b+

√
∆

2
y
)

.

For a form Q(x,y) = ax2 + bxy + cy2 the set of numbers ax + b+
√
∆

2
y as x

and y range over all integers forms a lattice contained in the larger lattice R∆ in the

plane. Here we use the term lattice to refer to a set of numbers of the form αx + βy
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for fixed nonzero elements α and β of R∆ , with x and y varying over Z , and we

assume that α and β do not lie on the same line through the origin. We denote this

lattice by L(α,β) and call α and β a basis for this lattice.

In particular we have the lattice LQ = L(a, (b +
√
∆)/2) associated to the form

Q . Let us look at some examples to see what LQ can look like in the case ∆ = −4 so

R∆ = Z[i] , the Gaussian integers. In this case we have ax + b+
√
∆

2
y = ax + (b′ + i)y

where b′ = b/2, an integer since b always has the same parity as ∆ . For the principal

form x2 + y2 we have a = 1 and b′ = 0 so LQ = L(1, i) = Z[i] . Four more cases are

shown in the figures below.

2x2 + 2xy + y2 → L(2,1+ i) 5x2 + 4xy +y2 → L(5,2+ i)

00

5x2 + 6xy + 2y2 → L(5,3+ i) 13x2 + 10xy + 2y2 → L(13,5+ i)

0

0

In each case the lattice forms a grid of squares, rotated and expanded from the square

grid formed by Z[i] itself. Not all lattices in Z[i] form square grids since for example

one could have a lattice of long thin rectangles such as L(10, i) .

A 90 degree rotation of the plane about the origin takes a square lattice to itself.
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Conversely, a lattice that is taken to itself by a 90 degree rotation about the origin

must be a square lattice. To see this, observe first that the 90 degree rotation takes

the closest lattice point to the origin to another closest lattice point, with the sum

of these two lattice points giving another lattice point that is the fourth vertex of a

square of lattice points. There can be no lattice points in the interior of this square

since such a point would be closer to a corner of the square than the length of the

side of the square, which is impossible since the minimum distance between any two

points in a lattice equals the minimum distance from the origin to a lattice point.

Since 90 degree rotation is the same as multiplication of complex numbers by

i , we could also say that square lattices are those that are taken to themselves by

multiplication by i . Once a lattice has this property it follows that multiplication by

an arbitrary element of Z[i] takes the lattice into itself. Namely, if we know that iα

is in a lattice L whenever α is in L , then for arbitrary integers m and n it follows

that mα and niα are in L and hence also (m +ni)α is in L .

There is a standard term for this concept. A lattice L in R∆ is called an ideal if

for each element α in L and each β in R∆ the product βα is in L . In other words, L

is taken to itself by multiplication by every element of R∆ . The term ‘ideal’ may seem

like an odd name, but it originally arose in a slightly different context where it seems

more natural, as we will see later in the chapter. For now we can just imagine that

ideals are the best kind of lattices, ‘ideal lattices’.

The fact that all lattices LQ in Z[i] are square lattices is a special case of the

following general fact:

Proposition 7.12. Every lattice LQ associated to a quadratic form Q of discriminant

∆ is an ideal in R∆ .

Proof : To cover all discriminants at once we can write R∆ as Z[τ] for τ = (e+
√
∆)/2

where e is 0 if ∆ = 4D and 1 if ∆ = 4d+1. What we need to check in order to verify

that the lattice LQ = L(a, (b +
√
∆)/2) is an ideal is that both of the products τ · a

and τ · (b+
√
∆)/2 are elements of LQ . For the product τ ·a this means we want to

solve the equation
e+

√
∆

2
· a = ax +

b +
√
∆

2
y

for integers x and y . Comparing the coefficients of
√
∆ on both sides of the equation,

we get y = a , an integer. Substituting y = a into the equation then gives
ea
2
= ax+

ba
2

so x = e−b
2

. This is an integer since both e and b have the same parity as ∆ .

For the other product τ · (b +
√
∆)/2 we have a similar equation

e+
√
∆

2
·
b +

√
∆

2
= ax +

b +
√
∆

2
y

which we can rewrite as

eb +∆+ (e+ b)
√
∆

4
= ax +

b +
√
∆

2
y
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From the coefficients of
√
∆ we get y = (e + b)/2 which is an integer since e and b

have the same parity. Then the equation becomes

eb +∆
4

= ax +
eb + b2

4

which simplifies to ax = (∆−b2)/4. Since ∆ = b2−4ac we have the integer solution

x = c . ⊔⊓

We saw in the case of Z[i] that all ideals are square lattices, so they are obtained

from Z[i] by rotation about the origin and expansion. There are a few other negative

discriminants where the same thing happens and all ideals differ only by rotation and

rescaling, either expansion or contraction. One example is when ∆ = −8 so we have

R∆ = Z[
√
−2] which forms a rectangular lattice with

rectangles of side lengths 1 and
√

2. For an arbitrary

ideal L in Z[
√
−2] let α be a nonzero point in L closest

to the origin. Since L is an ideal, the product
√
−2α

must also be in L . Since multiplication by
√
−2 rotates

α

the plane by 90 degrees and expands it by a factor of
√

2, the set of all linear combinations αx+
√
−2αy for

integers x and y forms a rectangular sublattice L′ of

L obtained from Z[
√
−2] by rotation and expansion.

Since we chose α as the closest point of L to the origin, say of distance A to the

origin, there can be no points of L within a distance less than A of any point of L′ . In

other words, if one takes the union of the interiors of all disks of radius A centered

at points of L′ , this union intersects L just in L′ . However, this union is the whole

plane since the ratio of the side lengths of the rectangles of L′ is
√

2. Thus L equals

the rectangular lattice L′ .

This is essentially the same geometric argument we used to show that Z[
√
−2]

has a Euclidean algorithm. There were five negative discriminants ∆ for which R∆
has a Euclidean algorithm, ∆ = −3,−4,−7,−8,−11. The argument in the preceding

paragraph shows that in each of these cases all ideals in R∆ are equivalent under

rotation and rescaling. In the case ∆ = −3 the Eisenstein integers Z[ω] form a grid

of equilateral triangles so all ideals are also grids of equilateral triangles that are taken

to themselves by multiplication by ω , rotating the plane by 60 degrees.
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For ∆ = −7 and −11 the lattice R∆ = Z[ω] for ∆ = −3 is stretched vertically to form

a grid of isosceles triangles and all ideals are also grids of isosceles triangles, rotated

and rescaled from the triangles in R∆ .

We have been using the fact that multiplication by a fixed nonzero complex num-

ber α always has the effect of rotating and rescaling the plane, keeping the origin

fixed. Since multiplication by α sends 1 to α , the rescaling factor is the distance

from α to the origin and the angle of rotation is the angle between the positive x axis

and the ray from the origin to α . Since α can be any nonzero complex number, every

rotation and rescaling is realizable as multiplication by a suitably chosen α .

Let us look at some examples of discriminants where not all forms are equivalent

to see whether there is more variety in the shapes of the lattices LQ , so they are not all

obtained from R∆ by rotation and rescaling. First consider the lattices LQ in Z[
√
−6]

for the two non-equivalent forms x2+6y2 and 2x2+3y2 of discriminant −24. These

are the lattices L(1,
√
−6) = Z[

√
−6] and L(2,

√
−6) shown below.

x2 + 6y2 → L(1,
√
−6) 2x2 + 3y2 → L(2,

√
−6)

0 0

The two lattices do not appear to differ just by rotation and rescaling, and we can verify

this by computing the ratio of the distances from the origin to the closest lattice point

and to the next-closest lattice point on a different line through the origin. For the

lattice Z[
√
−6] this ratio is 1/

√
6 while for the other lattice it is 2/

√
6. If the lattices

differed only by rotation and rescaling the ratios would be the same.

As another example, consider the lattices LQ in Z[
√
−5] for the non-equivalent

forms x2 + 5y2 and 2x2 + 2xy + 3y2 of discriminant −20. The two lattices are

L(1,
√
−5) = Z[

√
−5] and L(2,1+

√
−5) .

x2 + 5y2 → L(1,
√
−5) 2x2 + 2xy + 3y2 → L(2,1+

√
−5)

0 0

Again we can check the lattices are not related just by rotation and rescaling by com-

puting the same ratios of distances, which are 1/
√

5 and 2/
√

6 for the two lattices. It

is also clear visually that the first lattice is rectangular while the second is not.
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A slightly more complicated example is Z[
√
−14] with ∆ = −56 where there are

four proper equivalence classes of forms given by x2+14y2 , 2x2+7y2 , 3x2+2xy+

5y2 , and 3x2 − 2xy + 5y2 . The corresponding lattices are L(1,
√
−14) , L(2,

√
−14) ,

L(3,1+
√
−14) , and L(3,−1+

√
−14) shown below.

0

0 0

0

Here the third and fourth forms are equivalent but not properly equivalent since their

topographs have a source vertex surrounded by the three distinct numbers 3,5,6.

The topographs are mirror images obtained by changing the sign of x or y , so the

corresponding lattices are also mirror images obtained by reflecting across the x or

y axis. No two of the four lattices are equivalent under rotation and rescaling.

The examples we have seen so far may lead one to ask how exact a correspondence

there is between proper equivalence classes of forms of a given discriminant ∆ and

the shapes of lattices that are ideals in R∆ , where two lattices that differ only by

rotation and rescaling are regarded as having the same shape. The main theorem will

be that this is an exact one-to-one correspondence for negative discriminants, while

for positive discriminants there is an analogous one-to-one correspondence with a

more subtle notion of ‘shape’ for lattices.

As a first step in this direction let us ask whether every ideal in R∆ is equal to LQ

for some form Q of discriminant ∆ . One way to see that this is not true is to observe

that the lattices LQ = L(a, (b +
√
∆)/2) have the special property that they contain

an element (b +
√
∆)/2 lying in the first row of the lattice R∆ above the x axis, but

this is not the case for all ideals since we can expand a lattice L by a positive integer

factor n to get a new lattice nL consisting of all elements nα for α in L , and nL is

an ideal if L is. Thus if we start with an ideal LQ we obtain another ideal nLQ which

has no elements in the first row of R∆ above the x axis if n > 1. However, nothing

more complicated than this can happen:

Proposition 7.13. Every ideal in R∆ is equal to nLQ for some positive integer n and
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some form Q(x,y) = ax2 + bxy + cy2 of discriminant ∆ with a > 0 .

Proof : We write R∆ as Z[τ] for τ =
√
D when ∆ = 4D and τ = (1 +

√
∆)/2 when

∆ = 4d+ 1. Let L be a lattice in Z[τ] . Since L is not entirely contained in the x axis

there exist elements m+nτ in L with n > 0. Choose such an element α =m+nτ

with minimum positive n , so α lies in the nth row of Z[τ] and there are no elements

of L in any row between the 0th and the nth rows. Since L is a lattice all elements of

L must then lie in rows numbered an integer multiple of n . For example the element

kα lies in the knth row for each integer k . These elements kα lie on a line through

the origin, and L must also contain elements not on this line, so some knth row must

contain another element β of L besides kα . The difference β−kα then lies in the x

axis and is a nonzero integer in L . Choosing a minimal positive integer p in L , the

lattice property of L implies that the integers in L are precisely the integer multiples

of p . It follows that L contains the lattice L(p,α) = L(p,m + nτ) , and in fact L is

equal to L(p,m+nτ) otherwise either p or n would not be minimal.

Now let us assume that L is an ideal in Z[τ] , not just a lattice. Then pτ lies

in L since p does. Since pτ is in the pth row of Z[τ] we must have p = an for

some positive integer a . We also know that ατ must lie in L where α =m+ nτ as

above. In the case ∆ = 4D we have τ =
√
D so ατ =mτ +nτ2 =mτ +nD . This is

in the mth row of Z[τ] so n must divide m , say m = nq . In the case ∆ = 4d + 1

we have τ2 = τ + d so ατ = (m + n)τ + nd . This is in the (m + n)th row of

Z[τ] so n divides m + n and hence also n so we can again write m = nq . Thus

L = L(p,m+nτ) = L(na,nq +nτ) = nL(a, q+ τ) . Note that L(a, q+ τ) is an ideal

since L is an ideal.

To finish the proof we would like to find integers b and c such that q + τ =

(b+
√
∆)/2 and ∆ = b2−4ac since then L(a, q+τ) will be LQ for Q = ax2+bxy+cy2

with discriminant ∆ . Consider first the case ∆ = 4D so q + τ = q +
√
D . This is an

element of the ideal L(a, q +
√
D) so if we multiply it by q −

√
D we get an integer

q2 − D lying in L(a, q +
√
D) . Thus q2 − D must be a multiple of a which is the

smallest positive integer in L(a, q+
√
D) , so we get an equation q2−D = ac for some

integer c . Hence we have (2q)2 − 4D = 4ac , and since 4D = ∆ this can be rewritten

as ∆ = b2 − 4ac for b = 2q . We also have q + τ = q +
√
D = (b +

√
∆)/2 so this

finishes the case ∆ = 4D .

In the other case ∆ = 4d+ 1 we again look at the product (q+ τ)(q− τ) . By the

same reasoning this must be a multiple of a , so (q+τ)(q−τ) = ac for some integer

c . Writing this out, we have
(
q +

1+
√
∆

2

)(
q +

1−
√
∆

2

)
= ac

(
2q + 1+

√
∆
)(

2q + 1−
√
∆
)
= 4ac

(
2q + 1

)2
−∆ = 4ac

so if we take b = 2q + 1 we have ∆ = b2 − 4ac and q + τ = q + 1+
√
∆

2
=

b+
√
∆

2
. ⊔⊓
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We have seen how to go from a quadratic form Q to an ideal LQ , and it will be

useful to go in the opposite direction as well, from an ideal L in R∆ to a quadratic

form QL of discriminant ∆ . As motivation we can start with the earlier formula

aQ(x,y) = N(ax+ b+
√
∆

2
y) which says that, up to the constant factor a , the form Q

is given by restricting the usual norm in R∆ to the elements ax+ b+
√
∆

2
y in the ideal

LQ . We can try the same thing for any lattice L = L(α,β) in R∆ , defining a quadratic

form

Q(x,y) = N(αx + βy) = (αx + βy)(αx + βy) = ααx2 + (αβ+αβ)xy + ββy2

Here the coefficients of x2 , xy , and y2 are integers since they are equal to their

conjugates. The form Q depends on the choice of the basis α,β for L . Another basis

α′, β′ can be expressed as linear combinations α′ = pα + qβ , β′ = rα + sβ with

integer coefficients. Since the change of basis can be reversed, going from α′, β′ back

to α,β , the 2× 2 matrix
(
p q
r s

)
has determinant ±1, and conversely any such matrix

gives a valid change of basis for L . Changing the basis also produces a change of

variables in the form Q(x,y) since N(α′x+β′y) = N
(
(pα+ qβ)x + (rα+ sβ)y

)
=

N
(
α(px+ry)+(β(qx+sy)

)
= Q(px+ry, qx+sy) . Here the matrix is the transpose(

p r
q s

)
, with the same determinant ±1. Thus changing the basis for L produces an

equivalent form, and every equivalent form can be realized by some change of basis

for L .

The form N(αx + βy) depends on the ordering for the two basis elements α

and β since reversing their order interchanges x and y , which gives a mirror image

topograph. We can eliminate this ambiguity by ordering α and β so that the angle

from the ray from 0 passing through α to the ray from 0 passing through β is

between 0 and π . We call this order the positive order. If we only

use positively ordered bases, then the change of basis matrices have

determinant +1 since they correspond to orientation-preserving linear

transformations of the plane. Thus if we always use positively ordered bases, the

lattice L gives rise to a proper equivalence class of quadratic forms.

The norm form N(αx + βy) associated to a lattice L = L(α,β) in R∆ might not

have discriminant ∆ . For example, if we replace L by nL = L(nα,nβ) this multiplies

the norm form by n2 and so the discriminant is multiplied by n4 . We can always

rescale a form to have any discriminant we want just by multiplying it by a suitable

positive constant, but this may lead to forms with non-integer coefficients. To illus-

trate this potential difficulty, suppose we take ∆ = −4 so R∆ = Z[i] . The lattice

L(2, i) in Z[i] yields the form N(2x + iy) = 4x2 + y2 of discriminant −16, but to

rescale this to have discriminant −4 we would have to take the form 2x2 +
1
2
y2 .

Fortunately this problem does not occur if we consider only lattices that are ideals.

By Proposition 7.13 each ideal L in R∆ is equal to a multiple nLQ = L(na,n
b+

√
∆

2
)

for some form Q(x,y) = ax2 + bxy + cy2 of discriminant ∆ with a > 0. We have
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aQ(x,y) = N(ax + b+
√
∆

2
y) , hence n2aQ(x,y) = N(nax + nb+

√
∆

2
y) which is the

norm form for L in the basis na,nb+
√
∆

2
. This basis is positively ordered since a > 0.

By dividing this norm form for L by n2a we get a form with integer coefficients and

discriminant ∆ , namely the form Q . If we change the basis na,nb+
√
∆

2
for L to

some other positively ordered basis α,β , it is still true that the form
1
n2aN(αx+βy)

has integer coefficients and discriminant ∆ since this just changes Q to a properly

equivalent form. [[[Clarify this??]]]

The scaling factor n2a has a nice geometric interpretation as the number of par-

allel translates of the lattice L (including L itself) that are needed to completely cover

the larger lattice R∆ . In the special case n = 1 this is obvious since a basis for L in

this case is a, b+
√
∆

2
with the latter point lying in the first row of R∆ above the x axis,

so we only need to translate L horizontally by the numbers 0,1, · · · , a − 1 to cover

all of R∆ . The case n > 1 follows from this case since this just amounts to rescaling

the whole plane by a factor of n , and it takes n2 parallel copies of nR∆ to cover all

of R∆ .

For a lattice L in R∆ the number of parallel translates of L needed to cover all

of R∆ is called the norm of L and written N(L) . Notice that this does not depend on

choosing a basis for L . The preceding arguments prove:

Proposition 7.14. For an ideal L in R∆ with basis α,β the form
1

N(L)
N(αx+βy) has

integer coefficients and discriminant ∆ . ⊔⊓

For an ideal L with positively ordered basis α,β the form
1

N(L)N(αx + βy) will

be denoted by QL , although a more precise notation might be QL(α,β) since the form

depends on the choice of basis.

Different ideals L in R∆ can give properly equivalent forms QL . Obviously a

rescaling nL of L gives the same form QL . More generally, suppose we multiply

all elements of an ideal L(α,β) by a fixed element γ of R∆ to get a new lattice

γL(α,β) = L(γα,γβ) which is again an ideal. Taking norms, we have N(γαx +

γβy) = N(γ)N(αx+βy) , so if N(γ) > 0 the new form N(γαx+γβy) is just a rescal-

ing of N(αx+βy) , with rescaling factor N(γL) = N(γ)N(L) . Thus after rescaling to

get discriminant ∆ we have QγL = QL when N(γ) > 0. As a technical point, we should

check that γα,γβ is positively ordered if α,β is, which we can do in the following way.

In Q(
√
∆) we have (a+b

√
∆)(x+y

√
∆) = (ax+b∆y)+(ay +bx)

√
∆ so multiplica-

tion by a+b
√
∆ is a linear transformation with matrix

(
a b∆
b a

)
. This has determinant

a2−b2∆ = N(a+b
√
∆) so it preserves orientation when N(a+b

√
∆) > 0. This means

that γα,γβ is positively oriented if α,β is positively oriented and N(γ) > 0.

In view of these observations we will say that two ideals L and L′ in R∆ are

strictly equivalent , written L ∼ L′ , if L′ = γL for some γ with N(γ) > 0, where the

word ‘strictly’ is added to emphasize the condition N(γ) > 0. It makes no essential

difference whether we require γ to be in R∆ or just in Q(
√
∆) since in the latter
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case there is some positive integer multiple nγ that lies in R∆ , so we can realize the

equivalence L ∼ γL as a composition of two equivalences L ∼ nγL ∼ γL which only

involve multiplication by elements of R∆ , namely nγ and n .

Now we can state the main result in this section:

Theorem 7.15. There is a one-to-one correspondence between the set of strict equiv-

alence classes of ideals in R∆ and the set of proper equivalence classes of quadratic

forms of discriminant ∆ . Under this correspondence an ideal L with a positively or-

dered basis α,β corresponds to the form QL =
1

N(L)
N(αx + βy) . (When ∆ < 0 we

are restricting attention just to forms with positive values, as usual.)

Thus for negative discriminants the proper equivalence classes of forms corre-

spond to the various shapes of lattices that are ideals, up to rotation and rescaling

since this is how two lattices L and αL are related when α is a complex number. For

example, for the nine negative discriminants where all forms are equivalent (hence

properly equivalent), all ideals have the same shape. We already saw this for the dis-

criminants −3,−4,−7,−8,−11 where there is a Euclidean algorithm, but the theorem

says it is also true for discriminants −19,−43,−67,−163.

Proof of Theorem 7.15: We have seen that there is a well-defined function Φ from

strict equivalence classes of ideals to proper equivalence classes of forms, induced

by sending an ideal L to the form QL . The function Φ is onto since in each proper

equivalence class of forms there are forms Q(x,y) = ax2 + bxy + cy2 with a > 0

(this is automatic for negative discriminants) and then as we saw above, Q = QL for

the lattice L = LQ .

To show that Φ is one-to-one, suppose we have two ideals L and L′ with pos-

itively ordered bases α,β and α′, β′ such that the forms QL and QL′ with respect

to these bases are properly equivalent. We can assume the basis α,β is chosen so

that QL(1,0) > 0 since this is automatic when ∆ < 0, and when ∆ > 0 the form

QL is hyperbolic with both positive and negative values in its topograph. Since QL

and QL′ are properly equivalent we can choose α′, β′ so that we have actual equality

QL(x,y) = QL′(x,y) for all x and y .

The norm forms N(αx + βy) and N(α′x + β′y) are rescalings of each other

since they rescale to QL(x,y) and QL′(x,y) which are equal. We have N(α) > 0 and

N(α′) > 0 since QL(1,0) = QL′(1,0) > 0. Let γ = β/α and γ′ = β′/α′ , elements

of Q(
√
∆) . We have N(αx + βy) = N(α)N(x + γy) and likewise N(α′x + β′y) =

N(α′)N(x + γ′y) so the two forms N(x + γy) and N(x + γ′y) are also rescalings

of each other. Note that these two forms have rational coefficients, not necessarily

integers. Since the forms N(x + γy) and N(x + γ′y) are rescalings of each other

and take the same value at (x,y) = (1,0) , namely N(1) = 1, they must actually be

equal.

Next we show that in fact γ = γ′ . Let γ = r + s
√
∆ and γ′ = r ′ + s′

√
∆ with
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r , s, r ′, s′ in Q . Consider the difference N(1+γ)−N(γ) which equals
(
(r+1)2−s2∆

)
−

(
r 2−s2∆

)
= 2r+1. Similarly N(1+γ′)−N(γ′) = 2r ′+1. Since the forms N(x+γy)

and N(x+γ′y) are equal we must therefore have r = r ′ . We also have N(γ) = N(γ′)

by evaluating both forms at (x,y) = (0,1) . Thus r 2 − s2∆ = r ′2 − s′2∆ , and from

r = r ′ we deduce that s = ±s′ . The bases 1, γ and 1, γ′ are positively ordered since

this was true for α,β and α′, β′ and multiplication by α and α′ preserves orientation

of the plane since N(α) > 0 and N(α′) > 0. Since both 1, γ and a,γ′ are positively

ordered we must have s = +s′ . Thus γ = γ′ as claimed.

The lattice L(1, γ) may not lie in R∆ since γ is only an element of Q(
√
∆) , but

we can rescale L(1, γ) to a lattice nL(1, γ) = L(n,nγ) in R∆ by multiplying by a

positive integer n such that nγ is in R∆ . Then nL(α,β) = αL(n,nγ) since L(α,β) =

αL(1, γ) . Likewise we have nL(α′, β′) = α′L(n,nγ′) with the same scaling factor n

since γ = γ′ . Thus if we use the symbol ∼ to denote strict equivalence, we have

L = L(α,β) ∼ nL(α,β) ∼ L(n,nγ) = L(n,nγ′) ∼ nL(α′, β′) ∼ L(α′, β′) = L′

This finishes the proof that Φ is one-to-one. ⊔⊓

The correspondence between forms and ideals includes nonprimitive forms as

well as primitive forms, but the ideals corresponding to primitive and nonprimitive

forms behave somewhat differently. Let us illustrate this by the example of discrimi-

nant ∆ = −12 where there are two equivalence classes of forms, given by the primitive

form x2 + 3y2 and the nonprimitive form 2x2 + 2xy + 2y2 . The ideal for x2 + 3y2

is L(1,
√
−3) = Z[

√
−3] = R∆ while for 2x2 + 2xy + 2y2 the ideal is L(2,1+

√
−3) .

0 0

The ideal for 2x2+2xy+2y2 is a lattice of equilateral triangles, and it has the special

property that it is taken to itself not just by multiplication by elements of Z[
√
−3] but

also by the 60 degree rotation given by multiplication by the element ω = (1+
√
−3)/2

in the larger ring Z[ω] which is R∆ for ∆ = −3. Hence the lattice L(2,1 +
√
−3) is

taken to itself by all elements of Z[ω] and so this lattice is an ideal in Z[ω] , not just

in the original ring Z[
√
−3] = R∆ .

More generally, suppose we start with a form Q = ax2 + bxy + cy2 of dis-

criminant ∆ and then consider the nonprimitive form kQ = kax2 + kbxy + kcy2

of discriminant k2∆ for some integer k > 1. The associated ideal LkQ is then

L(ka,
kb+k

√
∆

2
) = kL(a,

b+
√
∆

2
) = kLQ . This is an ideal not just in Rk2∆ but also in

the larger ring R∆ since it is k times an ideal in R∆ , namely k times LQ .

Let us say that an ideal L in R∆ is primitive if it is not an ideal in any larger ring

than R∆ in Q(
√
∆) . For L to be nonprimitive means therefore that L is an ideal in
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some strictly larger ring than R∆ in Q(
√
∆) .

Proposition 7.16. A form Q of discriminant ∆ is primitive if and only if the corre-

sponding ideal LQ is primitive in R∆ .

Proof : We observed above that a nonprimitive form Q of discriminant ∆ gives a

nonprimitive ideal LQ in R∆ . To show the converse, that a primitive form Q gives

a primitive ideal LQ , suppose that Q = ax2 + bxy + cy2 is a primitive form of

discriminant ∆ . We wish to show that LQ is not an ideal in any larger ring than R∆ in

Q(
√
∆) . Let us write LQ = L(a, τ) for τ = (b+

√
∆)/2) . Note that R∆ = Z[τ] since b

has the same parity as ∆ . Also Q(
√
∆) = Q(τ) .

Suppose we have an element α = r +sτ in Q(τ) such that αL(a, τ) is contained

in L(a, τ) . Here r and s are rational numbers. Our goal is to show that Q being

primitive forces r and s to be integers. This will say that α is in Z[τ] = R∆ , and

hence that L(a, τ) is a primitive ideal in R∆ .

For αL(a, τ) to be contained in L(a, τ) means that both αa and ατ are in

L(a, τ) . We have αa = ra + saτ , and for this to be in L(a, τ) which consists of

the linear combinations xa+ yτ with x and y integers means that r is an integer

and sa is an integer. It remains to see that s itself is an integer, using the condition

that ατ is in L(a, τ) .

To compute ατ we use the fact that τ is a root of the equation x2−bx+ac = 0

so τ2 = bτ − ac . Then we have

ατ = rτ + sτ2 = rτ + s(bτ − ac) = −sac + (r + sb)τ

For this to be in L(a, τ) means that sc and r + sb are integers. We already know

that r is an integer, so r + sb being an integer is equivalent to sb being an integer.

Thus we know that all three of sa , sb , and sc are integers. From this we can deduce

that s is an integer since a , b , and c have no common divisors (except 1) by the

assumption that the form Q is primitive. Namely, let us write s as a fraction
m
n in

lowest terms. Then sa being an integer says that n divides a . Similarly sb and sc

being integers says that n divides b and c . But 1 is the only common divisor of a ,

b and c so n = 1. Thus s is an integer and we are done. ⊔⊓

For negative discriminants the relation of strict equivalence of ideals corresponds

geometrically to rotation and rescaling of lattices. There is an analogous interpreta-

tion for positive discriminants but it involves replacing rotations by somewhat more

complicated motions of the plane, as we shall now see.

What we want is a geometric description of the transformation Tγ of Q(
√
∆)

defined by multiplying by a fixed nonzero element γ , so Tγ(α) = γα . For a positive

discriminant ∆ we are regarding Q(
√
∆) as a subset of the plane by giving an element

α = a + b
√
∆ the coordinates (x,y) = (a, b

√
∆) . The norm N(α) = a2 − ∆b2 is
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then equal to x2 − y2 and Tγ takes each hyperbola x2 − y2 = k to a hyperbola

x2 −y2 = N(γ)k since N(γα) = N(γ)N(α) .

To understand linear transformations of the plane that take hyperbolas x2−y2 =

k to hyperbolas x2−y2 = k′ it is convenient to changes the coordinates x and y to

X = x+y and Y = x−y . This changes the hyperbolas x2−y2 = k to the hyperbolas

XY = k whose asymptotes are the X and Y axes, at a 45 degree angle from the x

and y axes.

Notice that since (x,y) = (a, b
√
∆) , the coordinate X = x + y is just a + b

√
∆ , the

real number α we started with, while Y = x −y = a− b
√
∆ is its conjugate α .

The transformation Tγ sends α to γα so Tγ multiplies the X coordinate α by

γ . To see how Tγ acts on the Y coordinate, observe that since the Y coordinate of

α is α , the Y coordinate of Tγ(α) is Tγ(α) = γα = γ α , which means that the Y

coordinate of Tγ(α) is γ times the Y coordinate of α . Thus Tγ multiplies the Y

coordinate by γ , so we have the simple formula Tγ(X, Y ) = (γX,γY) .

A consequence of the formula Tγ(X, Y ) = (γX,γY) is that Tγ takes the X axis

to itself since the X axis is the points (X, Y ) with Y = 0. Similarly, Tγ takes the Y

axis to itself, the points where X = 0. In general, linear transformations taking both

the X and Y axes to themselves have the form T(X,Y ) = (λX,µY) for real constants

λ and µ . As a special case, when µ = λ−1 the transformations T(X,Y ) = (λX,λ−1Y)

take each hyperbola XY = k to itself. When λ > 1 the X axis is stretched by a factor

of λ and the Y axis is shrunk by λ . Thus we are sliding each hyperbola along itself

in the direction indicated by the arrows in the figure above. When λ is between 0 and

1 the situation is reversed and the Y axis is stretched while the X axis is shrunk.

When λ > 0 and µ > 0 we can rescale the transformation T(X,Y ) = (λX,µY) to
1√
λµ
T(X,Y ) = (

√
λ/µX,

√
µ/λY) which is a transformation of the type considered in

the preceding paragraph, sliding each hyperbola along itself. Thus a transformation

T(X,Y ) = (λX,µY) with λ and µ positive is a composition of a ‘hyperbola-slide’ and

a rescaling. This is analogous to compositions of rotations and rescalings in the situa-

tion of negative discriminants. Allowing λ or µ to be negative then allows reflections

across the X or Y axes as well. If both λ and µ are negative the composition of these

two reflections is a 180 degree rotation of the plane.
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Now we specialize to the situation of a transformation Tγ of R∆ given by mul-

tiplication by an element γ in R∆ with N(γ) > 0. The condition N(γ) > 0 implies

that Tγ preserves the orientation of the plane and also the sign of the norm so it

either takes each quadrant of the XY plane (north, south, east, or west) to itself or to

the opposite quadrant. In the former case Tγ is a composition of a hyperbola-slide

and a rescaling, while in the latter case there is also a composition with a 180 degree

rotation of the plane, which is just Tγ for γ = −1. The sign of γ distinguishes these

two cases since if γ > 0 the transformation Tγ takes positive numbers to positive

numbers so the positive X axis goes to itself, while if γ < 0 the positive X axis goes

to the negative X axis.

If γ is a unit with N(γ) = +1 then each hyperbola x2 −y2 = k is taken to itself

by Tγ . The two branches of the hyperbola are distinguished by the sign of X , so if γ

is positive then Tγ slides each branch along itself while if γ is negative this slide is

combined with a 180 degree rotation of the plane. If we choose γ to be the smallest

unit greater than 1 with N(γ) = +1 then the powers γn for integers n lie along the

right-hand branch of the hyperbola x2 − y2 = 1, becoming farther and farther apart

as one moves away from the origin, and Tγ slides each one of these points along the

hyperbola to the next one, increasing the X coordinate. The case ∆ = 12 is shown in

the first figure below, with R∆ = Z[
√

3] . The basic unit γ is 2 +
√

3, and the figure

shows the units ±γn for |n| ≤ 2 positioned along the hyperbola x2 − y2 = 1, with

γ2 = 7+ 4
√

3 in the upper right corner of the figure.

For some discriminants there are units γ with N(γ) = −1 in addition to those

with N(γ) = +1. The transformation Tγ for the smallest γ > 1 of norm −1 is a

composition of a hyperbola slide and reflection across the X axis. The powers γn

then lie alternately on x2 − y2 = +1 and x2 − y2 = −1. This happens for example

in Z[
√

2] with γ = 1+
√

2 as shown in the second figure above, where γ2 = 3+ 2
√

2

and γ3 = 7+ 5
√

2.

Each ideal in R∆ is taken into itself by the transformations Tγ for γ in R∆ , but

when γ is a unit each ideal is taken onto itself since the inverse transformation (Tγ)
−1

is just Tγ−1 which also takes the ideal to itself. Thus all ideals in R∆ have “hyperbolic
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symmetries”, the hyperbola-preserving transformations Tγ for units γ .

Although we can describe geometrically in terms of hyperbola slides and rescal-

ing how the ideals corresponding to properly equivalent quadratic forms of positive

discriminant are related, the result is somehow less satisfying than in the negative dis-

criminant case. Hyperbola slides are not nearly as simple visually as rotations, making

it harder to see at a glance whether two lattices are related by hyperbola slides and

rescaling or not. This may be a reflection of the fact that hyperbolic forms do not

have a canonical reduced form as elliptic forms do, making it a little more difficult to

determine whether two hyperbolic forms are equivalent.

The Class Group

The main reason we have introduced ideals is because there is a nice way to define

a multiplicative structure in the set of all ideals in R∆ . Thus every pair of ideals L and

M in R∆ has a product LM which is again an ideal. Using the correspondence between

ideals and forms, this leads to a group structure in the set of proper equivalence

classes of primitive forms of discriminant ∆ , resulting in the class group CG(∆) that

was described briefly in a few examples in the first section of Chapter 6. This group

structure was originally defined by Gauss directly on forms without introducing ideals,

but the direct definition is more complicated and has been largely supplanted by the

approach via ideals, especially since the latter approach has broader applicability.

A key property of multiplication of forms is that it corresponds to multiplication

of the numbers represented by the forms. A consequence of this will be that once one

knows which primes are represented by which forms in a given discriminant, one can

then deduce which nonprimes are represented by each form, at least in the case of

fundamental discriminants. This depends on the basic fact that all ideals in R∆ factor

uniquely into prime ideals when ∆ is a fundamental discriminant.

In order to form the product LM of two ideals L and M in R∆ one’s first guess

might be to let LM consist of all products αβ of elements α in L and β in M . This

sometimes works but not always, as we will see in an example later. The difficulty is

that for two products α1β1 and α2β2 the sum α1β1 +α2β2 might not be equal to a

product αβ of an element of L with an element of M , as it would have to be if the

set of all products αβ was to be an ideal. This difficulty can be avoided by defining

LM to be the set of all sums α1β1 + · · · + αnβn with each αi in L and each βi in

M . With this definition LM is obviously closed under addition as well as subtraction.

Also, multiplying such a sum
∑
iαiβi by an element γ in R∆ gives an element of

LM since γ
∑
iαiβi =

∑
i(γαi)βi and the latter sum is in LM since each term γαi

is in L because L is an ideal. To finish the verification that LM is an ideal we need

to check that it is a lattice since we defined ideals in R∆ to be lattices that are taken

to themselves by multiplication by arbitrary elements of R∆ . To check that LM is a

lattice we need to explain a few more things about lattices.
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We defined a lattice in R∆ to be a set L(α,β) of elements xα + yβ as x and

y range over all integers, where α and β are two fixed nonzero elements of R∆
that do not lie on the same line through the origin. More generally we could de-

fine L(α1, · · · , αn) to be the set of all linear combinations x1α1 + · · · + xnαn with

coefficients xi in Z , where not all the αi ’s lie on the same line through the origin

(so in particular at least two αi ’s are nonzero). It is not immediately obvious that

L(α1, · · · , αn) is a lattice, but this is true and can be proved by the following proce-

dure which also gives a way of computing what the lattice is.

There are three ways in which the set of generators αi for L(α1, · · · , αn) can be

modified without changing the set L(α1, · · · , αn) :

(1) Replace one generator αi with αi + kαj , adding an integer k times some other

αj to αi .

(2) Replace some αi by −αi .

(3) Interchange two generators αi and αj , or more generally permute the αi ’s in

any way.

After a modification of type (1) each integer linear combination of the new genera-

tors is also a linear combination of the old generators so the new L(α1, · · · , αn) is a

subset of the old one, but the process can be reversed by another type (1) operation

subtracting kαj from the new αi so the new L(α1, · · · , αn) also contains the old one

hence must equal it. For the operations (2) and (3) this is also true, more obviously.

Lemma 7.17. By applying some sequence of operations (1)–(3) to a set of genera-

tors αi for L(α1, · · · , αn) it is always possible to produce a new set of generators

β1, · · · , βn which are all zero except for β1 and β2 . In particular L(α1, · · · , αn) is a

lattice.

Proof : Let us write R∆ as Z[τ] in the usual way. Each αi can be written as ai + biτ

for integers ai and bi . We can then form a 2 × n matrix

(
a1 · · · an
b1 · · · bn

)
whose

columns correspond to the αi ’s. The operations (1)–(3) correspond to adding an

integer times one column to another column, changing the sign of a column, and

permuting columns.

Our aim is to use these three column operations to simplify the matrix until only

the first two columns are nonzero. First we focus on the second row. This must have a

nonzero entry since the αi ’s are not all contained in the x axis. The nonzero entries

in the second row can be made all positive by changing the sign of some columns.

Choose a column with smallest positive entry bi . By subtracting suitable multiples

of this column from other columns with positive bj ’s we can make all other bj ’s

either zero or positive integers smaller than bi . This process can be repeated using

columns with successively smaller second entries until only one nonzero bi remains.

Switching this column with the first column, we can then assume that bi = 0 for all

i > 1.
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Now we do the same procedure for columns 2 through n using the entries ai

rather than bi . Since these columns have bi = 0, nothing changes in the second

row. After this step is finished, only the first two columns will be nonzero. Note that

neither of these columns can have both entries zero since otherwise L(α1, · · · , αn)

would be entirely contained in a line through the origin. ⊔⊓

If we apply the procedure just described to a lattice L = L(α,β) that already has

just two generators, it will produce a 2 × 2 matrix with one entry in the second row

equal to zero, so we may assume the matrix is
(
a b
0 c

)
, and we can further assume that

a > 0 and c > 0. By adding a suitable integer multiple of the first column to the

second column we can then arrange that 0 ≤ b < a . This gives a basis a,b + cτ for

L that is called a reduced basis. A reduced basis is unique since a is the smallest

positive integer in L and the first row of L above the x axis is in the cth row of Z[τ] ,

with the elements of L in this row equally spaced a units apart so there is a unique

such element b + cτ with 0 ≤ b < a . Thus one can determine whether two lattices

are equal by computing a reduced basis for each and seeing whether these are equal.

(The reader might compare the procedure we have just described with what we did in

the first paragraph of the proof of Proposition 7.13 by a more geometric argument.)

One could ask whether broadening the definition of L(α1, · · · , αn) to allow an

infinite number of generators αi would lead to anything new, and the answer is No.

Consider the effect of adding one more generator αn+1 to L(α1, · · · , αn) . After find-

ing a reduced basis a,b + cτ for L(α1, · · · , αn) we can then apply the reduction

process to the matrix obtained from
(
a b
0 c

)
by adding a third column corresponding

to αn+1 . This could replace a or c by smaller positive integers, but this can happen

for only finitely many values of n and eventually the values of a and c must stabi-

lize. The value of b could not then change by enlarging L(a,b+cτ) by adding a new

generator since the enlarged lattice would have two elements b+cτ and b′+cτ with

|b − b′| < a , so |b − b′| would be a positive integer in the enlarged lattice smaller

than a , which is impossible.

Let us restrict attention now to lattices that are ideals. One way to generate such

a lattice is to start with elements α1, · · · , αn in R∆ which can assume are nonzero

and then consider the set of all elements
∑
i γiαi for arbitrary coefficients γi in

R∆ rather than just taking integer coefficients as we would be doing for the lattice

L(α1, · · · , αn) . The usual notation for this set of all sums
∑
i γiαi is (α1, · · · , αn) .

As a lattice this is the same as L(α1, α1τ,α2, α2τ, · · · , αn, αnτ) where R∆ = Z[τ]

since each coefficient γi can be written as xi+yiτ for integers xi and yi . To be sure

that (α1, · · · , αn) really is a lattice, even when n = 1, we can check that α1 and α1τ

do not lie on the same line through the origin. To see that this is so, observe first that

all points of the full lattice R∆ that lie on the line through the origin passing through

α1 are rational multiples of α1 . However, if α1τ were a rational multiple rα1 we
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would have τ = r since we assume α1 is not zero. However this is impossible since

τ is not a rational number.

Observe that if a lattice L(α1, · · · , αn) is an ideal, then L(α1, · · · , αn) is equal

to (α1, · · · , αn) since every product γαi with γ in R∆ can be rewritten as an integer

linear combination of α1, · · · , αn if L(α1, · · · , αn) is an ideal. A consequence of this,

using Lemma 7.17, is that every ideal (α1, · · · , αn) with n > 2 can be rewritten as an

ideal (β1, β2) .

While every ideal in R∆ can be written as (α,β) with two generators, only certain

special ideals can be written as (α) with a single generator, so (α) = αR∆ . Such

an ideal (α) is called a principal ideal. Under the correspondence between ideals

in R∆ and quadratic forms of discriminant ∆ , principal ideals (α) with N(α) > 0

correspond to forms equivalent to the principal form since the principal form ax2 +

bxy + cy2 has a = 1 so the associated ideal (a, b+
√
∆

2
) contains 1 and hence equals

R∆ = (1) , and then for a form Q equivalent to the principal form (hence properly

equivalent to it since the principal form has mirror symmetry) the associated ideal LQ

will be αR∆ = (α) for some α with N(α) > 0. In the case of negative discriminant

the condition N(α) > 0 holds automatically, and a principal ideal is a lattice having

the same shape as the full lattice R∆ since the lattice αR∆ is obtained from R∆ by

rotation and rescaling.

For positive discriminants a principal ideal (α) can have N(α) < 0 and then

the corresponding form might not be equivalent to the principal form. For example

for ∆ = 12 with R∆ = Z[
√

3] the form 3x2 − y2 is not equivalent to the principal

form x2 − 3y2 but rather to its negative, and the ideal associated to 3x2 − y2 is

(3,
√

3) which equals the principal ideal (
√

3) since 3 =
√

3
√

3 lies in (
√

3) . Here

N(
√

3) = −3 < 0. By contrast, when ∆ = 8 with R∆ = Z[
√

2] the principal ideal (
√

2)

has N(
√

2) < 0 but the associated form 2x2−y2 does happen to be equivalent to the

principal form.

When the class number for a given discriminant is one all forms are equivalent

to the principal form, hence properly equivalent to it, so all ideals can be expressed

as α(1) with N(α) > 0 hence are principal ideals. For negative discriminants the

converse is also true since the condition N(α) > 0 is automatic, but for positive

discriminants it can happen that all ideals are principal even though the class number

is greater than 1. An example is the case ∆ = 12 that we just considered. Here the

class number is 2 and every form is equivalent to either x2 − 3y2 or 3x2 − y2 so

every ideal is either α(1) or α(
√

3) for some α (with N(α) > 0) so every ideal is

principal.

Now we return to products of ideals. For ideals L = (α1, α2) and M = (β1, β2)

the product LM is the ideal (α1β1, α1β2, α2β1, α2β2) since each of the four products

αiβj is in LM and every element of LM is a sum of terms αβ for α = γ1α1+γ2α2 and

β = δ1β1+δ2β2 , so αβ is a linear combination of the products αiβj with coefficients
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in R∆ . Similarly the product of ideals (α1, · · · , αn) and (β1, · · · , βk) is the ideal

generated by all the products αiβj .

As an example let us compute the product of the ideals L = (2,1 +
√
−5) and

M = (2,1 −
√
−5) in Z[

√
−5] . The product LM = (2,1 +

√
−5)(2,1 −

√
−5) is then

the ideal (4,2 + 2
√
−5,2 − 2

√
−5,6) . In this ideal each generator is a multiple of 2

so we can pull out a factor of 2 to get LM = 2(2,1 +
√
−5,1 −

√
−5,3) . The ideal

(2,1 +
√
−5,1 −

√
−5,3) contains 3 and 2 so it contains their difference 1. Once

an ideal contains 1 it must be the whole ring, so (2,1 +
√
−5,1 −

√
−5,3) = (1) =

Z[
√
−5] hence LM = 2(1) = (2) . The figure below shows these ideals as lattices, with

(2,1+
√
−5) indicated by the heavy dots. This happens to be the same as (2,1−

√
−5) ,

so (2) is the square of the ideal (2,1+
√
−5) . This is the sublattice indicated by the

dots in squares.

0

This example illustrates the general fact that a product LM of two ideals L and M is

always a sublattice of both L and M since each term of a typical element
∑
iαiβi of

LM lies in both L and M by the defining property of ideals.

This example also illustrates the fact that a product LM of two ideals need not

consist merely of all products αβ of an element of L with an element of M since the

number 2 belongs to LM but if we had 2 = αβ then, computing norms, we would have

4 = N(α)N(β) . There are no elements of Z[
√
−5] of norm ±2 since N(x+y

√
−5) =

x2 + 5y2 = ±2 has no integer solutions. Thus either α or β would have norm ±1

and hence be a unit ±1 in Z[
√
−5] , but neither 1 nor −1 is in (2,1 ±

√
−5) , as one

can see in the figure.

We have defined the norm of an ideal L in R∆ geometrically as the number of

parallel translates of L , including L itself, that are needed to fill up all of R∆ , but for

primitive ideals there is another interpretation of the norm N(L) that is more like the

definition of the norm of an element α as N(α) = αα . This is given by:

Proposition 7.18. If L is a primitive ideal in R∆ with conjugate L then LL = (N(L)) ,

the principal ideal generated by the norm N(L) .

Proof : By Proposition 7.13 the ideal L is equal to nL(a,
b+

√
∆

2
) for some integer n ≥ 1

and some form ax2+bxy+cy2 of discriminant ∆ with a > 0. It will suffice to prove

the Proposition in the case n = 1 since replacing L by nL does not affect primitivity

and it multiplies N(L) by n2 , so both sides of the equation LL = (N(L)) are multiplied
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by n2 . Thus we may take L = L(a, b+
√
∆

2
) for the rest of the proof. Since L is primitive,

so is the form ax2 + bxy + cy2 by Proposition 7.16.

Let τ = b+
√
∆

2
so τ is a root of the equation x2 − bx + ac = 0. Then L = (a, τ)

and L = (a, τ) so

LL = (a2, aτ,aτ, ττ) = (a2, aτ,aτ,ac) = a(a,τ, τ, c)

The ideal (a, τ, τ, c) contains the ideal (a, τ + τ, c) = (a, b, c) . The latter ideal is all

of R∆ since it contains all integral linear combinations ma + nb + qc and there is

one such combination that equals 1 since the greatest common divisor of a , b , and c

is 1 because the form ax2 + bxy + cy2 is primitive. (We know from Chapter 2 that

the greatest common divisor d of a and b can be written as d =ma+nb , and then

the greatest common divisor of d and c , which is the greatest common divisor of a ,

b , and c , can be written as an integral linear combination of d and c and hence also

of a , b , and c .)

Thus the ideal (a, τ, τ, c) contains R∆ and so must equal it. Hence we have

LL = aR∆ = (a) and this equals (N(L)) since N(L) = a for L = L(a, b+
√
∆

2
) . ⊔⊓

Proposition 7.19. An ideal L in R∆ is primitive if and only if there exists an ideal M

in R∆ such that LM is a principal ideal.

Proof : The forward implication follows from Proposition 7.18 by choosing M = L .

For the opposite implication, suppose that LM = (α) , and let β be an element of

Q(
√
∆) such that βL is contained in L . Then β(α) = βLM is contained in LM = (α) .

In particular this says that βα is in (α) so βα = γα for some element γ of R∆ . Since

α is nonzero this implies β = γ and so β is an element of R∆ . This shows that L is

primitive. ⊔⊓

Proposition 7.20. If L and M are primitive ideals in R∆ then N(LM) = N(L)N(M) .

Proof : If L and M are primitive then so is LM by Proposition 7.19 since the product

of two principal ideals is principal. Thus we have LL = (N(L)) , MM = (N(M)) ,

and LMLM = (N(LM)) . Since LMLM = LLMM we therefore have (N(LM)) =

(N(L))(N(M)) = (N(L)N(M)) . This implies N(LM) = N(L)N(M) since for an ideal

(n) with n > 0, the smallest positive integer in (n) is n , as is evident from the fact

that (n) is the lattice L(n,nτ) for R∆ = Z[τ] . ⊔⊓

Interestingly enough, the formula LL = (N(L)) and the multiplicative property

N(LM) = N(L)N(M) for primitive ideals can fail to hold for nonprimitive ideals.

A simple example is provided by the ideal L = (2,1 +
√
−3) in Z[

√
−3] which we

considered earlier in this section as an example of a nonprimitive ideal corresponding

to the nonprimitive form 2x2 + 2xy + 2y2 of discriminant −12. Here L = L and

the ideal L2 = LL is (2,1+
√
−3)(2,1−

√
−3) = (4,2+ 2

√
−3,2− 2

√
−3,4) . Of these
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four generators we can obviously drop the repeated 4, and we can also omit the third

generator which is expressible in terms of the first two generators as the first generator

minus the second generator. We are left with the ideal (4,2+2
√
−3) = 2(2,1+

√
−3) .

Thus we have L2 = LL = 2L . Looking at the figure, we see that N(L) = 2 and hence

N(2L) = 22N(L) = 8 so N(L2) ≠ N(L)2 . This shows that N(LM) need not equal

N(L)N(M) for nonprimitive ideals. Also we see from the figure that LL ≠ (N(L)) since

2L ≠ (2) . In fact LL is not even a principal ideal since 2L is a lattice of equilateral

triangles while principal ideals have the same shape as the rectangular lattice Z[
√
−3] .

0 0 0

L L2 = 2L (2)

Now at last we come to the construction of the class group CG(∆) . As a set,

CG(∆) is the set of proper equivalence classes of primitive forms of discriminant ∆ .

The group structure will come from the one-to-one correspondence in Theorem 7.15

and Proposition 7.16 between proper equivalence classes of primitive forms of dis-

criminant ∆ and strict equivalence classes of primitive ideals in R∆ . Thus it will

suffice to define a group structure on the set of strict equivalence classes of primitive

ideals in R∆ .

We will use the notation [L] to denote the strict equivalence class of a primi-

tive ideal L in R∆ and we will view elements of CG(∆) as such classes [L] . The

multiplication operation in CG(∆) is defined by taking products of ideals, so we set

[L][M] = [LM] . To check that this is well defined we need to see that choosing dif-

ferent elements L′ = αL and M′ = βM of the classes [L] and [M] does not affect

[LM] . This is true because L′M′ = αβLM so [LM] = [L′M′] . Here we are dealing

with strict equivalence classes of ideals so we are assuming N(α) > 0 and N(β) > 0

and hence N(αβ) > 0. (As always this condition is automatic when ∆ is negative.)

Proposition 7.21. CG(∆) is a commutative group with respect to the multiplication

[L][M] = [LM] .

Proof : The commutativity property [L][M] = [M][L] is easy since this amounts to

saying [LM] = [ML] , which holds since multiplication of ideals is commutative, LM =

ML , because multiplication in R∆ is commutative.

To have a group there are three things to check. First, the multiplication should be

associative, so ([L][M])[N] = [L]([M][N]) . By the definition of the product in CG(∆)
this is equivalent to saying [LM][N] = [L][MN] which in turn means [(LM)N] =

[L(MN)] , so it suffices to check that multiplication of ideals is associative, (LM)N =

L(MN) . The claim is that each of these two products consists of all the finite sums
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∑
iαiβiγi with αi , βi , and γi elements of L , M , and N respectively. Every such sum

is in both (LM)N and L(MN) since each term αiβiγi is in both of the ideals (LM)N

and L(MN) . Conversely, each element of (LM)N is a sum of terms (
∑
j αjβj)γ so

it can be written as a sum
∑
iαiβiγi , and similarly each element of L(MN) can be

written as a sum
∑
iαiβiγi . Thus we have (LM)N = L(MN) .

Next, a group must have an identity element, and the class [(1)] of the ideal (1) =

R∆ obviously serves this purpose since (1)L = L for all ideals L , hence [(1)][L] =

[L] . There is no need to check that [L][(1)] = [L] as one would have to do for a

noncommutative group since we have already observed that multiplication in CG(∆)
is commutative.

The last thing to check is that each element of CG(∆) has a multiplicative inverse,

and this is where we use the condition that we are considering only primitive ideals

in the definition of CG(∆) . As we showed in Proposition 7.18, each primitive ideal

L satisfies LL = (n) where the integer n is the norm of L . Then we have [L][L] =

[(n)] = [(1)] where this last equality holds since the ideals (n) and (1) are strictly

equivalent, the norm of n being n2 , a positive integer. Thus the multiplicative inverse

of [L] is [L] . Again commutativity of the multiplication means that we do not have

to check that we have an inverse for multiplication both on the left and on the right.

⊔⊓

There is a variant of the class group in which the relation of strict equivalence of

ideals is modified by deleting the word “strict”, so an ideal L is considered equivalent

to αL for all nonzero elements α of R∆ without the condition that N(α) > 0. The

preceding proof that CG(∆) is a group applies equally well in this setting by just

omitting any mention of norms being positive. Sometimes the resulting group is

called the class group while CG(∆) is called the strict class group or narrow class

group. However, for studying quadratic forms the better notion is strict equivalence,

which is why we are using this for the class group CG(∆) .
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Exercises

1. (a) Show that if α and β are elements of Z[
√
D] such that α is a unit times β , then

N(α) = ±N(β) .

(b) Either prove or give a counterexample to the following statement: If α and β are

Gaussian integers with N(α) = N(β) then α is a unit times β .

2. Show that a Gaussian integer x + yi with both x and y odd is divisible by 1+ i

but not by (1+ i)2 .

3. There are four different ways to write the number 1105 = 5 · 13 · 17 as a sum

of two squares. Find these four ways using the factorization of 1105 into primes in

Z[i] . [Here we are not counting 52 + 22 and 22 + 52 as different ways of expressing

29 as the sum of two squares. Note that an equation n = a2 + b2 is equivalent to an

equation n = (a+ bi)(a − bi) . ]

4. (a) Find four different units in Z[
√

3] that are positive real numbers, and find four

that are negative.

(b) Do the same for Z[
√

11] .

5. Make a list of all the Gaussian primes x + yi with −7 ≤ x ≤ 7 and −7 ≤ y ≤ 7.

(The only actual work here is to figure out the primes x + yi with 0 ≤ y ≤ x ≤ 7,

then the rest are obtainable from these by symmetry properties.)

6. Factor the following Gaussian integers into primes in Z[i] : 3 + 5i , 8 − i , 10 + i ,

5− 12i , 35i , −35+ 120i , 253+ 204i .

7. In this problem we consider Z[
√
−2] . To simplify notation, let ω =

√
−2, so el-

ements of Z[ω] are sums x + yω with x,y ∈ Z and with ω2 = −2. We have

N(x + yω) = x2 + 2y2 = (x +yω)(x −yω) .

(a) Draw the topograph of x2+2y2 including all values less than 70 (by symmetry, it

suffices to draw just the upper half of the topograph). Circle the values that are prime

(prime in Z , that is). Also label each region with its x/y fraction.

(b) Which primes in Z factor in Z[ω]?

(c) Using the information in part (a), list all primes in Z[ω] of norm less than 70.

(d) Draw a diagram in the xy -plane showing all elements x + yω in Z[ω] of norm

less than 70 as small dots, with larger dots or squares for the elements that are prime

in Z[ω] . (There is symmetry, so the primes in the first quadrant determine the primes

in the other quadrants.)

(e) Show that the only primes x + yω in Z[ω] with x even are ±ω . (Your diagram

in part (d) should give some evidence that this is true.)

(f) Factor 4+ω into primes in Z[ω] .

8. (a) According to Proposition 7.11, unique factorization fails in Z[
√
D] when D = −3

since the number D(D− 1) = 12 has two distinct prime factorizations in Z[
√
D] . On



Chapter 7 Quadratic Fields 200

the other hand, when we enlarge Z[
√
−3] to Z[ω] for ω =

1+
√
−3

2
unique factorization

is restored. Explain how the two prime factorizations of 12 in Z[
√
−3] give rise to

the same prime factorization in Z[ω] (up to units).

(b) Do the same thing for the case D = −7.

9. Find a recursive formula for a primitive solution of x2 + 7y2 = 2k , showing how a

solution for one value of k gives rise to a solution for the next larger value of k .
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A. Hurwitz, Über die Reduktion der binären quadratischen Formen, Math. Annalen 45 (1894),

85–117.

— This article (in German) is where the Farey diagram first appeared.



Index 202

Index

0-hyperbolic form 74, 82

Arithmetic Progression Rule 61

character 132

character table 132

Chinese Remainder Theorem 123

class number 92

complex numbers 12

continued fraction 26, 51, 65

convergents 29

dense set of points 3, 8

determinant rule 23, 33

Diophantine equation 12

Diophantus 12

discriminant 74

dual tree of Farey diagram 60

Eisenstein 143

elliptic form 74, 80

equivalence of quadratic forms 84

Euclidean algorithm 27, 164

Euler’s formula for the Legendre symbol 142

Euler 43, 44, 93, 142

fan 28

Farey diagram and continued fractions 29

Farey diagram 16, 60

Farey series 18

Fermat’s Last Theorem 13

Fermat’s Little Theorem 143

Fermat 11, 13

Fibonacci numbers 38

fixed point 49

form 59

formulas for Pythagorean triples 3

fundamental discriminant 92

fundamental unit 159

Gauss conjecture on class number 92

Gauss 12

Gaussian integers 12, 154

genus 116, 129, 136

glide-reflection 49, 68



Index 203

golden ratio 39

greatest common divisor 27

hyperbolic form 74, 76

infinite continued fraction 37

integer lattice 37

Lagrange’s Theorem 43, 54

Lambert 43

lattice point 37, 97

Legendre symbol 121

LF(Z) 47

linear Diophantine equations 36

linear fractional transformation 46

mediant 17

monotonicity property 77

negative Pell’s equation 69

nonunique prime factorization example 162

norm 157

orientations 55

palindrome 67

parabolic form 74, 82

partial quotient 27

Pell’s equation 11, 69

periodic continued fraction 42

periodic separator line 63, 76

prime 156

primitive pair 59

primitive Pythagorean triple 1, 4

primitive quadratic form 92

primitive representation 59

principal form 74

proper equivalence of forms 91

Pythagorean triple 1, 9, 22

quadratic form 9, 59

quadratic reciprocity 121, 142

ramified prime 164

rational point 1

rational point on a circle 1

rational points on a sphere 7

rational points on quadratic curves 6

reduced elliptic form 87



Index 204

reduced hyperbolic form 87

representation problem 59, 109

Second Arithmetic Progression Rule 75

separating edge 76

separator line 63, 76

skew symmetry 90

source edge 81

source vertex 81

stereographic projection 8

strip of triangles 28

strip 49

symmetry 88

topograph 61

unique factorization 157

unit 156

Wilson’s Theorem 143

zigzag path 29


