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Concepts Covered

The NCurses library, AIO Library

Alarms and interval timers alarm, pause, nanosleep,
Signals revisited, signal-driven 1/0 setitimer, getitimer, aio_ read,
Asynchronous 1/0 aio__return, ato_ error

6.1 Introduction

An event-driven program is a program in which the flow of control of the program depends upon the
occurrence of external events. The typical event-driven program remains in a state in which it listens
for or awaits events, selects which events to respond to next, responds to them, and then returns to
its listening state. Event driven programs must have some type of event recognition mechanism and
event handling mechanism. Unlike sequential programs, event-driven programs must work correctly
in an environment in which unexpected, dynamic, external stimuli come from sources such as users,
hardware, or other processes.

6.2 Common Features of Event-Driven Programs

Event-driven programs include programs with graphical user interfaces, operating systems, device
drivers, control system software, and video games, to name a few. Writing video games is a good
means to master event-driven programming, because their requirements include those commonly
encountered in other event-driven programs (EDPs), and because it is generally fun to write them.
Typical video games need to handle the following:

Spatial control Like many other EDPs, video games have to manage the two-dimensional screen
image, maintaining information about where all of its objects are located.

Timing Video games, like many EDPs, usually have moving images whose velocities are moni-
tored and controlled by the game. Games may also time the user’s inputs. They often
have to keep track of clock time and cause certain events to happen at specific times or
at specific intervals of time.

Asynchronous inputs and signals Video games, like all EDPs, have to respond to unpredictable user
inputs such as mouse clicks, mouse motion, and keystrokes, as well as inputs from other
sensors. These events are asynchronous with respect to the execution of the program.

Process synchronization Video games usually have multiple threads of control. One or more objects
might be moving independently across the screen while the user independently types
or uses a tracking device. The program has to keep track of and synchronize these
independent processes and objects.
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6.3 Terminal-based Games

Early UNIX systems often came bundled with a large variety of terminal-based games, i.e., games
that ran in a pseudo-terminal window rather than a console window. The distinction between
these is that a terminal window is a character I/O device that treats its display area as a two-
dimensional array whose cells can contain characters, whereas a console window is a bit-mapped
display device each of whose pixels can be accessed individually. Historically, these games were
located in /usr/games.

These days, system administrators do not install the games, one reason being because they know
that users tend to use up system resources having fun instead of Workingﬂ Another reason for
not installing the terminal-based games is that there are now many free games that run on top of
the X Windows system, using bit-mapped displays, making the older games seem less fun to those
accustomed to the advanced technology. Perhaps those who appreciate the old terminal-based games
are the same people who still appreciate black-and-white movies.

The great advantage of writing a terminal-based game over one that uses a GUL, is that it is easier
to concentrate on the principles rather than the details of the windowing system. Although it is
more exciting to create a game that runs in a graphics window, that requires an entirely different
set of topics to learn and it would be a distraction from the objective of learning how to control
and use signals, how to use time and synchronization, and how to control what the user is able to
do with the keyboard. If you also had to learn about video cards, X Windows, and widgets and
windows, your time would be consumed with that instead.

We will write a game similar to the game of pong, which runs in a terminal window. The game of
pong is a simplification of an arcade game. In pong, there are two controlled objects: a ball and a
paddle. The ball is a small circle or square that moves across the screen at some fixed speed. The
paddle is a vertical line segment that the user can move up and down with keystrokes. The edges
of the terminal window are walls off of which the ball bounces.

6.4 The Curses (NCurses) Library

Recall that in Chapter 1 we saw that we could configure the terminal by sending various escape
sequences to it, such as "\033[7m" to reverse the colors of the video display. We also saw how
we could move the cursor around, clear various portions of the screen, and do other things by
sending escape sequences to the terminal. With different kinds of terminals requiring different
escape sequences, the task of writing a program that controls a terminal becomes complex, if this
is the only means of configuring and controlling terminals.

Fortunately, in UNIX, it is relatively easy to write programs that control the terminal, because
UNIX systems come bundled with a character-oriented graphics library called Curses, the header
file for which is <curses.h>. Curses is basically a library that wraps the complexity of terminal
capabilities into an easy to use interface. According to Eric Raymond in the September issue of the
Linux Journal,

"The first Curses library was hacked together at the University of California at Berkeley in about
1980 to support a screen-oriented dungeon game called rogue. It leveraged an earlier facility called
termcap, the terminal capability library, which was used in the vi editor and elsewhere."

'In the past, people would spend idle time playing snake, worm, hangman, chess, or even rogue. The first thing
one did when given an account on a UNIX system was to check the contents of /usr/games.
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AT&T Bell Labs saw the virtues of Curses and developed their own version and incorporated it into
SVR1. The SVRI1 Curses library had many attractive features, but it was proprietary and it was
based on a binary file format called terminfo, while the BSD version was free and based on the
termcap file, a plain text file. Programmers were torn between the proprietary, enhanced Curses
of SVR1 and the free, but limited feature BSD version. In 1982, Pavel Curtis solved the problem
by rewriting a version of Curses based on the SVR1 version, but his was free and text-based. This
made it possible for hackers to improve on it. To shorten the story, from Curses eventually came
Ncurses (new curses), with more features and multi-terminal capabilities.

We will use the Ncurses library. The Ncurses library is a library of more than one hundred graphics
functions for manipulating a character-oriented display device. The functions treat the display
device as a two-dimensional array of characters, with coordinate (0,0) in the upper left corner. The
library also contains routines for creating and manipulating windows, sub-windows and panels, and
menus. We will focus our attention on a small set of features of the library.

6.4.1 NCurses Basics

Most window managers, whether on UNIX, the Macintosh operating systems, or the various Win-
dows operating systems, follow the same principle of drawing: they maintain two data structures
representing the canvas on which they draw. One, the visible canvas, is what is currently in view
on the physical display device, and the other, the hidden canvas, is a canvas stored in memory,
on which drawing operations take place. This terminology is not standardized and goes by various
names, depending on the particular system one uses. I will use the term double-buffering to describe
this method of rendering, which is what it is called in graphics applications.

In double buffering, applications draw on the hidden canvas, and when it is ready to be displayed,
it is drawn onto the screen. In effect the hidden canvas becomes the visible canvas, and the memory
used for the visible canvas becomes the hidden canvas. The operation of drawing the hidden canvas
on the screen is known by various names, but the most common is screen updating. In reality, screen
updating is optimized to redraw only those portions of the screen that are different than what is on
display.

NCurses uses a form of double buffering. Because NCurses manages the content of a terminal
window, the concept of a “screen” in this context is not the monitor’s full visible area, but the area
enclosed within the terminal emulation window. Henceforth, a screen refers to the content area of
a terminal window. In NCurses, screen updating is called refreshing.

NCurses, like many graphical libraries, uses a coordinate system derived from matrix coordinates
rather than Cartesian coordinates. The origin is at the upper left corner of the screen, and the pair
(v,x) representing the coordinates of a point (or character in this case) is the row number followed
by the column number, as shown in Figure

It defines a data structure called a WINDOW to represent a window. A WINDOW structure describes a
sub-rectangle of the screen, possibly the entire screen. It includes the window’s starting position on
the screen (the (y, x) coordinates of the upper left hand corner), its size, and various properties. It
is opaque to the programmer; you do not have access to its members. You can write to a window as
though it were a miniature screen, scrolling independently of other windows on the physical screen.
A window is a purely internal representation. It is used to build and store a potential image of a
portion of the terminal. It doesn’t bear any necessary relation to what is really on the terminal
screen.
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Figure 6.1: NCurses coordinate system

A screen is a special window that is the size of the terminal screen, i.e., it starts at the upper
left hand corner and extends to the lower right hand corner. There are two predefined screeng?t
stdscr, which is automatically provided for the programmer, and curscr, for current screen, which
is a screen image of what the terminal currently looks like. The programmer can draw on stdscr,
but not on curscr.

6.4.2 Screen Updating

Each time that the application makes changes to a window that it wants to become visible on the
screen, it needs to refresh the screen. There are two functions that make the section of the terminal
screen corresponding to a window reflect the contents of the window structure: refresh() and
wrefresh(). If the application is drawing on stdscr, which is the default screen, then it simply
calls

refresh()

If it is drawing on a WINDOW named win, and it wants to draw that window’s content on the screen,
it calls

wrefresh(win)

refresh() is equivalent to wrefresh(stdscr). It is actually a macro.

A piece of screen “real estate” may be within the extent of any number of overlapping windows. If
two windows, winl and win2, overlap, and wrefresh(win2) is called, the library determines how to
redraw the screen most efficiently, replacing those portions of the screen within the intersection of
winl and win2. It only redraws a window if that window’s content has changed in some way. You
can call touchwin{win) to tell NCurses that the entire window win has changed, forcing a redraw
when wrefresh(win) is called.

2There is a third, hidden screen that represents the logical screen on which the hidden drawing takes place.
NCurses documentation calls it the virtual screen.
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6.4.3 Building Programs

All programs using NCurses must include the <ncurses.h> header file and the standard C 1/0 li-
brary header file <stdio.h>. The header file <ncurses.h> is often just a symbolic link to <curses.h>,
so they are often interchangeable. Because the NCurses library is not in the linker’s standard set
of libraries, you have to build explicitly with -1ncurses in the command (following all files that
reference NCurses symbols):

$ gcc -o myprog myprog.c -lncurses

6.4.4 A Core Repertoire of Functions

This is not intended to be a comprehensive tutorial on NCurses. For that you should consult any
of the several on-line reference manuals or tutorials. The objective here is to explain the underlying
concepts of the core library and to describe many of the functions that it provides. Below is a
collection of the most important, and basic, representative functions for terminal configuration,
cursor movement, output and input.

Configuration Functions

initscr() Initialize the curses library and create a logical screen.

endwin() Turn off curses and reset the screen.

wrefresh(win) Draw what is in the logical window win into the physical
display. Remember that refresh() is the same as
wrefresh(stdscr).

clear() Clear the screen.

keypad(stdscr,TRUE) Enable use of function and keypad keys (arrows, F1, ...)

Output and Cursor Movement

move (r,c) Move the cursor to screen position (r,c).

getyx(win,y,x) Get the current cursor position. This is a macro so y and x
do not have to be passed by address.

addch(c) Draw character ¢ on the screen at the current cursor

position, advancing the cursor to the end of the character. If
¢ is a tab, newline, or backspace, the cursor is moved
appropriately within the window. It wraps if it reaches the
right margin.

addstr(str) Draw the character string str on the screen at the current
cursor position, advancing the cursor to the end of the
string. It is equivalent to calling addch() for every character
in the string.

addnstr(str, n) Like addstr(), except that at most n characters of str will
be written. If n is -1, then the entire string will be added,
up to the maximum number of characters that will fit on the
line, or until a terminating null is reached. Thus,
addstr(str) is the same as addnstr(str,-1).
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mvaddch (x,y,c)

addchstr(str)

printw(fmt, ...)

Input
getch()
getstr(str)

scanw(fmt, ...)

Window Functions
win = newwin(l,c,y,x)

mvwin(win,y,x)
win = dupwin(oldwin)

delwin(win)

putwin(win, filep)

win = getwin(filep)

Synopsis.

Move the cursor to position (x,y) on the screen and draw
the character at that position, advancing cursor to the end
of the character.

Like addstr(str), except that: the cursor does not
advance, it does not perform any kind of checking (such as
for the newline, backspace, or carriage return characters), it
does not expand other control characters to ~-escapes, and
it truncates the string if it crosses the right margin, rather
than wrapping it around to the new line.

The same as printf () in C but prints to current cursor
position.

Read a character from the window.

Read characters until a newline is received and store
(without newline) in str (allocated by caller)

The same as scanf () in C — like calling getstr(), passing
to sscanf ().

Create a new window with 1 lines, ¢ columns, whose upper
left corner is at (y,x). Returns pointer to new window.
Move window pointed to by win to position (y,x)

Make a duplicate of oldwin, returning pointer to the new
window.

Delete the window win, releaging all of its resources.

Write all data associated with the window pointed to by win
into the FILE stream to which filep points. Returns ERR if
the underlying write fails.

Read all window data stored into the file by putwin, and
create and initialize a new window with that data. This
returns a pointer to the new window.

The initscr() function initializes the terminal in curses mode. It may also clear the screen in
certain implementations. This always must be called first. It initializes the NCurses system and
allocates memory for the stdscr and curscr windows and some other data-structures. When a
program is finished, it should always call endwin() to reset the terminal and release curses resources.

After initializing curses, there are several functions that can be used to configure the terminal. It
is usual to clear the screen with clear(), and if the program wants to receive key-presses from the
keypad and function keys, then it should call keypad(stdscr, TRUE). Other functions not shown
above include functions that affect the terminal driver processing modes — raw() and cbreak(),
echo() and noecho(), and halfdelay(). We will discuss these later.

Output functions can be divided into three families:
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addch()  Print a character at the cursor position, advancing cursor

addstr() Print a string at the cursor position, advancing cursor

printw() Print formatted output similar to printf (), advancing cursor

Thus, addch () adds a character, addstr () adds a string, and printw() prints formatted text. For
each of these there are many variants, which are described below.

The cursor can be moved without output using the move () function. Its current position can be
retrieved using getyx(). The mvaddch() function is a representative of a class of functions that
perform a cursor movement prior to an output operation. Generally speaking, for each output
function such as addch(), there is a corresponding function of the form mvaddch(). For example,
there is a mvaddstr() function and a mvprintw() function.

The basic input functions are getch () and the string counterpart, getstr (), and the C-like scanw (),
which is like scanf (). Notice that getch() has no argument, but getstr() expects a pointer to
an allocated buffer in which to store the entered text.

Finally, all of the above functions work on the standard screen, stdscr. They are all macros. For
each of them, there is a function that operates on arbitrary windows, and a naming convention
that makes it pretty easy to guess what they are. For example, wgetch(win) is an input function
that reads a character from the current window, win, and getch() is defined as wgetch(stdscr).
Similarly, waddch (win,ch) puts a character at the cursor position in win and addch(ch) is defined
as waddch(stdscr,ch).

One can create windows using newwin(), which allocates the memory on the heap and returns a
pointer to it. If newwin() is passed 0 for either lines or columns, that dimension is set to the
maximum it can be and fit within the terminal window. The function makes sure that the new
window does not extend beyond the bounds of the terminal screen in all cases. A window can be
moved using mvwin(); you have to refresh to see the change. This does not erase the old window
from the screen, which you have to do yourself. You can make a copy of a window with dupwin(),
and delete a window with delwin().

6.4.5 Important Points About Windows and Refreshing

e It is a good idea to call refresh() or wrfresh() whenever you make changes to the screen,
but you should bear in mind several important points.

e The functions of the addch() and addstr() families that write strings and characters to the
screen always call wrefresh() themselves, so that it is not necessary to refresh when adding
strings or characters. This is not true of the printw() functions.

e When drawing many windows to the screen, if wrefresh() is called for each window, it
can cause bursty output and poor performance. The wrefresh() function actually calls two
functions, wnoutrefresh() and doupdate (). A call to wnoutrefresh(win) copies the WINDOW
pointed to by win onto the logical screen, and doupdate() copies the logical screen to the
physical screen. Therefore, it is better to call wnoutrefresh(win) for each window to be
written to the screen, followed by a single call to doupdate ().
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e The input functions of the getch() and getstr() families will call wrefresh() on the given
window if it has been moved or modified since its last refresh. If echo is on, then automatically
a refresh will take place, since this is a modification. To be clear, getch () will call refresh(),
and wgetch(win) will call wrefresh(win). This can have serious consequences on the behavior
of your program, since the cursor will move into the window on which wgetch(win) is being
called, and refreshes may have unexpected consequences as well.

e Lastly, as a general rule, you should never write NCurses programs that mix the use of the
standard screen, stdscr, and other windows. The functions that perform input and output
and refreshing on the standard screen interact in unexpected ways with other windows. If you
want to write simple programs, do not use windows in them, and conversely, if you feel that
the program would benefit from using windows, then do not use any functions that operate
on the standard screen.

6.4.6 A Few Simple Programs

In keeping with the tradition, we start with a hello-world program.

Listing 6.1: helloworld.c

Listing . helloworld.c
#include <ncurses.h>

int main ()

{
initscr (); /* initialize the library =/
printw (" Hello World !!!\n"); /*x print at cursor x/
refresh (); /* update screen (unnecesssary) x/
getch (); /* wait for a keypress x/
endwin () ; /* clean up and quit curses x/
return 0;

}

The input call getch() is used so that the screen does not disappear before we can see it. The next
program is a bit more interesting.

Listing 6.2: drawpattern.c

#include <stdio.h>
#include <curses.h>

int main ()

{
char pattern[] = "1234567890";
int ij

/* Initialize NCurses and clear the screen x*/
initscr ();
clear ();
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/* This will wrap across the screen x/
move (LINES /2 ,0);
for (i =1; i <= 8; i++ ) {

addstr ( pattern );

addch (> 7);

}

/#* Park the cursor at bottom x/
move (LINES—1,0);

addstr ("Type any char to quit:");
refresh (); /+* not needed x*/

/+* Wait for the user to type something, otherwise

the screen will clear. =x/
getch ();
endwin () ;
return 0;
}
Comments

1. NCurses has a predefined constant, LINES, that contains the number of rows in the terminal
window, and a constant COLS that stores the number of columns.

2. Notice too that the program calls refresh() each time it changes the screen. This is unnec-
essary, because addstr () forces the refresh automatically.

3. If you delete the call to getch(), you will not see anything, and if you delete the call to
endwin(), the screen will not be restored.

The next program draws a grid of periods centered on the screen.

Listing 6.3: drawgrid.c

#define CENTERY  (LINES/2 —2) /* The middle line in terminal x*/
#define CENTERX  (COLS/2 -2) /* The middle column in terminal x/
#define NUMROWS  (LINES/2)
#define NUMCOLS  (COLS/2)
int main ()
{

int r, c;

char MESSAGE[] = "Press any character to exit:";

int length , i, j;
length = strlen (MESSAGE);

initscr (); /* Initialize screen x/
clear (); /* Clear the screen x/
noecho (); /* turn off character echo x*/

char grid [NUMROWS]| [NUMCOLS] ;
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for (i = 0; i < NUMROWS; i++ ) {
for ( j = 0; j < NUMCOLS-1; j++ )
grid[i][j] = 7. 7;
grid [i ][NUMCOLS-1] = ’\0’;

/* move to center to draw grid x/
= CENTERY — (NUMROWS/2);

¢ = CENTERX — (NUMCOLS/2);

move(r,c);

/* Draw each row of grid as a string

for (i = 0; i < NUMROWS; i++ ) {
mvaddstr(r+i ,c,grid[i]);

}

/* Move to bottom of screen, post message to display x/
move (LINES—1,0);

*/

addstr (MESSAGE) ;

getch (); /* wait for the user to type something */
clear (); /* clear the screen x/

endwin (); /* delete curses window and quit */;
return 0;

NCurses makes it easy to save any window to a file. The putwin() function will write the contents
of a window to a FILE stream, and this can be read back into a program using getwin(). The next
two listings show how to do both. The first is a program that draws a face in a window and also
saves it to a file specified on the command line.

#include
#include

Listing 6.4: Saving a window: drawface2.c

<stdio .h>
<string .h>

#include <ncurses.h>
#include <stdlib .h>
#define CENTERY (LINES/2 -2) /* The middle line in terminal * /
#define CENTERX (COLS/2 -2) /#* The middle column in terminal */
void addhappyface(int * y, int * x)
{
int orig y = *y;
addstr (" ~ ~ "); move(++(xy),*x);
addstr (" o o "); move(++(xy),*x);
addstr (" =~ "); move(—l——b—(*y) *X);
addstr ("\\___/");move(++(xy),*x);
addstr (" DE
xy = orig y;
xx = (xx) + 5;
move( *y, *Xx);
}

10
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int main(int argc, char xargv][])

{
int r, c;
char MESSAGE[] = "Press any character to exit:";
int length ;
FILE xfp; /* for writing window contents x/
length = strlen (MESSAGE);
if ( arge < 2 ) {
printf("usage: %s window—file\n", argv|[0] );
return 0;
}
fp = fopen(argv[1l], "w");
if ( NULL = fp ) {
printf ("Error opening %s for writing.\n", argv[1l]);
return 0;
}
initscr (); /+ Initialize curses library and the drawing screen x/
clear (); /* Clear the screen x/
/* Move to bottom of screen and post message to display x/
move (LINES—1,0);
addstr (MESSAGE ) ;
/* move to center of screen — width of face x/
r = CENTERY;
¢ = CENTERX — 5;
move(r,c);
addhappyface(&r, &c);
addhappyface(&r, &c);
addhappyface(&r, &c);
/* Park cursor at bottom at the right side of the message */
move (LINES—1,length );
refresh ();
/* Write the standard screen to a file x/
if ( ERR == putwin(stdscr, fp) ) {
printw ("Error saving window.\n");
}
fclose (fp);
getch (); /* wait for the user to type something x/
clear (); /* clear the screen x/
endwin (); /* delete curses window and quit */
return 0;
}

The next listing is of a program that can read any file created by an NCurses program that saved
data using putwin(). It tries to open the file and display the window stored there. As getwin()
returns a NULL pointer on failure, it checks that the returned pointer is not NULL before displaying
the data.

11
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Listing 6.5: Retrieving a saved window: getdrawing.c

#include <stdio.h>
#include <string.h>
#include <curses.h>

int main(int argc, char sargv|[])

FILE xfp ;
WINDOW  xwin ;

if ( arge < 2 ) {
printf("usage: %s window—file\n", argv|[0] );
return 0;

}

fp = fopen(argv|[1l], "r");
if ( NULL = fp ) {
printf ("Error opening %s.\n", argv[1l]);

return 0;
}
initscr (); /* Initialize curses library and the drawing screen x/
cbreak (); /* So that the character is available immediately */
noecho (); /* Turn off echo =/
clear (); /* Clear the screen x*/

move (LINES—1,0);
addstr ("Enter a character to see the faces:");
getch ();

win = getwin (fp);
if ( NULL = win ) {
clear ();
move (LINES—2,0);
printw ("The file %s was not created using putwin()."
" Type any character to exit.\n",
argv[1]);
}
wrefresh (win ) ;
fclose (fp);

getch (); /* wait for the user to type something x/
clear (); /* clear the screen x/

endwin (); /* delete curses window and quit */
return 0;

6.5 User Input in NCurses

NCurses has functions to put the terminal into a few different input modes. The following table
summarizes the different models of input.

12
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Function Call Line Erase/Kill Signal Inter- Blocking
Buffering Processing pretation
raw() No No No Yes
cbreak() No No Yes Yes
halfdelay(n) No No Yes Timed (0.1*n
seconds)
nodelay(stdscr, TRUE) No No Yes No

Raw mode, established with the raw() function, is similar to non-canonical mode in which, in addi-
tion, keyboard signal processing is disabled. Note though that it is a blocking input mode. Chbreak
mode, established with cbreak(), is like raw mode except that keyboard signals are processed.
Cbreak mode is also blocking.

The halfdelay() function and the nodelay() function both turn off blocking mode, but the
halfdelay() function has a timeout whereas nodelay() is mercilessly unforgiving and does not.
Neither is line-buffered nor allows editing functions. The halfdelay() function takes a single in-
teger argument that represents the number of tenths of a second to block for terminal input. If
no input arrives within that time, then it returns the ERR value, which is an integer value. In our
demos directory, in chapter(7, you can find demo programs named raw_demo.c, cbreak_demo.c,
halfdelay_demo.c, and nodelay_demo.c, that show how these input modes work.

There are two other functions worth remembering: noraw() and nocbreak(). If the terminal has
been put into raw, cbreak, or halfdelay mode, noraw() undoes that effect, turning on line buffering,
line editing, blocking, and signal processing. It will not undo the effect of nodelay(), which can
only be undone by calling

nodelay(stdscr, FALSE);

The nocbreak() function restores line-buffering and line-editing, but does not restore signal pro-
cessing if it had been disabled by raw mode previously. For that you need to call noraw(), which,
turns signal processing back on. nocbreak() also ends halfdelay mode.

Example

We will begin with a relatively simple program that puts the terminal into cbreak mode. The
program will go into a user-controlled loop that terminates only when the user enters a specific
character. To make it a bit more interesting, and realistic, we will use the F1 function key to
terminate the program. The program will also show how user input can be used to modify the
current window state other than by displaying text. It will let the user move the cursor around on
the screen with the arrow keys. Finally, it will create a status bar at the bottom of the screen and
write the current cursor position into it as the cursor moves, as well as the user’s instructions for
what to do.

The listing follows. The comments explain the logic within the program.

Listing 6.6: cursortrack.c

/* LINES and COLS are NCurses variables that get initialized when * /
/* initscr () is called. =/

13
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#define CENTERY  (LINES/2 -2) /* The middle line in terminal */
#define CENTERX  (COLS/2 -2) /* The middle column in terminal x/

int main(int argc, char sargv][])

{

int x,y; /* to retrieve coordinates of cursor x/
int ch; /* to receive user input character x/
int r, c; /* to store coordinates of cursor x/

/* A string to display in the "status bar" at the bottom of the screen x/
char MESSAGE[] = "Use the arrow keys to move the cursor. "
"Press F1 to exit";
int length ;
length = strlen (MESSAGE); /% compute this once. x*/

initscr (); /+* Initialize screen x/

clear (); /* Clear the screen x/

noecho (); /* turn off character echo x/
cbreak (); /* disable line buffering =/
keypad(stdscr , TRUE); /* Turn on function keys x/

/* Move to bottom left corner of screen, write message there x/
move (LINES—1,0);

addstr (MESSAGE) ;

/* Start the cursor at the screen center x/
r — CENTERY;

¢ = CENTERX;

move (r,c);

/* Print the cursor’s coordinates at the lower right =/
move (LINES—1,COLS—38);

printw ("(%02d,%02d)" ,r,c);

refresh ();

/#* Then move the cursor back to the center */
move(r,c);

/* Repeatedly wait for user input using getch (). Because we turned off x/

/* echo and put curses into cbreak mode, getch() will return without * /
/* needing to get a newline char and will not echo the character. */
/+* When the user presses the F1 key, the program quits. */

while ((ch = getch()) != KEY F(1)) {
switch (ch) {

/* When keypad () turns on function keys, the arrow keys are enabled x/

/* and are named KEY X, where X is LEFT, RIGHT, etc. */
/* This switch updates the row or column as needed, modulo COLS */
/* horizontally to wrap, and LINES—1 to wrap vertically without * /

/* entering the sanctity of the status bar. x/
case KEY IEFT:
c=(0=c )? COLS—1:c—1;
break ;
case KEY RIGHT:
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c = ( c=COLS-1 )? 0 : c+1;
break ;

case KEY UP:
r = ( 0=r )? LINES-2 : r—1;
break ;

case KEY DOWN:
r = ( r == LINES-2 )? 0 : r+1;
break ;

}

/* Now we move the cursor to the new position, get its coordinates x*/
/* and then move to the lower right to print the new position * /
move(r,c);

getyx (stdscr ,y,x);

move (LINES—1,COLS—8);

printw ("(%02d,%02d)" ,y,x);

refresh ();

/* Now we have to move back to where we were ince the cursor was * /
/* in the lower right after the printw (). x/

move(r,c);

}

endwin (); /* exit curses x/
return 0;

6.6 Multiple Windows in NCurses

The next example program demonstrates how to use multiple windows. Note that this program
does not use the standard screen.

Listing 6.7: drawmanygrids.c

#include <stdio.h>
#include <stdlib .h>
#include <string.h>
#include <curses.h>

#define CENTERY  (LINES/2 -2) /* The middle line in terminal */
#define CENTERX  (COLS/2 —2) /* The middle column in terminal x/
#define NUMROWS  (LINES/2) /* number of rows we use * [
#define NUMCOLS  (COLS/2) /* number of columns we use */
#define REPEATS 5

#define GRIDCHARS ".x@-#" /* should have REPEATS many chars x/

int main(int argc, char xargv|])
{
char MESSAGE[] =
"Type the character of the grid to bring it forward, ’q’ to exit:";
int length , i, j, k;
WINDOW xmssge win ;
WINDOW x«windows [REPEATS] ;
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char gridchar [REPEATS] = GRIDCHARS;

int rowshift , colshift;

int ch;

initscr (); /* Initialize screen x/
noecho (); /* turn off character echo x/

/* Make sure that the window is wide enough for message at the bottom.x/
length = strlen (MESSAGE);
if ( length > COLS — 2 ) {

endwin () ;

printf (" This program needs a wider window.\n");

exit (1);

}

/* Calculate the amount by which we shift each window when we draw it x/
rowshift = (LINES — NUMROWS) /5;
colshift = (COLS — NUMCOLS) /5;

/#* In this loop, we create a new window, fill it with a grid of a unique
characters
/
for ( j = 0; j < REPEATS; j++ ) {
/* Create a new window at an offset from (0,0) determined by the
row and column shift. x/
windows [j] = newwin (NUMROWS, NUMCOLS, rowshiftj, colshiftx*j);
if ( NULL — windows[j] ) {
endwin ();
fprintf(stderr, "Error creating window\n");
exit (1);

}

/* Draw each grid row as a string into windows[j] x/
for (i = 0; i < NUMROWS; i++ ) {
for ( k = 0; k < NUMCOLS; k++ ) {
wmove (windows[j], i,k );
if ( ERR — waddch (windows[j], gridchar[j]) )

/* Ignore the error; it means we are in the
bottom right corner of the window and the
cursor was advance to a non—window position

*/

}
}
/* Update the virtual screen with this window’s content x*/
wnoutrefresh (windows|[j]);
}
/* Now send the virtual screen to the physical screen x*/
doupdate ();

/*Create a window to hold a message and put it in the bottom row x/
mssge win = newwin (1, COLS, LINES—1, 0);

/* Write the message into the window; mvwaddstr positions the cursor x*/
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mvwaddstr (mssge win, 0,0, MESSAGE);
wrefresh (mssge win);

while (1 ) {
/%
Read a character from the message window, not from stdscr. The
call to wgetch forces a refresh on its window argument. If we
refresh stdscr, our grids will disappear.

*/
ch = wgetch(mssge win); /% wait for the user to type something x/
if ( ¢ch = ’q” ) /x time to quit x/

break ;

/* Check if they typed a grid character x/
for ( j = 0; j < REPEATS; j++ ) {
if ( ch = gridchar[j] ) {

wmove (mssge win ,0,length ); /* move cursor to bottom x/
touchwin (windows[j]); /* force the update x/

wrefresh (windows|[j]); /* refresh , bringing it forward =/
break ;

}

}

clear (); /* clear the screen x/

endwin (); /* delete curses window and quit x/
return 0;

6.7 Adding Timing to Programs: Sleeps

To make images move or animate on the screen, the program has to control the rate at which
images are changed or displayed, which implies their being able to access a time-of-day clock or a
timer. You have already seen the sleep() system call. It is one method of controlling time. The
problem with sleep() is that its base unit is a one-second interval, which is too coarse for most
video. An alternative is the usleep() system call; usleep() has a granularity of one microsecondﬂ
The problem with usleep() though is that it uses the real timer of the process, of which there is
just one, so multiple simultaneous calls to usleep() will have unexpected results. Both sleep()
and usleep() suffer from the fact that they may share the same timer as the alarm() system call.
POSIX requires a call named nanosleep(), which has even finer granularity and is guaranteed not
to interact with any other timers. Therefore, we will use nanosleep():

#include <time.h>
int nanosleep(const struct timespec *req, struct timespec *rem);

The timespec structure is defined by

struct timespec {

3This does not mean that it will be implemented accurately to within a microsecond. The implementation of the
timer may be inaccurate for small intervals because of context-switching.
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time_t tv_sec; /* seconds *x/
long  tv_nsec; /* nanoseconds */

};

The first argument specifies the amount of time that the caller should be suspended. The second
argument can be used to store the amount of time remaining in case the caller is awakened by a
signal. If it is a NULL pointer, it is ignored. For now we will pass a NULL pointer as the second
argument.

The first example of animation alternates two images on the screen at regular intervals determined
by the nanosleep() timer. It uses three functions defined in file faces.c :

void addsadface(int * y, int * x); // Draws a "sad" face at (y,x)
void addhappyface(int * y, int * x); // Draws a "happy" face at (y,x)
void eraseface(int #* y, int * x); // Erases face at (y,x)

that draw, respectively, a “sad face”, a “happy face”, and a blank face. The coordinates are initially
the upper left corner of the rectangle enclosing the face. On return they store the upper right hand
corner.

The main loop will repeatedly draw a face, park the cursor in the lower left-hand corner of the
screen, call refresh(), and then sleep a bit. The sad and happy faces will alternate. The first
version of the program, whose listing follows, uses a loop that runs forever and must be killed by
the user’s entering a Ctrl-C.

Listing 6.8: animateface(.c

#include <stdio.h>

#include <curses.h>

#include <string.h>

#include <time.h> /* for struct timespec x/

#include "faces.h" /* The set of face drawing functions x/

int main(int argc, charx argv|[] )
{
int r, c;
int i — 0;
char MESSAGE[] = "Type Ctrl-C to exit:";
char BLANKS[] = " "
int length ;

struct timespec sleeptime = {0,500000000}; /* 1/2 second x/
initscr (); /* Initialize curses library and the drawing screen x/
clear (); /* Clear the screen =/

/* Move to bottom of screen and post message to display x/
move (LINES—1,0);
addstr (MESSAGE) ;

/* Loop repeatedly until user types any character x/
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while (1) {
/* move to center of screen x/
r = CENTERY;
¢ = CENTERX;
move(r,c); /* move to that position to draw x/

/* Draw either a happy face or sad face at (r,c) x/

if (0 =1 ) {
addsadface(&r, &c);
i=1;

}

else {
addhappyface(&r, &c);
i = 0;

}

/* Park cursor at bottom x/
move (LINES—1,length ) ;

refresh ();
nanosleep (&sleeptime , NULL); /* sleep 1/2 second x/
}
/* Cleanup — erase the face first x/
r = CENTERY;
¢ = CENTERX;

move (r,c);

eraseface(&r, &c);

/* erase the message at the bottom of the screen x*/
move (LINES—1,0);

addstr (BLANKS) ;

refresh ();

endwin (); /* Delete NCurses window and quit =/
return 0;

6.8 Combining User Input and Timing

We can use the halfdelay() function in combination with timed sleeps to animate the face and also
let the user enter input. Our program can call halfdelay(1) to cause reads to wait one-tenth of a
second and use a controlled loop whose entry condition is simply (ERR == getch()) to allow the
user to type a character to stop the loop. As soon as the user types, the character will be buffered,
and the next time the getch() is executed, the character will be removed and returned, and the
condition will be false, breaking the loop.

We can also turn off echo within NCurses with the noecho() function. Putting this all together,
we have the makings of animateface.c below.

Listing 6.9: animateface.c

#include <stdio.h>
#include <curses.h>
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#include <string.h>
#include <time.h> /* for struct timespec x/
#include "faces.h" /* The set of face drawing functions x/

int main(int argc, charx argv|[] )

{
int r, c;
int i = 0;
char MESSAGE[] = "Press any character to exit:";

char BLANKS[] = " "
int length ;
length = strlen (MESSAGE);

struct timespec sleeptime = {0,500000000}; /* 1/2 second x*/
initscr (); /* Initialize curses library and the drawing screen x/
clear (); /* Clear the screen =/

noecho (); /* Turn off character echo x/

halfdelay (1); /% Turn on timed delay of 0.1 second — if no char x/

/* within 0.1 sec, getch() returns ERR x/

/* Move to bottom of screen and post message to display x/
move (LINES—1,0);
addstr (MESSAGE ) ;

/* Loop repeatedly until user types any character x/
while (ERR = getch()) {
/* move to center of screen x/

r — CENTERY;
¢ = CENTERX;
move(r,c); /* move to that position to draw x/

/* Draw either a happy face or sad face at (r,c) x/

if (0 =1 ) {
addsadface(&r, &c);
i = 13

}

else {
addhappyface(&r, &c);
i = 0;

}

/* Park cursor at bottom x/
move (LINES—1,length ) ;

refresh ();
nanosleep (&sleeptime , NULL); /* sleep 1/2 second x/
}
/* Cleanup — erase the face first x/
r = CENTERY;
¢ = CENTERX;

move(r,c);
eraseface(&r, &c);
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/* erase the message at the bottom of the screen x*/
move (LINES—1,0);

addstr (BLANKS) ;

refresh ();

endwin (); /* Delete NCurses window and quit x/
return 0;

6.9 Timing with the alarm() and pause() system calls

The sleep() system call is based upon the use of alarms. An alarm in UNIX is essentially the
software equivalent of a timer. (A timer goes off after a designated time interval; an alarm clock
goes off at a designated clock time; in UNIX alarms are like timers.) When you want to snooze for
an hour, you set a timer to wake you in an hour. In UNIX, a process can set an alarm to send itself
a signal at some future time. It does this by calling alarm(), whose prototype is

#include <unistd.h>
unsigned int alarm(unsigned int seconds)

alarm() sets a timer to expire in the number of seconds specified as its argument and returns
immediately. If there is no pending alarm, the return value is 0. Otherwise the return value is the
number of seconds remaining in the pending alarm. An alarm is pending if alarm() was called
previously but the time period for which it was set has not yet elapsed. For example, suppose that
at time 0 an alarm is set for 10 seconds:

alarm(10);
and that 4 seconds later, the same process calls alarm() again, this time asking for 20 seconds:
seconds_left = alarm(20); // called with 6 seconds remaining

The value returned by this call to alarm(), which is stored in seconds_left, would be 6. The
alarm is reset to 20, and the alarm will signal the process 20 seconds later. The demo program
snoozealot.c demonstrates how this works and how to use that return value. Before you look at
snoozealot.c, take a look at the simpler program, snooze.c, which will be described shortly.

When an alarm’s timer expires, a SIGALRM (there is no "A" between the L and R) signal is sent to
the process that set the alarm. If the process does not provide a signal handler for the SIGALRM, or
if for some other reason, the signal is not caught, then the SIGALRM will kill the process. The "other
reason" can be that the process is in a system call that cannot be interrupted, or that it is handling
some other signal at the time the SIGALRM hits it, and the particular handler is not designed to
allow multiple signals to be received.

From this discussion you should realize that the alarm() call can be used to maintain at most one
alarm at a time. If you want the effect of multiple alarms, then you have to code this into the
SIGALRM handler; i.e. you have to reset the alarm for the new time.
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In case it is not yet apparent, the alarm() system call has several different uses. A process can set
an alarm prior to starting a long task that might not complete if the input data is unexpectedly
large. The alarm will prevent the process from spending too much time on potentially endless tasks.
It can also set an alarm to do a task asynchronously after a specific amount of time, perhaps based
upon the state of its data.

A system call that is often used with alarms is the pause() call. When a process calls pause (), it
is suspended and remains suspended until it receives a signal. Any signal will do to waken it. The
prototype of pause() is:

#include <unistd.h>
int pause(void);

If a process calls pause() without having scheduled an alarm that will expire after the call to
pause (), it will most likely never run againﬁ For example:

#include <unistd.h>
#include <stdio.h>
int main()

{
pause();
printf ("You will never see this message!\n");
return O;

}

This program, when run, will stay blocked until either the kernel sends it a signal or a user does,
and because there is no handler, it will take the default action on receiving the signal, which is
usually to terminate, not ever reaching the printf () statement.

The demos directory contains several different examples to demonstrate the alarm(), signal(), and
pause() calls. The snooze.c demo is similar to the UNIX sleep command. The snoozealot.c
demo demonstrates how the alarm can be reused, how a signal handler for STGALRM and for SIGINT
can do program cleanup, and how to allow non-blocking user input while in a programmed loop that
is counting down an alarm. The following demo is another example that focuses only on alarms but
also records the times that they occur.

The program in the listing below, alarmdemol.c, uses the signal{) system call to install signal
handlers. There is a second version of this program in the demos directory that does the exact same
thing using sigaction() instead. It is useful to compare them.

Listing 6.10: alarmdemol.c

#include <unistd .h>
#include <stdio.h>
#include <signal .h>
#include <time.h>

#include <stdlib .h>

/* This is the SIGALRM handler. When the SIGALRM is delivered to this x/

It might run if some other signal is delivered to it, for which it has a handler.
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/* process, it resets the handler and displays the current time. * /
void catchalarm (int signo )

{

signal (SIGALRM, catchalarm); /+ install handler again */

time_t t; /* time in seconds since the Epoch x/

struct tm xtp; /* time struct with years, months, days,...x/
time (&t ); /* get current time as a time t in t */

tp = localtime(&t); /* convert time to a tm struct x/

printf (" Caught alarm at %d:%d:%d\n", tp—>tm_hour, tp—>tm_ min ,tp—>tm _sec );

int main(int argc, char *x argv][])

int k, sec;
struct tm *tp; /* time struct with years, months, days, etc */
time t t; /* time in seconds since the Epoch x/

/* check proper usage x/

if (2 > arge) {
printf (" Usage: %s n\n",argv[0]);
return —1;

}

k = atoi(argv[1l]); /* convert argv|[l] to int (no error check) x/
signal (SIGALRM, catchalarm); /+ install catchalarm as the handler x/

time (&t ); /* store current time in t x/
tp = localtime (&t ); /* store t as day,hours,minutes, etc. */

/* print time at which alarm is set an how long it is set for x*/
printf ("Time is %d:%d:%d\n", tp—>tm hour, tp—>tm min ,tp—>tm sec );
printf( "Alarm is set for %d seconds.\n", k);

sec = alarm (k); /* set alarm %/
pause (); /* wait for a signal to arrive x/
return 0;

}

Explanation

The main program begins by installing a SIGALRM handler using the signal() call:
signal (SIGALRM, catchalarm);

The catchalarm() handler is unlike the earlier examples. Before it does anything else, it calls
signal() to reinstall the handler. This is because signals of the same type will be lost while the
process is handling a signal. The only way to catch a SIGALRM while in the handler for SIGALRM is
to reissue the signal(). Although this particular program cannot issue another alarm, in general,
signal handlers should be designed so that if a second signal of the same type arrives while they
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are processing the first, they are not caught "by surprise" and possibly killed by the second signal.
This handler is just demonstrating that technique.

The handler uses the time () and localtime() system calls to get the current time, convert it to a
human readable format, and display it on the console. The main program displays the current time
and immediately turns on the alarm by calling

alarm(k)

where k is the command line argument’s numeric value. It then calls pause() to wait for the
SIGALRM to be received. If a SIGALRM arrives before any other signal, it will cause catchalarm() to
run, which will display the time. If another signal arrives first, the process will probably be killed.

6.10 Interval Timers

The time granularity, or resolution, of the alarm() system call is too coarse to be useful for many
applications. Furthermore, alarm() must be called repeatedly if an alarm is to go off at regular
intervals, such as when a process is timing the progress of some task. (Suppose you wanted to
display some sort of speed indicator on the console, where instantaneous speed was measured by
the amount of data written in a fixed time interval. You would need a timer of fine resolution and
a SIGALRM catcher that would measure the amount of data processed and reinstall itself, but this
would be slightly inaccurate because of time lapsed between the start of the handler and the time
it took to reinstall itself.)

Interval timers were introduced in later Berkeley distributions of UNIX (4.2BSD) as well as in the
SVRA4(1170) versions of UNIX as a solution to this problem. An interval timer has two components:
an initial delay and a repeat interval. The value of the initial delay is the amount of time the kernel
should delay before sending the first signal to the process. The value of the repeat interval is the
amount of time the kernel should wait between successive signals sent to the process. In other
words, if an interval timer is started at time tg, with initial delay = x and repeat interval y, then it
will generate signals at times to+x, to+ x4y, to+x + 2y, to+x+ 3y, to + = + 4y, ... until the
process terminates.

6.10.1 Three kinds of timers: Real, Virtual, and Profile

There are three different types of interval timers. One type of timer ticks during all elapsed time
(like the clock on the wall); this is the real timer. The second ticks only when the process is in user
mode (like the timer in a sporting event, which stops when play is paused for various reasons); this
is the wirtual timer. The last ticks when the process is in user mode or in system calls (like the
timer in a professional chess game, which is stopped when one person has stopped it and the other
has not yet started i@; it is called the prof timer. The constants used to define these timers, as
you will shortly see in the documentation are:

ITIMER_REAL ticks always and sends a SIGALRM when it expires

SIf the two people decide to take a coffee break, the timer is in the off state. You can think of user mode as your
time and kernel mode as your opponent’s time. Then this analogy fits.
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ITIMER_VIRTUAL only ticks when the process is in user mode, i.e., not in system calls. It sends a
SIGVTALRM when it expires.

ITIMER_PROF ticks during user mode and in system calls; on expiration sends a SIGPROF signal

The "PROF" in SIGPROF and ITIMER_PROF is short for profile, which is a snapshot of a process’s time
usage across all user mode and kernel mode activities. From these definitions, it follows that the
time the process spends sleeping is its real time less its profile time, and that the time it spends in
kernel mode is profile time less virtual time. Our interest is in real interval timers, those that tick
like an ordinary alarm clock.

6.10.2 The Initial and Repeating Values

An itimerval structure contains two members: the value of the initial delay, and the value of the
repeat interval:

struct itimerval {
struct timeval it_interval; /* next value */
struct timeval it_value; /* current value */

};

The initial delay is stored in the it_value element and the repeat interval is stored in it _interval.
As the timer ticks, the it_value element is decremented; when it reaches zero, a signal is sent to
the process and the value of it_interval is copied into it_value.

Fach member is of type timeval. A timeval structure represents a time interval using two elements:
the number of seconds and the number of microseconds in the interval. There is no milliseconds

field:

struct timeval {
long tv_sec; /* seconds */
long tv_usec; /* microseconds */

};

As a long integer is usually either 32 or 64 bits, depending upon the implementation, the tv_usec
member is large enough to represent any number of microseconds from 0 to one million. Since it
is common to work with time in milliseconds, you need to convert a time measured in milliseconds
to a timeval with seconds and microseconds units. Mathematically, if ¢ is a time expressed in
milliseconds, then

e |t/1000] is the number of whole seconds in ¢, and

e 1000 - (¢ mod 1000) is the number of microseconds in ¢ — |¢/1000]

Therefore, the following C code fragment sets a timeval structure’s fields, given an integer number
m of milliseconds
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timeval t;
t.tv_sec = m / 1000;
t.tv_usec = (m - t.tv_sec * 1000 ) * 1000;

This avoids a second division using the modulo operator.

The getitimer() and setitimer() system calls work with interval timers. The former gets a
timer’s current value and the latter sets a timer’s value.

#include <sys/time.h>

int getitimer(int which, struct itimerval *value);

int setitimer(int which, const struct itimerval *value,
struct itimerval *ovalue);

The first parameter to both is an integer constant that specifies the type of timer, one of the
constants, ITIMER_REAL, ITIMER_VIRTUAL, or ITIMER_PROF. The second parameter to getitimer ()
is a pointer to the itimerval structure to be filled with its current values. The it_value element
of this structure is given the time remaining on the timer, not the time it was originally set to be.

The setitimer () function’s second parameter, value, is the address of the itimerval structure
with which to set the timer, and the third, ovalue, if it is not NULL, is the address of a structure to
be filled with its current values.

To stop a timer, set the initial and repeat intervals to 0. If the repeat is 0 but the initial delay is
not, the timer sends a single signal and then stops. If the initial value is 0 the timer never starts,
no matter what the repeat interval is.

The function set_timer(), below, can be used to set the value of an interval timer, given a time
value expressed in milliseconds. It has three parameters, the type of timer to set, the number of
milliseconds in the initial delay, and the number of milliseconds in the repeat interval.

Listing 6.11: set_timer()
int set timer( int which, long initial , long repeat )
{
struct itimerval itimer;
long secs;

/* initialize initial delay x/

secs = initial / 1000 ;

itimer .it value.tv sec = secs;

itimer.it value.tv_usec = (initial — secsx1000 ) *x 1000 ;

/* initialize repeat interval x/

secs = repeat / 1000 ;

itimer.it interval.tv_ sec = secs;

itimer.it interval.tv_usec = (repeat — secs*1000 ) * 1000 ;

return setitimer (which, &itimer , NULL);
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The demo program, timerdemo.c, demonstrates how this function can be used. It accepts command
line arguments so that you can control the initial and repeat delays, and the signal handler is
designed to simply count how many signals are received and to quit after a pre-specified number of
signals.

Listing 6.12: timerdemo.c

#include <stdlib .h>
#include <stdio .h>
#include <sys/time.h>
#include <signal .h>
#include "timers.h"

void count alarms(int );

int main(int argc, charx argv|])

{
int initial = 250; /% default value x/
int repeat = 500; /*x default value x/

if (arge >= 3) {
initial = atoi(argv|[1l]);
repeat = atoi(argv|[2]);
}
if ( initial = 0 || repeat = 0 ) {
printf (" Setting either interval to 0 hangs the process.\n");
printf (" Bailing out...\n");
return 0;

}

signal (SIGALRM, count alarms);

if ( set_timer (ITIMER REAL, initial , repeat) =— —1 )
perror ("set timer");
else
while( 1 )
pause ()

return 0;

t

void count alarms(int signum)

{
int alarmsaccepted = 10;
static int count = 0;
printf("alarm %d \n", 4++count);
fflush (stdout );

if ( alarmsaccepted == count ){
printf("No more alarms allowed!\n");
exit (0);
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t

If you run this program with various values as arguments, you will see how it works.

6.10.3 How Timers Are Implemented in UNIX

There is only one system clock. In contrast, there are many processes, and more than one of
these might have active timers. The kernel maintains a data structure containing the timers of all
processes. With each tick of the system clock, the kernel decrements each of the currently active
per-process timers. If a process’s timer reaches 0, the kernel sends the appropriate signal to the
process and copies the it_interval value into it_value, provided that it_interval is not 0,
effectively resetting the timer. If the it_interval is 0, the timer is stopped.

6.10.4 Timer Limitations and Precautions

Each process can have one of each kind of timer: a real timer, a virtual timer, and a profile timer,
but only one of each. Although both the seconds value and the microseconds value are used to
set the timer parameters, most operating systems will not give a process an interval of that exact
amount of time because these are not real-time timers and because the operating system typically
uses a time resolution on the order of a few milliseconds, not microseconds. UNIX systems that
conform to SVR4 and to 4.4BSD specs do guarantee, though, to generate a signal no sooner than
the requested time interval. The signal’s delivery may be delayed on very heavily loaded systems.
In addition, if a system is very heavily loaded, it is even a possibility that a later signal may fail to
be delivered because the signal from an earlier timer expiration has not yet been delivered and so
the second will be lost.

6.11 Timers and Signals in Video Games

So far we have seen how to create the illusion of movement on the screen using the NCurses
library by erasing, repositioning, and drawing the same object, with a small time delay between
repeated drawing. The animateface.c program used the nanosleep() function to achieve this
time delay because nanosleep() provided a small enough time resolution and does not interfere
with SIGALRM signals. If we want a video game to be interactive, however, then it has to respond
to user inputs while creating the illusion that the action on the screen is independent of the user’s
actions. The method used by animateface.c will not work because when the program is waiting
in the nanosleep() call, it is unable to respond to user inputs.

Instead, we can let a timer run in the background. At regular intervals, it can interrupt the process
by sending a SIGALRM signal. All of the functionality to update the drawing can be put into the
signal handler for the SIGALRM signal. However, there are dangers with extrapolating these ideas to
programs in general, as is explained below.

6.11.1 Cautions About Signal Handler Design

The signal generation and delivery mechanism is a complex system with many nuances, and the
programmer must be aware of them and must design the handlers with utmost care. The first issue
is with respect to potential race conditions within the handlers themselves.
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Because signal handlers cannot have any parameters other than the signal number or the structures
passed to it by the kernel in the case of the newer sa_sigaction() style handlers, the only way
that they can share data with the rest of the program is through global variables. For example, if
the SIGALRM signal handler has to update the position of an object on the screen, then the handler
needs read and write access to a variable that stores the object’s current position. This variable
must be either a static variable within the handler, or a global variable in the program. It must be
a global if the variable needs to be accessed by other parts of the program outside of the handler. In
either case, the variable cannot reside on the runtime stack because if it did, it would be destroyed
between invocations of the handler. If the variable’s contents are destroyed between invocations of
the handler, there will be no means of animating the object.

In general, using signal handlers that have to access either global data or data that is not on the
stack is a dangerous thing. If handled correctly in our video programs, there is little risk, but if this
same strategy is used for programs in general, it can lead to unreliable and insecure programs. It
can open up a Pandora’s box of problems associated with the possibility of race conditions within
the handler itself. This is because the handler might be re-entered as a result of another signal
arriving while the handler is active. For example, if the handler is registered with the SA_NODEFER
flag set, then it can be interrupted in the middle of its execution and variables within the handler
might be in an inconsistent state as a result. Still worse, under certain circumstances, intruders
could find ways to send the appropriate signal sequences to the program to force it to core dump
and could use these dumps to gain root access (see Zalewski [3]).

A second issue pertains to certain system calls and library functions. Certain system calls and
library functions are marked as safe, and the rest are unsafe. If a signal handler makes a call to a
library function or a system call, and another signal causes it to be re-entered (because the signal
was not masked or blocked) during the time the handler is in the call, the second invocation of the
signal handler may also enter that same function. If it does, then the function will be re-entered
as well, by the same process. If this function is not safe, then the data state of the handler will be
corrupted and its execution no longer predictable. For example, in the following handler

void sighandler(int signum)

{

printf ("Running with uid=%d euid=}d\n",getuid(),geteuid());

if a second signal arrives while the first is in the printf () function, then both invocations will be
using the printf () code, which is not re-entrant, and hence not safe. This means that the output of
printf () may be corrupted. Far worse scenarios can result, making a system vulnerable to attack.
POSIX.1-2004 requires that the following functions can be safely called within a signal handler:

_Exit (), _exit(), abort(), accept(), access(), aio_error(), aio_return(),
aio_suspend(), alarm(), bind(), cfgetispeed(), cfgetospeed(), cfsetispeed(),
cfsetospeed(), chdir(), chmod(), chown(), clock_gettime(), close(), connect(),
creat(), dup(), dup2(), execle(), execve(), fchmod(), fchown(), fcntl(),
fdatasync(), fork(), fpathconf(), fstat(), fsync(), ftruncate(), getegid(),
geteuid(), getgid(), getgroups(), getpeername(), getpgrp(), getpid(),
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getppid(), getsockname(), getsockopt(), getuid(), kill(), link(), listen(),
lseek(), lstat(), mkdir(), mkfifo(), open(), pathconf(), pause(), pipe(),
poll(), posix_trace_event(), pselect(), raise(), read(), readlink(), recv(),
recvfrom(), recvmsg(), rename(), rmdir(), select(), sem_post(), send(),
sendmsg(), sendto(), setgid(), setpgid(), setsid(), setsockopt(), setuid(),
shutdown(), sigaction(), sigaddset(), sigdelset(), sigemptyset(), sigfillset(),
sigismember(), signal(), sigpause(), sigpending(), sigprocmask(), sigqueue(),
sigset(), sigsuspend(), sleep(), socket(), socketpair(), stat(), symlink(),
sysconf (), tcdrain(), tcflow(), tcflush(), tcgetattr(), tcgetpgrp(),
tcsendbreak() ,tcsetattr(), tcsetpgrp(), time(), timer_getoverrun(),
timer_gettime(), timer_settime(), times(), umask(), uname(), unlink(),

utime (), wait(), waitpid(), write().

POSIX.1-2008 removes fpathconf (), pathconf (), and sysconf() from the preceding list, and
adds the following functions to it:

execl(), execv(), faccessat(), fchmodat(), fchownat(), fexecve(), fstatat(),
futimens(), linkat(), mkdirat(), mkfifoat(), mknod(), mknodat(), openat(),
eadlinkat (), renameat(), symlinkat(), unlinkat(), utimensat(), utimes()

In general, I/O functions are not safe to invoke inside signal handlers.

Non-reentrant functions are functions that cannot safely be called, interrupted, and then recalled
before the first call has finished without resulting in memory corruption. An easy way to think of
a function being re-entrant is that every single variable used by that function is stored on the run
time stack, including any return value. It uses no static variables and no globals. Each time it is
invoked, the new invocation has its own set of variables.

A signal handler would have to completely remove all possibility of its being interrupted if it con-
tained a call to an unsafe function within it. This is not realistic. If an unsafe function is in
the middle of execution when a signal arrives, and the handler for this signal also calls an unsafe
function, then the result of execution becomes undefined, meaning all bets are off about what will
happen. This is an even more compelling reason to avoid unsafe functions within handlers.

Three general rules to follow when designing signal handlers, whenever possible, as recommended
by Wheeler[2], are:

1. Where possible, have your signal handlers unconditionally set a specific flag and do nothing
else.

2. If you must have more complex signal handlers, use only calls specifically designated as being
safe for use in signal handlers. In particular, don’t use malloc() or free() in C (which on
most systems aren’t protected against signals), nor the many functions that depend on them
(such as the printf () family and syslog()). You could try to “wrap” calls to insecure library
calls with a check to a global flag (to avoid re-entry), but T wouldn’t recommend it.

3. Block signal delivery during all non-atomic operations in the program, and block signal delivery
inside signal handlers.
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In addition to these recommendations, I would add one more:

e Use the SA_RESTART flag when possible, to avoid the possibility of system calls being inter-
rupted and terminated, which may then cause the program to exit abnormally, and check the
return value of all system calls when using signal handlers in a program.

We will not be able to adhere to rule 1 in some of our demo programs because they are designed
to produce output or change program state during the handler calls to illustrate various principles,
but we can stick to rules 2 and 3.

6.11.2 A Demonstration

We will develop a simple program to illustrate the first method of animation. Our program, called
bouncestr.c, moves a string, in this case a worm-like fellow, horizontally across the screen, from
left to right and then back again. It is called bouncestr.c because each time the poor guy hits the
"wall", he bounces back in the opposite direction. The program allows the user to control the game
with three different keys:

e Typing ’f’ speeds up the motion;
e Typing ’s’ slows down the motion;

e Typing a space character reverses the direction of the worm.

The speed is the number of character positions that our object will move each second. For example,
a speed of 6 means that it moves 6 columns (i.e., characters) per second. When the user presses
the £ or s key, the speed should increase or decrease linearly, up to some reasonable limits. For
example, if v is the current speed, then one press of £ should mean v = v + 2. The changes in
speed are handled by changing the intervals in the interval timer and resetting it with setitimer ()
whenever the user presses the 'f’ or ’s’ key.

This first method of animation will make the main program in charge of getting user input, and
use timers and signal handlers to interrupt the main program and update the worm’s position on
the screen. Because timers will interrupt the main program loop whenever they occur, there is a
good chance they will interrupt the read() system call that is invoked within the getch() code
to get user input. For this reason, they must be established with the SA_RESTART flag, to restart
these calls and not lose the user’s input. There is no need to make the input non-blocking; doing so
would waste needless CPU cycles asking the kernel if input is available. But line buffering should
be disabled, as well as echo and line-editing. Therefore, the program will turn on cbreak mode and
turn off echo.

The program needs one global variable:
int direction;

to store the direction of movement (left or right, by one cell), and the signal handler needs two
static variables:

int row, col;
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which store the current position at which to draw. The logic in the main program’s loop handles

the input events, as follows.

Listing 6.13: Main processing loop of bouncestr.c

while ( !done ) {
is _changed = FALSE;

¢ = getch ();
switch (c¢) {
case 'Q’:
case ’'q’:
done = 1;
break ;
case ' ’:
direction = ( direction = LEFT)? RIGHT:LEFT;
break ;
case 'f’:
if ( 1000/speed > 2 ) { /* if interval > 2 x/
speed = speed + 2; /* increase

is_changed = TRUE;
}

break ;

case ’'s’:
if (1000/speed <= 500 ) { /* if interval <= 500 x/
speed = speed — 2 ; /* decrease * /

is changed = TRUE;

¥
break ;

¥
if ( is_changed ) {

set timer( ITIMER REAL, 1000/speed, 1000/speed );
¥

Notes

1. is_changed lets us know whether to reset the timer.

2. Blocking input is on, so the getch() can never return without data. The loop just has to

check which character was typed.

. Speed is the reciprocal of the interval length, in the same way that frequency is the inverse of
period with a periodic function (like a wave). If we want a frequency of k signals every 1000
milliseconds, then the interval between each signal must be 1000/k. Similarly, if we want an
object to be moved k times each second ( equivalently k& times each 1000 ms), then the interval
to give to the interval timer must be 1000/k ms. Since speed contains the current number
of chars per second for moving the object, the interval to give to the timer is 1000/speed,
since the set_timer() function (defined in Listing [6.11]) is expecting the interval expressed
in milliseconds.
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4. As a concrete example, if speed = 10, then the timer must expire every 1000/10 = 100
milliseconds, in order that we can move the object 10 times per second. If speed is increased
by 2, to 12 chars/second, then the interval must be 1000/12 & 83 milliseconds, so that the
timer will expire every 83 milliseconds.

5. We make sure we avoid a division by zero, by preventing the user from decrementing speed
below 1, which is achieved by making sure 1000/speed < 500. We set an upper bound on the
speed simply because high speeds are not easy to watch.

The logic of redrawing is now in the signal handler, move_msg(), shown below:

Listing 6.14: move msg()

void move msg(int signum)

{
static int row = ROW,
static int col = 0;
char mssge [40];
mvaddstr( row, col, BLANK ); /% erase old string * /
col 4= dir; /* advance one column * /
move( row, col ); /* move to new locataion x/
if ( RIGHT — dir ) {
addstr ( MESSAGE ); /* add forward string * /
if ( col+strlen (MESSAGE) >= COLS-1 )
dir = LEFT; /* reverse if hitting edge x/
}
else {
addstr ( REVMSSGE ); /* add reverse string */
if ( col <=0 )
dir = RIGHT; /* reverse if hitting edge x/
}
move ( LINES—1, 0);
sprintf (mssge, "Current speed: %d (chars/sec)", speed);
addstr (mssge);
refresh ();
}
Note that

e The handler uses static variables, a.k.a globals, making it non-re-entrant.

e It makes calls to several functions that are not safe.

However, because this is a SIGALRM handler, and the time intervals are extremely long relative to
the length of the code, it is essentially impossible for a SIGALRM signal to be delivered while the
handler is running. That is why it is effectively safe. Of course you can send it multiple Ctrl-C’s
and it will be unsafe for them.

If the signal handler were installed using the signal() system call, the handler would have to
reset itself by calling signal() immediately. We use the sigaction() call instead. If the user
were allowed to speed up the animation enough, the SIGALRM signals might arrive so fast that they
would arrive before the handler has finished executing. In this case, the handler’s behavior would

33



UNIX Lecture Notes
Chapter 6 Event Driven Programming

Stewart Weiss @

be unsafe. By using sigaction(), we can make sure that signals are blocked while the program is
executing inside the handler.

The program without the main processing loop from Listing is below.

Listing 6.15: Main program of bouncestr.c

#include <stdio.h>

#include <string.h>

#include <curses.h>

#include <signal.h>

#include "timers.h"

#define INITTIAL SPEED 50

#define RIGHT 1

#define LEFT -1

#define ROW 12

#define MESSAGE "oo000000=>"
#define REVMSSGE "<=0000000"
#define BLANK " "
int dir ;

int speed ; /* Current speed

int main ()

{

int done;
int is_changed;
int c;

/* Set up signal handling x/

struct sigaction newhandler; / *
sigset t blocked ; /%
newhandler.sa handler = move msg; /*
newhandler.sa flags = SA RESTART; /x
sigemptyset(&blocked ); /*
newhandler.sa mask = blocked; /%

if ( sigaction (SIGALRM, &newhandler ,
perror ("sigaction ");
return (1);

}

/* Global variable to store direction of movement */

in chars/second x/

for installing handlers */
to set mask for handler =/

name of handler x/

flag is just RESTART x/

clear all bits of blocked set x/

set this empty set to be the mask x/

NULL) = -1 ){ /% try to install x/

/* Prepare the terminal for the animation x/

initscr (); /%

cbreak (); /%

noecho (); /* turn off echo x/
clear (); /* clear the screen #/

curs_set (0); /* hide the cursor x/

/% Initialize the

dir = RIGHT;
done = 0;
speed = INITIAL SPEED ;

initialize the library and screen x/
turn off line buffering and editing x/

parameters of the program x/
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/* Start the real time interval timer with delay interval size x/
set timer ( ITIMER_REAL, 1000/speed, 1000/speed );

/* main processing loop omitted but would be here x/

endwin ();
return 0;

6.12 Non-polling Input

The bouncestr.c program uses a timer to generate interrupts to update the screen, but it obtains
the user’s input through what is essentially a polling loop: the main program repeatedly polls the
terminal for input. This is fine if the CPU is not going to be used by any other process or if the
program does not have other tasks to perform in the main loop, but it is an inefficient method of
checking for the availability of input, which is extremely infrequent in the life of a processor. We
should be unsatisfied with the idea that our program is a CPU hog, stuck in a polled I/O loop, even
if the process is blocked each time it calls getch() to check for user input. The process basically
calls getch (), blocks, is awakened when the user types, does a bit of work and blocks again, over and
over. It would be more efficient if the input part of the program were also signal-driven, meaning
that the program would ask the kernel to notify it when input could be delivered to it, perhaps
through the signal-handling mechanism. In this case, the program would be essentially idle, waiting
for a signal of any kind, either from the timer to update the screen, or from the kernel because input
was available.

There are two different types of non-polling input: signal-driven and asynchronous. To understand
the difference between them, it is important to know that input is first moved from a device to a
buffer in the kernel’s address space, and from there to the process’s address space.

e In signal-driven I/0, the program tells the kernel to notify it when input has been placed
into the kernel’s address space. Once the process is notified that the input is in the kernel’s
address space, if it makes a read () system call, because the data is immediately available, it
will not block. In other words, a read() executed after the process is notified is guaranteed
to return immediately with data.

e In asynchronous /0, the process tells the kernel to notify it when input has been moved from
the device to the kernel’s address space and then into a buffer in the process’s address space. In
this type of 1/0, when the process receives the signal, the read () has already been executed,
and the user process has the data already, but not necessarily in the memory location into
which it must go.

Signal-driven I/0O is available in UNIX by setting the 0_ASYNC flag in the file descriptor and then
establishing appropriate signals. Asynchronous 1/0 is available through the POSIX Asynchronous
I/0O Interface (AIO). It is a bit confusing that the flag to enable signal-driven I/O is called 0_ASYNC.
We will first explore signal-driven 1/0 by modifying the bouncestr.c program. Then we will create
a version of the bouncestr.c program that uses asynchronous I/O with the AIO interface.
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6.12.1 Non-polling I/O Using the 0_ASYNC Flag

When you set the 0_ASYNC flag on a file descriptor, it causes input from the descriptor’s file connec-
tion to be partially delivered asynchronously. To be precise, it means that when input is available
on the device, it is copied by the kernel into a location in the kernel’s address space, after which
the kernel sends a SIGIO signal to the process. To set up signal-driven input by this method, the
program must do the following:

1. Tell the kernel which process should be sent the SIGIO signal when the data is ready to read
by calling

fcntl (SETOWN, getpid());

The SETOWN operation makes the process-id in the second argument the owner of the signal
to be received. Usually the program wants to receive the signal itself, so it calls this with
getpid().

2. Retrieve the existing flags on the standard input device with
fentl(0, F_GETFL);

3. Set the 0_ASYNC flag on the connection with
fcntl(0,F_SETFL, (fd_flags|0_ASYNC));

4. Assuming that on_input () is the function that will handle the SIGIO signal, register that
signal handler:

struct sigaction newhandler;
sigset_t blocked;
newhandler.sa_handler = on_input;
newhandler.sa_flags = SA_RESTART;
sigemptyset (&blocked) ;
newhandler.sa_mask = blocked;
sigaction(SIGIO, &newhandler, NULL);

The on_input () handler can call the NCurses getch() function and will be guaranteed to
receive the single character input by the user. This way it does not have to be in a loop doing
a blocking read and can instead do other things in the loop.

This is all put together in the program bouncestr_async.c. The first three of the above steps can
be put into a function called enable_keybd_signals():

void enable keybd signals ()

{
int fd_flags;

fentl (0, F SETOWN, getpid ());
fd flags = fcntl (0, F_GETFL);
fentl (0, F_SETFL, (fd_flags|O _ASYNC));
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6.12.2 The bouncestr.c Program Using 0_ASYNC: Flawed Version

Sometimes it is worth writing a bad program in order to understand how to write a good program.
This is such an exercise. The program (excluding the #includes and parts that are identical to
the bouncestr.c program’s ) is shown below. The program is terminated within the on_input ()
handler when it receives the quit input character. This is because, once the program has started,
it cannot be terminated by turning off the timer or by setting the control variable of the loop to 1.
This will be explained later.

The tasks of the main program are:

1. Establish the signal handlers.

2. Initialize NCurses (in cbreak mode with no echo).

3. Initialize the data state of the program (speed, direction, rows, columns, etc)
4. Set up keyboard signals.

5. Start the interval timer.

6. Display the messages on the last line and loop until it is time to quit.

The program:

Listing 6.16: A flawed bouncestr async.c

[x < snip ——> %/

int row ; /* current row * /

int col; /* current column * [

int dir ; /* Global variable to store direction of movement x/
int speed ; /* Current speed in chars/second x/

volatile sig _atomic_t finished ;

void on_alarm (int ); /* handler for alarm * [

void on_input(int); /* handler for SIGIO * /[

void enable kbd signals(); /x setup for SIGIO */

int main( int argc, char % argv|])

{
struct sigaction newhandler; /* for installing handlers */
sigset _t blocked ; /* to set mask for handler x/

/* Set up signal handling x/
newhandler.sa_handler = on_input; /* name of handler x/
newhandler.sa flags = SA RESTART; /x flag is just RESTART x/

sigemptyset(&blocked ); /* clear all bits of blocked set x/
newhandler.sa mask = blocked; /* set this empty set to be the mask x/
if ( sigaction (SIGIO, &newhandler, NULL) =— -1 ) {

perror ("sigaction ");
return (1);
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sigemptyset(&blocked );
sigaddset (&blocked , SIGIO );
newhandler.sa mask = blocked;

newhandler.sa handler = on_alarm; /x

/* clear all bits of blocked set x/

/* set this empty set to be the mask x/
SIGALRM handler function x/

if ( sigaction (SIGALRM, &newhandler, NULL) — -1 ){ /% try to install x/

perror ("sigaction ");

return (1);

}

/* Prepare the terminal for the animation x/

initialize the library and screen x/

put terminal into non—blocking input mode x*/

initscr (); /%

cbreak (); /%

noecho (); /* turn off echo x/
clear (); /* clear the screen x/

curs_set (0); /*

/* Initialize the

hide the cursor x/

parameters of the program x/

row = ROW;

col = 0;

dir = RIGHT;

finished = 0;

speed = INITIAL_ SPEED ;

/* Turn on keyboard signals x/
enable kbd signals ();

/* Start the real time interval timer with delay interval size x/

set timer ( ITIMER REAL, 1000/speed,

mvaddstr (LINES—1, 0, "Current speed:");

refresh ();

1000/speed );

/* Put the message into the first position and start x/

mvaddstr (row, col, MESSAGE) ;

while( 0 == finished ) {
pause ();

endwin ();
return 0;

}

void on input(int signum)
{
int c;
int is changed = 0;
char  mssge[40];

¢ = getch ();
switch (c¢) {
case 'Q’:
case ’'q’:

finished = 1;
clear ();

/#* quit program x/
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endwin ();
/* exit (0); TUNCOMMENT THIS IF YOU WANT IT TO WORK!!! x/
break ;
case ' :
dir = (LEFT — dir)? RIGHT:LEFT; /% reverse direction x/
break ;
case 'f’:
if ( 1000/speed > 2 ) { /* if interval > 2 x/
speed = speed + 2; /* increase x/
is _changed = 1;
}
break ;
case ’s’:
if (1000/speed < 500 ) { /x if interval <= 500 x/
speed = speed — 2 ; /* decrease x/
is changed = 1;
}
break ;

if ( is_changed ) {
set timer ( ITIMER REAL, 1000/speed, 1000/speed );
sprintf (mssge, "Current speed: %d (chars/sec)", speed);
mvaddstr (LINES—1, 0, mssge);

}

move ( LINES—1, COLS—12);
sprintf(mssge, "Last Char:%c", c¢);
addstr (mssge);

refresh ();

void on_ alarm(int signum)
/* same as in bouncestr.c, and so omitted here %/

void enable keybd signals()

{

int fd_flags;

fentl (0, F_SETOWN, getpid ());

fd flags = fcntl (0, F _GETFL);

fcntl (0, F SETFL, (fd _ flags|O_ASYNC));
}
Notes.

1. The biggest difference between this and the bouncestr.c program is that the input handling is
entirely inside the on_input () handler.

2. The enable_keybd_signals() function sets up the asynchronous input on file descriptor 0.

3. This program must call exit () from within the handler, otherwise it will never terminate. If you
modify the on_input () handler so that when a ’q’ is typed, all it does is to set the finished flag
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to 1, the program will not stop. In fact, the main program will continue to see the value 0 stored in
finished. You can go one step further and delete the main loop completely, and the program will
animate forever. In other words, the signal handler for STGALRM continues to run and the endwin ()
call is never reached. This problem is not related to NCurses, nor to the timers.

The problem is that, as the man page for fcntl() notes, " a SIGIO signal is sent whenever input

or output becomes possible on that file descriptor.”" From various experiments I have carried out, I
have determined that the problem is that, when the terminal is in non-canonical mode and signal-
driven input has been set up on the input descriptor of the terminal (file descriptor 0), if the main
program or the SIGIO handler attempts output on the terminal device, it corrupts the SIGIO signal
mechanism so that when the SIGIO handler terminates, instead of returning to the main program,
execution will resume in the handler again, as if the SIGIO signal was not cleared from the process’s
state. So the process continues to execute only in the input handler and the SIGALRM handler if it
has not been blocked. If one removes all output instructions of any kind from the signal handler
and the main program to "slow devices", meaning the screen, then the program will work correctly.
The behavior of programs that issue writes within the handler or the main program to the screen
is apparently undefined.

4. The signal handler for the SIGI0 must not block SIGALRM, or else the animation will disappear.
The SIGALRM handler can block SIGIO signals though.

What follows is a better version of this same program, also using a SIGIO signal handler that adheres
to all safety rules noted above, and that works correctly.

6.12.3 The bouncestr.c Program Using 0_ASYNC : A Proper Solution

In this version, all code has been removed from the SIGIO signal handler except to set the value of
a state variable of type volatile sig_atomic_t that the main program checks. According to the
CERT Secure Programming Standard, SIG31 [1],

Accessing or modifying shared objects in signal handlers can result in race conditions
that can leave data in an inconsistent state. The exception to this rule is the ability
to read and write to variables of volatile sig_atomic_t. The need for the volatile
keyword is described in rule DCL34-C. Use volatile for data that cannot be cached.
It is important to note that the behavior of a program that accesses an object of any
other type from a signal handler is undefined.

The type sig_atomic_t is the integer type of an object that can be accessed as an atomic
entity, even in the presence of asynchronous interrupts. The type of sig_atomic_t is
implementation defined, though it provides some guarantees. Integer values ranging
from SIG_ATOMIC_MIN through SIG_ATOMIC_MAX, inclusive, may be safely stored to a
variable of the type.

Further details can be found on the CERT website or in the cited reference.

In our program, if the state variable is set, then the main loop calls getch() to get the input, and
then calls a function to process the input. Otherwise it blocks itself on pause (). The listing follows.

Listing 6.17: bouncestr async2.c: A safe version of bouncestr async.c
// #includes omitted here
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#define INITIAL_SPEED 30

#define RIGHT 1

#define LEFT -1

#define ROW 12

#define MESSAGE "ooo0000=>"

#define REVMSSGE "<=0000000"

#define BLANK " "

int dir ; /* Global variable to store direction of movement x/
int speed ; /* Current speed in chars/second x/

volatile sig _atomic t input ready;

/****************************************************************************/

/* Signal Handler Prototypes */
[tk o stk o ok ok o KoK oK KK o KK R K SR R KK SR KK R KR R KK SR R K K SR KK SR KK R KK SR KK R KK ok KK R KK Kk ok %/
void on_alarm(int ); /* handler for alarm */
void on_input(int); /* handler for keybd * [
/* This is not a signal handler — it consolidates logic for updating x/

int update from input(int c,int xspeed,int xdir );

/****************************************************************************/
/* Main * /
/****************************************************************************/
int main( int argc, char * argv|[])

{

struct sigaction newhandler; /% for installing handlers x/
sigset _t blocked ; /* to set mask for handler x/
int fd flags;

int GE

int finished;

/* Set up signal handling =/

newhandler.sa_handler = on_input; /% name of handler */
newhandler.sa flags = SA RESTART; /« flag is just RESTART */
sigemptyset(&blocked ); /* clear all bits of blocked set * /
newhandler.sa mask = blocked; /* set this empty set to be the mask x/
if ( sigaction (SIGIO, &newhandler, NULL) — -1 ) {

perror ("sigaction ");
return (1);

}

sigemptyset(&blocked ); /* clear all bits of blocked set x/
newhandler.sa mask = blocked; /* set this empty set to be the mask x/
newhandler.sa_handler = on_alarm; /% SIGALRM handler function =/

if ( sigaction (SIGALRM, &newhandler, NULL) — —1 ){ /% try to install x/

perror ("sigaction ");
return (1);

}

/* Prepare the terminal for the animation x/
initscr (); /* initialize the library and screen x/
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cbreak (); /* put terminal into non—blocking input mode x*/
noecho (); /* turn off echo x/

clear (); /* clear the screen x/

curs_set (0); /* hide the cursor x/

/* Initialize the parameters of the program =x/

dir = RIGHT;
finished = 0;
speed = INITIAL SPEED ;

input _ready = 0;

/* Turn on keyboard signals x/
fentl (0, F_SETOWN, getpid ());
fd flags = fcntl (0, F_GETFL);
fentl (0, F_SETFL, (fd_ flags|O_ASYNC));

/* Start the real time interval timer with delay interval size x/
set timer ( ITIMER REAL, 1000/speed, 1000/speed );

/+* Put a message in bottom row with current speed. x/
mvaddstr (LINES—1, 0, "Current speed:");

/* Put the message into the first position and start x/

mvaddstr (ROW, 0, MESSAGE);

while( !finished ) {
if ( input_ ready ) {
c = getch ();
finished = update from input(c, &speed, &dir);
input_ready = 0;
}

else
pause ();

}

clear ();
endwin ();
return 0;

}

/*****>|<>I<****>|<*******>I<************>I<*****>|<*****>I<>I<*****>I<************************/

int update from input( int c, int *speed, int xdir )
{

int is changed = 0;

char mssge[40];

switch (c¢) {

case ’'Q’:
case ’'q’:
return 1; /* quit program x/
case ' :
xdir = (LEFT = =dir )? RIGHT:LEFT; /% reverse direction x/
break ;
case ’'f’:
if ( 1000/(«speed) > 2 ) { /* if interval > 2 x/
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xspeed = *xspeed + 2; /* increase x/
is _changed = 1;

}

break ;
case ’'s’:
if (1000/(xspeed) < 500 ) { /* if interval <= 500 =/
xspeed = xspeed — 2 ; /* decrease x/

is _changed = 1;

}
break ;

if ( is_changed ) {
set_timer ( ITIMER_REAL, 1000/(*speed), 1000/(xspeed) );
sprintf (mssge, "Current speed: %d (chars/sec)", (xspeed));
mvaddstr (LINES—1, 0, mssge);

}

move( LINES—1, COLS—-12);
sprintf(mssge, "Last Char:%c", c);
addstr (mssge);

refresh ();

return 0;

}

/>)<*****>k****>l<*******>l<****>l<************>(<********>)<*****************************/

void on_ input(int signum)

{
}

/*****>|<*****>I<*******>|<************>|<*****>|<*****>I<>|<******************************/

input_ready = 1;

void on_ alarm(int signum)

{

static int row = ROW,
static int col = O0;

mvaddstr( row, col, BLANK ); /% erase old string x/

col += dir; /* advance one column x/
move( row, col ); /* move to new locataion x/
if ( RIGHT — dir ) {
addstr ( MESSAGE ); /* add forward string x/
if ( col+strlen (MESSAGE) >= COLS-1 )
dir = LEFT; /* reverse if hitting edge x*/
}
else {
addstr ( REVMSSGE ); /* add reverse string */
if ( col <=0 )
dir = RIGHT; /* reverse if hitting edge x*/
}
refresh ();
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6.12.4 The bouncestr.c Program Using AIO

The AIO interface is a POSIX interface that provides asynchronous I/O. Whereas setting the
0_ASYNC flag on a file descriptor causes a signal to be sent when data is available to be read, using
the AIO interface causes a signal to be sent when the data has actually been read and placed into
a user buffer. The aio_read() call is an asynchronous read. In essence, it places a read request in
the I/0O device driver’s queue and returns immediately, as indicated in the man page:

#include <aio.h>
int aio_read(struct aiocb *aiocbp);

The aio_read() function requests an asynchronous

“n = read(fd, buf, count)”
with fd, buf, count given by aiocbp->aio_fildes, aiocbp->aio_buf,
aiocbp->aio_nbytes, respectively. The return status n can be retrieved upon
completion using aio_return(3).

The data is read starting at the absolute file offset aiocbp->aio_offset,
regardless of the current file position. After this request, the value of
the current file position is unspecified.

The ‘‘asynchronous’ means that this call returns as soon as the request has
been enqueued; the read may or may not have completed when the call returms.
One tests for completion using aio_error(3).

When the request is satisfied, the driver sends a SIGIO signal. The signal handler can process the
input and then issue a new aio_read() call to get more data.

The program must

e create a buffer to store the input data, and

e fill an aiocb structure with appropriate values before issuing the first read.

An aiocb structure has the following members:

int aio_fildes //File descriptor.

off_t aio_offset // File offset.

volatile void *aio_buf //Location of buffer.

size_t aio_nbytes //Length of transfer.

int aio_reqprio //Request priority offset.
struct sigevent aio_sigevent // Signal number and value.
int aio_lio_opcode //Operation to be performed.

A program does not have to assign a value to the aio_reqprio member, but all others must be
initialized. The following function, setup_aio_buffer(), demonstrates how to set up a read of a
single character at a time into a buffer named input. It is given a pointer to an aiocb structure
and fills its members with the required data. The main program can then give the address of this
structure to the aio_read() function.
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Listing 6.18: setup aio_buffer()

void setup aio buffer(struct aiochb =xaio_ buf)

{
static char input[1]; /* 1 char of input x*/
/* describe what to read x/
aio_buf—aio_fildes = 0; /* file descriptor for I/O x/
aio_buf—aio_buf = input; /+ address of buffer for I/0 */
aio_buf—>aio_ nbytes = 1; /* number of bytes to read each time x/
aio_buf—aio_ offset = 0; /* offset in file to start reads * /
/* describe what to do when read is ready */
aio_buf—>aio sigevent.sigev notify = SIGEV_ SIGNAL;
aio buf—aio sigevent.sigev signo = SIGIO; /* send SIGIO */

}

The main program should declare the aiocb structure so that it is visible to the various functions
that must access it. The program follows.

Listing 6.19: bouncestr aio.c

#include <unistd.h>
#include <stdio.h>
#include <curses.h>
#include <signal.h>
#include <string.h>
#include <aio.h>
#include "timers.h"

#define INITIAL_SPEED 30

#define RIGHT 1

#define LEFT -1

#define ROW 12

#define MESSAGE "0000000=—>"

#define REVMSSGE "<=0000000"

#define BLANK " "

int dir ; /* Global variable to store direction of movement x/
int speed ; /* Current speed in chars/second x/

volatile sig atomic t input_ ready;

struct aiocb kbcbuf; /* an aio control buf * /
void move msg(int signum); /* handler for alarm */
void on_ input(int); /* handler for keybd *

int update from input( int xspeed, int =xdir );

/>)<***********************>(<******>k*******>k******>)<******************************/
/% Signal Handler Prototypes */
/*****************************************************************************/

/* SIGALRM signal handler — it is responsible for animating the string =x/
void move msg(int);
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/* SIGIO signal handler — it is responsible for retrieving user input x/
void setup aio_ buffer (struct aiocb *aio buf);

[ 36 otk sk o ok ok sk ok ok ok KK ok ok ok R K KoK ok R K KoK ok ok R K Kok oK ok K KoK ok ok R K KoK sk R K KoK ok ok R K Kok SRk K Kok ok ok o ok ok ok
/% Main */

/*****>|<*******>|<*******************************>|<>|<******************************/

int main(int argc, charx argv][])

{

struct sigaction newhandler; /* new settings * /
sigset t blocked ; /* set of blocked sigs x/
int finished;
newhandler.sa handler = on_input; /* handler function %/
newhandler.sa flags = SA RESTART; /* options * /
/* then build the list of blocked signals x/
sigemptyset(&blocked ); /* clear all bits * /
newhandler.sa_mask = blocked; /* store blockmask * /
if ( sigaction (SIGIO, &newhandler, NULL) — -1 )

perror ("sigaction ");
newhandler.sa handler = move msg; /* handler function * /
if ( sigaction (SIGALRM, &newhandler, NULL) — -1 )

perror ("sigaction ");

/* prepare the terminal for the animation x/

initscr (); /* initialize the library and screen x/

cbreak (); /* put terminal into non—blocking input mode x*/
noecho (); /* turn off echo =/

clear (); /* clear the screen x/

curs_set (0); /* hide the cursor =/

/* Initialize the parameters of the program x/

dir — RIGHT;
finished = 0;
speed = INITIAL SPEED ;

/* initialize aio buffer for the first read and place call */
setup _aio_buffer(&kbcbuf);
aio_read(&kbcbuf);

/* Start the real time interval timer with delay interval size x/
set timer ( ITIMER REAL, 1000/speed, 1000/speed );

mvaddstr (LINES—1, 0, "Current speed:");
refresh ();

/* Put the message into the first position and start x/

mvaddstr (ROW, 0, MESSAGE);

while( !finished )
if ( input_ ready ) {
finished = update from input(&speed, &dir);
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input_ready = 0;
}
else
pause () ;
clear ();
endwin ();
return 0;

}
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/* SIGIO Signal Handler */

/******>I<****>|<>|<************>|<>I<************>I<****>|<>|<*******************************/

void on_input(int signo)

{
}

input ready = 1;

/* Handler called when aio read () has stuff to read x*/
/* First check for any error codes, and if ok, then get the return code x/

int update from input( int xspeed, int xdir )

{

int c;
int is changed = O0;
char xcp = (char %) kbcbuf.aio buf; /* cast to char x %/

char mssge [40];
int finished=0;

/* check for errors x/
if ( aio_error(&kbcbuf) !=
perror ("reading failed'
else
/* get number of chars read x/
if ( aio_return(&kbcbuf) = 1 ) {
C = *Cp;
/*ndelay = 0; */
switch (c¢) {

0)
Bk

case 'Q’:
case ’'q’:
finished = 1; /* quit program x/
break ;
case ' :
xdir = (xdir == LEFT)? RIGHT:LEFT; /% reverse direction x*/
break ;
case ’'f’:
it ( 1000/(xspeed) > 2 ) { /* if interval > 2 %/
xspeed = *xspeed + 2; /* increase x/

is_changed = 1;
}
break ;
7S7:
if (1000/(xspeed) < 500 ) { /* if interval < 500 x/

case
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xspeed = xspeed — 2 ; /* decrease x/
is _changed = 1;
}
break ;
}
if ( is_changed ) {
set_timer ( ITIMER_REAL, 1000/(*speed), 1000/(xspeed) );
sprintf (mssge, "Current speed: %d (chars/sec)", *speed);
mvaddstr (LINES—1, 0, mssge);

}

/* write the status line message x/
move ( LINES—1, COLS—12);
sprintf (mssge, "Last Char:%c", c);
addstr (mssge );
refresh ();
}

/* place a new request x/

aio_read(&kbcebuf);

return finished;

}

[ ko kR Kk Kok KR KR Kk R R KR KR R R KR KR R R KR R KR Kk KR KR K R KR KR KR KRR KR Rk ok
/* SIGALRM Signal Handler * /

/*****>|<*****>|<>I<>|<****>I<>I<*****>I<>I<*****>I<*****>I<>I<*****>|<>|<****>I<*************************/

/* SIGALRM handler — moves string on the screen when the signal is received x/
void move msg(int signum)

{

static int row = ROW;

static int col = 0;
mvaddstr( row, col, BLANK ); /+ erase old string x/
col 4= dir; /* advance one column x/
move( row, col ); /* move to new locataion x/
if ( RIGHT = dir ) {
addstr ( MESSAGE ); /* add forward string x/
if ( col+strlen (MESSAGE) >= COLS-1 )
dir = LEFT; /* reverse if hitting edge x/
}
else {
addstr ( REVMSSGE ); /* add reverse string */
if ( col <=0 )
dir = RIGHT; /* reverse if hitting edge x/
}
refresh ();

}

] o K ok o Ko KK oK K KK K o K K S K oK K o K K o K K K ok K K o K oK 3R K o K K ok K oK SR Ko K K S K oK KoK K K oK oK R Kok KKK o
/* Asynchronous I/O Library Setup */

/*****>l<>|<****>|<>l<*****>l<>l<******>|<****>l<>l<*****>l<>|<****>|<******>l<>l<************************/

/* The following function initializes the AIO structure to enable %/
/* asynchronous I/O through the AIO library. x/

void setup aio_ buffer(struct aiochb =xaio_ buf)

/* Same as in Listing above x/
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6.12.5 Simulating Multiple Timers

Even though a process can have only a single timer, it is still possible to animate an unlimited
number of independently moving objects. The key is to simulate in the program exactly what the
kernel does with its timers relatively to the system clock. The idea is to create an array of the
objects to be animated. Each entry of the array can have all of the information needed to animate
a single object, and in particular, the length of the interval between movements of that object. In
the world of animation, these movable creatures are called sprites, so I will call them that here.

In essence, a sprite can be represented by a structure such as the one below.

struct sprite

{
int interval; // number of time units between redraws
int counter; // counter for elapsed time between redraws
char shape; // shape used to draw object
position display_pos; // current location on screen (int,int)
position real_pos; // current real location (double, double)
double dx; // current x-coordinate of direction
double dy; // current y-coordinate of direction

s

For each tick of the process’s single interval timer, it can iterate through an array of sprites, decre-
menting each counter. If any counter reaches 0, it copies the interval value into it and issues a
request to move the sprite in the (dx,dy) direction from position real_pos. The particular im-
plementation above uses two positions, a real position and a display position. The idea is to keep
track of the actual position as a floating point value, and display it in the cell in which its center
of mass resides. The real position is updated by the (dx,dy) value and then the display position
is calculated from that. The (dx,dy) pair is a vector of length 1 that is added to the real position
of the point. The display cell is obtained by rounding the x and y values to the nearest integer.
Moving a sprite can be accomplished with the following function.

Listing 6.20: move _sprite()
void move sprite(sprite xsp)

{

erase_sprite(*sp);

sp—>real pos.y += sp—>dy;

sp—real pos.x += sp—dx;

sp—>display pos.r = (int)( sp—>real pos.y
sp—>display pos.c = (int)( sp—>real pos.x
draw _sprite(*sp );

+ 0.5);

+ 0.5);

if ( ( sp—real pos.y > LINES—0.5 ) && ( sp—>dy > 0 ) )
sp—dy = —sp—>dy;

else if ( ( sp—>real pos.y < 0.0 ) && ( sp—>dy < 0 ) )

sp—>dy = —sp—>dy;
if ( ( sp—real pos.x > COLS—0.5 ) && ( sp—>dx > 0 ) )
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}

sp—dx = —sp—>dx;

else if ( ( sp—>real pos.x < 0.5 ) && ( sp—>dx < 0 ) )

sp—dx = —sp—>dx;

An unsafe SIGALRM signal handler would be as follows:

void update all(int signum)

{

}

int k;
for ( k = 0; k < NUM_OBIJS; ki+ )
if ( —object[k].counter =— 0 ){
move sprite(&(object [k]));
object |k].counter = object |k]|.interval;

1
move (LINES—1, COLS—1);

refresh ();

The rest of this program is relatively easy to piece together.

6.12.6 Summary

This chapter introduced the NCurses library as a means for controlling the user’s terminal in a
simpler and more powerful way than was possible by modifying terminal driver attributes. It barely
scratched the surface of the library’s interface. It also introduced timers as a way of introducing
timed events and motion. Finally, it introduced several different models of input/output, including
signal-driven and asynchronous I/0, an well as several different models of terminal processing, such
as raw, cbreak, and non-canonical mode.

More efficient processing and better control can be achieved by the use of multiple processes. This
is the topic of the next chapter.
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