
And Then There Were None:
A Stall-Free Real-Time Garbage Collector for Reconfigurable Hardware

David F. Bacon Perry Cheng Sunil Shukla
IBM Research

{dfb,perry,skshukla}@us.ibm.com

Abstract
Programmers are turning to radical architectures such as reconfig-
urable hardware (FPGAs) to achieve performance. But such sys-
tems, programmed at a very low level in languages with impover-
ished abstractions, are orders of magnitude more complex to use
than conventional CPUs. The continued exponential increase in
transistors, combined with the desire to implement ever more so-
phisticated algorithms, makes it imperative that such systems be
programmed at much higher levels of abstraction. One of the fun-
damental high-level language features is automatic memory man-
agement in the form of garbage collection.

We present the first implementation of a complete garbage col-
lector in hardware (as opposed to previous “hardware-assist” tech-
niques), using an FPGA and its on-chip memory. Using a com-
pletely concurrent snapshot algorithm, it provides single-cycle ac-
cess to the heap, and never stalls the mutator for even a single cycle,
achieving a deterministic mutator utilization (MMU) of 100%.

We have synthesized the collector to hardware and show that it
never consumes more than 1% of the logic resources of a high-end
FPGA. For comparison we also implemented explicit (malloc/free)
memory management, and show that real-time collection is about
4% to 17% slower than malloc, with comparable energy consump-
tion. Surprisingly, in hardware real-time collection is superior to
stop-the-world collection on every performance axis, and even for
stressful micro-benchmarks can achieve 100% MMU with heaps as
small as 1.01 to 1.4 times the absolute minimum.

Categories and Subject Descriptors B.3.3 [Memory Structures]:
Worst-case analysis; B.5.1 [Register-Transfer-Level Implementa-
tion]: Memory design; B.7.1 [Integrated Circuits]: Gate arrays;
C.3 [Special-Purpose and Application-Based Systems]: Real-time
and embedded systems; D.3.3 [Programming Languages]: Lan-
guage Constructs and Features; D.3.4 [Programming Languages]:
Memory management (garbage collection)

General Terms Design, Languages, Experimentation, Perfor-
mance

Keywords Block RAM, FPGA, High Level Synthesis, Garbage
Collection, Real Time

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
PLDI’12, June 11–16, Beijing, China.
Copyright c© 2012 ACM 978-1-4503-1205-9/12/04. . . $10.00

1. Introduction
The end of frequency scaling has driven architects and developers
to parallelism in search of performance. However, general-purpose
MIMD parallelism is inefficient and power-hungry, with power
rapidly becoming the limiting factor. This has led the search for
performance to non-traditional chip architectures like GPUs and
other more radical architectures. The most radical general-purpose
computing platform of all is reconfigurable hardware, in the form
of Field-Programmable Gate Arrays (FPGAs).

FPGAs are now available with over 1 million programmable
logic cells and 8 MB of on-chip “block RAM”, providing a massive
amount of bit-level parallelism combined with single-cycle access
to the memory capacity of a VAX-11/780. Furthermore, because
that memory is distributed throughout the chip in 18 Kbit units,
algorithms with huge data bandwidth can also be implemented.

However, programming methodology for FPGAs has lagged far
behind their capacity, which in turn has greatly reduced their appli-
cation to general-purpose computing. The most common languages
for FPGA programming are still hardware description languages
(VHDL and Verilog) in which the only abstractions are bits, arrays
of bits, registers, wires, and so on. The entire approach to program-
ming them is oriented around the synthesis of a chip that happens
to be reconfigurable, as opposed to programming a general-purpose
device.

Recent research has focused on raising the level of abstraction
and programmability to that of high-level software-based program-
ming languages, in particular, the Kiwi project [14] which uses C#,
and the Liquid Metal project, which has developed the Lime lan-
guage [4] based on Java.

However, up until now, whether programmers are writing in
low-level HDLs or high-level languages like Kiwi and Lime,
use of dynamic memory management has only just begun to be
explored [11, 25], and use of garbage collection has been non-
existent.

In this paper we present a garbage collector synthesized entirely
into hardware, capable of collecting a heap of uniform objects
completely concurrently. We call such a heap of uniform objects
a miniheap. By uniform we mean that the shape of the objects (the
size of the data fields and the location of pointers) is fixed. Thus we
trade a degree of flexibility in the memory layout for large gains in
collector performance.

In the FPGA domain this makes sense: due to the distributed
nature of the memory it is common to build pipelined designs
where each stage of the pipeline maintains its own internal data
structures that are able to access their local block RAM in parallel
with other pipeline stages. Furthermore, fixed data layouts can
provide order-of-magnitude better performance because they allow
designs which deterministically process one operation per clock
cycle.

23

For instance, the Lime language provides the capability to map
a graph of compute tasks, each with its own private heap memory,
onto the FPGA. Thus it is more important to handle many small
heaps with a high degree of efficiency, than to handle a high degree
of heterogeneity in the data layout.

Historically, it is also interesting to note that McCarthy’s inven-
tion of garbage collection for LISP [18] was in the context of an
IBM 704 with only 4K 36-bit words, essentially used as a fixed-
format heap of S-expressions.

Algorithmically, our collector is a fairly straightforward Yuasa-
style snapshot-at-the-beginning concurrent collector [35], with a
linear sweep phase. However, by taking advantage of hardware
structures like dual-ported memories, the ability to simultaneously
read and write a register in a single cycle, and to atomically dis-
tribute a control signal across the entire system, we are able to de-
velop a collector that never interferes with the mutator.

Furthermore, the mutator has single-cycle access to memory,
and the design can actually support multiple simultaneous memory
operations per cycle. Arbitration circuits delay some collector oper-
ations by one cycle in favor of mutator operations, but the collector
can keep up with a mutator even when it performs a memory oper-
ation every cycle (allocations are limited to one every other cycle).

The collector we describe can be used either directly with pro-
grams hand-written in hardware description languages (which we
explore this paper) or as part of a hardware “run-time system” tar-
geted by a compiler for a C-to-gates [11, 25] or high-level lan-
guage [4, 14] system including dynamic memory allocation. The
latter is left to future work, and we concentrate in this paper on
exploring the design, analysis, and limits of the hardware collector.

The contributions of this paper are:

• the first implementation of an entire garbage collector in hard-
ware (as opposed to hardware-assist or microcode), including
both stop-the-world and fully concurrent variants;

• the first garbage collector to entirely eliminate mutator interfer-
ence by the collector (by even a single cycle), thereby achieving
minimum mutator utilization (MMU [7]) of 100%;

• an implementation of the collector in Verilog along with de-
manding hardware-based client applications performing up to
one memory allocation every 14 cycles;

• a performance evaluation showing the cost of garbage collec-
tion in absolute terms and relative to malloc/free, including dy-
namic measurement of throughput and energy;

• analytic closed-form worst-case bounds (in cycles) for collec-
tion time and minimum heap size required for 0-stall real-time
behavior, along with experimental evidence of safety, and tight-
ness within 2-6% for time and 3% for space; and

• an exploration of the design space showing that in hardware,
real-time collection simultaneously achieves higher throughput,
and lower latency, memory usage, and energy consumption than
stop-the-world collection.

2. FPGA Background
Field Programmable Gate Arrays (FPGAs) are programmable logic
devices consisting of 4- or 6-input look-up tables (LUTs) which can
be used to implement combinational logic, and flip-flops which can
be used to implement sequential logic. On the Xilinx FPGAs which
we use in this work, several LUTs and flip-flops are combined
together to form a unit called a slice, which is the standard unit in
which resource consumption is reported for FPGAs (Altera FPGAs
use a slightly different architecture).

FPGAs also include a clock distribution network for propagat-
ing a globally synchronized clock to allow for the use of conven-

tional clocked digital logic. Our collector takes advantage of this
global clock in a number of ways, in particular to implement an
efficient single-cycle atomic root snapshot.

The FPGA also contains a large amount of configurable routing
resources for connecting the slices, based on the data flow in the
hardware description language program. The routing resources are
used by the place-and-route (PAR) tool during hardware synthesis.

2.1 Memory Structures on FPGAs
Particularly important to this work are the memories available on
the FPGA. Block RAMs (BRAMs) are specialized memory struc-
tures embedded within the FPGA for resource-efficient implemen-
tation of large random- and sequential-access memories.

The Xilinx Virtex-5 LX330T [32] device that we use in this
paper (one of the largest in that family) has a BRAM capacity of
1.5 MB; the latest generation of Xilinx devices, the Virtex-7, have
as much as 8 MB of BRAM.

A single BRAM in a Virtex-5 FPGA can store up to 36 Kilobits
(Kb) of memory. An important feature of BRAM is that it can be
organized in various form factors (analogous to word sizes on a
CPU). On the Virtex-5, form factors of 1, 2, 4, 9, 18, 36, 72, and so
on are supported. A 36 Kb BRAM can also be used as two logically
separate 18 Kb BRAMs. Moreover, a larger memory structure can
be built by cascading multiple BRAMs horizontally, vertically or
in a hybrid manner. Any memory structure in the design which
is smaller than 18 Kb would lead to quantization (or, in memory
system parlance, “fragmentation”).

The quantization effect can be considerable depending on the
logical memory structure in the design (and is explored in Sec-
tion 7). A BRAM can be used as a true dual ported (TDP) RAM
providing two fully independent read-write ports. Furthermore,
each port supports either read, write, read-before-write, or read-
after-write operations. Our collector makes significant use of read-
before-write for things like the Yuasa-style write barrier [35].

BRAMs can also be configured for use as FIFO queues rather
than as random access memories; we make use of this feature for
implementing the mark queues in the tracing phase of the collector.

FPGAs are typically packaged on boards with dedicated off-
chip DRAM and/or SRAM which can be accessed via a memory
controller synthesized for the FPGA. Such memory could be used
to implement much larger heap structures. However, we do not
consider use of DRAM or SRAM in this paper because we are
focusing on high-performance designs with highly deterministic
(single cycle) behavior.

3. Memory Architecture
The memory architecture — that is, the way in which object fields
are laid out in memory, and the free list is maintained — is common
to our support of both malloc/free and garbage-collected abstrac-
tions. In this section we describe our memory architecture as well
as some of the alternatives, and discuss the tradeoffs qualitatively.
Some tradeoffs are explored quantitatively in Section 7.

Since memory structures within an FPGA are typically and of
necessity far more uniform than in a conventional software heap,
we organize memory into one or more miniheaps, in which objects
have a fixed size and “shape” in terms of division between pointer
and data fields. This is essentially the same design as the “big bag of
pages” (BIBOP) style in conventional software memory allocator
design, in which the metadata for the objects is implicit in the page
in which they reside [28].

The fixed shape of the miniheaps is a natural match to the
FPGA, which must use fixed-width data paths to transmit the ob-
jects and fields across the routing network to achieve high perfor-
mance.

24

A

BB

A

000

Pointer to WriteAddr to Read/Write

Address to Clear

Pointer
Memory

Stack Top

Addr Alloc’dAddr to Free

Address Allocated

Pointer ValueAlloc

Free
Stack

Figure 1. Memory module design for malloc/free interface, show-
ing a single field of pointer type (for heap size N = 8 and pointer
width log N = 3). Block RAMs are in yellow, with the dual ports
(A/B) shown. For each port, the data line is above and the address
select line is below. Ovals designate 3-bit wide pointer fields; those
in blue are in use.

3.1 Miniheap Interface
Each miniheap has an interface allowing objects to be allocated
(and freed when using explicit memory management), and opera-
tions allowing individual data fields to be read or written.

In this paper we will consider miniheaps with one or two pointer
fields and one or two data fields. This is sufficient for implementing
many stack, list, queue, and tree data structures, as well as S-
expressions. FPGA modules for common applications like packet
processing, compression, etc. are covered by such structures.

Our design allows an arbitrary number of data fields. Increas-
ing the number of pointer fields is straightforward for malloc-style
memory. However, for garbage collected memory, the extension
would require additional logic. We believe this is relatively straight-
forward to implement (and include details below) but the experi-
mental results in this paper are confined to one- and two-pointer
objects.

3.2 Miniheap with Malloc/Free
There are many ways in which the interface in Section 3.1 can
be implemented. Fundamentally, these represent a time/space (and
sometimes power) trade-off between the number of available par-
allel operations, and the amount of hardware resources consumed.

For FPGAs, one specifies a logical memory block with a desired
data width and number of entries, and the synthesis tools attempt
to allocate the required number of individual Block RAMs as ef-
ficiently as possible, using various packing strategies. We refer to
the BRAMs for such a logical memory block as a BRAM set.

In our design we use one BRAM set for each field in the object.
For example, if there are two pointer fields and one data field, then
there are three BRAM sets.

The non-pointer field has a natural width associated with its data
type (for instance 32 bits). However, for a miniheap of size N ,
the pointer fields must only be dlog2 Ne bits wide. Because data
widths on the FPGA are completely customizable, we use precisely
the required number of bits. Thus a larger miniheap will increase
in size not only because of the number of entries, but because the
pointer fields themselves become larger.

As in software, the pointer value 0 is reserved to mean “null”,
so a miniheap of size N can really only store N − 1 objects.

A high-level block diagram of the memory manager is shown
in Figure 1. It shows the primary data and control fields of the

memory module, although many of the signals have been elided to
simplify the diagram. For clarity of presentation it shows a single
object field, of pointer type (Pointer Memory), which is stored in
a single BRAM set. A second BRAM set (Free Stack) is used to
store a stack of free objects.

For an object with f fields, there would be f BRAM sets with
associated interfaces for the write and read values (but not an
additional address port). And of course there is only a single free
stack, regardless of how many fields the object has.

The Alloc signal is a one-bit signal used to implement the
malloc operation. A register is used to hold the value of the
stack top. Assuming it is non-zero, it is decremented and then
presented on port B of the Free Stack BRAM set, in read mode.
The resulting pointer to a free field is then returned (Addr Alloc’d),
but is also fed to port B of the Pointer Memory, in write mode
with the write value hard-wired to 000 (or “null”).

To free an object, the pointer is presented to the memory man-
ager (Addr to Free). The Stack Top register is used as the address
for the Free Stack BRAM set on port B, in write mode, with the
data value Addr to Free. Then the Stack Top register is incre-
mented. This causes the pointer to the freed object to be pushed
onto the Free Stack.

In order to read or write a field in the Pointer Memory, the
Addr to Read/Write is presented, and, if writing, a Pointer to Write.
This uses port A of the BRAM set in either read or write mode,
returning a value on the Pointer Value port in the former case.

Note that this design, by taking advantage of dual-porting the
BRAMs, can allow a read or write to proceed in parallel with an
allocate or free.

3.3 Fragmentation and Other Trade-Offs
The BRAM quantization described in Section 2.1 can play a signif-
icant role in the efficiency of BRAM utilization. For instance, for a
miniheap of size N = 256, pointers are 8 bits wide, so a single 18
Kb BRAM configured as 9 bits wide would be used. This wastes 1
bit per entry, but also wastes 1.75K entries, since only 256 (0.25K)
entries are needed. The 1 bit wasted per field is a form of internal
fragmentation and the 1.75K wasted fields are a form of external
fragmentation.

To reduce external fragmentation, multiple fields of the same
size could be implemented with a single BRAM set. However, since
BRAMs are dual-ported, supporting more than two fields would
result in a loss of parallelism in terms of field access. Furthermore,
since we use one BRAM port for initialization of fields when they
are allocated, this effect comes into play even with two fields.

The opposite approach is also possible: multiple fields can be
implemented with a single BRAM set, resulting in a wider data
width. In principle this can reduce internal fragmentation. However,
in practice we find that this can actually result in poorer resource
allocation. A wider data width also means that updates to individual
fields must be performed with a read/modify/write sequence, which
requires two cycles. Furthermore, the read/modify/write can not
be pipelined, so in addition to higher latency, throughput can be
halved.

Threaded Free List. A common software optimization would
be to represent the free objects not as a stack of pointers, but as a
linked list threaded through the unused objects (that is, a linked list
through the first pointer field). Since the set of allocated and free
objects are mutually exclusive, this optimization is essentially free
modulo cache locality effects.

However, in hardware, this causes resource contention on the
BRAM set containing the first pointer (since it is doing double
duty). Thus parallelism is reduced: read or write operations on the
first pointer can not be performed in the same cycle as malloc or
free, and the latter require two cycles rather than one.

25

A

B

Stack Top

Push/PopGC

Scan Pointer

Push Value Pop Value Root to Add

Shadow Register

Mutator Register

Write Reg Read Reg

MUX

Mutator
Stack

Figure 2. Single-Cycle Atomic Root Snapshot Engine

4. Garbage Collector Design
We now describe the implementation of both a stop-the-world and a
fully concurrent collector in hardware. In software, the architecture
of these two styles of collector are radically different. In hardware,
the differences are much smaller, as the same fundamental struc-
tures and interfaces are used.

The concurrent collector has a few extra data structures (im-
plemented with BRAMs) and also requires more careful alloca-
tion of BRAM ports to avoid contention, but these features do not
negatively affect the use of the design in the stop-the-world col-
lector. Therefore, we will present the concurrent collector design,
and merely mention here that the stop-the-world variant omits the
shadow register(s) from the root engine, the write barrier register
and logic from the trace engine, and the used map and logic from
the sweep engine.

Our collector comprises three separate components, which han-
dle the atomic root snapshot, tracing, and sweeping.

4.1 Background: Yuasa’s Snapshot Algorithm
Before delving into the details of our implementation, we describe
Yuasa’s snapshot algorithm [35] which is the basis of our imple-
mentation. While the mechanics in hardware are quite different,
it is interesting to note that implementing in hardware allows us to
achieve a higher degree of concurrency and determinism than state-
of-the-art software algorithms, but without incorporating more so-
phisticated algorithmic techniques developed in the interim.

The fundamental principle of the snapshot algorithm is that
when collection is initiated, a logical snapshot of the heap is taken.
The collector then runs in this logical snapshot, and collects every-
thing that was garbage at snapshot time.

In Yuasa’s original algorithm, the snapshot consisted of the reg-
isters, stacks, and global variables. This set of pointers was gath-
ered synchronously (since then, much research has been devoted to
avoiding the need for any global synchronization at snapshot time
or during phase transitions [3, 22]).

Once the roots have been gathered, the mutator is allowed to
proceed and the collector runs concurrently, marking the transitive
closure of the roots.

If the mutator concurrently modifies the heap, its only obliga-
tion is to make sure that the collector can still find all of the objects
that existed in the heap at snapshot time. This is accomplished by
the use of a write barrier: before any pointer is over-written, it is
recorded in a buffer and treated as a root for the purposes of collec-
tion.

Objects that are freshly allocated during a collection are not
eligible for collection (they are “allocated black” in the parlance
of collector literature).

The advantage of the snapshot algorithm is its simplicity and
determinism. Since it operates in a logical snapshot at an instant in
time, the invariants are easy to describe. In addition, termination is
simple and deterministic, since the amount of work is bounded at
the instant that collection begins.

This is in contrast to the “incremental update” style algorithms
of Steele [27] and Dijkstra [12] (and numerous successors), which
attempt to “chase” objects that are freshly allocated during collec-
tion.

4.2 Root Snapshot
The concurrent collector uses the snapshot-at-the-beginning algo-
rithm described above. Yuasa’s original algorithm required a global
pause while the snapshot was taken by recording the roots; since
then real-time collectors have endeavored to reduce the pause re-
quired by the root snapshot. In hardware, we are able to completely
eliminate the snapshot pause by taking advantage of the parallelism
and synchronization available in the hardware.

The snapshot must take two types of roots into account: those in
registers, and those on the stack. Figure 2 shows the root snapshot
module, simplified to show a single stack and a single register.

The snapshot is controlled by the GC input signal, which goes
high for one clock cycle at the beginning of collection. The snap-
shot is defined as the state of the memory at the beginning of the
next cycle after the GC signal goes high. This allows some setup
time and reduces synchronization requirements.

The register snapshot is obtained by using a shadow register. In
the cycle after the GC signal goes high, the value of the register is
copied into the shadow register. This can happen even if the register
is also written by the mutator in the same cycle, since the new value
will not be latched until the end of the cycle.

The stack snapshot is obtained by having another register in
addition to the Stack Top register, called the Scan Pointer. In
the same cycle that the GC signal goes high, the value of the Stack
Top pointer minus one is written into the Scan Pointer (because
the Stack Top points to the entry above the actual top value).
Beginning in the following cycle, the Scan Pointer is used as the
source address to port B of the BRAM set containing the stack, and
the pointer is read out, going through the MUX and emerging on
the Root to Add port from the snapshot module. The Scan Pointer
is also decremented in preparation for the following cycle.

Note that the mutator can continue to use the stack via port A
of the BRAM set, while the snapshot uses port B. And since the
mutator can not pop values off the stack faster than the collector can
read them out, the property is preserved that the snapshot contains
exactly those roots that existed in the cycle following the GC signal.

A detail omitted from the diagram is that a state machine is
required to sequence the values from the stack and the shadow
register(s) through the MUX to the Root to Add port. Note that
the values from the stack must be processed first, because the stack
snapshot technique relies on staying ahead of the mutator without
any explicit synchronization.

If multiple stacks were desired, then a “shadow” stack would
be required to hold values as they were read out before the mutator
could overwrite them, which could then be sequenced onto the Root
to Add port.

As will be seen in Section 4.4, collection is triggered (only)
by an allocation that causes free space to drop below a threshold.
Therefore the generation of root snapshot logic only needs to con-
sider those hardware states in which this might occur. Any register
or stack not live in those states can be safely ignored.

26

A

A

B

000
Barrier Reg

Pointer
Memory

Mark
Map

Addr to Clear Pointer to Write

1 Mark Queue

Pointer Value Root to Add

Pointer to Trace

B

MUX

M
UX

Addr to Read/Write

Figure 3. Tracing Engine and a Single Pointer Memory

4.3 Tracing
The tracing engine, along with a single pointer memory (corre-
sponding to a single pointer field in an object) is shown in Figure 3.
It provides the same mutator interface as the malloc/free style mem-
ory manager of Figure 1: Addr to Read/Write, Pointer to Write, and
Pointer Value – except that the external interface Addr to Free is
replaced by the internal interface (denoted in red) Addr to Clear,
which is generated by the Sweep module (described in Section 4.4).

The only additional interface is the Root to Add port which takes
its inputs from the output port of the same name of the Root Engine
in Figure 2.

As it executes, there are three sources of pointers for the engine
to trace: externally added roots from the snapshot, internally traced
roots from the pointer memory, and over-written pointers from the
pointer memory (captured with a Yuasa-style barrier to maintain
the snapshot property). The different pointer sources flow through
a MUX, and on each cycle a pointer can be presented to the Mark
Map, which contains one bit for each of the N memory locations.

Using the BRAM read-before-write mode, the old mark value
is read, and then the mark value is unconditionally set to 1. If
the old mark value is 0, this pointer has not yet been traversed,
so the negation of the old mark value (indicated by the bubble) is
used to control whether the pointer is added to the Mark Queue
(note that this means that all values in the Mark Queue have been
filtered, so at most N − 1 values can flow through the queue). The
Mark Queue is a BRAM used in FIFO (rather than random access)
mode.

Pointers from the Mark Queue are presented as a read address
on port B of the Pointer Memory, and if the fetched values are
non-null are fed through the MUX and thence to the marking step.

The write barrier is implemented by using port A of the Pointer
Memory BRAM in read-before-write mode. When the mutator
writes a pointer, the old value is read out first and placed into
the Barrier Reg. This is subsequently fed through the MUX and
marked (the timing and arbitration is discussed below).

Given the three BRAMs involved in the marking process, pro-
cessing one pointer requires 3 cycles. However, the marking en-
gine is implemented as a 3-stage pipeline, so it is able to sustain a
throughput of one pointer per cycle.

4.3.1 Trace Engine Pairing
For objects with two pointers, two trace engines are paired together
to maximize resource usage (this is not shown in the figure). Since

B

A

Stack Top

Alloc

Address Allocated

Sweep
Pointer

Mark
Map

GC

Address to Free

Free
Stack

M
UX

Addr Alloc’d Addr to Clear

=10?

Used
Map

Figure 4. Free Stack and Sweeping Engine

each trace engine only uses one port of the mark map, both engines
can mark concurrently.

Furthermore, the two mark queues are MUXed together and
the next item to mark is always taken from the longer queue.
When there is only one item to enqueue, it is placed on the shorter
queue. Using this design, we provision each of the 2 queues to be
of size 3N/8 + R (where R is the maximum number of roots),
which guarantees that the queues will never overflow. For a formal
argument, see Appendix A.

On each cycle, one pointer is removed from the queues, and the
two pointers in the object retrieved are examined and potentially
marked and enqueued.

The final optimization is that since there are now two write
barrier registers and two mark queues, the write barrier values are
not processed until there are two of them. This means that the mark
engines can make progress every other cycle even if the application
is performing one write per cycle.

4.3.2 Trace Termination and WCET Effects
The termination protocol for marking is simple: once the last item
from the mark queues is popped (both mark queues become empty),
it takes 2 or 3 cycles for the trace engine to finish the current
pipeline. If the two pointers returned by the heap are null, then the
mark process is terminated in the second cycle as there is no need
to read the mark bits in this case. Otherwise the mark bit for the
non-null pointers are read to ensure that both pointers are marked,
in which case the mark phase is terminated in the third cycle.

Write barrier values arriving after the first cycle of termination
can be ignored, since by the snapshot property they would either
have to be newly allocated or else discovered by tracing the heap.

However, note that some (realistic) data structures, in particular
linked lists, will cause a pathological behavior, in which a pointer
is marked, removed from the queue, which will appear empty, and
then 2 cycles later the next pointer from the linked list will be
enqueued. So while the pipeline can sustain marking one object per
cycle, pipeline bubbles will occur which reduce that throughput.

We are currently investigating speculative “pointer forwarding”
optimizations but they have not been implemented so we merely
note that it may be possible to remove at least one if not both of
these bubbles at a modest cost in additional logic.

4.4 Sweeping
Once tracing is complete, the sweep phase begins, in which mem-
ory is reclaimed. The high-level design is shown in Figure 4. The
sweep engine also handles allocation requests and maintains the

27

stack of pointers to free memory (Free Stack). The Mark Map
here is the same Mark Map as in Figure 3.

When an Alloc request arrives from the mutator, the Stack Top
register is used to remove a pointer to a free object from the Free
Stack, and the stack pointer is decremented. If the stack pointer
falls below a certain level (we typically use 25%), then a garbage
collection is triggered by raising the GC signal which is connected
to the root snapshot engine (Figure 2).

The address popped from the Free Stack is returned to the
mutator on the Addr Alloc’d port. It is also used to set the object’s
entry in the Used Map, to 01, meaning “freshly allocated” (and
thus “black”). A value of 00 means “free”, in which case the object
is on the Free Stack.

When tracing is completed, sweeping begins in the next ma-
chine cycle. Sweeping is a simple linear scan. The Sweep Pointer
is initialized to 1 (since slot 0 is reserved for null), and on every
cycle (except when pre-empted by allocation) the sweep pointer is
presented to both the Mark Map and the Used Map.

If an object is marked, its Used Map entry is set to 10. If an
object is not marked and its used map entry is 10 (the and gate in
the figure) then the used map entry is reset to 00. Although only
3 states are used, the particular choice of bit pattern is based on
avoiding unneeded logic. The resulting signal is also used to control
whether the current Sweep Pointer address is going to be freed. If
so, it is pushed onto the Free Stack and also output on the Addr to
Clear port, which is connected to the mark engine so that the data
values being freed are zeroed out.

Note that since clearing only occurs during sweeping, there is
no contention for the Pointer Memory port in the trace engine
between clearing and marking. Furthermore, an allocation and a
free may happen in the same cycle: the top-of-stack is accessed
using read-before-write mode and returned as the Addr Alloc’d, and
then the newly freed object is pushed back.

When an object is allocated, its entry in the Mark Map is not
set (otherwise an extra interlock would be required). This means
that the tracing engine may encounter newly allocated objects in its
marking pipeline (via newly installed pointers in the heap), albeit at
most once since they will then be marked. This also affects WCET
analysis, as we will see in the next section.

5. Analysis of Real-Time Behavior
First of all, we note that since the design of our real-time collector
allows mutation and collection to occur unconditionally together in
a single cycle, the minimum mutator utilization (or MMU [7]), is
100% unless insufficient resources are dedicated to the heap.

Furthermore, unlike software-based collectors [5, 16], the sys-
tem is fully deterministic because we can analyze the worst case
behavior down to the (machine) cycle.

Given R is the maximum number of roots, N is the size of the
heap, then the worst-case time (in cycles) for garbage collection is

T = TR + TM + TW + TX + TS + TA (1)

where TR is the time to snapshot the roots, TM is the time (in
cycles) to mark, TS is the time to sweep, and TW is the time lost to
write barriers during marking, TX is the time lost to blackening
newly allocated objects during marking, and TA is time lost to
allocations during sweeping.

In the worst case, without any knowledge of the application,

TR = R + 2 TM = 3N + 3 TW = 0 TX = 0 TS = N

The reasoning for these quantities follows. During the snapshot
phase, we can place one root into the mark queue every cycle, plus
one cycle to start and finish the phase, accounting for R+2. During
marking, there could be N objects in the heap, configured as a
linked list which caused the mark pipeline to stall for two cycles on

each object, plus 3 cycles to terminate. Sweeping is unaffected by
application characteristics, and always takes N cycles. Pre-emption
of the collector by mutator write barriers (TW) does not factor into
the worst-case analysis because the write barrier work is overlapped
with the collector stalls. Extra mark operations to blacken newly
allocated objects (TX) also simply fill stall cycles.

Our design allows an allocation operation in every cycle, but
allocation pre-empts the sweep phase, meaning that such an alloca-
tion rate can only be sustained in short bursts. The largest sustain-
able allocation rate is 0.5 – otherwise the heap would be exhausted
before sweeping completed. Thus TA = N and

Tworst = R + 5N + 5 (2)

5.1 Application-Specific Analysis
Real-time analysis typically takes advantage of at least some
application-specific knowledge. This is likely to be particularly
true of hardware-based systems. Fortunately, the structure of such
systems makes it more likely that such factors can be quantified to
a high degree of precision, e.g. by looking at operations per clock
cycle in the synthesized design.

Let µ be the average number of mutations per cycle (µ ≤ 1), α
be the average number of allocations per cycle (α < 0.5), and m
be the maximum number of live data objects in the heap at any one
time (m < N). Then we can more precisely estimate

T ′
M = 3m + 3 T ′

X = αT ′
M T ′

W =
µ

2− µ
m T ′

A =
α

1− α
N

Note that both α and µ can only be averaged over a time window
guaranteed to be less than or equal to the phases which they influ-
ence; m is a safe window size.

The largest inaccuracy is still due to pipeline stalls during mark-
ing, for which worst- and average-case behavior can be very dif-
ferent. We therefore let B be the number of pipeline stalls (0 ≤
B ≤ 2m), so an even more precise bound on marking is T ′′

M =
m + B + 3 (and also improving T ′′

X = αT ′′
M).

For a linked list, B = 2m; for three linked lists each with its
own root, B = 0. We hypothesize that for the heap considered as a
forest without back-edges, B is bounded by the number of levels of
width 1 plus the number of levels of width 2 (when the width is 3
or greater, there is enough parallelism to keep the 3-stage pipeline
full and avoid stalls).

Using these application-specific estimates, we then are able to
bound the worst-case execution time (WCET) of collection as

Tmax =

„
1

1− α

« „
R + B + 5 +

2

2− µ
m +

N

1− α

«
(3)

5.2 Minimum Heap Size
Once the worst-case execution time for collection is known, we
can solve for the minimum heap size in which the collector can
run with real-time behavior (zero stalls). Obviously m objects must
be available for the live data. While a collection taking time Tmax

takes place, another αTmax objects can be allocated. However,
there may also be αTmax floating garbage from the previous cycle
when a collection starts. Thus the minimum heap size is

Nmin = m + 2αTmax (4)

and if we denote the non-size-dependent portion of Tmax from
equation (3) by

K =

„
1

1− α

« „
R + B + 5 +

2

2− µ
m

«

28

then we can solve for

Nmin = m + 2αTmax

= m + 2α

„
K +

Nmin

(1− α)2

«
Nmin =

(1− α)2(m + 2αK)

1− 4α + α2
(5)

6. Experimental Methodology
Since we have implemented the first collector of this kind, we
can not simply use a standard set of benchmarks to evaluate it.
Therefore, we have implemented two micro-benchmarks intended
to be representative of the types of structures that might be used
in an FPGA: a doubly-ended queue (deque), which is common
in packet processing, and a binary tree, which is common for
algorithms like compression.

It is important to note that because of the very high degree of
determinism in the hardware, and in our collector implementation,
such micro-benchmarks can provide a far more accurate picture of
performance than in typical evaluations of CPU-based collectors
running in software. There are no cache effects, no time-slicing,
and no interrupts. Because there are no higher order effects, the
performance behavior presented to the mutator by the collector
and vice versa is completely captured by the memory management
API at a cycle-accurate level. We validate this experimentally by
showing that the estimates for collection time and minimum real-
time heap size (from Section 5.1) are highly accurate.

A given micro-benchmark can be paired with one of the three
memory management implementations (Malloc, stop-the-world
GC, and real-time GC). Furthermore, these are parameterized by
the size of the miniheap, and for the collectors, the trigger at which
to start collection (although for most purposes, we simply trigger
when free space falls below 25%). We call these design points.

There are many FPGA product lines and many different config-
urations within each line. Our experiments are performed using a
Xilinx Virtex-5 LX330T [32], which is the largest chip within the
Virtex5 LXT product line (that is now two generations old). Given
that the motivation to use dynamic memory management will go up
with complexity, and complexity will go up with larger chips, we
believe that this is a good representative design.

The LX330T has 51,840 slices and 11,664 Kb (1.4 MB) of
Block RAM. Fabricated in 65nm technology, the chip is theoret-
ically capable of being clocked at up to 550 MHz, but realistic de-
signs generally run between 100 and 300 MHz.

For each design point, we perform complete synthesis, includ-
ing place-and-route (PAR), for the LX330T chip. PAR is the final
physical synthesis stage and it reports the highest clock frequency
the design can be clocked at, as well as the device resource utiliza-
tion such as slices and BRAM. We used Xilinx ISE 13.4 tool for
synthesis.

6.1 Description of Benchmarks
Our first benchmark is a binary search tree which is standard mem-
ber of a family of binary tree data structures including variants like
red-black trees, splay trees, and heaps. Though all the standard op-
erations are implemented, the benchmark, for simplicity, exports
only three operations: insert, delete, and traverse. The benchmark
can be run against a workload containing a sequence of such oper-
ations. Our workload generator is configured to keep the maximum
number of live nodes to 8192 while bursts of inserts and deletes
can cause the instantaneous amount of live nodes to fall to 7/8 of
that. The burstiness of the benchmark necessitates measuring the
allocation rate dynamically through instrumentation but provides a
more realistic and challenging test for our collector. Traversal op-

Figure 5. FPGA Logic Resource (slice) Usage

Figure 6. Block RAM Usage, including fragmentation wastage

Figure 7. Synthesized Clock Frequency

erations are included to confirm that our collector is not corrupting
any data as the heap size is reduced. The allocation rate of the bi-
nary tree is proportional to the tree depth and could be characterized
as intermediate for micro-benchmarks. In the context of a complete
program, the final allocation rate is potentially even lower. As far
as pipeline stalls, there will only be B = 3 stalls since the fanout
of the tree fills the pipeline after the first two levels have been pro-
cessed.

The second benchmark is a deque (double-ended queue). The
doubly-linked list can be modified by pushes and pops to either
the front or back. As before, our workload consists of a random
sequence of such operations while keeping the maximum amount
of live data to 8192. To contrast with the previous benchmark,
there are no deliberate bursts which makes the allocation rate more
consistent but also keeps the amount of live data always quite close
to the maximum. Because there is no traversal or computation, the
allocation rate is much higher and stresses the collector much more.
As far as traversal, a doubly-linked list is equivalent to two singly-
linked lists each of half the length. Thus, there will be B = m/2
stalls in the marking pipeline.

7. Evaluation
We begin by examining the cost, in terms of static resources, of the
3 memory managers – malloc/free (“Malloc”) , stop-the-world col-
lection (“STW”), and real-time concurrent collection (“RTGC”).

29

(a) Execution duration in cycles of Binary Tree (b) Execution duration in cycles of Deque

(c) Execution time in milliseconds of Binary Tree (d) Execution time in milliseconds of Deque

Figure 8. Throughput measurements for the Binary Tree and Deque Microbenchmarks. Because energy consumption is dominated by static
power, which is virtually constant, graphs (c) and (d) also show energy in millijoules; the curves are identical.

For these purposes we synthesize the memory manager in the ab-
sence of any application. This provides insight into the cost of the
memory management itself, and also provides an upper bound on
the performance of actual applications (since they can only use
more resources or cause the clock frequency to decline).

We evaluate design points at heap sizes (in objects) from 1K to
64K in powers of 2. For these purposes we use an object layout
of two pointers and one 32-bit data field. The results are shown in
Figures 5 to 7. Figure 5 shows the utilization of non-memory logic
resources (in slices). As expected, garbage collection requires more
logic than Malloc. Between the two collectors, RTGC requires
between 4% to 39% more slices than STW. While RTGC consumes
up to 4 times more slices than Malloc in relative terms, in absolute
terms it uses less than 0.7% of the total slices even for the largest
heap size so logic consumption for all 3 schemes is effectively a
non-issue.

Figure 6 shows BRAM consumption. Because we have chosen
powers of 2 for heap sizes, the largest heap size only uses 60%
of the BRAM resources (one is of course free to choose other
sizes). At the smaller heap sizes, garbage collectors consume up to
80% more BRAMs than Malloc. However, at realistic heap sizes,
the figure drops to 24%. In addition, RTGC requires about 2-12%
more memory than STW since it requires the additional 2-bit wide
Used Map to cope with concurrent allocation. Fragmentation is
noticeable but not a major factor, ranging from 11-31% for Malloc
and 11-53% for garbage collection. As before, at larger heap sizes,
the fragmentation decreases. Some wastage can be avoided by
choosing heap sizes more carefully, not necessarily a power of 2, by
noting that BRAMs are available in 18Kb blocks. However, some
fragmentation loss is inherent in the quantization of BRAMs as they
are chained together to form larger memories.

Finally, Figure 7 shows the synthesized clock frequency at dif-
ferent design points. Here we see a significant effect from the more
complex logic for garbage collection: even though it consumes rel-
atively little area, clock frequency for garbage collection is notice-
ably slower (15-39%) than Malloc across all design points. On the
other hand, the difference between STW and RTGC is small with
RTGC often faster. Regardless of the form of memory manage-
ment, clock frequency declines as the heap becomes larger. How-
ever, the overall clock rate may very well be constrained by the
application logic rather than the collector logic, as we will see be-
low.

7.1 Dynamic Measurements
So far we have discussed the costs of memory management in
the absence of applications; we now consider what happens when
the memory manager is “linked” to the microbenchmarks from
Section 6.1. Unlike the previous section, where we concentrated on
the effects of a wide range of memory sizes on static chip resources,
here we focus on a smaller range of sizes using a trace with a single
maximum live data set of m = 8192 as described previously. We
then vary the heap size N from m to 2m at fractional increments of
m/10. As we make memory scarce, the resolution is also increased
to m/100 to show how the system behaves at very tight conditions.
Each design point requires a full synthesis of the hardware design
which can affect the frequency, power, and execution time.

7.1.1 Throughput
Figure 8 shows the throughput of the benchmarks as the heap
size varies for all 3 schemes. To understand the interaction of
various effects, we not only examine the throughput both in cycle

30

(a) Dynamic Energy in milli-joules of Binary Tree (b) Dynamic Energy in milli-joules of Deque

Figure 9. Dynamic Energy

duration (graphs (a) and (b)), but also, since the synthesizable clock
frequencies vary, in physical time (graphs (c) and (d)).

The Binary Tree benchmark goes through phases that are
allocation- and mutation-intensive, and those that are not. As a
result its allocation rate α is 0.009 objects/cycle, and its mutation
rate µ is 0.02 pointer writes/cycle, when considered over a window
size of m cycles. Because of these relatively low rates, the duration
in cycles in Figure 8(a) of both Malloc and RTGC stays constant
from 2m all the way down to 1.1m. RTGC actually consumes
slightly fewer cycles since it does not need to issue explicit free
operations. Because STW pauses the mutator, each collection in-
creases the total number of cycles required. As the heap gets tight,
the duration in cycles for STW rises quickly.

However, when we obtain the physical time by dividing total
duration in cycles by synthesized clock frequency, as shown in
Figure 8(c), things become less cut and dried. Although Malloc
alone can be synthesized at considerably higher frequencies than
STW or RTGC (Figure 7), it is often the application rather than
the memory manager that becomes the limiting factor on clock
speed. Therefore, though the differences between the three memory
managers is small, there are many chaotic variations. These are
primarily explained by expected random variations in the synthesis
tool which uses simulated annealing to achieve a good placement
and routing. To maintain fairness, we have used same settings for
all the synthesis jobs and avoided explicit manual optimizations.

The Deque benchmark shows a different behavior. With much
higher allocation and mutation rates (α = 0.07 and µ = 0.13), it is
much more sensitive to collector activity. As seen in Figure 8(b),
even at heap size N = 2m, STW consumes noticeably more
cycles, rising to almost double the cycles at N = 1.1m. By contrast
RTGC consumes slightly fewer cycles than Malloc until it begins
to experience stall cycles (non-real-time behavior) at N = 1.4m
because it cannot keep up with the mutator.

The Deque benchmark is considerably simpler than Binary Tree
in terms of logic, so it has a correspondingly lower impact on syn-
thesized clock frequency. The effect is seen clearly in Figure 8(d):
Malloc synthesizes at a higher frequency, allowing it to make up
RTGC’s slight advantage in cycles and consume 25% less time on
an average. STW suffers even more from the combined effect of
a lower clock frequency and additional cycles due to synchronous
collection. On average, RTGC is faster than STW by 14% and of
course does not interrupt the application at all.

These measurements reveal some surprising trends that are
completely contrary to the expected trade-offs for software col-
lectors: RTGC is actually faster, more deterministic, and requires
less heap space than STW! There seems to be no reason to use
STW because the natural advantage of implementing concurrency
in hardware completely supersedes the traditional latency versus
bandwidth tradeoff in software.

Furthermore, RTGC allows applications to run at far lower
multiples of the maximum live set m than possible for either real-
time or stop-the-world collectors in software. RTGC is also only
moderately slower than Malloc, meaning that the cost of abstraction
is considerably more palatable. As predicted, this performance gap
only decreases with more complex applications.

7.1.2 Energy
The energy (or power-delay product) is the product of average
power dissipation and physical time. It is a better metric than power
alone since it takes into the account the actual time needed to finish
a given workload. For example, dynamic power consumption can
be reduced by lowering the clock frequency but it does not mean
that the energy consumed to finish the workload is also reduced.
To calculate the energy we need to have knowledge of the power
consumption and the total time taken to finish the workload. We
calculated the power, which is a sum of static and dynamic power,
using the Xpower tool from Xilinx [33]. The Xpower tool provides
an approximate estimate of the power consumed by a design, for
a particular FPGA device, by taking several factors into account
such as simulation data, clock frequency, supply voltages, ambient
and junction temperature. The accuracy of the result depends most
importantly on the simulation data which is a representative of the
target application. Based on the switching activity of the nets em-
bedded in the simulation data, the dynamic power can be calculated
very accurately. Static power consumption (the power consumed by
the chip simply when it is on) for an FPGA chip is independent of
the design. We have found that the static power contributes more
than 90% of the total power for all the cases we investigated.

We synthesized the Binary Tree and Deque benchmarks for
each heap sizes shown in Figure 8 to get the clock frequency and
generate a fully placed-and-routed netlist. Then we simulated each
design using the ModelSim simulator to generate the toggle activity
of each net in the design and the result is stored in the VCD format
[19]. We fed the synthesized netlist, the VCD file and the clock
frequency constraint to the Xpower tool which provides detailed
information about the static and dynamic power consumption. The
power consumption is then multiplied by the execution time (in
seconds) to calculate the total energy consumption.

The total energy consumption for Binary Tree and Deque is
shown in Figure 8(c) and Figure 8(d) respectively (using the sec-
ondary right-hand axis). Because static power is so much larger
than the dynamic power, the total power tracks the execution time
within 1% and it is shown on the same graph. To demonstrate the
differences in energy due to the design and benchmarks, the dy-
namic energy consumption for the Binary Tree and Deque bench-
marks is shown in Figure 9.

For the Binary Tree benchmark, the average energy consump-
tion (averaged over all the design points) for RTGC is lower than

31

(a) Binary Tree (b) Deque

Figure 10. Comparison of analytic worst-case duration (in cycles) and heap space for RTGC compared to measured values

STW by 6% and higher than Malloc by 8%. For the Deque bench-
mark, on average RTGC consumes 14% less and 34% more energy
than STW and Malloc respectively. The dynamic energy provides
additional insight into the nature of benchmarks. For Binary Tree,
RTGC consumes 3% and 30% more dynamic energy than STW and
Malloc respectively. For Deque, RTGC consumes 8% less and 63%
more dynamic energy than STW and Malloc respectively.

The analysis shows that the energy consumption is highly
application-dependent. For both the benchmarks we considered
it is safe to say that RTGC is a better choice than STW as far as
energy consumption is considered. The average total energy con-
sumption of Malloc is smaller than RTGC for both the benchmarks.
However, as the complexity and size of benchmark increases the
energy consumption gap between RTGC and Malloc diminishes.

7.2 Validation of Real-time Bounds
Because the design and analysis of our concurrent collector is
intended to be cycle-accurate, we can validate the time and space
bounds of the collector with expectation that they will be fully met.
Figure 10 shows the actual time spent in garbage collection and
the analytic upper bound (Tmax from equation 3). Note that we
show both average as well as the maximum time spent in garbage
collections. The heap size is chosen to be much tighter than in
earlier graphs as our focus here is how the collector behaves when
it is under stress (near Nmin from equation 4). For convenience,
we express heap size as a fraction (N/m) of the maximum amount
of live data since our bounds are almost linear when considered in
terms of m and N .

Average time spent in collection is always less than the pre-
dicted worst case with an actual difference of about 10% for both
programs. We also show the amount of stalls experienced by the
benchmark as a fraction of total time. At larger heap sizes, there
are no stalls. As the heap size is reduced, there will come a point
when the collector cannot keep up and the mutator’s allocation re-
quest will be blocked. For Binary Tree this occurs when the heap is
a mere 1.01 × m while the more allocation-intensive Deque fails
at 1.43 × m. Our predicted Nmin values of 1.037 and 1.457 are
correctly above the actual failure points.

Because the average collection time includes multiple phases
of a program, it can be significantly lower than the maximum
collection time. We see that the gap between Tmax and collection
time shrinks from 10% to about 2% and 6% when one considers
maximum rather than average collection time. For space, Nmin has
only a worst-case flavor as there is adequate heap space only if the
heap is sufficient at every collection. The space bound is within
3% of when stalls begin. Our time and space bounds are not only
empirically validated but are tight.

In general, time spent for a single collection falls as the heap
size is decreased since the sweep phase will take less time. It may
seem surprising that this happens even when the heap size is taken
below Nmin. However, falling below this safe point causes mutator
stalls but does not penalize the collector at all. In fact, because
the mutator is stalled, it can no longer interfere with the collector
which will additionally, though very slightly, speed up collection.
Of course, since the overall goal is to avoid mutator stalls, operating
in this regime is inadvisable.

8. Related Work
There has been very little work on supporting high-level memory
abstractions in reconfigurable hardware, and none on garbage col-
lection. Simsa, Singh, et al. [11, 25] have explored compilation of
C subprograms that use malloc/free into VHDL or Bluespec for
synthesis to FPGAs.

LEAP scratchpads [1] provide an expandable memory abstrac-
tion which presents a BRAM interface, but uses off-chip RAM if
the structure is too large to fit, and transparently uses the on-chip
BRAM as a cache. Such a system could be coupled with ours in
order to provide a larger, virtualized memory, albeit at the expense
of determinism and throughput.

Faes et al. [13] have built an “FPGA-aware” collector, with a
completely different goal from ours: allowing the FPGA to main-
tain references into the CPU’s main program heap. This facilitates
co-processing by the FPGA.

8.1 Micro-coded Collectors
Meyer [20] has built a special-purpose processor and an associated
garbage collection co-processor (using Baker’s semi-space algo-
rithm [6]), and realized them on an Altera APEX FPGA. However,
the design and the goals were very different. Meyer’s collector is
for a general-purpose heap allocated in DRAM, and for a program
operating on what is for the most part a conventional CPU. The
collector is implemented with a microcoded co-processor, and the
CPU is modified with a special pointer register set, and pointer op-
erations include support for read and write barriers. Some of the
control logic also runs in software on the main CPU. By contrast,
we have created fully custom logic that is much more tightly inte-
grated with the memory, for “programs” that are also synthesized
into hardware, and with deterministic single-cycle memory access.

Maximum collector pauses in Meyer’s system are 500 cycles
(2.5 µs at 200 MHz), due to root scanning. Read barriers and
interlocks also cause pauses up to 200 cycles. By contrast our
collector pauses for 0 clock cycles. Meyer’s collector also requires
heaps of 2 times the maximum live data in order to avoid non-real-
time behavior, considerably more than our collector. Of course,

32

our performance comes at a cost in flexibility: Meyer’s collector
handles arbitrary heap shapes and larger memories.

The Intel iAPX 432, the apotheosis of CISC architecture, did
not provide explicit frees, and microcoded the marking portion
of Dijkstra’s on-the-fly collector (the rest was implemented in the
iMAX-432 operating system). The system object table contained
bits for the tri-color marking abstraction [31].

Schmidt and Nilsen [23] studied the design (using the DLX sim-
ulator) of a garbage collected memory module (GCMM), in which
a memory module plugged into a conventional bus included paired
DRAMs (for the collector semispaces) and an extra processor that
ran Baker’s algorithm [6]. The interface to the CPU for opera-
tions like allocation, root descriptors, and so on are implemented
as memory mapped ports. They report delays of 0.5 ms to initiate a
collection and 1 µs for allocate, fetch, and store.

8.2 Hardware-assisted Collection
Most hardware support for garbage collection has been in the form
of specialized memory barriers (particularly read barriers) because
of their high throughput cost. The Symbolics Lisp Machine [21]
introduced this kind of hardware barrier to implement Baker’s al-
gorithm [6]. Both the Lisp Machine and SOAR [30] also introduced
hardware support for generational write barriers.

Frustration with the availability and acceptance of custom pro-
cessor designs to support garbage collection gave rise to a “stock
hardware” line of research, using conventional CPU features to sup-
port collector operations [2, 8]. The pendulum swung back with
the the Azul Vega processor and its associated collector [10]. Hard-
ware support for read barriers, fast user-mode trap handlers (4-10
cycles), cooperative pre-emption, and special TLB support enabled
a collector capable of handling very large heaps and large numbers
of processors. The collector achieved an MMU of 21% at 50 ms
(the authors hypothesize due largely to read barrier trap storms),
and 52% at 200 ms. Ironically, the Azul collector has recently been
ported to a “stock hardware” x86 platform running on a Linux ker-
nel augmented with page remapping operations [29].

Hardware support has also been proposed for reference count-
ing. Joao et al. [17] describe a processor extended with a “reference
count coalescing buffer” which is able to filter over 96% of refer-
ence count traffic. Srisa-an and Lo [26] propose a co-processor that
performs saturating reference counting (using 2- or 3-bit counts)
backed by a conventional tracing collector. Yu [34] proposes a sys-
tem with a reference-counted nursery and an incrementally traced
mature space, using hardware support for allocation and write bar-
riers and a specialized cache architecture.

Heil and Smith [15] apply hardware support for profiling to the
garbage collection problem, by treating it as a form of instrumenta-
tion of store operations. The instrumented operations are then han-
dled by service threads, and there is an additional thread to perform
marking and sweeping.

Schoeberl [24] extends the JOP Java processor with hardware
support for non-blocking object copies in the memory controller.
This allows compaction operations to be pre-empted at the granu-
larity of a single write.

9. Conclusion
We have described our design, implementation, and evaluation
of the first garbage collectors to be completely synthesized into
hardware. The real-time version causes zero cycles of interference
with the mutator, achieving for the first time a minimum mutator
utilization of 100%.

Careful implementation allows a closed-form analytic solution
for worst-case execution time (WCET) of the collector, and a lower
bound on heap size to achieve real-time behavior. These bounds are
also cycle-accurate.

In software there are large trade-offs between stop-the-world
and real-time collection in terms of throughput, latency, and space.
Our measurements show that in hardware the real-time collector
is faster, has lower (zero) latency, and can run effectively in less
space. In addition, it consumes less overall energy because it can
run to completion faster.

This performance and determinism is not without cost: our
collector only supports a single fixed object layout. Supporting
larger objects with more pointers is a relatively straightforward
extension to our design; supporting multiple object layouts is more
challenging but we believe can be achieved without sacrificing the
fundamental advantages.

Compared to explicit memory management, hardware garbage
collection still sacrifices some throughput in exchange for a higher
level of abstraction. It may be possible to narrow this gap through
more aggressive pipelining. However, the gap in space needed to
achieve good performance is substantially smaller than in software.

For the first time, garbage collection of programs synthesized to
hardware is practical and realizable.

A. Proof of Overflow Freedom
As described in Section 4.3.1, the queues for a pair of trace engines
are each sized to have 3N/8 + R entries. Here we prove that
neither queue will overflow. We begin by reviewing various GC
operations that affect the queue. During the root phase, R roots are
inserted into queue 0 while write barrier entries are inserted into
queue 1. Thus, queue 1 can have up to R entries at the start of the
tracing phase. Each trace step in the tracing phase pops from the
fuller queue and then inserts up to 2 pointers (one in each queue).
Interleaved with the traced steps are write barrier insertions which
can also insert up to 2 pointers (one in each queue). If the write
barrier step inserts only one pointer, then it will insert into the
emptier queue.

We note that the operations in the mark phase are symmetric
with respect to the two queues. Specifically, there is no bias in
either the pushes and pops nor in the graph traversal since the role
of left and right pointers are interchangeable. However, there is a
difference in the root phase in that queue 0 is always equally or
more full than queue 1. Thus, if there were to be overflow at all, it
would occur in queue 0.

At the end of the root phase, the queues have up to R items so
we must show that the queue will not grow by more than 3N/8
during the tracing phase. The tracing phase can be considered to
be a sequence of tracing steps and write barrier insertions. Tracing
steps always pop an item and can push 0, 1, or 2 items. Write barrier
insertions perform no pops but can push 0, 1, or 2 items. A write
barrier operation that pushes 0 items does not change the state at
all and need not be considered. However, a trace step that pushes
0 items cannot be so easily dismissed since the total number of
trace steps is bounded by N . Thus, limiting any type of trace steps
potentially affects the overall outcome.

We take full advantage of the balanced push and pop by noting
that no operation increases queue imbalance beyond a difference of
1 between the queues since both the trace step pops from the fuller
queue and the write barrier pushes onto the emptier queue for the
case when it pushes only one item. If there were a pathological
sequence of operations that causes either queue to overflow, then
in the step just prior, the soon-to-overflow queue must be full
and the other queue must be nearly full. Further, we need not
consider write barrier operations that perform a single-push as we
can conceptually rearrange them into half as many double-push
operations which run faster. If there were to be an overflow, they
would occur even faster with this rearrangement. Thus, we need
only bound the total queue growth to N/2. We label the 3 types of
tracing steps T0, T1, and T2 based on the number of pushes they

33

perform. Note that the net effect on the queue size is one less than
the index. Similarly, we have W2 which stands for the number of
2-push write barrier operations.

We are trying to maximize total occupancy which is given by

−T0 + T2 + 2W2

subject to the usual non-negativity constraints as well as 3 addi-
tional constraints. The first constraint expresses the fact that we
schedule at most one write barrier operation for each tracing opera-
tion. The second and third constraints require that the total number
of pushes and pops cannot exceed the total number of objects.

T0 + T1 + T2 ≥ W2

T1 + 2T2 + 2W2 ≤ N

T0 + T1 + T2 ≤ N

With a slight rearrangement, these equations can be put in the
“standard form” of a linear programming problem [9]. Although
the quantities are constrained to be integral (making this in reality
an integer linear programming problem), we are safe in droppping
the integrality constraints as that only increases the feasible region.
The over-approximation of the objective is not a soundness issue
since we are establishing an upper bound. Conversely, the bound
is also rather tight by noting the total size of the coefficients in the
objective function.

The problem is easily solved with the simplex method and
standard tableau techniques show that the problem is feasible and
bounded with the objective maximized at 3N/4 and the free vari-
ables T0 and T1 at zero while T2 and W2 are at N/4. Since the
queues always maintain balance, we arrive at the final individual
queue size by halving the 3N/4 and including the capacity needed
for the root phase to arrive at 3N/8 + R.

We omit the actual tableaus as they are uninteresting and shed
less insight than by examining a few key points in the space. From
the objective function, it is intuitively desirable to maximize W2.
If we allow only W2 and T0 to be non-zero, then we will have
both at N/2 with a total occupancy of N/2. Similarly, allowing
only W2 and T1 into play at N/3 will achieve 2N/3. Finally, W2

and T2 both at N/4 achieves the maximum of 3N/4. If we were
to leave out W2 entirely, T2 increases to N/2 but the objective
actually decreases to N/2. The changes in these values confirm
our intutition that trace operations that perform no pushes do not
stress the queues and that maximizing the write barrier operations
will cause the greatest occupancy.

Acknowledgments
We thank the members of the Liquid Metal team at IBM Research
who contributed insights, infrastructure, and a stimulating working
environment: Joshua Auerbach, Stephen Fink, and Rodric Rabbah.
We also thank team members and the reviewers for their corrections
and insightful comments which helped to improve the paper.

References
[1] M. Adler et al. Leap scratchpads: automatic memory and cache

management for reconfigurable logic. In FPGA, pp. 25–28, 2011.

[2] A. W. Appel, J. R. Ellis, and K. Li. Real-time concurrent collection on
stock multiprocessors. In PLDI, pp. 11–20, June 1988.

[3] J. Auerbach, D. F. Bacon, P. Cheng, D. Grove, B. Biron, C. Gracie,
B. McCloskey, A. Micic, and R. Sciampacone. Tax-and-spend: demo-
cratic scheduling for real-time garbage collection. In EMSOFT, pp.
245–254, 2008.

[4] J. Auerbach, D. F. Bacon, P. Cheng, and R. Rabbah. Lime: a Java-
compatible and synthesizable language for heterogeneous architec-
tures. In OOPSLA, pp. 89–108, Oct. 2010.

[5] D. F. Bacon, P. Cheng, and V. T. Rajan. A real-time garbage collector
with low overhead and consistent utilization. In POPL, pp. 285–298,
Jan. 2003.

[6] H. G. Baker. List processing in real-time on a serial computer. Com-
mun. ACM, 21(4):280–294, Apr. 1978.

[7] G. E. Blelloch and P. Cheng. On bounding time and space for multi-
processor garbage collection. In PLDI, pp. 104–117, June 1999.

[8] R. A. Brooks. Trading data space for reduced time and code space in
real-time garbage collection on stock hardware. In LFP, pp. 256–262,
Aug. 1984.

[9] V. Chvatal. Linear Programming. W. H. Freeman and Company, 1983.
[10] C. Click, G. Tene, and M. Wolf. The pauseless GC algorithm. In VEE,

pp. 46–56, 2005.
[11] B. Cook et al. Finding heap-bounds for hardware synthesis. In

FMCAD, pp. 205 –212, Nov. 2009.
[12] E. W. Dijkstra, L. Lamport, A. J. Martin, C. S. Scholten, and E. F. M.

Steffens. On-the-fly garbage collection: an exercise in cooperation.
Commun. ACM, 21(11):966–975, 1978.

[13] P. Faes, M. Christiaens, D. Buytaert, and D. Stroobandt. FPGA- aware
garbage collection in Java. In FPL, pp. 675–680, 2005.

[14] D. Greaves and S. Singh. Kiwi: Synthesis of FPGA circuits from
parallel programs. In FCCM, 2008.

[15] T. H. Heil and J. E. Smith. Concurrent garbage collection using
hardware-assisted profiling. In ISMM, pp. 80–93, 2000.

[16] R. Henriksson. Scheduling Garbage Collection in Embedded Systems.
PhD thesis, Lund Institute of Technology, July 1998.

[17] J. A. Joao, O. Mutlu, and Y. N. Patt. Flexible reference-counting-based
hardware acceleration for garbage collection. In ISCA, pp. 418–428,
2009.

[18] J. McCarthy. Recursive functions of symbolic expressions and their
computation by machine. Commun. ACM, 3(4):184–195, 1960.

[19] Mentor Graphics. ModelSim SE Users Manual. Version 10.0c.
[20] M. Meyer. An on-chip garbage collection coprocessor for embedded

real-time systems. In RTCSA, pp. 517–524, 2005.
[21] D. A. Moon. Garbage collection in a large LISP system. In LFP, Aug.

1984.
[22] F. Pizlo, D. Frampton, E. Petrank, and B. Steensgaard. Stopless: a

real-time garbage collector for multiprocessors. In ISMM, pp. 159–
172, 2007.

[23] W. J. Schmidt and K. D. Nilsen. Performance of a hardware-assisted
real-time garbage collector. In ASPLOS, pp. 76–85, 1994.

[24] M. Schoeberl and W. Puffitsch. Nonblocking real-time garbage col-
lection. ACM Trans. Embedded Comput. Sys., 10:1–28, 2010.

[25] J. Simsa and S. Singh. Designing hardware with dynamic memory
abstraction. In FPGA, pp. 69–72, 2010.

[26] W. Srisa-an, C.-T. D. Lo, and J. M. Chang. Active memory processor:
A hardware garbage collector for real-time Java embedded devices.
IEEE Trans. Mob. Comput., 2(2):89–101, 2003.

[27] G. L. Steele, Jr. Multiprocessing compactifying garbage collection.
Commun. ACM, 18(9):495–508, Sept. 1975.

[28] G. L. Steele, Jr. Data representation in PDP-10 MACLISP. Tech. rep.,
MIT, 1977. AI Memo 420.

[29] G. Tene, B. Iyengar, and M. Wolf. C4: the continuously concurrent
compacting collector. In ISMM, pp. 79–88, 2011.

[30] D. Ungar et al. Architecture of SOAR: Smalltalk on a RISC. In ISCA,
pp. 188–197, 1984.

[31] Wikipedia. Intel iAPX 432, Nov. 2011.
[32] Xilinx. Virtex-5 family overview. Tech. Rep. DS100, Feb. 2009.
[33] Xilinx. Power methodology guide. Tech. Rep. DS786, Mar. 2011.
[34] W. S. Yu. Hardware concurrent garbage collection for object-oriented

processor. Master’s thesis, City University of Hong Kong, 2005.
[35] T. Yuasa. Real-time garbage collection on general-purpose machines.

J. Systems and Software, 11(3):181–198, Mar. 1990.

34

http://doi.acm.org/10.1145/1950413.1950421
http://doi.acm.org/10.1145/1950413.1950421
http://doi.acm.org/10.1145/53990.53992
http://doi.acm.org/10.1145/53990.53992
http://doi.acm.org/10.1145/1450058.1450092
http://doi.acm.org/10.1145/1450058.1450092
http://doi.acm.org/10.1145/1869459.1869469
http://doi.acm.org/10.1145/1869459.1869469
http://doi.acm.org/10.1145/1869459.1869469
http://doi.acm.org/10.1145/604131.604155
http://doi.acm.org/10.1145/604131.604155
http://doi.acm.org/10.1145/359460.359470
http://doi.acm.org/10.1145/301618.301648
http://doi.acm.org/10.1145/301618.301648
http://doi.acm.org/10.1145/800055.802042
http://doi.acm.org/10.1145/800055.802042
http://doi.acm.org/10.1145/1064979.1064988
http://dx.doi.org/10.1109/FMCAD.2009.5351120
http://doi.acm.org/10.1145/359642.359655
http://dx.doi.org/10.1109/FPL.2005.1515811
http://dx.doi.org/10.1109/FPL.2005.1515811
http://dx.doi.org/10.1109/FCCM.2008.46
http://dx.doi.org/10.1109/FCCM.2008.46
http://doi.acm.org/10.1145/362422.362466
http://doi.acm.org/10.1145/362422.362466
http://doi.acm.org/10.1145/1555754.1555806
http://doi.acm.org/10.1145/1555754.1555806
http://doi.acm.org/10.1145/367177.367199
http://doi.acm.org/10.1145/367177.367199
http://dx.doi.org/10.1109/RTCSA.2005.25
http://dx.doi.org/10.1109/RTCSA.2005.25
http://doi.acm.org/10.1145/800055.802040
http://doi.acm.org/10.1145/1296907.1296927
http://doi.acm.org/10.1145/1296907.1296927
http://doi.acm.org/10.1145/195473.195504
http://doi.acm.org/10.1145/195473.195504
http://doi.acm.org/10.1145/1814539.1814545
http://doi.acm.org/10.1145/1814539.1814545
http://doi.acm.org/10.1145/1723112.1723125
http://doi.acm.org/10.1145/1723112.1723125
http://doi.ieeecomputersociety.org/10.1109/TMC.2003.1217230
http://doi.ieeecomputersociety.org/10.1109/TMC.2003.1217230
http://doi.acm.org/10.1145/361002.361005
http://dspace.mit.edu/handle/1721.1/6278
http://doi.acm.org/10.1145/1993478.1993491
http://doi.acm.org/10.1145/1993478.1993491
http://doi.acm.org/10.1145/800015.808182
http://en.wikipedia.org/wiki/Intel_iAPX_432#Garbage_collection
http://www.xilinx.com/support/documentation/data_sheets/ds100.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx13_1/ug786_PowerMethodology.pdf
http://dspace.cityu.edu.hk/handle/2031/4491
http://dspace.cityu.edu.hk/handle/2031/4491
http://dx.doi.org/10.1016/0164-1212(90)90084-Y

	Introduction
	FPGA Background
	Memory Structures on FPGAs

	Memory Architecture
	Miniheap Interface
	Miniheap with Malloc/Free
	Fragmentation and Other Trade-Offs

	Garbage Collector Design
	Background: Yuasa's Snapshot Algorithm
	Root Snapshot
	Tracing
	Trace Engine Pairing
	Trace Termination and WCET Effects

	Sweeping

	Analysis of Real-Time Behavior
	Application-Specific Analysis
	Minimum Heap Size

	Experimental Methodology
	Description of Benchmarks

	Evaluation
	Dynamic Measurements
	Throughput
	Energy

	Validation of Real-time Bounds

	Related Work
	Micro-coded Collectors
	Hardware-assisted Collection

	Conclusion
	Proof of Overflow Freedom

