Interested in learning mor
about cyber security training?

SANS Institute
InfoSec Reading Room

This paper is from the SANS Institute Reading Room site. Reposting is not permitted without express written permission.

Analysis of the building blocks and attack vectors
associated with the Unified Extensible Firmware
Interface (UEFI)

While Operating Systems have seen tremendous and very visible developments, driven by the evolution of
hardware components, there are still some remnants from the 8086-era, one of which is the BIOS. Led by a
consortium of vendors, the industry is now implementing a new style of BIOS which, by design, appears to
overcome all the issues introduced by the Intel 8086 engineering decisions back in 1978. The Unified
Extensible Firmware Interface (UEFI), replacement of the legacy BIOS, is a blank-sheet design based on modu...

Copyright SANS Institute
Author Retains Full Rights

http://www.sans.org?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI+Cover&utm_campaign=SANS+Training
http://www.sans.org/info/36909
http://www.sans.org/info/36914
http://www.sans.org/reading-room/click/660

Analysis of the building blocks and attack
vectors associated with the Unified Extensible
Firmware Interface (UEFI)

GIAC (GREM) Gold Certification

Author: Jean-Francois Agneessens (jean.agneessens@ncirc.nato.int)
Advisor: Manuel Humberto Santander Pelaez

Accepted:

Abstract
While Operating Systems have seen tremendous and very visible
developments, driven by the evolution of hardware components, there are still some
remnants from the 8086-era, one of which is the BIOS. Led by a consortium of
vendors, the industry is now implementing a new style of BIOS which, by design,
appears to overcome all the issues introduced by the Intel 8086 engineering
decisions back in 1978.

The Unified Extensible Firmware Interface (UEFI), replacement of the legacy
BIOS, is a blank-sheet design based on modular pieces of code following the well-
known Portable Executable/Common Object File Format (PE/COFF), found on all
Microsoft OS-based executable code. The UEFI code can therefore be reverse-
engineered using similar techniques learned during GREM. The concepts of UEFI,
and some of its VMware implementation, are presented here, as well as an insight
into the possible paths open for further exploitation of the extended capabilities
offered by UEFIL.

A journey in the Unified Extensible Firmware Interface (UEFI) @ 2

1. Introduction

The Basic Input/Output System (BI1OS) is the code that is the closest you can get
to the underlying hardware. Its role, since its inception in the early stage of the Intel 8086
era, has been to detect and initialize surrounding components, to prevent conflicts in
those components, and to allow the Operating System (OS) to boot (Note: before the
advent of Windows 95, the Disk Operating System (DOS) made constant use of the BIOS
for all access to peripherals, such as keyboard, floppy disk drives, screens and printers).
The DOS was running in 8086 mode (also called the real-address mode), which used a
20-bit addressing scheme to access up to 1MB of memory, sliced in 64KB blocks, called
the segments. The DOS was a single user OS, running in ring-0, where the interface

offered unrestricted access to the whole hardware (Figure 1).

Protscéion Rings

Oparating
System.
Kemal

Operating Sysiem

Senvices [Device —
Driwars, Ec.)

Applications

Priviege Levels

Figure 1: Privilege levels, or rings (Intel Press, 2011)

The evolution of computer hardware, their greater affordability, and the desire for
GUI-based OS by the masses, were key in prompting OS vendors to make a complete
abstraction of the BIOS after the Initial Program Load (IPL) (Compag, Phoenix, Intel,
1996), known in UEFI terminology as the Boot Device Selection (BDS). The gap
between the BIOS (made for 16-bit real-address mode OS), and the hardware/OS
currently available, grew over time, to the moment were a decision had to be made with
the introduction of Intel’s new generation of 64 bit processors, the Itanium (Vincent
Zimmer, 2010).

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 3

Intel decided to start building, from scratch, a new type of BIOS; the Extensible
Firmware Interface (EFI), and this modular approach was adopted by other vendors,
notably Apple, and eventually became known as the Unified EFI (UEFI). The UEFI is
meant to be developed in C, with supporting libraries and a developer kit available for
free, and while it will no longer be able to boot DOS, it does allow more freedom in what
it offers, and is more tied with the OS (as in BIOS/DOS). Additionally, the presence of

UEFI runtime services is also a topic of interest.

2. The BIOS, or the end of an era

2.1. Intel CPUs’ mode of operations

Several modes of operation have been defined in the x86 architecture (Intel Press,
2011), and the default one at startup, called the real-address (or real) mode operates in
16bit mode, where only 1MB of memory can be addressed, and the memory is spliced
into blocks, called segments. This is due to the inherent design of the 8086, where a 20bit
addressing scheme is used. The 16 lower bits allow 64KB addressing (2!°) and the 4 extra
bits provided by the Code Segment register (CS) shifted 4 bits to the left to allow inter-

segment addressing (Figure 2).

: 16 bits :

Cs5| A 0 0 o

Figure 2: 20-bit addressing (Kholodov, 2007)

The next operating mode of interest is called the protected mode. This is a 32bit
mode, for which memory addressing can be flat or segmented, and for which paging can
optionally be used. In the basic-flat model, the Code Segment register (CS) and the Data
segment registers (DS,ES,FS,GS,SS) all start at 0x0 and end at OXFFFF_FFFF, which

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 4

means they overlap. Data can, therefore, be interpreted as code, depending which register
is used to access the address. The protected-flat model follows the same principle, but
will have an upper limit set to the real size of the DRAM. The multi-segment model
allows segregation of memory area to protect applications from each other (non-
overlapping address space) and typically makes sense for multitasking environments. For
each case, paging can be used, which allows allocation of more memory than what is

physically available and which, again, makes sense in multitasking environments.

The actual mode of the processor is stored on a special register called CRO. This
register is composed of bits that are set high or low. At INIT# or RESET# (the 2 ways of
bringing the computer to its initial stage), CRO is set at 0x6000010, the real-address mode
(Figure 3).

Paging disabled: 0

—— Caching disabled: 1
— Not write-through disabled: 1

Alignment check disabled: D

|7 Write-protect disabled: 0

31302928 1918 1716 15 6 5 4 3 210
G|Dlw Ml [P SRR El'|s|m|P|E

External xB7 FPU error reporting: 0
(Not used): 1
Mo task switch: 0
¥87 FPU instructions not trapped: 0
WAIT/FWAIT instructions not trapped: 0
Real-address mode: 0

Figure 3: CRO register (Intel Press, 2011)

The descriptor tables are the link between the linear memory addressing and the
segmented memory addressing. They are composed of quad-words (8 bytes) elements,
each of which will define a register, its start address, length, property bits and purpose.

The mandatory descriptor table is called the Global Descriptor table, and is composed, at

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) 5

the minimum, of a NULL descriptor (a sled of 0x0), a CS descriptor and a DS descriptor

(Figure 4).
31 242322212019 1615141312 1 8 7 0
o| |a] Seg. D
Base 31:24 Glj|L|v|l Limit |P| P |S| Type Base 23:16 4
B Ll 19:16 L
31 1615 0
Base Address 15:00 Segment Limit 15:00 0
L — G4-bit code segment (lA-32e mode only)
AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size (0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
F — Segment present
5 — Descriptor type (0 = system; 1 = code or data)

TYPE — Segment type

Figure 4: Descriptor Table (Intel Press, 2011)

To allow the processor to switch from real-address mode to protected-mode,

several prerequisites have to be met, and (Intel Press, 2011) mentions a set of tasks to be

executed in the right order: Disable interrupts, set the GDT address on the GDT Register,

set CRO to protected mode and execute a far jump.

The explanations above are only a small subset of what Intel’s systems are

providing, but this covers the prerequisites to go further. See Figure 5 for an overview in

yellow of what has been covered.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) 6

RFLAGS
f’ws—lc_{aﬁddress Code, Data or Stack
Control Register Linear Address Segment (Base =0)
CR8 Task-State
CR4 Segment Selector Segment (TSS)
CR3 N >
CR2
CR1
- CRO Global Descriptor
Task Reglster Table (GDT}
[Segment Sel_ | - # Seqg Desc. — Interrupt Handler
NULL - — | Code |
Interrupt TR |- — » TS5 Desc. I_ Stack
Vector
) r——— - Seg Desc.
Interrupt Descriptor |
Table (IDT) Ir — — 3| Seg Desc | Interr. Handler
r - - —l—h")
I G y Cc t TSS Code
ntermupt Gatetr — — - LDT Desc. —— urren
I 3
Interrupt Gate | - — — l Stack
2 1 GDTR .
| Trap Gate [——1 o _
: Local Descriptor Exception Handler
L Table (LDT) il
- NULL - — -;Eogtz!k
IDTR Call-Gate Lt Seg.Desc. L
Segment Selector
| -] CallGate |-|--— 1 Prcie_::ted Procedure
—————— Code
XCRO (XFEM) [DTR | NULL - —

L Stack

Linear Address Space Linear Address
4’—>| PML4 |Dir. Pointer | Directory | Table [Offset |
Li Addr.
Azl 2o PML4 Pg. Dir. Ptr.| PageDir. | Page Table | Page

Physical

PML4. Pg. Dir. Page Tbl Addr.
Entry Entry Entry
>

0 . This page mapping example is for 4-KByte pages
and 40-bit physical address size.
*Physical Address

Figure 5: System-level Registers and Data Structure (Intel Press, 2011)

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) 7

2.2. What happens at RESET# or INIT#

When the computer is powered on, it will, by default, look at the global address
OxF_FFFO0, and known as the Host Reset Vector (HRV); at this time, the system is in

real-address mode.

FFFF :FF8F db 28h

FFFF:FF?8 anllRightsReser db 'All rights reserved.'

FFFF:FFA4 db @

FFFF:FFAS db 8Bh dup{BFFh)

FFFF:FFBEO aDellSystem?6@ dbh 'Dell System 768°

FFFF :FFBF db 21h dup(0)

FFFF:FFEO an@2nez db ‘ne2!m’,2,6,1,'AB2!0",2,0,1

FFFFZFFFB ; ————— oo oo
== [FFFF:FFFB imp HRU_jump

FFFFZFFFB ; ————— - m oo

FFFF:FFF3 db 6Dh dup{B6FFh)}

FFFF:FFF3 FFFF ends

FFFF:FFF3

FFFF:FFF3

Figure 6: HRV Jump on Dell Optiplex 760 A02 BIOS

The HRV points, by design, to the address 16 bytes before the 4GB upper limit and as
this address is constructed by using the Code Segment (CS) register as high address
(which by default will be at value OXFFFF at INIT), and the Instruction Pointer (IP) as
low address (OxFFFO at INIT), there is little room for anything less than a jump to a

smaller address to continue executing the early initialization code.

At this stage of the power-on process, the CPU is not aware of its surrounding
environment (what amount of memory can be used, what are the expansion buses, the
peripherals, the ports, the expansion cards, the other CPUs), so the role of the
NorthBridge chipset is to redirect the HRV address to the BIOS code (through the
Southbridge) stored on the NVRAM. How this happens is hardware specific, but on
fairly recent chipsets it is done by means of the Programmable Attribute Maps Registers
(PAM), which control if shadowing occurs for certain memory ranges or not. In actual
fact, the global addressing is not only used to access the memory, but the whole set of
peripherals that are surrounding the CPUs. The NorthBridge is the chipset that is
redirecting to the different hardware, and in some cases, one global address can be

redirected differently depending on the state of some Northbridge registers. On INIT#, it

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) 8

will shadow the range OxF_0000-OxF_FFFF to the NVRAM, whereas later on in the boot
process, it will most likely be pointing to the RAM, as executing from RAM is faster than
doing it from NVRAM (Dice, 2011).

Processor

200/266 MHz FSB |

(800/1066 MT/s)

I Intel 955X Express Chipset

LL
-l System Memory
| Channel A DDRZ |
: Intel
PCI Express : 955X | DDR2
4 - x16 Graphics rthbrid
Display || Graphics Card pl RO r gel
DDR2
h 1B
I * Channe -
Read/Write transactions T
from CPU to BIOS chip T | b——— i = TTmmmmmmmemmseeseeeeeend
travel through the bus ’\»\I Direct
: Media
| Yinterface
USB 2.0
8 ports, 480 Mbls -« | q—»l Power Management I
IDE ; | <f-—>| Clock Generation I
4 SATA ports ! l *——b' LAN Connection I
AC ‘97 Intel High | Intel
Definition Audio > ICH7 System Management
' ————P
CODECs 1 ; : (TCO)
southbridge | :
I PCI Express x1 ‘ H SMBus 2.0 / I°’C |
Intel PCI Express i | uu e u
Gigabit Ethernet : PCI Bus
i =
| GPIO b 1 I seisios |
| LPC Interface
Other ASICs (Optional) +
| { Super I/O I
TPM (Optional) %
e Flash BIOS
Figure 7: Intel 955X-ICH7 chipsets (Salihun, 2007)
MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO

SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) 9

Because the HRV is pointing at OXFFFF_FFFO, there must be an alias between
OxF_FFFO (1MB-16 bytes) and the HRV.

The actual jump address will depend on the physical size of the BIOS chip.
Depending on the version, these chips can have size up to 16Mb (2MB), which would
then place the start of the NVRAM below 0xE_0000 (in fact, so big that the NVRAM
could not be copied to the 1MB addressable memory), but the problem is, by design, only
128K has been allocated for the BIOS. The memory below is reserved for Option ROM
(expansion card ROM), the VGA ROM and the DOS (Figure 8), therefore only a part of
the NVRAM will be accessible from the INIT#RESET#. This means the jump will most
likely go anywhere within the last 64K of the NVRAM area and depends on how the
BIOS vendor implemented its code.

(Dice, 2011) covers the boot flow of a modern Intel System and indicates that the
boot code’s goal is to switch as early as possible in protected basic flat mode with no
paging. (Salihun, 2007) extensive legacy BIOS reverse engineering explains that BIOS
ROM are made up of components that are compressed and added next to each other
because the limited size of NVRAM chipset made compression mandatory to hold all the
code (chipsets used to be 64KB or 128KB). Therefore, after having switched to protected
mode, the system will need to initialize the memory (controlled by the NorthBridge),
initialize the SouthBridge (to access the Low Pin Count (LPC) interface), and then
execute the code that will allow decompressing the different components of the Flash. It
can now copy itself into RAM (for faster processing of the code), initialize the Root
Complex Register Block (RCRB) (which allows addressing the PCI(-e) bus and
peripherals), which in turn gives the ability to look for expansion cards and their
firmware (called the Option ROM). This part of the boot process is particularly tricky, as
all the cards firmware need to be held in 128K of memory (and the results of heavily

populated expansion buses usually resulted in the BIOS hanging frequently).

According to (Compag, Phoenix, Intel, 1996), the BIOS boot order is linked to
two lists; the Initial Program Load (IPL), the famous A:,C: in a user-defined order, and
the Boot Connection Vector (BCV), which points to a specific piece of code of an Option

ROM. The BIOS proceeds, in the given priority, to try to boot an OS in a sequential

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 10

manner. This also implies that any failing boot device should return the control to the
BIOS, and this handover back to the BIOS is made with INT 18h. The way the BIOS
gives control to a given IPL boot device is by calling INT 19h. but in the case of BCV
(aka Option ROM) boot devices it will be done by calling INT 13h. The Option ROM,
when executed, will hook INT 13h, and this interrupt is called before trying to start the
OS boot and gives the opportunity to the card to provide the first hard drive (C:), known
as 80h. The complexity arises when several Option ROMs are available and a chaining
of INT 13h devices occurs, so the first Option ROM that can provide the drive 80h
become, therefore, the “C:” in the IPL discussed above. This process is not trivial and

lead to a lot of frustrations in the past.
System-wide Memory Legacy Memory
Address Range

Address Map
PCI Memory F_FFFFh
& i Address Range __4’_ System BIOS
SREg, Main Memory A (Upper) 64 KB
ToM |_Address Range w /\/ F_0000h
Main Memory > /;\\0?/ 7 E_FFFFh
scp| Address Range ASNEST o o Sy?t&n‘;‘ggos
/ s Pz
FFFF_FFFFh F segment / g/ << ,/| 64KB(16 KB x4)
i P e E_0000h
FEFE_0000h (High BIOS Area) s\ l}/ D_FF(::H
FFFE_FFFFh E segment L/ i 1 —
(High BIOS Area) | ~—=> I Expansion Area
EFEE-0000n f 128 KB (16 KB x 8)
: / C_0000h
High BIOS Area ’I 8 FFFFh
,' Legacy Video Area
APIC ! (SMM Memory)
4 128 KB
PCI Memory ,l A_0000h
Address Range / 9_FFFFh
(Substractively ,’
Decoded to DMI) |
!
TOLUD /
Main Memory !
Address Range ,' DOS Area
1 M B [——
Legacy Memory
Address Range
____________ 0

0
Figure 8: Memory mapping and legacy (DOS) memory area (Salihun, 2007)

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO

SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 11

3. UEFI, future-proof by design

3.1. Concepts and overall structure

It must be pointed out that using UEFI as the term to describe the replacement of
the legacy BIOS is not entirely correct, as another set of reference documents (Pl
Working Group, 2012) exists to describe the Platform Initialization (PI). Pl is a child of
UEFI, and the intent for UEFI is to focus on the interfaces with the boot devices and the
Operating System, while PI focuses on the initialization of system components (chipsets,
memory, buses) and component drivers (Option ROM in legacy BIOS terminology). This
means that both specifications are important, but Pl is to be referred to first until the
hardware is brought into a UEFI compliant mode. These frameworks are complementary
(Figure 9), where Pl is covering the yellow area and UEFI is covering the pink one. Most
of the information provided here is based on the book (Vincent Zimmer, 2010) and the
PI/UEFI specifications: (Pl Working Group, 2012) (UEFI Spec Working Group, 2012).

Pre
Verifier

|
|
[
I UEFI

| Interfaces

0OS-Absent
App

Transient OS
Environment

Device,
Bus, or

Service
Driver

Transient OS

|
|
|
|
|
|
|
|
|
|
|
|
|
| Boot Loader

I —_—

EFI Driver

Dispatcher

|
I
I
I
|
I
|
|
I
|
I
I
I
I
|
: ‘ 0OS-Present
|

I

I

Architectural Final OS 1 Final OS
Protocols Boot Loader | Environment

|
|
|
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

|
|
|
|
\
|
|
|
|
\
|
|
|
|
|
|
|
|
|
|
|
|
|

5 it Pre EFI Driver Execution | Boot Dev UEFI & OS Runti
(esctyg)y Initialization Environment Select Loader t‘F?-I'.')T'e
(PEI) (DXE) (BDS) Handshake
Power On —» [..Platform Initialization.] ——» [....OS Boot....] — Shutdown

Figure 9: PI and UEFI coverage (Vincent Zimmer, 2010)

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 12

Pl is made up of Security (SEC), Pre-EFI Initialization (PEI) and Driver
Execution Environment (DXE). UEFI is composed of the Boot Device Selection (BDS),
the Transient System Load (TSL) and the Runtime (RT).

Some concepts and terminology need to be described before jumping into the sub-
components. A handle can be compared to a class in Object Oriented Programming, and
is a collection of one or several protocols; it is managed in the Handle Database. A
protocol is defined by a GUID, and can contain function pointers and data structures. It
can be used as an interface for hardware, as well as an interface with other protocols.
Examples of protocols are: UsbAtapi, VgaMiniPort, TCP/IP. Examples of functions
could be ClearScreen() or OpenVolume(). The functions mentioned above are provided
by UEFI drivers which are a subset of the different types of UEFI Images, and Images
can also be UEFI applications or OS loaders and will be covered later.

The core of UEFI is called the System Table (Figure 10). It contains references to
the available protocols as well as two other tables, the Boot and Runtime (RT) Service
Tables. Boot services are available until RT is achieved, and RT is called at the end of
TSL, when the OS Loader UEFI Image calls the boot service function ExitBootServices().
Runtime services are also available when the OS is running, meaning there are interfaces
available between UEFI and the OS. The list of boot and runtimes services is fixed by the
UEFI specifications revision, but can be extended above that minimum list, and the
remaining protocols to be found in the System Table are modular elements added by the
hardware vendor or the firmware manufacturer, hence the meaning of “extensible” in
UEFI.

A last table referred by the System Table is called the System Configuration
Table. It points to other tables, notably the Advanced Configuration and Power Interface
(ACPI), the SMBIOS Table, the Hands-Off Block Table (HOB) and DXE Services Tables.

The phases are explained more in details below, and the extensive terminology

will likely be better understood after reading these paragraphs.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 13

Active Consoles EFI Runtime Services Table

—)l Protocol Interface '

Boot Services and Structures Runtime Services and Structures
Only Available Prior to OS Runtime | Awvailable Before and During OS Runtime

I |
I |
I |
I |
I |
I |
I |
I |
I |
I Input Consoles Variable Services 1
: Output Consoles Real Time Clock Services :
: Standard Error Console Reset Services :
I Status Code Services I
I |
I EF1 Boot Services Table Virtual Memory Services I
I I |
| Task Priority Level Services | |
: Memory Services : Version Information :
I Event and Timer Services [EFI Specification Version |
I I |
| Protocol Handler Services [Firmware Vendor |
: Image Services : Firmware Revision :
: Driver Support Services : :
: : > System Configuration Table :
I DXE Services Table 1 DXE Services Table |
: Global Coherency Domain Services : HOB List :
: : ACPI Table :
I [SMBIOS Table |
I I |
I I aaw I
: : SAL System Table :
I I |
I I |
I I |
I [|
I I |
I I |

Figure 10: UEFI System Table structure (Vincent Zimmer, 2010)

3.2. SEC and PEI

The SEC phase has four responsibilities, as described in (Pl Working Group,
2012). It handles the platform restart events (there are 11 “boot modes” described in the
PI specifications, notably “BOOT_WITH _DEFAULT SETTINGS”,
“BOOT_ON_FLASH_UPDATE”, “BOOT_WITH_FULL CONFIGURATION”,
“BOOT_ON_S3 RESUME?”, etc). Next, SEC takes care of creating a temporary memory
store by using the processor cache as a flat memory. This is known as Cache-as-RAM
(Salihun, 2007) in Legacy BIOS terminology. SEC can serve as the Root of Trust (hence

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 14

its name), but this phase is optional. This is typically how the link with the Trusted
Platform Module (TPM) will happen and is the base of the Secure Boot. Lastly, SEC will
hand over the pointers to the temporary memory, the temporary stack and the Boot
Firmware Volume (BFV) to PEI.

The role of PEI role is to initialize the memory for the DXE phase to start, and as
such its role is very limited, but due to the overall stage of initialization of the system it
will rely on code that should be very similar to what can be found on legacy BIOS, with
the main difference being the format of the code itself, explained below. PEI makes use
of specialized drivers called the PEI Modules (PEIM) which are contained in the BFV
provided by SEC and the format in which they are encoded follows the Flash File System
(FFS) described in PI1. Each PIEM is, therefore, a file encoded in PE/COFF (MZ then PE
headers) or in the Terse Executable format (TE) which will have a VZ (Vincent Zimmer)
header instead of the MZ (Mark Zbikowski) header. TE is a subset of PE as an answer to

the limited amount of resources available at such a stage of the boot process.

Hands-Off Blocks are data structures containing the state of the system. It is
received as the only input for the DXE phase, explained below.

3.3. DXE

The role of the Driver Execution Environment is to initialize the systems
components (chipsets, add-on cards) and to hand over to a specific Architectural Protocol
(see below) called the Boot Device Selection. To meet these requirements, the DXE is
composed of three elements, with the first one being the DXE Core, and its goal is to
produce the Boot, Runtime, DXE Services, to populate the EFI System Table and to
create the Handle Database. The DXE Core is the receiver of the HOBs List, from PEI,
and consumes Architectural Protocols. The difference between a Protocol and an

Architectural Protocol is the dependency of hardware for the later one.

The question is, how is it expected to work? In the HOBs lists, one HOB (or
more) contains the description of the firmware volume (The PI FFS for instance), and this
HOB has a specific GUID, which is linked to a DXE driver, the second of the three DXE

elements.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 15

The last element, called the DXE Dispatcher, is the one which links the HOB
GUID to a specific DXE driver, so there must be a HOB related to a FFS DXE driver
that, when executed, will read the volume looking for a specific file called the apriori,
which is an authoritative list of DXE drivers to execute in order.

The apriori file is not mandatory, and if not present, the DXE Dispatcher will
search for DXE drivers in the volume, look at their dependencies, and then decide the
execution order. The DXE Dispatcher is also responsible for looking for DXE drivers
related to the other HOBS, which themselves can relate to other volumes, containing
more DXE drivers, and it is the versatility of this system that permits common file
systems like “FAT” to be recognized so that in the GUID Partition Table (GPT) the
200MB hidden system partition is exactly that; a partition recognized at the DXE (or
BDS) phase that can potentially contain DXE drivers.

I
I
I
I
DXE Foundation |l
A i |
DXE Dispatcher
' DXE Drivers
h

Protocol Driver

U

Firmware Volume Block
Protocol Driver

[Firmware Volume

Y

O/S Loader |

Driver Execution Environment Boot Device Selection
(DXE) (BDS)

Figure 11: Driver Execution Environment (Vincent Zimmer, 2010)

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 16

There are two categories of DXE drivers; the initial ones loaded at the early stage
(which should not be very different from legacy BIOS style code), and the true UEFI
drivers (which are compliant with the specifications). All of them are in the PE/COFF
format (or PE32+, if they include digital signature) and the true UEFI drivers can also be
coded in EFI Byte Code (EBC), which is platform independent but runs on top of an EBC
Virtual Machine, as described in (UEFI Spec Working Group, 2012). The DXE phase
can, therefore, be compared to the Option ROM loading with legacy BIOSs, but in a

much more controlled way.

3.4. BDS, TSL and RT

When all of the mandatory Architectural Protocols defined in (UEFI Forum,
2012) are available (that is, the Boot and Runtime services tables are filled), the DBS
Architectural Protocol is executed and has to follow a strict policy: Initialize the elements
required for human interaction (to allow entering Setup, a boot menu,...), load all drivers
stored in a specific variable, and attempt to boot every item contained in the BootOrder
variable. If any of these steps fails, the BDS gives control back to the DXE dispatcher
(Figure 11), and the dispatcher will try to find alternative DXE drivers in the newly

discovered firmware volumes resulting from the driver load of BDS.

For an OS to boot, the BDS will look for a platform specific file (Figure 12), this
file will always be in the /EFI/BOOT/BOQOT/ folder, and once found the OS loader will

call ExitBootServices(), which only allows the Runtime Services to stay resident.

File Name Convention PE Executable Machine Type *
32-bit BOOTIA32 EFI Ox14c
XG4 BOOTx64 EFI 0xB8664
ltanium architecture BOOTIAG4 .EFI 0x200
ARM architechture BOOTARM.EFI 0x01c2

Note: * The PE Executable machine type is contained in the machine field of the COFF file header as
defined in the Microsoft Portable Executable and Common Object File Format Specification, Revision 6.0

Figure 12: GPT Boot file name (UEFI Spec Working Group, 2012)

In addition to the capability of booting an OS, the BDS allows UEFI applications
to be run, one of which is the UEFI shell, which mixes DOS and UNIX notations. In

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 17

VMware, it can be accessed by selecting EFI BIOS for a new virtual machine and not

creating any hard drive. The system will fail boot in the UEFI shell.

4. Analyzing VMware UEFI 64 bit implementation

4.1. Extracting the ROM file
VVMware has been emulating the chipset Intel 440BX and has, therefore, been
using an implementation of a legacy BIOS based on that chipset, but since VMware

Workstation 8/ESXi 5 the option exists to allow you to boot with a UEFI firmware.

Hardware Options]Resuurces]

Settings summary Firmware

General Options LIEFT_default Specify the boot firmware:

VMware Tools Shut Down ~

Power Management Suspend ES

Advanced (¢ EFI
General Normal /& Changing firmware may cau
CPUID Mask BExpose Nx flagto ... to become unbootable.
Memory/CPU Hotplug Dizabled/Disabled o O Boot Del
Boot Options Delay 2000 ms | sl sy
Fibre Channel NPTV Naone Whenever the virtual machine is
CPU/MMU Virtualization Automatic leEan T oEaa
Swapfile Location Ise default settings

Figure 13: VMware UEFI boot option

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 18

The firmware itself is embedded in the file /bin/vmx of the hypervisor, and by using

objdump and objcopy, the UEFI firmware can be extracted.

citaubackup:~% objdump -h wvmx
VINX : file format elfed4-x8B6-64
Sections:
Idx Hame Size VML LMA File off &lgn
0 .interp 0000001 0OQOQO0O00Q0000000270 0000000000000270 00000270 2**0
CCNIEWNTS, ALLCC, LOAD, EREADCNHNLY, DATA
1 .note.&5I-tag 00000020 000000000000028c 0QOOQOO0OQ0000000028c 0000028c 2%%2
CCNIEWNTS, ALLCC, LOAD, EREADCNHNLY, DATA
& .hast GG;;EEEC GGGG;BPGGGG 20 Q00000QO0000gZh0 000020 2FF3
o WS S SR S Y 4
COMTRATS, EBrADCNLY
31 =fizz 000eaa70 0000000000000000 O0000000000000000 00989322 2#%*%0
CCHMTIENTS, EEADCNLY
32 efic4d 00025408 0000000000000000 O0000000000000000 00aT74382 2%%Q
CCNTENTS, BREADCNLY

7/

0000024 O@OO000 Q000
- 3, .

Vavavs

s

The object 32 can be extracted and uncompressed by using zlib (939016 is the

size of the compressed ROM file).

objcopy vk -0 binary -j efied4 —--set-section-flags eficd=a efied.rom

perl -e

&
-

'use Compress::Zlib; my 5v;
uncompress (5v) ; print Sv;!

read STDIN, 938901e;

&~
-
=W,

< efigd.rom > efied.rom.2

The ROM studied here has a MD5 hash of dbc1a58988c150cb1eb95c04dcf06alb

4.2. Preliminary Analysis

The uncompressed file is 2MB, and running strings on it shows some interesting

information. DLL names are self-explanatory for UEFI-aware people and PE structures

are to be found.

MANUEL HUMBERTO SANTANDER PELAEZ

SANTANDER PELAEZ

MANUEL HUMBERTO

A journey in the Unified Extensible Firmware Interface (UEFI) @ 19

citaulfbackup:~% strings efifd.rom.? |grep dll
SecHMain.dll

PeiCore.dll

PcdPeim.dll

StatusCodePei.dll

PlatformPeim.dll

|IDxelpl.dll

DxeCore.dll

Another topic worth mentioning is the very limited size of the last 64KB segment.
All the code and supporting data is contained between OXFFDDO and OxFFFFF, which
corresponds to 559 bytes. The segment corresponding to OXE_0000 is empty as well, and
analysing the legacy VMWare BIOS 440 shows that most of the last 128KB is not null.

4.3. From Power Up to PEI
As stated earlier, the system has to be in real-address mode, and the last 64KB of
the ROM are matching the addresses OxF_0000 and OXFFFF_0000 (the latter one is

meaningless before jumping in protected mode).

The options to be set when loading the file in IDA Pro are to set the CPU to
80x86:metapc, and to force the decoding in 16bit. When the file is loaded, segments must

be created and properly allocated. Therefore, the following IDC script has been used.

auto ea,ea_src,ea_dst;
for(ea = 0x0; ea < 0x200000; ea = ea + 0x10000)

{

}
ea_src=0x001F0000;

ea_dst=0xFFFE0000;
SegCreate(ea_dst, ea_dst + 0x10000, ea_dst>>4, 0, 0, 0);
for(ea_dst; ea_dst <= OxFFFFFFFF; ea_dst = ea_dst + 4)

{

SegCreate(ea, ea + 0x10000, ea>>4, 0, 0, 0);

PatchDword(ea_dst, Dword(ea_src));
ea_src =ea_src + 4;

The entry point starts at OxFFFF_FFFO (Figure 14). The code running in 16bit is
exactly following what (Dice, 2011) presented and mentioned earlier in 2.2. Enabling the

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Faeg:
Faeg:
Foea:
Faea:
Foea:
Faeg:
Faeg:
Foea:
Faea:
Foea:
Faeg:
Faeg:
Faeg:
Foea:
Faea:
Fooeg:
Fopga:
Fooga:
Fooga:
Fapg:
Foog:
Foog:
Fopga:
Fooga:
Fooga:
Foog:
Foog:
Foog:
Fopga:
Foog:

CRAR-=

FFFO
FFFO
FFFO
FFFO
FFF2

FFF5 :

FF88
FF8a
FF8a
FF8A
FF82
FF84
FF86
FF8g
FF8EB

FF19

FF19
FF19
FF19
FF1A
FF1A
FF21
FF21
FF21
FF21
FF21
FF21
FF27
FF2n
FF2n

CCof -

A journey in the Unified Extensible Firmware Interface (UEFI) @ 20

A20 Gate is required to switch to protected mode, and while out of scope here, the history

of the A20 spare pin is worth reading to understand how legacy decision are impacting

current architecture (Brouwer). Note that the value of DI, set in real-address mode, will

later be used after the switch to protected mode for a comparison. The instruction to load
the Global Descriptor Tables complies with 2.1. With CS and DS starting at 0 and

covering the whole memory range, this is according to the requirements of the basic flat

protected mode (see Figure 15). Note that the Code Segment is defined twice: one in
32bit, once in 64bit mode. The 32bit version of the VMWare UEFI ROM presents

exactly the same GDT.

HRU_jump: ; flush cache
wbhinud
jmp n2BEnable
AZ2BEnable: ; CODE XREF: FOOO:FFF2]j
mou di, ax - saue AX in DI
mov al, ; AL=2
out 92h, al ; Enable A28 {port 92h, command 82h}
mou ax, di ; restore AX
mou di, ; set 5842h to DI, 1likely for a later
jmp short SwitchToProtectediode 1
SwitchToProtectediode: ; CODE XREF: FO88:SwitchToProtectedMode_3}j
cli ; clear interrupt flag.
db 66h
1qdt fword ptr cs:GDT ; Load Global Descriptor Table (GDT)
mou eax, 48808023h ; set bit @8,1,5,38 to 1 —-> PE,HP,HE,CD
; Protected Enable
; Humeric Error (x87 FPU error handling}
; Monitor Coprocessor
: {set ®%87 execution instructions)
; Cache Disable
mou crB, eax ; switch to protected mode?
jmp large far ptr ; switching to protected mode

MUST be followed by a far jmp.

Figure 14: from real-address mode to protected mode

MANUEL HUMBERTO SANTANDER PELAEZ
SANTANDER PELAEZ

MANUEL HUMBERTO

Foaa
Fa8g
Fa88
Fa88
Fa88
Fa88
Fa88
Fa88
Fa88
F a8
F a8
F a8
F a8
F a8
F a8
F a8
Foaa
Foaa
Foaa
Faag
Fa88
Fa88
Fa88
Fa88

:FFo@
:FF&8
:FF&8
:FF&8
:FF&8
:FF&8
:FF&8
:FF&8
:FF&8
:FF&8
:FF70
:FF70
:FF78
:FF78
:FF78
:FF78
:FF7@
:FF78
:FF78
:FF78
:FF78
:FF78
:FF78
:FF78

A journey in the Unified Extensible Firmware Interface (UEFI) @ 21

db @, B, @, @,
db 8FFh, OFFh,

db @FFh, OFFh,

db 8FFh, BFFh,

Figure 15: Global Descriptor Table

8, 8, @ ; HULL descriptor
8, @8, 93h, BCFh, @ ; Data Segment (DS)
; bhase: AxA0AAAAAA
; limit: BxFFFFFFFF
; Flags:
; - P {present) ,
; % (Codefdata),
; Type 8611 (Data),
; — Granularity (4KB),
’
o

D/B (32bit)
Bh, BCFh, 8 ; Code segment {C3)
Flags
- P {present) ,
% (Codefdata),
Type 16811 (Code},
- Granularity (4KB),
- D/B (32bit)
Bh, 8AFh, 8 ; Code segment {C3)
Flags
- P {present) ,
S {(Codefdata),
Type 16811 (Code},
Granularity (4KB},
DB {(64bit) *

WO we wE W W wE o wE

Because the firmware now needs to be studied in 32 bit mode, the file is reopened

accordingly with IDA Pro. The entry point is OXFFFF_FF32. After a few instructions,

(setting some register at initial value and comparison of DI from real-address mode), the

code is defining a value for a GUID.

seqdeo: A81FFDF2
seq@en: ag1FFDF2
seqden: ae1FFDF7?
seqden: dg1FFDFC
seqden: d1FFDFE
seq@Bn: A81FFEBS
seq@eo: a1 FFEBT
seqden: d81FFEBE
seqdon: A01FFE1@
seqden: ae1FFE1T
seq@Bn: A61FFE19
seqdon: A61FFE2@
seqden: ae1FFE22
seq@eo: A81FFE29
seqden: d81FFE2B
seq@Bf: AB1FFE2D
seqdone: A01FFEZA
seqden: dg1FFE32

SEﬁﬂﬂﬂ:BB1FFDF2 LookForGUID boot:

sub
cmp
jb

cmp
jnz
cmp
jnz
cmp
jnz
cmp
jnz
cmp
jnz
mov
add
jnz
jmp

CODE XREF: segBB88:8B81FFEAS]]
seq@0@: @81FFEBEL] .- .

eax, ; remove 1886h from eax

eax, BFFBOO0OBh ; verify eax < 4GB

short GUIDFindFailure ; if bigger, then we mis
dword ptr [eax+18h], BCBCES78h

short LookForGUID_boot

dword ptr [eax+14h], 4F1CEA3DHh

short LookForGUID_boot

dword ptr [eax+18h], 61893599h

short LookForGUID boot

dword ptr [eax+1Ch], BD3Z2DC38BS5h

short LookForGUID_boot

dword ptr [eax+], @

short LookForGUID_boot

ebx, eax s GUID found

ebhx, [eax+ 1

short LookForGUID_boot

GUIDFound

The GUID is: 8C8CES578-8A3D-4F1C-9935-896185C32DD3. Using a Hex Editor, it
can be found at address 0x10 of the binary ROM file. The next bit of interesting code is

MANUEL HUMBERTO SANTANDER PELAEZ

SANTANDER PELAEZ

MANUEL HUMBERTO

Offset (h)

Q00000000
00000010
00000020
Q00000030
00000040
00000050
00000060
00000070
Q00000080
Q00000080
000000R0D
00000080
000000Co
Q000000D0
000000ED
000000F0D
00000100
00000110
00000120
00000130
00000140
00000150
00000160
Q00000170

A journey in the Unified Extensible Firmware Interface (UEFI) @ 22

the check for the MZ/VVZ and PE headers. The figures below show a hexdump of the first

bytes of the ROM file, and the corresponding code for header checks.

seﬁﬂﬂﬂ: B81FFED1 MZheaderCheck:

CODE XREF: seqOB0:881FFEB8T]

seqfana: 681FFED add eax, & ; add & to current eax address

ceqBda: 081 FFEDG mou ebx, eax ; Sauve eax on ebx

seqfan: B81FFEDS cmp word ptr [eax], ;s look for HMZ header

seqBda: @@ 1FFEDD jnz short UZHeadercheck ; not a WZ header, see if UZ header
seqfana: B81FFEDF MmouzZx ebx, word ptr [eax+ 1

seqBda: 881 FFEE3 add ebx, eax

seqBof: B01FFEES

ceqBd8:881FFEES UZHeadercheck: ; CODE XREF: seq@@@:@@1FFEDDT

seqfan: B81FFEES cmp word ptr [ebx], ;5 look for UZ header

segBaa: B81FFEEA jnz short PEHeadercheck ; not a UZ header, look for PE header
seqfae: 681FFEEC add eax, [ebx+g]

seqfBa: BB1FFEEF add eax, HE

seqfo0: 081FFEFY MmovzZx ebx, word ptr [ebx+6]

seqfan: BA1FFEFS sub eax, ebx

seqfoe: 81FFEFA jmp HeaderFound

seg@@@: B@81FFEFF ; —— -

seqBof: B01FFEFF

seqf88:B81FFEFF PEHeadercheck: ; CODE XREF: seqOB8:801FFEEAT

ceqBda: @81 FFEFF cmp dword pty [ebx], ; look for PE header

seqBAA: AB1FFF 85 jnz short BytesHotHatching

seqBda: @@ 1FFF a7 add eax, [ebx+ 1

seqfan: B81FFFBA jmp HeaderFound

o RAR - RRACCC RE =

00 01 02 03 04 O5 06 O7 O 09 OR OB OC OD OE OF

00 00 00 OO0 OO0 OO0 OO0 OO0 00 00 00 00 OO0 00 00 00

78 E5 8C 8C 3D 8A 1C 4F 99 35 89 61 85 C3 2D D3 x&®E=5.0™5%a &-0

00 00 20 00 00 00 00 00 SF 46 56 48 FF FE 07 00 e PEFED - . FFS header (look for _FVH)

428 00 8B F6 00 00 00 02 20 00 00 00 00 00 01 00 H.¢B....

00 00 00 00 00 00 00 00 J0A CC 45 1B 6A 15 BA 42| IE.j.5B

AF 62 49 86 4D RO Ef E6 2Cc 00 00| F2| ThbItM ==,%..,..2 Cheksums

14 00 OOH&F DA 34 9B 56 AF 24 4C B0 EA FO 3B)|00:,VesL.23; Filetvpe: FFI FV FILEIYPE FREEFORM

75 58 AF 50 FF FF FF FF|F6 CE 1IC DF 01 F3 63 43 uX®Pyyvyysi.p.dcd Attributes: None

96 61 FC &0 30 DC C8 80 DC 42 00|F&8 -aii’0UE€@®..0B.o Length: 44 bytes (size is 3 consecutive UINTS, so techmically
A4 42 ooen SA 00 00 00 00 OO0 OO0 00 00 00 00 ®B..MZ.......... written in big endian)

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 .+ eueuceneenennn- File Status: ?

00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 vuveuvenrnrenen Section Size: 20 bytes

o0 00 00 OO0 OO OO OO OO OO OO0 OO0 OO0 OO0 OO0 00 00vvevvuennns section Tvpe: _ -V

80 00 00 OO0 OO0 OO0 OO OO0 OO0 00 00 00 00 00 00 00 €.....cciunnnnnn GUID: SEC MAIN

00 0D 00 00 OO0 00 00 OO0 00 00 00 00 00 00 00 00 v vvunneererrnnns = ' VAN . .
00 00 00 00 00 00 00 GO0 00 00 00 00 00 00 00 00 sueerrrrnneenen. &“_P“d—ld’:'g]’ﬁ“"m'm'Fﬂ““"‘“""'“-““m"'d'
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..eeeeenennnnnns m}“ﬂm o FFI FV FILETYPE SECURITY CORE
00 00 00 00 50 45 00 00 4C 01 O7 00 00 00 00 00 LBE..L....... @—Iﬂn T None
00 00 00 OO0 OO0 OO0 00 OO0 EO 00 CE O3 OB 01 02 14 - S 'Length: 17116 bytes

00 3E 00 00 OO0 48 00 00 20 00 00 00 RO 02 00 00 .»...H.. ... File Status: 7

o 02 00 00 60 3F 00 00 94 00 EO FF 20 00 00 00 CELLTLAY Section Size: 17060 bytes

20 00 00 OO0 OO0 OO OO0 OO OO OO0 OO0 OO0 00 00 00 00 ... vvevvunnnns ection Format: - N_FEAL

00 00 00 OO0 00 41 00 00 S0 02 00 OO0 00 OO0 00 00 Boooiiiaan.

OB 00 00 00 00 OO0 OO0 OO0 00 00 00 00 00 00 00 00 ...iierrrnnnnnnn

The GUID (highlighted in yellow) mentioned earlier is referring to the
EFI_FIRMWARE_VOLUME_FILE_SYSTEM2_GUID, according to (Pl Working
Group, 2012). The GUID is a constant and can therefore easily be found within a ROM

file. Another element to look for is the signature “ FVH?”, typical for a FFS header. The

MANUEL HUMBERTO SANTANDER PELAEZ

SANTANDER PELAEZ

MANUEL HUMBERTO

A journey in the Unified Extensible Firmware Interface (UEFI) @ 23

characteristics of the FFS is that it is composed of 32 blocks of 64K each which translates
to 2MB.

The next GUID to be found is the apriori file (in pink). The file is enclosed into a
file header of 24 bytes, followed by a 4 bytes section header. The content of the file
contains only one GUID, corresponding to the PCD PEIM, which is a PEI Module that
holds the Platform Configuration Database. Although not covered earlier, the PCD is a
means to pass parameters to Modules (being PEI or DXE drivers) or to store platform
specific information. The end goal of the PCD is to limit the modification of source code

for developers by allowing parameters to fine tune use of a specific module (Intel, 2010).

The next GUID (in light blue) is of some interest, as it happens to be SEC_MAIN,
the core module of the SEC phase. Shown as encoded in PE32, based on the file and
section headers, the MZ and PE header are present but meaningless because before the
DXE phase it is not defined how to interpret a proper PE/COFF header. When looking
back to IDA Pro, we can find the check for 0x10. The SEC phase continues at 0x330.

seqBeo:e81FFEE®D cmp eax, Bcx ; PaX}BCH

seqBee: BB1FFEB2 jnb short BytesHotMatching

ceqd00:881FFEBL cmp byte ptr [eax+3], 18h il Look for "“EFI_SECTIOH_PE32"
seqdB0: 081FFEBS jz short HZheaderCheck

Having the files properly structured in a FFS allow us to find the different files by
looking at their header, just like the BIOS will do when executed, and working this way it
is much easier to find files boundaries, as well as much easier to add, delete, modify or
replace modules within a ROM file (in Para 5.3 such a method is used to bypass windows
validation by stealing OEM strings and certificates and replacing them in other FFS-
structured files).

At this stage, it is too early to consider opening the PEI or SEC files with IDA
Pro, as we would for windows applications. Similar Reverse Engineering techniques, as
used for legacy BIOSs, could be used to analyze the files (unless the files are coming
straight from Intel’s development kit), but even if they are not, having the source code of
similar implementations could really help, and the next phase is what would be more

interesting.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 24

4.4. The Driver Execution Environment

Knowing that each element of the FFS is identified by its GUID, the path taken from here

will be relatively easy. The idea is to extract a driver at the DXE level by means of

analyzing which GUIDs are available, find them in the File System, and then extract

them. Accessing the shell in the VMware Environment can be done by not having any

bootable media for the guest VM and to have the UEFI BIOS selected (as explained in

4.1). While this is not the intent to look at the details provided by the CLI (“help” is your

friend), the command guid display the drivers and the corresponding GUID.

PxebcCallback
Bis

MNPSh

MNP

ARPSh

ARP
DHCPvdsh
DHCPwvd
TCPvdsSh
TCPwd
IPvdsh
IPvd
IPvdConfig
uDPvdsh
UDPwd
MTFTPvdsh
MTFTPv4
AuthInfo
Hashshb
Hash
HiiFont
H11Str1ng

199///

: 245DCA21-FB7B-11D3-8F01-00A0C969723b
: 0B64AAB0-5429-11D4-9816-00A0C91FADCF
: F36FF/70-A7E1-42CF-9ED2-56F0F271F44
: /AB33A91-ACE5S-4326-B572-E/EE33D39F ¥
: F44COOEE-1F.2C-4A00-AA09-1C9F3E0800A3
: FAB42/BB-BAZ21-4F16-BC4E-43E416ABO19
: 9D9A39D8-BD42-4A73-A4D5-6EE94BEL13

: 6A219718-4EF5-4/761-91C8-COF04BDAYESL
: 00720665-6/EB-4A99-BAF/-D3C33A1C/CCYH
: 655EDBC?—A359—41DF—BDlD—SAADC?ECEB&?’
: C51711E/-B4BF-404A-BFB8-0A048EF1FF

: 41D94CD2-35B6-455A-8258-D4E51334AADD

3B95AA31-37/93-434B-8667-C8070892E05

: 83F01464-998D-45E5-B383-AF6305D8E9

3ADI9DF29-4501-4/8D-B1F8-7F/FE/OES0F >

: 78247C57-63DB-4708-99C2-A8B4A9A061F6
: 76/71D9D0-53DB-4173-AA09-2327F21F0BC
: 42881C98-A4F3-44B0-A39D-DFAL1866/DSBCD
1 C5164932-DBA5-46DB-A5BA-CCOBDAY9C143
: E9CA4/775-8657-47FC-97E7-7EDB65A084 3

: 2FE800BE —SFD1—4M6—94EB—D?1388E1833E/

DFD969?4 23AA-4CDC-BY9CB- QSDI??SDBEEA

1A6 E}DF-’-I E-B 2E 8(},]

None of the DXE drivers could, in fact, be found directly in the FFS, because a
file, called DXE File Volume (DXEFV) based on its GUID, contains all the DXE drivers

in a single RAW section. According to comments within the Virtual Box flash drivers

(Oracle Corporation), the section is compressed with LZMA. The file starts at 0x49150

and ends at 0x10EC52 and note the extension of the file; unlzma (xv) wants to see it to

decompress the file.

unlzma DXEFV.lzma

dd if=efi64.rom of=DXEFV.lzma skip=299344 count=809730 bs=1

SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 25

The uncompressed file has a MD5 hash of 9735970d40d9c626fffa23efa9e77d11

It contains another FFS, as clearly identified by _FVH at 0x38, and using strings against
the file now reveals what is expected:

brol@toshiba foyadrive/z/BI05,/UEFI_ROMS
% strings DXEFV_LZMA |grep d11
StatusCodeRuntimeDxe. dl]
PcdDxe. d11

RuntimeDxe.d11
securitystubDxe. d11
DataHubDxe.d11

EbcDxe.d11

LegacyB8259.d11

CpulozDxe.dll

CpuDxe.dl1

Timer.dll
PciExpressHostBridge. dll
PciBusDxe.d11

PmRuntimeDxe.dl]

Metronome.dll

PcRtc.dll

WatchdogTimer.dl]
MaonotonicCounterRuntimeDxe. d11
CapsuleRuntimeDxe.dl]
ConPlatfaormbDxe.d11
ConsplitterDxe.dl]
GraphicsConszoleDxe.d11
TerminalbDxe.dl11

BdsDxe.d11

DevicePathDxe.dl]

PrintDxe.dl]

VAt t 2 Y

Most of these files will follow the UEFI DXE drivers interface. The DisklO
driver, with a GUID of CE345171-BA0B-11D2-8E4F-00A0C969723B (as reported by

the command guid within the UEFI shell) cannot be found in the image, although

NANANANN

“DiskIODxe.dll” can be found by using strings on the FFS image. The corresponding
GUID, based on a reverse search of the MZ header from that location, reveals a GUID
value of 6B38F7B4-AD98-40E9-9093-ACA2B5A253C4, which corresponds to a UEFI
1.0 DisklO driver! (it is unclear why a 2.0+ compliant GUID is reported when a 1.0
version is loaded). Any occurrence of the GUID seems to be linked to a list of
dependencies (GUIDs are next to each other’s, as an array), except at address 0xC3017C,
where a lot of GUIDs are presents but with associated values. This address is part of the
UEFI shell application, and it may be a way to create aliases to GUIDs, but this cannot be

demonstrated.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 26

However, the goal was to access the files that can, if needed, be loaded in IDA Pro as

64bit PE structured files, and to be complete, the exercise will:

1. Use the EDK Il development interface to code a subverted driver and to give it
the associated GUID; the sky is the limit at this stage.

2. Replace the real driver with a new driver, but because it is in a File System, there

are some checksums at file level and File System level to recalculate. (see 0)

3. Compress the resulting File System with LZMA so it is now the new DXEFV to
be added in the Binary ROM image.

4. Replace the DXEFV file with the new one, recalculating the checksum for the file
and File System of the ROM file, and paying particular attention to ensure the
position of other files are not changed (as it may break the early stage of booting
where the BIOS is not yet able to read a file system).

5. In VMWare, copy the modified BIOS into the home folder of the virtual machine
and edit the corresponding vmx configuration file of the guest VM and by adding

the following entry it will now boot from the modified UEFI firmware.

efi6d.filename = "myModdedUEFI.rom"

6. Note that if you are creating your own driver, you can assign another GUID to it,
and it would be interesting to see if the GUID can just be added to the list in the

file to be loaded and executed, instead of modifying an existing capability.

5. How UEFI can be subverted

There are several paths worth considering for exploitation, and while they are presented
in dedicated subtopics, some of them are linked where exploitations paths are likely to
make use of several for effectiveness or wider coverage. Using a program like RW-
Everything (see 6.5), some of the specific elements mentioned below (ACPI Table,
Option ROMS, SMBIOS Table,...) can be easily accessed and are worth investigating.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 27

5.1. On signed code and the Trusted Platform Module

The code signing requirement of UEFI is not a mandatory one, but the principle
behind it is to verify that all code executed by the processor has been signed by a trusted
vendor. For this to be effective, it requires access to a safe place which contains the list of
all trusted certificates for every single code being executed which is called for
verification first. However, because this requirement was not planned in the earlier
releases of UEFI, code-signing is basically an add-on to the existing interface. The
requirement for a safe place to hold the certificates is, in most cases, the Trusted Platform
Module (TPM), connected to the Low Pin Count (LPC) interface of the Southbridge (see
Figure 7: Intel 955X-ICH7 chipsets (Salihun, 2007)). The TPM is not available on all
motherboards, and as such does not really make sense for the consumer products due to
extra cost, little or no added value for user experience, and extra burden for the end-user.
Additionally, the list of trusted certificates needs an update mechanism, so
implementation errors could lead to bogus certificates being added to the trusted list, and
another issue is the availability of 2 protocols to load UEFI binaries, as stated in (Michael
Rothman, 2009), which could possibly be another means of avoiding any signature

verification.:

The simpler method is known as the Load File Protocol and its expanded
version, the Load File2 Protocol. These load files off of disks and the like.
These protocols are allowed to assume that the formar of the drive is FAT.
Unlike older operating systems, UEFI uses a new highly extensible partition
scheme, known as the GUIDed Partition Table.

The second method for loading images (programs) allows digitally signed
images to be loaded but is hidden in the security part of the specification.

In the VMWare implementation, the following 2 methods have been found by
using the command guid in the CLI:

Load : 56EC3091-954C-11D2-8E3F-00A0C969723B
Load?2 : 4006CO0C1-FCB3-403E-996D-4A6C8724E06D

Exploitation against the TPM has been demonstrated several times, although they

are fairly complex and were not targeting exploitation at the BIOS level.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 28

5.2. On the System Management Mode

System Management Mode (SMM) is a 16 bit mode which has existed since the
386 (Collins, 1997), mainly for debugging purposes, and could be utilized by use of a
System Management Interrupt (SMI), where these interrupts are true hardware-based
interrupts on a physical pin of the CPU. Later on, use of SMM became more widespread
as it was very convenient to use it for Power Management (APM, ACPI) and hardware
control (for instance, OS-based BIOS firmware update or the associated actions when
you close the lid of a laptop). When SMM is called, all the CPU registers are saved on a
place in memory called the SMRAM and the CPU is switched back to 16 bit mode but
with access to the complete memory range. The power of SMM relies on its privileged
access to all the system resources and on its non-detectability by the OS (BSDaemon,
2008).

While several protection mechanisms have been set up at chipset level, with
specific registers controlling the accessibility of the SMRAM and its read/write status,
security experts have so far managed to circumvent these defences (Loic Duflot, 2006),
(BSDaemon, 2008),(Wecherowski, 2009), (Rafal Wojtczuk). The SMM is a CPU feature
and therefore needs to be supported by UEFI (P1 Working Group, 2012), for which a
whole chapter is devoted. The presence of properly documented libraries provided by
UEFI and its associated development kit will likely ease the task to prevent the SMM
protection from being circumvented, as nothing new on that subject has been brought

forward in recent chipset development.

5.3. On the Advanced Configuration and Power Interface (ACPI)
and the System Management BIOS (SMBIOS)

The ACPI, as briefly explained in 5.2, is used to control the Power efficiency of
the running system, as well as controlling embedded hardware like fans or physical
buttons connected to the motherboard. In contrary to its predecessor the Advanced Power
Management (APM), ACPI is meant to be controlled by the OS, and as such, offers ACPI
registers for control and ACPI tables to describe what capability the specific system has
to offer to the OS (Loic Duflot O. L., 2009).

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 29

Without going too much into the details, the OS accesses the ACPI tables to
extract the Differentiated System Descriptor Table (DSDT), which defines the ACPI
registers and the methods available to use them. In the same paper mentioned above, the
DSDT can point to any memory address, even if it is totally unrelated to the ACPI
registers. (Heasman, 2006) flashed a BIOS with a corrupted DSDT table to later use
crafted OS driver accessing it. Again, (Loic Duflot O. L., 2009) pushed the concept
further by allowing the hidden code to be triggered by external physical events, in that
case the connection of the laptop’s power supply. Once again, the ACPI is a
functionnality that has to be supported by UEFI, and as such, the same kind of flaws

could, potentially, be developped on a UEFI based BIOS.

The SMBIOS (System Management BIOS) is another legacy feature that was
carried over in UEFI. It is currently under revision 2.7.1, and its role is to address how
motherboard and system vendors present management information about their products
in a standard format by extending the BIOS interface on Intel architecture systems.
(DMTF, 2011). As such, the SMBIOS offers a Table, similar to the ACPI, with the intent
of it being accessed by interfaces like WMI for Windows systems. The support for
SMBIOS is offered in (Pl Working Group, 2012). One of the uses of SMBIOS is the
integration of OEM strings that can automate the activation of Windows without going
online (Techie, 2010). It is called SLP (System Locked Preinstallation), and is a code
stored in the OEM Strings of SMBIOS. The other piece of the BIOS needed is called the
SLIC (Software License Internal Code) which is a certicate stored in an ACPI Table
called the Software Licensing Descriptor Table. One of the tricks used by crackers is to
extract the SLP code and SLIC from a big vendor BIOS, modify a flashable version of
their own motherboard BIOS, and apply the flash. This shows that the UEFI does not

solve the piracy issue, at least not without the use of the TPM to protect its content.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 30

5.4. On Option ROM support and the EFI Byte Code (EBC)

Option ROM (also called PCI expansion ROM) is the piece of code executed at
BIOS to allow the support of the PCI card (or embedded PCI chipset) by the system
before boot stage and is typically a network card with PXE capability, a RAID card and
nowadays USB chipsets. Option ROM is true legacy BIOS technology, dating back to the

ISA bus time, and is the answer to Personal Computer hardware flexibility.

In the legacy BIOS way of working, there is a specific memory region
(OxC_0000 to 0xD_FFFF) of 128KB size, used for Option ROM to be executed. After
POST, each PCI device is scanned, and whenever an expansion ROM was available
(identified by AA55h in its Base Address), it was copied over in memory starting from
0xB_0000. When all the Option ROMs are copied over, the BIOS will then sequentially
execute the ROMs (by looking for the 55AAh header in 2KB block) found in the order
they have been copied (Salihun, 2007). This led to a multitude of problems, such as
when Option ROMs were not compatible with each other (remember the times when you
had to swap expansion cards in the slot to get the computer working), or when there was
not enough space available for the code to be copied in the memory for execution. (UEFI
Spec Working Group, 2012)

ROM code is written for the same execution mode as the BIOS, explaining why
some physically compatible cards cannot work on a PC if they are coming from a SUN
computer for instance. If the execution code is RISC based and not x86, there is no
chance it will be interpreted correctly by the CPU. By design, the option ROM, when
executed, has a full access to the system and resources. (Heasman, Implementing and
detecting a PCI rootkit, 2007)

UEFI provides a completely different approach, where drivers have to be UEFI
compliant, where memory is assigned dynamically for it (see DXE), where drivers can be
linked to several PCI chipsets (no need to have 2 copies of the same option ROM in the
memory to get 2 cards running). The question comes when you want to know how your

PCI or PCle card will be recognized on your UEFI computer, and several options exist.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 31

First option, you can have the UEFI driver of your card already available in the original
BIOS firmware; unlikely unless you go for a brand-name PC with well-defined pre-order
options. Second option, you can have a UEFI driver on the EEPROM of your expansion
card; more likely to happen if it is brand new. Third option would be the lack of support
at BIOS level of your hardware, which can be problematic if it goes about a network or
block device controller. Last option, you can have the UEFI BIOS reading and executing
the legacy Option ROM as shown below in an example from a Dell Optiplex 990. While
the BIOS is UEFI, it is still embedded with legacy option ROM that will be executed by
the UEFI BIOS:

Confirm BIOS Replacement 3 x|

Do you wish to execute the BIOS update procedure?

2)
A11 INSTALLED (Dell System OptiPlex 990}
- System BIOS ; All
- Legacy Video OROM : 2089.%.10
- GTZ Legacy Video OROM ; 2089.%.10
- DO10A Legacy Video OROM : 2089.Y.10
- Legacy RAID OROM : 10.1.0.1008
- Intel Management Engine Update : 7,1.20.1119

% A13 UPDATE (Dell System OptiPlex 990)
- System BIOS @ A13
- Gigabit Ethernet : 0.D.4
- Legacy Video OROM : 2089.Y.10
- GT2 Legacy Video OROM ; 2089.Y.10
- DD10A Legacy Video OROM : 2089.Y.10
- Legacy RAID OROM : 10.1.0.1008
- Intel AntiTheft : 3.0.0.18
- Intel Management Engine Update : 7,1.40.1161
- ACPI OS support : 0.0.0.1

| QK I Cancel

The support for legacy Option ROM in UEFI is planned in the UEFI
specifications 13.4.2. (UEFI Spec Working Group, 2012), and described for developers in
(Phoenix, 2009). What is not clear is how a proper legacy driver will be granted access to
the system. The kind of attack (Heasman, Implementing and detecting a PCI rootkit,
2007) proved in using Option ROM to load his rootkit code can, potentially, have the
same impact on a UEFI BIOS.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 32

Another topic worthy of study is the EFI Byte Code, or EBC, which is pseudo
assembly code that is meant to be architecture agnostic. Such an UEFI Option ROM
could then be run on any architecture which offers booting on UEFI aware architecture. It
prevents the hardware vendors from writing several versions of their UEFI drivers based
on the underlying CPU, and it also means that the EBC could be the source of code to

write multi-architecture rootkit at pre-OS level.

A last point, which can be linked further to 5.5 and 5.6, is the ability to have
applications stored on an expansion ROM and have them executed, as cited in (UEFI
Spec Working Group, 2012) below:

It is also possible to place an application written to this specification in a PCI
Option ROM. However, the PCI Bus Driver will ignore these images. The exact
mechanism by which applications can be loaded and executed from a PCI Option
ROM is outside the scope of this document.

5.5. On the runtime services and the capsule

A brief mention of the boot and runtime services has been made in 3.4. The boot
services can be consumed during pre-OS level, while the runtime services are present
during the whole uptime of the system. There is a minimum set of runtime services that
have to be made available to be compliant, but nothing to prevent extra services made
available to the OS.

One such service is the capsule service (Vincent Zimmer, 2010). The capsule is a
placeholder that survives a reboot or reset. The most obvious use for such a service is the
update of the firmware. First, the capsule service is called to hold a copy of the piece of
code that needs to be loaded after reboot and then the reset service is called, in this case
“BOOT_ON_FLASH UPDATE”. This method is convenient, because for the first time,
there is a generic way of upgrading a BIOS; however, it is also a convenient storage for
any piece of malware that needs to survive a reboot. When updating the BIOS of a Dell
Optiplex 990, a specific file called DBULtil_2_3.sys is created in the default temporary
folder, and then rapidly deleted. To get hold of this file you can explicitly deny anyone
the right to delete subfolders and files on the NTFS partition. The file has the following
MD5 hash: 084bd27e151fef55b5d80025¢3114d35

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 33

Using strings on the file the following item can be found:

c:\data\work\tools_efitools\trunk\ringzeroaccesslibrary\win\ kernelmodedriver\ obj
fre_wlh_x86\i386\DBUtilDrv2_32.pdb

The driver has not been studied further, and unfortunately no clear evidence of the use of
the capsule could be found. In reality, and quoting Vincent Zimmer himself in a very
recent blog post (Zimmer, 2012), the Windows OS offers very limited access to UEFI so
far, so that the UEFI runtime services are at the day of today pretty much not in use.

Because a runtime service can technically link a ring-3 user to anything the
service offers, a modified UEFI driver could technically link a runtime service to a
System Management Interrupt, which from there would launch the same kind of
undetectable exploits as described in 5.2. A runtime service could also, for instance, be
used to get access to a block device, or to the whole memory range, to make use of the

network card without using any of the OS drivers.

5.6. On the scripting capability and binary shell execution

The UEFI BIOS offer the ability to access the command line, which is an
interesting mix between DOS and UNIX commands. The shell happens before the
ExitBootServices(), meaning that the boot services are available. The UEFI shell is a 21%
century DOS environment, in the sense it is a single user mode with access to all
resources. The environment was originally created for hardware vendors, integrators and
BIOS developers to test the capability of their systems. Because of the scripting
capabilities, and the ease of development by mean of the freely available EDK 11,
applications could be created at pre-OS level. This full access to the system means any
application badly written, or written for a bad purpose, could be harmful for the system
itself. There are obviously some interesting applications that should ease for instance

forensics examiners (like dd for UEFI), but it is out of the scope of this document.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 34

Recently, a bootkit attack against Windows 8 has been demonstrated, where the
fact that the early stage of windows boot happens before the ExitBootServices() could be
exploited in conjunction with the fact that UEFI applications or drivers can reside on any
block device, in this case the GPT hidden partition (Allievi, 2012). This is a good

example of the danger of a powerful pre-boot environment.

6. Online Resources and Tools

Two main categories of tools exist to assist in extracting or modifying the ROM
binaries. First of all, and for obvious reasons, tools are being developed by BIOS vendors
to help hardware integrators to tweak them to their likings and to allow end-users to flash
the upgrade on their motherboard. The tools are coming from Intel, Phoenix, AMI,
Award and Insyde. There is also the UEFI Forums’ development toolkit which allows

new drivers and applications to be coded.

The second category is the one filled by non-official tools. Interestingly enough,
the tools are mostly developed for hardware modders. It permits them to change some
settings unavailable from the BIOS interface and to replace an Option ROM with a
modified one (typical for video cards). As a general rule, these tools are also BIOS

vendor specific.

To start digging into BIOS modification resources, the following forums are

worth visiting.

My Digital Life : http://forums.mydigitallife.info/

BIOS Mods : http://www.bios-mods.com/

The Rebels Haven : http://www.rebelshavenforum.com/sis-bin/ultimatebb.cqi

Wim’s BIOS : http://www.wimsbios.com/forum/

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 35

6.1. Intel BIOSs

The Intel Integrator Toolkit v5.0! is an official tool to modify UEFI BIOS. It
allows you to select from a list of motherboards and will download whichever version of
the firmware you want to modify. It allows the change of logos, the default values of the
settings, and specific details about the SMBIOS (Some motherboards require the v4.0
toolkit).

.
€ select BI1OS) @ customize BIOS) © savepios / Startover &
Settings @ Boot order @

settings that are compatible with : All supported motherboards Add...

@ (@ Default & BIOS setup help text &
» Fan Control & Real-Time Monitoring

» Bo Passwords @

User Don't change

... Don't change User Access Level determines the level of BIOS Setup ac{ rvisor - Don't change
0... Don't change If disabled, BIOS will never prompt for an HDD password |
Don't change Chassi sion i5 detected via a two-pin header on the
Don't change Configuring i Vi el® Integrator Toolkit normal
n't change is ity may help prevent certain|is SMBIOS @

Don't change Enables or Disables features that provide hardware suppojis

| s Manufacturer Don't chanae
e Product Name Don't change
Don't change

Don't change

Don't change

am Don't change

Image: Browse... 49 Don't change

Don't change

tu Don't chanage
remaining for all images) Don't change
m Don't change

25N Us English (current) = [ia

Update image when instzling BIOS

Displayed at:

Figure 16: Intel Integrator Toolkit

While this was not meant to be a hacker tool, the benefit of this tool is that you
are able to access all BIOS revisions for all available Intel motherboards. This tool will
allow you to create a perfectly valid ROM with some interesting options to consider, such

1 http://downloadcenter.intel.com/Detail Desc.aspx?DwnldID=20829

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 36

as Unattended BIOS Configuration and the Execute Disable Bit; creating a valid BIOS,

with a downgraded security posture, is a first step towards exploitation!

6.2. Phoenix BIOSs

Phoenix WinPhlash 1.7.16.02 is a tool to backup, and load, firmware on Phoenix
based motherboards (such as some DELL computers).

Copyright [&] Phoenis Techrnologies, Lid, 2000 - 2008

WinPhlazh Operation
G@ * Backup BIOS and Flash BIOS with new settings | Advanced Settings |
" Backup BIOS only

BIOS Setting Locations
Specify backup file for eristing BIOS:

|I:ui|:u$.|:uak Browse

Specify new BIOS file:

|2: SBIOSAUEFI_ROMSAOptPlex330 AQ3 ROM Browsze
WARMIMG! _
Pleaze be advised before update BIOS ROM: Werzion 1.7.16.0

11 Be sure the computer iz running on external power.
l % 2] Before continuing, cloze all other applications. _
3] System will reboat or shut doven automatically. Flazh BIOS E xit Help

Figure 17 : WinPhlash

The tool only works on a Phoenix-based motherboard and also exists as a 64 bit
version (WinPhlash64). It is used to extract the original BIOS and flash a modified one,
and the tool can be rebranded by hardware integrators. While it has limited capabilities
for modifying its configuration, an alternate tool, discussed in 6.5 will allow the proper

insertion, removal or change of specific GUID and to recreate a valid UEFI FFS.

o 2 http://www.bios-
mods.com/tools/index.php?dir=Phoenix+WinPhlash+v1.7.16.0%2F&download=Pho
enix+WinPhlash+v1.7.16.0.zip

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

6.3. American Megatrends (AMI) BIOSs

(identified by their GUID) in a ROM FFS.

Load Image Insert l Replace] Delete] Extract] CPU Patch | RomHole
Save Image
Save Image as..
Create Report

A journey in the Unified Extensible Firmware Interface (UEFI) @ 37

AMI version of UEFI BIOS is called Aptio, and. MMTool Aptio v 4.50.0.23
allows to modify a BIOS file by extracting, inserting, deleting or replacing modules

Module file |

Yol. Indexx |01

For Option ROM only
[Link Present

Browse

Ingert FFS Options

Figure 18: MMTool Aptio

The ROM file above is from a Lenovo ThinkServer RD630. At index 53, the
presence of the UEFI shell can be identified. This tool, combined with the AMIFlash?® or

3 http:

www.ami.com/support/downloads/amiflash.zi

MANUEL HUMBERTO SANTANDER PELAEZ
SANTANDER PELAEZ

MANUEL HUMBERTO

* |nsert As is
Cloze Vendaor 1D Device 1D " Insert Compressed =

Yolume | Index | FileMame Source size GUID -
m 42 CormLayer Qo001 420 01864264-FI7F-4363-49F0-1 240 06:
m 43 DweFrb Q0000aCs AD0CEAE3-T45B-417D-BBA4-ES1931
m 44 BricLanConfig 0001295 BCOBIFBS-97CF-4B17-343E-FAV4EE
m 45 GenencFru Q0000FS7 BE3FE335-250E -45B0-4531-DF 3627
m 45 Bricacpi Q0000CT A, 15CCACBE -2444-45ED-3EC2-53135
m 47 SeralMuxCaontral aoonnso2 129FBAAT-ABEI-4CEB-AED1-40985(
m 48 DxeSelStatuzCode Q0o00a4F AEREAY2-CO15-48E1-BBEQ-29DDF(
m 49 TegPlatformS etupPolicy 00000a3C 196CA30E-9A0A-4735-B328-8FFCIL =
m 44 TegDxe Q00020 EE BESCABAI-F2E1-4974A-ADAC-24F57!
m 4B TcgD seplatiorm Q0000240 26888 232-9C02-4C12-BE1F-857COF
m 4c TCGSmm QoonocDF FO'93F3E1-3C73-46E0-B YR E-2BEAF
m 4D Tcglegacy QoonoDzD BEBEBEEF-360F-415B-B7DC-4634AE
m 4E AmiT cgPlatformDixe 0003351 A29463E 3-E4E 7-495F -3464-07 7383
m 4F 00007 34F 04431BCE-3373-41E8-3204-53F32C
m a0 Q0000EDE 142204E2-C7B7 -44F 9-4729-923758(
m 51 Q0o003eE 70113449-6280-48CE-BACE-DFETEI
m L) AmiT cgMvtlags ample 00000471 BOFE09ED-7CA3-4C78-9A1D-ChAT8S
m 53 Shells64 00456AF Co7ADEBT-0515-4048-90 21-551652
i A4 ShIFlazh MNNN27EN RCA27NRN-R9A7-AFRR-9F 79-NARAD, ™
4 3

A journey in the Unified Extensible Firmware Interface (UEFI) @ 38

its Linux equivalent, AFULNX* (here embedded with the Lenovo BIOS) should be
enough to manipulate Aptio-based ROM binaries. These two applications allow you to

back-up the current version or flash another binary.

6.4. Insyde BIOSs

Insyde BIOS is what some HP products, and VMWare, are using. InsydeFlash®
version 4.0.7.3 is the application which allows the EEPROM to be backed-up or flashed
(the DOS based version is called FlashIT®). There is another tool from Insyde, called
InsydeFDPacker’, but only an older version (2.0.6) could be found embedded with
InsydeFlash version 3.53. This tool allows the creation of an executable with everything
embedded for flashing the firmware. Nevertheless, as for Phoenix UEFI images, a third-
party application, covered in the next section, will allow to properly modify the Insyde
BIOSs.

* ™ InspdeFdPacker
sfNsyde
— Windows Self-Extract File Maker
Copyright{C) 2008 Insyde Software Corp.

Source

InsydeFlash ‘Z:\BIDS_tDDIs_\InsydeFIash 353 Add
% Firrwware Image [™

Add
‘efi84.mm
Destination
‘Z:\BIDS\UEFI_HDMS\vmware.e:-:e Save as

Create Exit

Figure 19: InsydeFDPacker

4 http://download.lenovo.com/ibmdl/pub/pc/pccbbs/thinkservers/bios rd530 v205.tgz

5 http://www.mediafire.com/?d6fgcggq08cwc3n

6 http://www.mediafire.com/?tlsbqg634hinzavn

7 http://www.biosrepair.com /biosfiles /InsydeFlash%203.53.rar

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 39

6.5. Generic

There is one tool which is very handy when dealing with UEFI images and it has
several names. It used to be called the PhoenixTools, more recently called
Phoenix/Dell/EF1 SLIC MOD?® v 2.12. The tool works with some legacy BIOS (hence
the reference to Dell, Phoenix and Insyde) but can also decode UEFI FFS. While
primarily meant to modify SLIC and SLP, as explained in 5.3, the tool can also allow
viewing, inserting, replacing and deleting elements of a UEFI firmware, which means
that the features lacking with some BIOS vendor-specific tools are actually provided by

this underground tool. The tool can read the VMware EFI164 image, as seen below:

L ™
P Phoenix/Dell/EFI SLIC Mod v2.12 =5

Original BIOS \\morgul\documents\BIOS\UEFI_ROMS\efi6drom [|

Manufacturer -

““morgul'documents\BIOSWUEFI_ROMS efied_SLICn

Status EF1 / Insyde BIOS

Method

Unknown padding -
10EC58 {FFFFFFFF-FFFF-FFFF-FFFF-FFFFFFFFFFFFY FO O Gap Size 9874¢
1FFDDO {1BADDE2E-CT79-4582-8566-336AEBF 78F09} 10 [EFI FFS Volum:

End of File Volume

Finished Bxracting
<

s []

Figure 20 : VMWare EF164 FFS in PhoenixTools

8 http://www.sendspace.com/file/cztx25

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 40

As well as the Dell Optiplex 990 EFI ROM extracted using WinPlash. The tool

can be used to extract EFI applications or drivers to be reused in another firmware,

perhaps from another vendor as well.

,
Eewe . S S

(= EFI BIOS
- Padding
(=) File Volume {7A935409-0468-4444-81CE-DBF617D890DF}
- Gap {272BDCD8-2311-4182-A214-DB32CE38ER4S)
t- PEl Module {FAC2EFAD-8511-4E34-9CAE-16A257BA3488}
- PEl Module {6E53DF06-6203-40B0-82B5-175CFB4AS4E4}
- PEl Module {3458908E-930A-4A95-AB04-2E6CFDFFEE31}
- PEl Module {CASD8617-D652-4036-B6C5-BA4TS70116AD}
- RAW {2D27C618-7DCD-41F5-BB10-21166BETE143}
- Gap {272BDCD8-2311-4182-A214-DB32CE38ER4S)
t- PEl Module {A27E7C62-245F-4B7B-BD5C-807202035DECH
t- PEl Module {1D88C542-9DF7-424A-AA90-02B61F 286938}
- PEl Module {3B42EF57-16D3-44CB-8632-5FDB06B41451}
- PEI Module {32685943-D810-47FF-A112-CCB430776A1F}
PE32+image section
- CORE_PEI User Interface

el W Wl e

»

m

Cffget 1FDCASK

Size 2676 (AT4h) bytes
Type &

Attributes 40

Padding 2

Intemal number 169

[+ PEl Core {B1AEES18-B959-487B-A795-16C2A54CBIRE} i
(- PEI Module {1555ACF3-BD07-4685-B668-A8694544124D}
(- PEl Module {2BB5AFAS-FF33-417B-8437-CB773C2R93BF}
(- PEl Module {E5205B53-9758-44AB-A44D-DB3BE41D6742} [C] Decompress Extracted Modules
(- PEl Module {E9BE0F94-7ADB-48CD-9CE5-2484526C5719) [Compress Inserted/Replaced Modules
(- PEl Module {0997E770-756E-4139-BF3F-7FC24308177E}
(- PEI Module {7D7785C0-FD20-4C05-A579-91253D5E3D5E} [Extract]
(- Freeform {FD448208-F1AB-41C0-AE4E-DC55556ER5BD}
(- PEI Module {336C0DEA-AB28-4C4C-9FR4-5FE03S1FEBBE} [Insert]
(- PEl Module {3CF30325-DC5C-4556-A8B0-74215C5F 7FC4}

| (- PEl Module {BEAZAFF3-767C-5658-C37A-D1CB2EF 76543} [Replace]
(- PEI Module {49EAB1A6-AF 2F-4064-9E25-D9655B3B80ED}

| (- PEl Module {ESABDF34-7TASB-45R4-5C32-3485526B5716} [Delete]
[£- PEI Module {3E4817FD-2742-4351-B59F-51453280325C)

“ (- PEI Module {5479E09C-2E74-481B-89F8-B0172E38801F} ’ Bt]

Figure 21 : Dell Optiplex 990-A02 structure with PhoenixTools

Another useful tool is RW-Everything®, and version 1.4.9 has been tested. The

tool can help viewing and extracting the tables available in the system: SMBIOS, ACPI-
related ones like the DSDT or RSDT. It can also extract the content of Option ROMs.

9 http://jacky5488.myweb.hinet.net/

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO

SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 41

Bl Access Specific Window Help

Eémﬁﬂéﬂﬂ
Lol 'l (] Y] 04 €

| RSDP | RSDT | FaCP | HPET | aPIC | MCFG | asFt | TCPa | BOOT | suc | 5507 | S5DT | DMaR | $5DT | Facs [«

F

= Root Name { HID, Ox0E34D425) -
=-_SB Name { CID, EISAID("ENFOCOZ2"))
=-PTID Name (IVER, 0x00020001)
-_HID Method{ STA, 0, NotSerialized)
- _CID {
- IWER Return (0x0F)
e STA }
?MF‘"-.-’ Name{, Package (51) E
- PWRY ! . _ . .
- 05DV 0x00, "CPU Thermal Dicde Temperature™, 0x80000000, Ox00, ™CEU
D 0x80000000, 0x00, "CPU Core 1 DIS", 0x80000000, Ox03, "CPU VR
0x80000000, 0x03, "Heat Exchanger Fan Temperature™, 0x8000000(¢
-~ Ps0D "Skin Temperature™, 0x80000000, 0x03, "Ambient Temperature”, (
-~ 050D 0x02, "DIMMO Temperature”, 0x20000000, 0x02, "DIMM1 Temperatiu:

- 303P 0x20000000, 0x00, "CPU, MCH = PCH Max Temperature™, 0xE8000000(
"CPU DTS Temperature from PCH™, 0xB0000000, 0x05, "MCH DTS Ten
0x80000000, 0x0S5, "BCH DTS Temperature from PCH™, 0x20000000,
"I5-—on-DIMM0 Temperature™, 0x80000000, O0x02, "TI5-on-DIMM]1 Temg
0x80000000, O0x02, "TS5-on-DIMMZ2 Temperature", O0x280000000, Ox02,
0xE0000000

b

Hame (FWEV, Package (18)

{

Awrnin "R Poassr™ AwBANAONNNON Wi "EFw Cnre Poaaer™ ik g tulaluly i
L] | m 3

Building DSDT Table... decoding AML to ASL: 23514 done,

Figure 22: RW-Everything on a Toshiba Tecra Laptop

6.6. The development environment

Initially called the EFI Development Kit (EDK), at that time mostly an Intel
initiative, it became EDK Il when UEFI became v2.0 and came with a UEFI
implementation called TianoCore, for which all the source code and libraries were
available. The UEFI Development Kit (UDK 2010)° is based on stable and validated
code from EDK Il. Additionally, starting from EDK Il the code can be compiled with

10 http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=UDK2010

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 42

GCC, whereas before the development environment had to run on Microsoft Windows

only.

The UDK2010 comes with some base tools for developers. Two tools are
definitely needed to handle firmware image properly: GenFfs and GenSec. GenSec’s
role is to take, as input, an EFI binary (being most likely an application or a driver) and
make a FFS-compatible section of it. (Files on Flash File Systems can be composed of
sections, as explained in (P1 Working Group, 2012)). GenFfs is used to take one or more
sections to structure them into a File (or module) that can be integrated into a Flash File
System. The tricky bit with such file systems is that specific details regarding block size
and alignment needs to be extracted from the File Volume when the File is created with
GenFfs. The other point of contention is related to the different status that can be given to
files and sections within a File volume. Some options seem to be missing from the EDK
tools, but having wrong parameters in the file or section headers can potentially result in

unbootable systems.

In the case of VMWare, the example given in 4.4 has an extra layer of
complexity, and the GenSec and GenFfs need to be used first on the module to be
inserted or replaced on the compressed file Volume, then when done, it needs to be
compressed with Izma. The resulting file has to be included in a section using these

commands:

Izma embeddedFileVolume.ffs

GenSec -o FileVolume.SEC -s EFI_SECTION_GUID_DEFINED -c PI. NONE -g EE4E5898-3914-
4259-9D6E-DC7BD79403CF -1 0 -r PROCESSING_REQUIRED embeddedFileVolume.ffs.lzma

GenFfs -o FileVolume.MOD -t EFI_FV_FILETYPE_FIRMWARE_VOLUME_IMAGE -g 20BC8ACY-
94D1-4208-AB28-5D673FD73486 -s -i fileVolume.SEC

The insertion of the generated module can be done with MMTool or the
PhoenixTools. The former does not handle the GUID section within a GUID File
properly and creates an empty section in the firmware, whereas the PhoenixTools is able
to handle the replacement file properly. However, byte to byte comparison between the

original firmware, and the modified one, shows unsuitable file status in the FFS header.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 43

While the section status can be set with GenFv, the file status is missing from the options
with GenFfs, and as any hexeditor modification is also breaking the checksum of the file
content, this is also not a solution. This means that the base tools of the EDK Il might
need to be modified to allow more flexibility for UEFI hackers. While the theory is still
valid, VMware refused to start with the modified firmware; this problem has also been

found on physical hardware!?.

One point to consider when wanting to add applications to UEFI is the
unavailability of the FFS when in the shell. The binaries need to be loaded from
elsewhere, like a FAT volume (USB stick), or maybe the network. In contrary to drivers
that can reside on the FFS, and that will be loaded by the DXE dispatcher, for an UEFI
application residing on the firmware volume to be executable from the shell, it would
require the assistance of a third party DXE driver, called the EDK Il FileSystemPkg?2,
This is definitely a driver to include in hacked firmware if there is a need to have access

to other applications stored on that firmware.

Finally, the EFI Toolkit® v2.0.0.1 is worth mentioning. It contains a pack of
applications, with the corresponding source code, that can be used as basis for further
development, or as nice add-ons to a UEFI shell. The Toolkit provides ifconfig, route,

ping but also a python interpreter and other useful examples.

Dell-EFI-BIOSes/page280

12 https: //github.com/cfdrake /FileSystemPkg

13 http://sourceforge.net/apps/mediawiki/tianocore/index.php?title=EFI Toolkit

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 44

7. Conclusions

UEFI has three main goals: to make it easier for developers, integrators and
hardware manufacturers; to fix the legacy issues of hardware support and boot device
selection; and to be future-proof by means of a modular design. There is little doubt these
goals are being achieved and that the building blocks are very well thought out, but based
on its potential power (basically an OS before the OS) and the legacy elements that have
to be carried over, UEFI could very much become a Pandora’s Box that has just been
cracked open. Never before was the pre-boot environment so convenient for the power
user, so well documented, so properly supported by means of a development environment
and libraries. Never before was the BIOS code so portable up to cross-platform level, and
never before was it so easy to add extra code to be executed at pre-boot level that could
reside on the local hard drive or even on the network.

Sadly, the security considerations for its design came too late and are not
enforced, allowing manufacturers and developers to make it happen with only usability
and cost in mind. The security community should be worried on the exploitation paths
UEFI could be victim of, or could facilitate. They should, at the enterprise level, ensure
that all security measures proposed by the UEFI specifications are set. Another mitigation
measure is the enforcement of the Intel Trusted Execution Technology (TXT) or the

AMD Presidio, which allow safe execute of code, even on untrusted environments.

A lot of power can be gained, with much less effort than with the legacy BIOS,

and as such, we might be looking at the dawn of another wave of BIOS-based malware.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 45

8. Bibliography

Allievi, A. (2012, September 9). UEFI technology: say hello to the Windows 8 bootkit!
Retrieved from http://www.itsec.it/2012/09/18/uefi-technology-say-hello-
to-the-windows-8-bootkit/

Brouwer, A. E. (n.d.). A20 - a pain from the past. Retrieved from Technische
Universiteit Eindhoven: http://www.win.tue.nl/~aeb/linux/kbd/A20.html

BSDaemon, c. (2008). System Management Mode Hack - Using SMM for "Other
Purposes. Phrack 65.

Collins, R. R. (1997, January). Intel's System Management Mode. Retrieved from Dr
Dobbs' undocumented corner:
http://www.rcollins.org/ddj/Jan97 /Jan97.html

Compagq, Phoenix, Intel. (1996, January 11). BIOS boot specification 1.01. Retrieved
from http://www.scs.stanford.edu/nyu/04fa/lab/specsbbs101.pdf

Dice, P. (2011). The flow of booting an Intel Architecture system.

DMTF. (2011). SMBIOS Reference Specifications.

Heasman, J. (2006). Implementing and Detecting a ACPI BIOS rootkit.

Heasman, J. (2007). Implementing and detecting a PCI rootkit.

Hoffman, A. (1989). Assembleur sur PC. Paris: Micro Applications.

Intel. (2008, March). Intel® X48 Express Chipset datasheet. Retrieved from
http://www.intel.com/Assets/PDF /datasheet/319122.pdf

Intel. (2010). UEFI Development environment update. Retrieved from intel.com:
http://software.intel.com/sites/default/files/m/1/f/0/3/4/31686-
11_UEFI_Development_Environment_Update.pdf

Intel Press. (2011). Intel 64 and 1A-32 Architecture Software Developer's manuals.
Intel Press.

Kholodov, I. (2007). CIS-77 Introduction to Computer Systems. Bristol Community
College.

Loic Duflot, D. E. (2006). Using CPU System Management Mode to Circumvent
Operating System Security Functions.

Loic Duflot, O. L. (2009). ACPI et routines de traitement de la SMI: des limites a
linformatique de confiance?

Michael Rothman, T. L. (2009). Harnessing the UEFI shell: moving the platform
beyond DOS. Santa Clara: Intel Press.

Oracle Corporation. (n.d.). VBoxPkg.fdf - VirtualBox Flash Device. Retrieved from
http://www.virtualbox.org/svn/vbox/trunk/src/VBox/Devices/EFI/Firmw
are2/VBoxPkg/VBoxPkg.fdf

Phoenix. (2009, January 9). BIOS Undercover: Launching A Legacy Option ROM In
SecureCore-Tiano. Retrieved from
http://blogs.phoenix.com/phoenix_technologies_bios/2009/01/bios-
undercover-launching-a-legacy-option-rom-in-securecoretiano.html

PI Working Group. (2012). Platform Initialization Framework 1.2.1. UEFI Forum.

Rafal Wojtczuk, J. R. (n.d.). Attacking SMM Memory via Intel® CPU Cache Poisoning.

Salihun, D. M. (2007). BIOS Disassembly Ninjutsu Uncovered. Wayne: A-List, LLC.

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

A journey in the Unified Extensible Firmware Interface (UEFI) @ 46

Techie, G. (2010, February 25). How SLP and SLIC Works. Retrieved from
http://www.guytechie.com/articles/2010/2/25/how-slp-and-slic-
works.html

UEFI Spec Working Group. (2012). Unified Extensible Firmware Interface
Specifications 2.3.1 Errata B. UEFI Forum.

Vincent Zimmer, M. R. (2010). Beyond BIOS: Developing with the Unified Extensible
Firmware Interface (2nd ed.). Santa Clara: Intel Press.

Wecherowski, F. (2009). A Real SMM Rootkit: Reversing and Hooking BIOS SMI
Handlers. Phrack 66.

Zimmer, V. (2012, 12 18). Accessing UEFI from Operating System. Retrieved from
http://vzimmer.blogspot.be/2012/12 /accessing-uefi-form-operating-
system.html

MANUEL HUMBERTO SANTANDER PELAEZ MANUEL HUMBERTO
SANTANDER PELAEZ

Last Updated: November 17th, 2018

- Upcoming SANS Training

SANS November Singapore 2018 Singapore, SG Nov 19, 2018 - Nov 24, 2018 Live Event
SANS Paris November 2018 Paris, FR Nov 19, 2018 - Nov 24, 2018 Live Event
SANSAustin 2018 Austin, TXUS Nov 26, 2018 - Dec 01, 2018 Live Event
European Security Awareness Summit 2018 London, GB Nov 26, 2018 - Nov 29, 2018 Live Event
SANS San Francisco Fall 2018 San Francisco, CAUS Nov 26, 2018 - Dec 01, 2018 Live Event
SANS Stockholm 2018 Stockholm, SE Nov 26, 2018 - Dec 01, 2018 Live Event
SANS Khobar 2018 Khaobar, SA Dec 01, 2018 - Dec 06, 2018 Live Event
SANS Nashville 2018 Nashville, TNUS Dec 03, 2018 - Dec 08, 2018 Live Event
SANS Santa Monica 2018 Santa Monica, CAUS Dec 03, 2018 - Dec 08, 2018 Live Event
SANS Dublin 2018 Dublin, IE Dec 03, 2018 - Dec 08, 2018 Live Event
Tactical Detection & Data Analytics Summit & Training 2018 Scottsdale, AZUS Dec 04, 2018 - Dec 11, 2018 Live Event
SANS Frankfurt 2018 Frankfurt, DE Dec 10, 2018 - Dec 15, 2018 Live Event
SANS Cyber Defense I nitiative 2018 Washington, DCUS Dec 11, 2018 - Dec 18, 2018 Live Event
SANS Bangalore January 2019 Bangalore, IN Jan 07, 2019 - Jan 19, 2019 Live Event
SANS Sonoma 2019 Santa Rosa, CAUS Jan 14, 2019 - Jan 19, 2019 Live Event
SANSAmsterdam January 2019 Amsterdam, NL Jan 14, 2019 - Jan 19, 2019 Live Event
SANS Threat Hunting London 2019 London, GB Jan 14, 2019 - Jan 19, 2019 Live Event
SANS Miami 2019 Miami, FLUS Jan 21, 2019 - Jan 26, 2019 Live Event
Cyber Threat Intelligence Summit & Training 2019 Arlington, VAUS Jan 21, 2019 - Jan 28, 2019 Live Event
SANS Dubai January 2019 Dubai, AE Jan 26, 2019 - Jan 31, 2019 Live Event
SANS L as Vegas 2019 LasVegas, NVUS Jan 28, 2019 - Feb 02, 2019 Live Event
SANS Security East 2019 New Orleans, LAUS Feb 02, 2019 - Feb 09, 2019 Live Event
SANSAnaheim 2019 Anaheim, CAUS Feb 11, 2019 - Feb 16, 2019 Live Event
SANS Northern VA Spring- Tysons 2019 Vienna, VAUS Feb 11, 2019 - Feb 16, 2019 Live Event
SANS L ondon February 2019 London, GB Feb 11, 2019 - Feb 16, 2019 Live Event
SANS [C$410 Perth 2018 OnlineAU Nov 19, 2018 - Nov 23, 2018 Live Event
SANS OnDemand Books & MP3sOnlyUS Anytime Self Paced

http://www.sans.org/courses?utm_source=Print&utm_medium=Reading+Room+Paper&utm_content=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI+Cover&utm_campaign=SANS+Courses
http://www.sans.org/link.php?id=56135&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_November_Singapore_2018
http://www.sans.org/link.php?id=56135&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_November_Singapore_2018
http://www.sans.org/link.php?id=53340&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Paris_November_2018
http://www.sans.org/link.php?id=53340&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Paris_November_2018
http://www.sans.org/link.php?id=51220&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Austin_2018
http://www.sans.org/link.php?id=51220&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Austin_2018
http://www.sans.org/link.php?id=53230&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=European_Security_Awareness_Summit_2018
http://www.sans.org/link.php?id=53230&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=European_Security_Awareness_Summit_2018
http://www.sans.org/link.php?id=51225&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_San_Francisco_Fall_2018
http://www.sans.org/link.php?id=51225&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_San_Francisco_Fall_2018
http://www.sans.org/link.php?id=53345&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Stockholm_2018
http://www.sans.org/link.php?id=53345&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Stockholm_2018
http://www.sans.org/link.php?id=53350&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Khobar_2018
http://www.sans.org/link.php?id=53350&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Khobar_2018
http://www.sans.org/link.php?id=52935&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Nashville_2018
http://www.sans.org/link.php?id=52935&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Nashville_2018
http://www.sans.org/link.php?id=52940&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Santa_Monica_2018
http://www.sans.org/link.php?id=52940&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Santa_Monica_2018
http://www.sans.org/link.php?id=53635&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Dublin_2018
http://www.sans.org/link.php?id=53635&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Dublin_2018
http://www.sans.org/link.php?id=52905&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=Tactical_Detection_Data_Analytics_Summit_Training_2018
http://www.sans.org/link.php?id=52905&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=Tactical_Detection_Data_Analytics_Summit_Training_2018
http://www.sans.org/link.php?id=52605&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Frankfurt_2018
http://www.sans.org/link.php?id=52605&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Frankfurt_2018
http://www.sans.org/link.php?id=51230&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Cyber_Defense_Initiative_2018
http://www.sans.org/link.php?id=51230&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Cyber_Defense_Initiative_2018
http://www.sans.org/link.php?id=54390&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Bangalore_January_2019
http://www.sans.org/link.php?id=54390&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Bangalore_January_2019
http://www.sans.org/link.php?id=54375&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Sonoma_2019
http://www.sans.org/link.php?id=54375&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Sonoma_2019
http://www.sans.org/link.php?id=54845&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Amsterdam_January_2019
http://www.sans.org/link.php?id=54845&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Amsterdam_January_2019
http://www.sans.org/link.php?id=54850&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Threat_Hunting_London_2019
http://www.sans.org/link.php?id=54850&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Threat_Hunting_London_2019
http://www.sans.org/link.php?id=54380&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Miami_2019
http://www.sans.org/link.php?id=54380&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Miami_2019
http://www.sans.org/link.php?id=54485&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=Cyber_Threat_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54485&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=Cyber_Threat_Intelligence_Summit_Training_2019
http://www.sans.org/link.php?id=54905&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Dubai_January_2019
http://www.sans.org/link.php?id=54905&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Dubai_January_2019
http://www.sans.org/link.php?id=54385&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Las_Vegas_2019
http://www.sans.org/link.php?id=54385&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Las_Vegas_2019
http://www.sans.org/link.php?id=54395&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Security_East_2019
http://www.sans.org/link.php?id=54395&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Security_East_2019
http://www.sans.org/link.php?id=54400&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Anaheim_2019
http://www.sans.org/link.php?id=54400&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Anaheim_2019
http://www.sans.org/link.php?id=54405&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Northern_VA_Spring-_Tysons_2019
http://www.sans.org/link.php?id=54405&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_Northern_VA_Spring-_Tysons_2019
http://www.sans.org/link.php?id=54925&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_London_February_2019
http://www.sans.org/link.php?id=54925&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_London_February_2019
http://www.sans.org/link.php?id=54120&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_ICS410_Perth_2018
http://www.sans.org/link.php?id=54120&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_ICS410_Perth_2018
http://www.sans.org/link.php?id=1032&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_OnDemand
http://www.sans.org/link.php?id=1032&rrpt=Analysis_of_the_building_blocks_and_attack_vectors_associated_with_the_Unified_Extensible_Firmware_Interface_UEFI&rret=SANS_OnDemand

