
A History of Haskell:
Being Lazy With Class

Paul Hudak
Yale University

paul.hudak@yale.edu

John Hughes
Chalmers University
rjmh@cs.chalmers.se

Simon Peyton Jones
Microsoft Research

simonpj@microsoft.com

Philip Wadler
University of Edinburgh
wadler@inf.ed.ac.uk

Abstract
This paper describes the history of Haskell, including its genesis
and principles, technical contributions, implementations and tools,
and applications and impact.

1. Introduction
In September of 1987 a meeting was held at the confer-
ence on Functional Programming Languages and Computer
Architecture in Portland, Oregon, to discuss an unfortunate
situation in the functional programming community: there
had come into being more than a dozen non-strict, purely
functional programming languages, all similar in expressive
power and semantic underpinnings. There was a strong con-
sensus at this meeting that more widespread use of this class
of functional languages was being hampered by the lack of
a common language. It was decided that a committee should
be formed to design such a language, providing faster com-
munication of new ideas, a stable foundation for real ap-
plications development, and a vehicle through which others
would be encouraged to use functional languages.

These opening words in the Preface of the first Haskell Report,
Version 1.0 dated 1 April 1990, say quite a bit about the history of
Haskell. They establish the motivation for designing Haskell (the
need for a common language), the nature of the language to be
designed (non-strict, purely functional), and the processby which
it was to be designed (by committee).

Part I of this paper describes genesis and principles: how Haskell
came to be. We describe the developments leading up to Haskell
and its early history (Section 2) and the processes and principles
that guided its evolution (Section 3).

Part II describes Haskell’s technical contributions: whatHaskell is.
We pay particular attention to aspects of the language and its evo-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

Third ACM SIGPLAN History of Programming Languages Conference (HOPL-III)
San Diego, CA
Copyright c© 2007 ACM . . . $5.00.

lution that are distinctive in themselves, or that developed in un-
expected or surprising ways. We reflect on five areas: syntax (Sec-
tion 4); algebraic data types (Section 5); the type system, and type
classes in particular (Section 6); monads and input/output(Sec-
tion 7); and support for programming in the large, such as modules
and packages, and the foreign-function interface (Section8).

Part III describes implementations and tools: what has beenbuilt
for the users of Haskell. We describe the various implementations
of Haskell, including GHC, hbc, hugs, nhc, and Yale Haskell (Sec-
tion 9), and tools for profiling and debugging (Section 10).

Part IV describes applications and impact: what has been built by
the users of Haskell. The language has been used for a bewildering
variety of applications, and in Section 11 we reflect on the distinc-
tive aspects of some of these applications, so far as we can dis-
cern them. We conclude with a section that assesses the impact of
Haskell on various communities of users, such as education,open-
source, companies, and other language designers (Section 12).

Our goal throughout is to tell the story, including who was involved
and what inspired them: the paper is supposed to be ahistoryrather
than a technical description or a tutorial.

We have tried to describe the evolution of Haskell in an even-
handed way, but we have also sought to convey some of the ex-
citement and enthusiasm of the process by including anecdotes and
personal reflections. Inevitably, this desire for vividness means that
our account will be skewed towards the meetings and conversations
in which we personally participated. However, we are conscious
that many, many people have contributed to Haskell. The sizeand
quality of the Haskell community, its breadth and its depth,are both
the indicator of Haskell’s success and its cause.

One inevitable shortcoming is a lack of comprehensiveness.Haskell
is now more than 15 years old and has been a seedbed for an im-
mense amount of creative energy. We cannot hope to do justiceto
all of it here, but we take this opportunity to salute all those who
have contributed to what has turned out to be a wild ride.

Part I

Genesis and Principles

2. The genesis of Haskell
In 1978 John Backus delivered his Turing Award lecture, “Canpro-
gramming be liberated from the von Neumann style?” (Backus,
1978a), which positioned functional programming as a radical at-
tack on the whole programming enterprise, from hardware archi-
tecture upwards. This prominent endorsement from a giant inthe
field—Backus led the team that developed Fortran, and invented
Backus Naur Form (BNF)—put functional programming on the
map in a new way, as a practical programming tool rather than a
mathematical curiosity.

Even at that stage, functional programming languages had a long
history, beginning with John McCarthy’s invention of Lisp in the
late 1950s (McCarthy, 1960). In the 1960s, Peter Landin and
Christopher Strachey identified the fundamental importance of the
lambda calculus for modelling programming languages and laid
the foundations of both operational semantics, through abstract
machines (Landin, 1964), and denotational semantics (Strachey,
1964). A few years later Strachey’s collaboration with DanaScott
put denotational semantics on firm mathematical foundations un-
derpinned by Scott’s domain theory (Scott and Strachey, 1971;
Scott, 1976). In the early ’70s, Rod Burstall and John Darling-
ton were doing program transformation in a first-order functional
language with function definition by pattern matching (Burstall
and Darlington, 1977). Over the same period David Turner, a for-
mer student of Strachey, developed SASL (Turner, 1976), a pure
higher-order functional language with lexically scoped variables—
a sugared lambda calculus derived from the applicative subset of
Landin’s ISWIM (Landin, 1966)—that incorporated Burstalland
Darlington’s ideas on pattern matching into an executable program-
ming language.

In the late ’70s, Gerry Sussman and Guy Steele developed Scheme,
a dialect of Lisp that adhered more closely to the lambda calcu-
lus by implementing lexical scoping (Sussman and Steele, 1975;
Steele, 1978). At more or less the same time, Robin Milner in-
vented ML as a meta-language for the theorem prover LCF at Ed-
inburgh (Gordon et al., 1979). Milner’s polymorphic type system
for ML would prove to be particularly influential (Milner, 1978;
Damas and Milner, 1982). Both Scheme and ML were strict (call-
by-value) languages and, although they contained imperative fea-
tures, they did much to promote the functional programming style
and in particular the use of higher-order functions.

2.1 The call of laziness

Then, in the late ’70s and early ’80s, something new happened. A
series of seminal publications ignited an explosion of interest in the
idea oflazy(or non-strict, or call-by-need) functional languages as
a vehicle for writing serious programs. Lazy evaluation appears to
have been invented independently three times.

• Dan Friedman and David Wise (both at Indiana) published
“Cons should not evaluate its arguments” (Friedman and Wise,
1976), which took on lazy evaluation from a Lisp perspective.

• Peter Henderson (at Newcastle) and James H. Morris Jr. (at
Xerox PARC) published “A lazy evaluator” (Henderson and
Morris, 1976). They cite Vuillemin (Vuillemin, 1974) and
Wadsworth (Wadsworth, 1971) as responsible for the originsof
the idea, but popularised the idea in POPL and made one other
important contribution, the name. They also used a variant of

Lisp, and showed soundness of their evaluator with respect to a
denotational semantics.

• David Turner (at St. Andrews and Kent) introduced a series
of influential languages: SASL (St Andrews Static Language)
(Turner, 1976), which was initially designed as a strict lan-
guage in 1972 but became lazy in 1976, and KRC (Kent Re-
cursive Calculator) (Turner, 1982). Turner showed the elegance
of programming with lazy evaluation, and in particular the use
of lazy lists to emulate many kinds of behaviours (Turner, 1981;
Turner, 1982). SASL was even used at Burroughs to develop an
entire operating system—almost certainly the first exercise of
pure, lazy, functional programming “in the large”.

At the same time, there was a symbiotic effort on exciting newways
to implementlazy languages. In particular:

• In software, a variety of techniques based ongraph reduction
were being explored, and in particular Turner’s inspirationally
elegant use ofSK combinators(Turner, 1979b; Turner, 1979a).
(Turner’s work was based on Haskell Curry’scombinatory cal-
culus(Curry and Feys, 1958), a variable-less version of Alonzo
Church’s lambda calculus (Church, 1941).)

• Another potent ingredient was the possibility that all thiswould
lead to a radically different non-von Neumann hardware archi-
tectures. Several serious projects were underway (or were get-
ting underway) to builddataflowandgraph reductionmachines
of various sorts, including the Id project at MIT (Arvind and
Nikhil, 1987), the Rediflow project at Utah (Keller et al., 1979),
the SK combinator machine SKIM at Cambridge (Stoye et al.,
1984), the Manchester dataflow machine (Watson and Gurd,
1982), the ALICE parallel reduction machine at Imperial (Dar-
lington and Reeve, 1981), the Burroughs NORMA combinator
machine (Scheevel, 1986), and the DDM dataflow machine at
Utah (Davis, 1977). Much (but not all) of this architecturally
oriented work turned out to be a dead end, when it was later dis-
covered that good compilers for stock architecture could outper-
form specialised architecture. But at the time it was all radical
and exciting.

Several significant meetings took place in the early ’80s that lent
additional impetus to the field.

In August 1980, the first Lisp conference took place in Stanford,
California. Presentations included Rod Burstall, Dave MacQueen,
and Don Sannella on Hope, the language that introduced algebraic
data types (Burstall et al., 1980).

In July 1981, Peter Henderson, John Darlington, and David Turner
ran an Advanced Course on Functional Programming and its Appli-
cations, in Newcastle (Darlington et al., 1982). All the bignames
were there: attendees included Gerry Sussman, Gary Lindstrom,
David Park, Manfred Broy, Joe Stoy, and Edsger Dijkstra. (Hughes
and Peyton Jones attended as students.) Dijkstra was characteris-
tically unimpressed—he wrote “On the whole I could not avoid
some feelings of deep disappointment. I still believe that the topic
deserves a much more adequate treatment; quite a lot we were ex-
posed to was definitely not up to par.” (Dijkstra, 1981)—but for
many attendees it was a watershed.

In September 1981, the first conference on Functional Program-
ming Languages and Computer Architecture (FPCA)—note the
title!—took place in Portsmouth, New Hampshire. Here Turner
gave his influential paper on “The semantic elegance of applicative
languages” (Turner, 1981). (Wadler also presented his firstconfer-
ence paper.) FPCA became a key biennial conference in the field.

In September 1982, the second Lisp conference, now renamed
Lisp and Functional Programming (LFP), took place in Pittsburgh,

Pennsylvania. Presentations included Peter Henderson on func-
tional geometry (Henderson, 1982) and an invited talk by Turner on
programming with infinite data structures. (It also saw the first pub-
lished papers of Hudak, Hughes, and Peyton Jones.) Special guests
at this conference included Church and Curry. The after-dinner talk
was given by Barkley Rosser, and received two ovations in themid-
dle, once when he presented the proof of Curry’s paradox, relating
it to the Y combinator, and once when he presented a new proof
of the Church-Rosser theorem. LFP became the other key biennial
conference.

(In 1996, FPCA merged with LFP to become the annual Interna-
tional Conference on Functional Programming, ICFP, which re-
mains the key conference in the field to the present day.)

In August 1987, Ham Richards of the University of Texas and
David Turner organised an international school on Declarative
Programming in Austin, Texas, as part of the UT “Year of Pro-
gramming”. Speakers included: Samson Abramsky, John Backus,
Richard Bird, Peter Buneman, Robert Cartwright, Simon Thomp-
son, David Turner, and Hughes. A major part of the school was a
course in lazy functional programming, with practical classes using
Miranda.

All of this led to a tremendous sense of excitement. The simplic-
ity and elegance of functional programming captivated the present
authors, and many other researchers with them. Lazy evaluation—
with its direct connection to the pure, call-by-name lambdacal-
culus, the remarkable possibility of representing and manipulating
infinite data structures, and addictively simple and beautiful imple-
mentation techniques—was like a drug.

(An anonymous reviewer supplied the following: “An interesting
sidelight is that the Friedman and Wise paper inspired Sussman and
Steele to examine lazy evaluation in Scheme, and for a time they
weighed whether to make the revised version of Scheme call-by-
name or call-by-value. They eventually chose to retain the original
call-by-value design, reasoning that it seemed to be much easier to
simulate call-by-name in a call-by-value language (using lambda-
expressions as thunks) than to simulate call-by-value in a call-by-
name language (which requires a separate evaluation-forcing mech-
anism). Whatever we might think of that reasoning, we can only
speculate on how different the academic programming-language
landscape might be today had they made the opposite decision.”)

2.2 A tower of Babel

As a result of all this activity, by the mid-1980s there were anum-
ber of researchers, including the authors, who were keenly inter-
ested in both design and implementation techniques for pure, lazy
languages. In fact, many of us had independently designed our own
lazy languages and were busily building our own implementations
for them. We were each writing papers about our efforts, in which
we first had to describe our languages before we could describe our
implementation techniques. Languages that contributed tothis lazy
Tower of Babel include:

• Miranda, a successor to SASL and KRC, designed and imple-
mented by David Turner using SK combinator reduction. While
SASL and KRC were untyped, Miranda added strong polymor-
phic typing and type inference, ideas that had proven very suc-
cessful in ML.

• Lazy ML (LML), pioneered at Chalmers by Augustsson and
Johnsson, and taken up at University College London by Peyton
Jones. This effort included the influential development of theG-
machine, which showed that one couldcompilelazy functional
programs to rather efficient code (Johnsson, 1984; Augustsson,
1984). (Although it is obvious in retrospect, we had become

used to the idea that laziness meant graph reduction, and graph
reduction meant interpretation.)

• Orwell, a lazy language developed by Wadler, influenced by
KRC and Miranda, and OL, a later variant of Orwell. Bird and
Wadler co-authored an influential book on functional program-
ming (Bird and Wadler, 1988), which avoided the “Tower of
Babel” by using a more mathematical notation close to both
Miranda and Orwell.

• Alfl, designed by Hudak, whose group at Yale developed a
combinator-based interpreter for Alfl as well as a compiler
based on techniques developed for Scheme and for T (a dialect
of Scheme) (Hudak, 1984b; Hudak, 1984a).

• Id, a non-strict dataflow language developed at MIT by Arvind
and Nikhil, whose target was a dataflow machine that they were
building.

• Clean, a lazy language based explicitly on graph reduction,
developed at Nijmegen by Rinus Plasmeijer and his colleagues
(Brus et al., 1987).

• Ponder, a language designed by Jon Fairbairn, with an impred-
icative higher-rank type system and lexically scoped type vari-
ables that was used to write an operating system for SKIM
(Fairbairn, 1985; Fairbairn, 1982).

• Daisy, a lazy dialect of Lisp, developed at Indiana by Cordelia
Hall, John O’Donnell, and their colleagues (Hall and O’Donnell,
1985).

With the notable exception of Miranda (see Section 3.8), allof these
were essentially single-site languages, and each individually lacked
critical mass in terms of language-design effort, implementations,
and users. Furthermore, although each had lots of interesting ideas,
there were few reasons to claim that one language was demonstra-
bly superior to any of the others. On the contrary, we felt that they
were all roughly the same, bar the syntax, and we started to wonder
why we didn’t have a single, common language that we could all
benefit from.

At this time, both the Scheme and ML communities had developed
their own standards. The Scheme community had major loci in
MIT, Indiana, and Yale, and had just issued its ‘revised revised’
report (Rees and Clinger, 1986) (subsequent revisions would lead to
the ‘revised5 ’ report (Kelsey et al., 1998)). Robin Milner had issued
a ‘proposal for Standard ML’ (Milner, 1984) (which would later
evolve into the definitiveDefinition of Standard ML(Milner and
Tofte, 1990; Milner et al., 1997)), and Appel and MacQueen had
released a new high-quality compiler for it (Appel and MacQueen,
1987).

2.3 The birth of Haskell

By 1987, the situation was akin to a supercooled solution—all that
was needed was a random event to precipitate crystallisation. That
event happened in the fall of ’87, when Peyton Jones stopped at
Yale to see Hudak on his way to the 1987 Functional Program-
ming and Computer Architecture Conference (FPCA) in Portland,
Oregon. After discussing the situation, Peyton Jones and Hudak
decided to initiate a meeting during FPCA, to garner interest in de-
signing a new, common functional language. Wadler also stopped
at Yale on the way to FPCA, and also endorsed the idea of a meet-
ing.

The FPCA meeting thus marked the beginning of the Haskell de-
sign process, although we had no name for the language and very
few technical discussions or design decisions occurred. Infact, a
key point that came out of that meeting was that the easiest way to
move forward was to begin with an existing language, and evolve

it in whatever direction suited us. Of all the lazy languagesunder
development, David Turner’s Miranda was by far the most mature.
It was pure, well designed, fulfilled many of our goals, had a ro-
bust implementation as a product of Turner’s company, Research
Software Ltd, and was running at 120 sites. Turner was not present
at the meeting, so we concluded that the first action item of the
committee would be to ask Turner if he would allow us to adopt
Miranda as the starting point for our new language.

After a brief and cordial interchange, Turner declined. Hisgoals
were different from ours. We wanted a language that could be used,
among other purposes, for research into language features;in par-
ticular, we sought the freedom for anyone to extend or modifythe
language, and to build and distribute an implementation. Turner,
by contrast, was strongly committed to maintaining a singlelan-
guage standard, with complete portability of programs within the
Miranda community. He did not want there to be multiple dialects
of Miranda in circulation and asked that we make our new lan-
guage sufficiently distinct from Miranda that the two would not be
confused. Turner also declined an invitation to join the newdesign
committee.

For better or worse, this was an important fork in the road. Al-
though it meant that we had to work through all the minutiae of
a new language design, rather than starting from an already well-
developed basis, it allowed us the freedom to contemplate more
radical approaches to many aspects of the language design. For ex-
ample, if we had started from Miranda it seems unlikely that we
would have developed type classes (see Section 6.1). Neverthe-
less, Haskell owes a considerable debt to Miranda, both for general
inspiration and specific language elements that we freely adopted
where they fitted into our emerging design. We discuss the relation-
ship between Haskell and Miranda further in Section 3.8.

Once we knew for sure that Turner would not allow us to use Mi-
randa, an insanely active email discussion quickly ensued,using
the mailing listfplangc@cs.ucl.ac.uk, hosted at the Univer-
sity College London, where Peyton Jones was a faculty member.
The email list name came from the fact that originally we called
ourselves the “FPLang Committee,” since we had no name for the
language. It wasn’t until after we named the language (Section 2.4)
that we started calling ourselves the “Haskell Committee.”

2.4 The first meetings

The Yale Meeting The first physical meeting (after the im-
promptu FPCA meeting) was held at Yale, January 9–12, 1988,
where Hudak was an Associate Professor. The first order of busi-
ness was to establish the following goals for the language:

1. It should be suitable for teaching, research, and applications,
including building large systems.

2. It should be completely described via the publication of a for-
mal syntax and semantics.

3. It should be freely available. Anyone should be permitted to
implement the language and distribute it to whomever they
please.

4. It should be usable as a basis for further language research.

5. It should be based on ideas that enjoy a wide consensus.

6. It should reduce unnecessary diversity in functional program-
ming languages.More specifically, we initially agreed to base
it on an existing language, namely OL.

The last two goals reflected the fact that we intended the language
to be quite conservative, rather than to break new ground. Although
matters turned out rather differently, we intended to do little more

than embody the current consensus of ideas and to unite our dis-
parate groups behind a single design.

As we shall see, not all of these goals were realised. We abandoned
the idea of basing Haskell explicitly on OL very early; we violated
the goal of embodying only well-tried ideas, notably by the inclu-
sion of type classes; and we never developed a formal semantics.
We discuss the way in which these changes took place in Section 3.

Directly from the minutes of the meeting, here is the committee
process that we agreed upon:

1. Decide topics we want to discuss, and assign “lead person”to
each topic.

2. Lead person begins discussion by summarising the issues for
his topic.

• In particular, begin with a description of how OL does it.

• OL will be the default if no clearly better solution exists.

3. We should encourage breaks, side discussions, and literature
research if necessary.

4. Some issues willnot be resolved! But in such cases we should
establish action items for their eventual resolution.

5. It may seem silly, but we should not adjourn this meeting until
at least one thing is resolved: anamefor the language!

6. Attitude will be important: a spirit of cooperation and compro-
mise.

We return later to further discussion of the committee design pro-
cess, in Section 3.5. A list of all people who served on the Haskell
Committee appears in Section 14.

Choosing a Name The fifth item above was important, since a
small but important moment in any language’s evolution is the
moment it is named. At the Yale meeting we used the following
process (suggested by Wadler) for choosing the name.

Anyone could propose one or more names for the language, which
were all written on a blackboard. At the end of this process, the
following names appeared: Semla, Haskell, Vivaldi, Mozart, CFL
(Common Functional Language), Funl 88, Semlor, Candle (Com-
mon Applicative Notation for Denoting Lambda Expressions), Fun,
David, Nice, Light, ML Nouveau (or Miranda Nouveau, or LML
Nouveau, or ...), Mirabelle, Concord, LL, Slim, Meet, Leval, Curry,
Frege, Peano, Ease, Portland, and Haskell B Curry. After consider-
able discussion about the various names, each person was then free
to cross out a name that he disliked. When we were done, there was
one name left.

That name was “Curry,” in honour of the mathematician and lo-
gician Haskell B. Curry, whose work had led, variously and indi-
rectly, to our presence in that room. That night, two of us realised
that we would be left with a lot of curry puns (aside from the spice,
and the thought of currying favour, the one that truly horrified us
was Tim Curry—TIM was Jon Fairbairn’s abstract machine, and
Tim Curry was famous for playing the lead in the Rocky Horror
Picture Show). So the next day, after some further discussion, we
settled on “Haskell” as the name for the new language. Only later
did we realise that this was too easily confused with Pascal or Has-
sle!

Hudak and Wise were asked to write to Curry’s widow, Virginia
Curry, to ask if she would mind our naming the language after her
husband. Hudak later visited Mrs. Curry at her home and listened
to stories about people who had stayed there (such as Church and
Kleene). Mrs. Curry came to his talk (which was about Haskell, of
course) at Penn State, and although she didn’t understand a word

of what he was saying, she was very gracious. Her parting remark
was “You know, Haskell actually never liked the name Haskell.”

The Glasgow Meeting Email discussions continued fervently af-
ter the Yale Meeting, but it took a second meeting to resolve many
of the open issues. That meeting was held April 6–9, 1988 at the
University of Glasgow, whose functional programming groupwas
beginning a period of rapid growth. It was at this meeting that
many key decisions were made.

It was also agreed at this meeting that Hudak and Wadler wouldbe
the editors of the first Haskell Report. The name of the report, “Re-
port on the Programming Language Haskell, A Non-strict, Purely
Functional Language,” was inspired in part by the “Report onthe
Algorithmic Language Scheme,” which in turn was modelled after
the “Report on the Algorithmic Language Algol.”

IFIP WG2.8 Meetings The ’80s were an exciting time to be do-
ing functional programming research. One indication of that ex-
citement was the establishment, due largely to the effort ofJohn
Williams (long-time collaborator with John Backus at IBM Al-
maden), of IFIP Working Group 2.8 on Functional Programming.
This not only helped to bring legitimacy to the field, it also provided
a convenient venue for talking about Haskell and for piggy-backing
Haskell Committee meetings before or after WG2.8 meetings.The
first two WG2.8 meetings were held in Glasgow, Scotland, July11–
15, 1988, and in Mystic, CT, USA, May 1–5, 1989 (Mystic is about
30 minutes from Yale). Figure 1 was taken at the 1992 meeting of
WG2.8 in Oxford.

2.5 Refining the design

After the initial flurry of face-to-face meetings, there followed fif-
teen years of detailed language design and development, coordi-
nated entirely by electronic mail. Here is a brief time-lineof how
Haskell developed:

September 1987.Initial meeting at FPCA, Portland, Oregon.

December 1987.Subgroup meeting at University College London.

January 1988. A multi-day meeting at Yale University.

April 1988. A multi-day meeting at the University of Glasgow.

July 1988. The first IFIP WG2.8 meeting, in Glasgow.

May 1989. The second IFIP WG2.8 meeting, in Mystic, CT.

1 April 1990. The Haskell version 1.0 Report was published (125
pages), edited by Hudak and Wadler. At the same time, the
Haskell mailing list was started, open to all.

The closedfplangc mailing list continued for committee dis-
cussions, but increasingly debate took place on the public
Haskell mailing list. Members of the committee became in-
creasingly uncomfortable with the “us-and-them” overtones of
having both public and private mailing lists, and by April 1991
the fplangc list fell into disuse. All further discussion about
Haskell took place in public, but decisions were still made by
the committee.

August 1991.The Haskell version 1.1 Report was published (153
pages), edited by Hudak, Peyton Jones, and Wadler. This was
mainly a “tidy-up” release, but it includedlet expressions and
operator sections for the first time.

March 1992. The Haskell version 1.2 Report was published (164
pages), edited by Hudak, Peyton Jones, and Wadler, introduc-
ing only minor changes to Haskell 1.1. Two months later, in
May 1992, it appeared inSIGPLAN Notices, accompanied by
a “Gentle introduction to Haskell” written by Hudak and Fasel.
We are very grateful to the SIGPLAN chair Stu Feldman, and

theNoticeseditor Dick Wexelblat, for their willingness to pub-
lish such an enormous document. It gave Haskell both visibility
and credibility.

1994. Haskell gained Internet presence when John Peterson regis-
tered the haskell.org domain name and set up a server and web-
site at Yale. (Hudak’s group at Yale continues to maintain the
haskell.org server to this day.)

May 1996. The Haskell version 1.3 Report was published, edited
by Hammond and Peterson. In terms of technical changes,
Haskell 1.3 was the most significant release of Haskell after
1.0. In particular:

• A Library Report was added, reflecting the fact that pro-
grams can hardly be portable unless they can rely on stan-
dard libraries.

• Monadic I/O made its first appearance, including “do” syn-
tax (Section 7), and the I/O semantics in the Appendix was
dropped.

• Type classes were generalised to higher kinds—so-called
“constructor classes” (see Section 6).

• Algebraic data types were extended in several ways: new-
types, strictness annotations, and named fields.

April 1997. The Haskell version 1.4 report was published (139
+ 73 pages), edited by Peterson and Hammond. This was a
tidy-up of the 1.3 report; the only significant change is that
list comprehensions were generalised to arbitrary monads,a
decision that was reversed two years later.

February 1999 The Haskell 98 Report: Language and Libraries
was published (150 + 89 pages), edited by Peyton Jones and
Hughes. As we describe in Section 3.7, this was a very signifi-
cant moment because it represented a commitment to stability.
List comprehensions reverted to just lists.

1999–2002In 1999 the Haskell Committeeper seceased to exist.
Peyton Jones took on sole editorship, with the intention of
collecting and fixing typographical errors. Decisions wereno
longer limited to a small committee; now anyone reading the
Haskell mailing list could participate.

However, as Haskell became more widely used (partly because
of the existence of the Haskell 98 standard), many small flaws
emerged in the language design, and many ambiguities in the
Report were discovered. Peyton Jones’s role evolved to thatof
Benign Dictator of Linguistic Minutiae.

December 2002The Revised Haskell 98 Report: Language and
Libraries was published (260 pages), edited by Peyton Jones.
Cambridge University Press generously published the Report as
a book, while agreeing that the entire text could still be available
online and be freely usable in that form by anyone. Their flex-
ibility in agreeing to publish a book under such unusual terms
was extraordinarily helpful to the Haskell community, and de-
fused a tricky debate about freedom and intellectual property.

It is remarkable that it took four years from the first publication
of Haskell 98 to “shake down” the specification, even though
Haskell was already at least eight years old when Haskell 98
came out. Language design is a slow process!

Figure 2 gives the Haskell time-line in graphical form1. Many of
the implementations, libraries, and tools mentioned in thefigure
are discussed later in the paper.

1 This figure was kindly prepared by Bernie Pope and Don Stewart.

Back row John Launchbury, Neil Jones, Sebastian Hunt, Joe Fasel, Geraint Jones (glasses),
Geoffrey Burn, Colin Runciman (moustache)

Next row Philip Wadler (big beard), Jack Dennis (beard), Patrick O’Keefe (glasses), Alex Aiken (mostly
hidden), Richard Bird, Lennart Augustsson, Rex Page, ChrisHankin (moustache), Joe Stoy (red
shirt), John Williams, John O’Donnell, David Turner (red tie)

Front standing row Mario Coppo, Warren Burton, Corrado Boehm, Dave MacQueen (beard), Mary Sheeran,
John Hughes, David Lester

Seated Karen MacQueen, Luca Cardelli, Dick Kieburtz, ChrisClack, Mrs Boehm, Mrs Williams, Dorothy Peyton Jones
On floor Simon Peyton Jones, Paul Hudak, Richard (Corky) Cartwright

Figure 1. Members and guests of IFIP Working Group 2.8, Oxford, 1992

2.6 Was Haskell a joke?

The first edition of the Haskell Report was published on April1,
1990. It was mostly an accident that it appeared on April Fool’s
Day—a date had to be chosen, and the release was close enough to
April 1 to justify using that date. Of course Haskell was no joke, but
the release did lead to a number of subsequent April Fool’s jokes.

What got it all started was a rather frantic year of Haskell develop-
ment in which Hudak’s role as editor of the Report was especially
stressful. On April 1 a year or two later, he sent an email message
to the Haskell Committee saying that it was all too much for him,
and that he was not only resigning from the committee, he was
also quitting Yale to pursue a career in music. Many members of
the committee bought into the story, and David Wise immediately
phoned Hudak to plead with him to reconsider his decision.

Of course it was just an April Fool’s joke, but the seed had been
planted for many more to follow. Most of them are detailed on the
Haskell website at haskell.org/humor, and here is a summaryof the
more interesting ones:

1. On April 1, 1993, Will Partain wrote a brilliant announcement
about an extension to Haskell calledHaskerlthat combined the
best ideas in Haskell with the best ideas in Perl. Its technically
detailed and very serious tone made it highly believable.

2. Several of the responses to Partain’s well-written hoax were
equally funny, and also released on April 1. One was by Hudak,
in which he wrote:

“Recently Haskell was used in an experiment here at Yale in
the Medical School. It was used to replace a C program that
controlled a heart-lung machine. In the six months that it was
in operation, the hospital estimates that probably a dozen lives
were saved because the program was far more robust than the C
program, which often crashed and killed the patients.”

In response to this, Nikhil wrote:

“Recently, a local hospital suffered many malpractice suits due
to faulty software in their X-ray machine. So, they decided to
rewrite the code in Haskell for more reliability.

Figure 2. Haskell timeline

“Malpractice suits have now dropped to zero. The reason is that
they haven’t taken any new X-rays (‘we’re still compiling the
Standard Prelude’).”

3. On April 1, 1998, John Peterson wrote a bogus press release
in which it was announced that because Sun Microsystems had
sued Microsoft over the use of Java, Microsoft had decided to
adopt Haskell as its primary software development language.
Ironically, not long after this press release, Peyton Jonesan-
nounced his move from Glasgow to Microsoft Research in
Cambridge, an event that Peterson knew nothing about at the
time.

Subsequent events have made Peterson’s jape even more pro-
phetic. Microsoft did indeed respond to Java by backing another
language, but it was C# rather than Haskell. But many of the
features in C# were pioneered by Haskell and other functional
languages, notably polymorphic types and LINQ (Language In-
tegrated Query). Erik Meijer, a principal designer of LINQ,says
that LINQ is directly inspired by the monad comprehensions in
Haskell.

4. On April 1, 2002, Peterson wrote another bogus but entertain-
ing and plausible article entitled “Computer Scientist Gets to
the ‘Bottom’ of Financial Scandal.” The article describes how
Peyton Jones, using his research on formally valuating financial
contracts using Haskell (Peyton Jones et al., 2000), was able
to unravel Enron’s seedy and shaky financial network. Peyton
Jones is quoted as saying:

“It’s really very simple. If I write a contract that says its value
is derived from a stock price and the worth of the stock depends
solely on the contract, we have bottom. So in the end, Enron had
created a complicated series of contracts that ultimately had no
value at all.”

3. Goals, principles, and processes
In this section we reflect on the principles that underlay ourthink-
ing, the big choices that we made, and processes that led to them.

3.1 Haskell is lazy

Laziness was undoubtedly the single theme that united the various
groups that contributed to Haskell’s design. Technically,Haskell
is a language with a non-strict semantics; lazy evaluation is sim-
ply one implementation technique for a non-strict language. Nev-
ertheless the term “laziness” is more pungent and evocativethan
“non-strict,” so we follow popular usage by describing Haskell as
lazy. When referring specifically to implementation techniques we
will use the term “call-by-need,” in contrast with the call-by-value
mechanism of languages like Lisp and ML.

By the mid-eighties, there was almost a decade of experienceof
lazy functional programming in practice, and its attractions were
becoming better understood. Hughes’s paper “Why functional pro-
gramming matters” captured these in an influential manifesto for
lazy programming, and coincided with the early stages of Haskell’s
design. (Hughes first presented it as his interview talk whenapply-
ing for a position at Oxford in 1984, and it circulated informally
before finally being published in 1989 (Hughes, 1989).)

Laziness has its costs. Call-by-need is usually less efficient than
call-by-value, because of the extra bookkeeping required to delay
evaluation until a term is required, so that some terms may not be
evaluated, and to overwrite a term with its value, so that no term is
evaluated twice. This cost is a significant but constant factor, and
was understood at the time Haskell was designed.

A much more important problem is this: it is very hard for even
experienced programmers to predict thespacebehaviour of lazy

programs, and there can be much more than a constant factor at
stake. As we discuss in Section 10.2, the prevalence of thesespace
leaks led us to add some strict features to Haskell, such asseq and
strict data types (as had been done in SASL and Miranda earlier).
Dually, strict languages have dabbled with laziness (Wadler et al.,
1988). As a result, the strict/lazy divide has become much less an
all-or-nothing decision, and the practitioners of each recognise the
value of the other.

3.2 Haskell is pure

An immediate consequence of laziness is that evaluation order is
demand-driven. As a result, it becomes more or less impossible to
reliably perform input/output or other side effects as the result of a
function call. Haskell is, therefore, apure language. For example,
if a function f has typeInt -> Int you can be sure thatf will
not read or write any mutable variables, nor will it perform any
input/output. In short,f really is a function in the mathematical
sense: every call(f 3) will return the same value.

Once we were committed to alazy language, apure one was
inescapable. The converse is not true, but it is notable thatin
practice most pure programming languages are also lazy. Why?
Because in a call-by-value language, whether functional ornot, the
temptation to allow unrestricted side effects inside a “function” is
almost irresistible.

Purity is a big bet, with pervasive consequences. Unrestricted side
effects are undoubtedly very convenient. Lacking side effects,
Haskell’s input/output was initially painfully clumsy, which was a
source of considerable embarrassment. Necessity being themother
of invention, this embarrassment ultimately led to the invention of
monadic I/O, which we now regard as one of Haskell’s main con-
tributions to the world, as we discuss in more detail in Section 7.

Whether a pure language (with monadic effects) is ultimately the
best way to write programs is still an open question, but it certainly
is a radical and elegant attack on the challenge of programming,
and it was that combination of power and beauty that motivated
the designers. In retrospect, therefore, perhaps the biggest single
benefit of laziness is not lazinessper se, but rather that laziness
kept us pure, and thereby motivated a great deal of productive work
on monads and encapsulated state.

3.3 Haskell has type classes

Although laziness was what brought Haskell’s designers together, it
is perhaps type classes that are now regarded as Haskell’s most dis-
tinctive characteristic. Type classes were introduced to the Haskell
Committee by Wadler in a message sent to thefplangc mailing
list dated 24 February 1988.

Initially, type classes were motivated by the narrow problem of
overloading of numeric operators and equality. These problems had
been solved in completely different ways in Miranda and SML.

SML used overloading for the built-in numeric operators, resolved
at the point of call. This made it hard to define new numeric opera-
tions in terms of old. If one wanted to define, say, square in terms of
multiplication, then one had to define a different version for each
numeric type, say integers and floats. Miranda avoided this prob-
lem by having only a single numeric type, callednum, which was a
union of unbounded-size integers and double-precision floats, with
automatic conversion ofint to float when required. This is con-
venient and flexible but sacrifices some of the advantages of static
typing – for example, in Miranda the expression (mod 8 3.4) is
type-correct, even though in most languages the modulus operator
mod only makes sense for integer moduli.

SML also originally used overloading for equality, so one could not
define the polymorphic function that took a list and a value and re-
turned true if the value was equal to some element of the list.(To
define this function, one would have to pass in an equality-testing
function as an extra argument.) Miranda simply gave equality a
polymorphic type, but this made equality well defined on function
types (it raised an error at run time) and on abstract types (it com-
pared their underlying representation for equality, a violation of the
abstraction barrier). A later version of SML included polymorphic
equality, but introduced special “equality type variables” (written
’’a instead of’a) that ranged only over types for which equality
was defined (that is, not function types or abstract types).

Type classes provided a uniform solution to both of these problems.
They generalised the notion of equality type variables fromSML,
introducing a notion of a “class” of types that possessed a given set
of operations (such as numeric operations or equality).

The type-class solution was attractive to us because it seemed more
principled, systematic and modular than any of the alternatives; so,
despite its rather radical and unproven nature, it was adopted by
acclamation. Little did we know what we were letting ourselves in
for!

Wadler conceived of type classes in a conversation with Joe Fasel
after one of the Haskell meetings. Fasel had in mind a different
idea, but it was he who had the key insight that overloading should
be reflected in the type of the function. Wadler misunderstood what
Fasel had in mind, and type classes were born! Wadler’s student
Steven Blott helped to formulate the type rules, and proved the
system sound, complete, and coherent for his doctoral dissertation
(Wadler and Blott, 1989; Blott, 1991). A similar idea was formu-
lated independently by Stefan Kaes (Kaes, 1988).

We elaborate on some of the details and consequences of the type-
class approach in Section 6. Meanwhile, it is instructive toreflect
on the somewhat accidental nature of such a fundamental and far-
reaching aspect of the Haskell language. It was a happy coincidence
of timing that Wadler and Blott happened to produce this key idea
at just the moment when the language design was still in flux.
It was adopted, with little debate, in direct contradictionto our
implicit goal of embodying a tried-and-tested consensus. It had
far-reaching consequences that dramatically exceeded ourinitial
reason for adopting it in the first place.

3.4 Haskell has no formal semantics

One of our explicit goals was to produce a language that had a
formally defined type system and semantics. We were strongly
motivated by mathematical techniques in programming language
design. We were inspired by our brothers and sisters in the ML
community, who had shown that it was possible to give a complete
formal definition of a language, and theDefinition of Standard ML
(Milner and Tofte, 1990; Milner et al., 1997) had a place of honour
on our shelves.

Nevertheless, we never achieved this goal. The Haskell Report fol-
lows the usual tradition of language definitions: it uses carefully
worded English language. Parts of the language (such as the se-
mantics of pattern matching) are defined by a translation into a
small “core language”, but the latter is never itself formally speci-
fied. Subsequent papers describe a good part of Haskell, especially
its type system (Faxen, 2002), but there is no one document that
describes the whole thing. Why not? Certainly not because ofa
conscious choice by the Haskell Committee. Rather, it just never
seemed to be the most urgent task. No one undertook the work, and
in practice the language users and implementers seemed to manage
perfectly well without it.

Indeed, in practice the static semantics of Haskell (i.e. the seman-
tics of its type system) is where most of the complexity lies.The
consequences of not having a formal static semantics is perhaps a
challenge for compiler writers, and sometimes results in small dif-
ferences between different compilers. But for the user, once a pro-
gram type-checks, there is little concern about the static semantics,
and little need to reason formally about it.

Fortunately, the dynamic semantics of Haskell is relatively simple.
Indeed, at many times during the design of Haskell, we resorted to
denotational semantics to discuss design options, as if we all knew
what the semantics of Haskellshouldbe, even if we didn’t write it
all down formally. Such reasoning was especially useful in reason-
ing about “bottom” (which denotes error or non-terminationand
occurs frequently in a lazy language in pattern matching, function
calls, recursively defined values, and so on).

Perhaps more importantly, the dynamic semantics of Haskellis cap-
tured very elegantly for the average programmer through “equa-
tional reasoning”—much simpler to apply than a formal denota-
tional or operational semantics, thanks to Haskell’s purity. The
theoretical basis for equational reasoning derives from the stan-
dard reduction rules in the lambda calculus (β- andη-reduction),
along with those for primitive operations (so-calledδ-rules). Com-
bined with appropriate induction (and co-induction) principles, it
is a powerful reasoning method in practice. Equational reasoning
in Haskell is part of the culture, and part of the training that ev-
ery good Haskell programmer receives. As a result, there maybe
more proofs of correctness properties and program transformations
in Haskell than any other language, despite its lack of a formally
specified semantics! Such proofs usually ignore the fact that some
of the basic steps used—such asη-reduction in Haskell—would not
actually preserve a fully formal semantics even if there wasone,
yet amazingly enough, (under the right conditions) the conclusions
drawn are valid even so (Danielsson et al., 2006)!

Nevertheless, we always found it a little hard to admit that alan-
guage as principled as Haskell aspires to be has no formal defini-
tion. But that is the fact of the matter, and it is not without its ad-
vantages. In particular, the absence of a formal language definition
does allow the language toevolvemore easily, because the costs of
producing fully formal specifications of any proposed change are
heavy, and by themselves discourage changes.

3.5 Haskell is a committee language

Haskell is a language designed by committee, and conventional
wisdom would say that a committee language will be full of
warts and awkward compromises. In a memorable letter to the
Haskell Committee, Tony Hoare wistfully remarked that Haskell
was “probably doomed to succeed.”

Yet, as it turns out, for all its shortcomings Haskell is often
described as “beautiful” or “elegant”—even “cool”—which are
hardly words one would usually associate with committee designs.
How did this come about? In reflecting on this question we identi-
fied several factors that contributed:

• The initial situation, described above in Section 2, was very
favourable. Our individual goals were well aligned, and we
began with a strong shared, if somewhat fuzzy, vision of what
we were trying to achieve. We all needed Haskell.

• Mathematical elegance was extremely important to us, formal
semantics or no formal semantics. Many debates were punctu-
ated by cries of “does it have a compositional semantics?” or
“what does the domain look like?” This semi-formal approach
certainly made it more difficult forad hoclanguage features to
creep in.

• We held several multi-day face-to-face meetings. Many matters
that were discussed extensively by email were only resolvedat
one of these meetings.

• At each moment in the design process, one or two members of
the committee served asThe Editor. The Editor could not make
binding decisions, but was responsible for driving debatesto a
conclusion. He also was the custodian of the Report, and was
responsible for embodying the group’s conclusion in it.

• At each moment in the design process, one member of the
committee (not necessarily the Editor) served as theSyntax
Czar. The Czar was empowered to make binding decisions
about syntactic matters (only). Everyone always says that far
too much time is devoted to discussing syntax—but many of the
same people will fight to the death for their preferred symbolfor
lambda. The Syntax Czar was our mechanism for bringing such
debates to an end.

3.6 Haskell is a big language

A major source of tension both within and between members of
the committee was the competition between beauty and utility. On
the one hand we passionately wanted to design a simple, elegant
language; as Hoare so memorably put it, “There are two ways of
constructing a software design: one way is to make it so simple that
there are obviously no deficiencies, and the other way is to make
it so complicated that there are no obvious deficiencies. Thefirst
method is far more difficult.” On the other hand, we alsoreally
wanted Haskell to be a useful language, for both teaching andreal
applications.

Although very real, this dilemma never led to open warfare. It did,
however, lead Richard Bird to resign from the committee in mid-
1988, much to our loss. At the time he wrote, “On the evidence of
much of the material and comments submitted tofplang, there is
a severe danger that the principles of simplicity, ease of proof, and
elegance will be overthrown. Because much of what is proposed is
half-baked, retrogressive, and even baroque, the result islikely to be
a mess. We are urged to return to the mind-numbing syntax of Lisp
(a language that held back the pursuit of functional programming
for over a decade). We are urged to design for ‘big’ programs,
because constructs that are ‘aesthetic’ for small programswill lose
their attractiveness when the scale is increased. We are urged to
allow large where-clauses with deeply nested structures. In short,
it seems we are urged to throw away the one feature of functional
programming that distinguishes it from the conventional kind and
may ensure its survival into the 21st century: susceptibility to
formal proof and construction.”

In the end, the committee wholeheartedly embracedsuperficial
complexity; for example, the syntax supports many ways of ex-
pressing the same thing, in contradiction to our original inclina-
tions (Section 4.4). In other places, we escheweddeepcomplex-
ity, despite the cost in expressiveness—for example, we avoided
parametrised modules (Section 8.2) and extensible records(Sec-
tion 5.6). In just one case, type classes, we adopted an idea that
complicated everything but was just too good to miss. The reader
will have to judge the resulting balance, but even in retrospect we
feel that the elegant core of purely functional programminghas sur-
vived remarkably unscathed. If we had to pick places where real
compromises were made, they would be the monomorphism re-
striction (see Section 6.2) and the loss of parametricity, currying,
and surjective pairing due toseq (see Section 10.3).

3.7 Haskell and Haskell 98

The goal of using Haskell for research demandsevolution, while
using the language for teaching and applications requiresstability.
At the beginning, the emphasis was firmly on evolution. The pref-
ace of every version of the Haskell Report states:“The committee
hopes that Haskell can serve as a basis for future research inlan-
guage design. We hope that extensions or variants of the language
may appear, incorporating experimental features.”

However, as Haskell started to become popular, we started toget
complaints about changes in the language, and questions about
what our plans were. “I want to write a book about Haskell, but
I can’t do that if the language keeps changing” is a typical, and
fully justified, example.

In response to this pressure, the committee evolved a simpleand
obvious solution: we simply named a particular instance of the lan-
guage “Haskell 98,” and language implementers committed them-
selves to continuing to support Haskell 98 indefinitely. We regarded
Haskell 98 as a reasonably conservative design. For example, by
that time multi-parameter type classes were being widely used, but
Haskell 98 only has single-parameter type classes (Peyton Jones
et al., 1997).

The (informal) standardisation of Haskell 98 was an important turn-
ing point for another reason: it was the moment that the Haskell
Committee disbanded. There was (and continues to be) a tremen-
dous amount of innovation and activity in the Haskell community,
including numerous proposals for language features. But rather
than having a committee to choose and bless particular ones,it
seemed to us that the best thing to do was to get out of the way,
let a thousand flowers bloom, and see which ones survived. It was
also a huge relief to be able to call the task finished and to fileour
enormous mail archives safely away.

We made no attempt to discourage variants of Haskell other than
Haskell 98; on the contrary, we explicitly encouraged the further
development of the language. The nomenclature encourages the
idea that “Haskell 98” is a stable variant of the language, while
its free-spirited children are free to term themselves “Haskell.”

In the absence of a language committee, Haskell has continued to
evolve apace, in two quite different ways.

• First, as Haskell has become a mature language with thousands
of users, it has had to grapple with the challenges of scale
and complexity with which any real-world language is faced.
That has led to a range of practically oriented features and
resources, such as a foreign-function interface, a rich collection
of libraries, concurrency, exceptions, and much else besides.
We summarise these developments in Section 8.

• At the same time, the language has simultaneously served as
a highly effective laboratory in which to explore advanced
language design ideas, especially in the area of type systems
and meta-programming. These ideas surface both in papers—
witness the number of research papers that take Haskell as their
base language—and in Haskell implementations. We discuss a
number of examples in Section 6.

The fact that Haskell has, thus far, managed the tension between
these two strands of development is perhaps due to an accidental
virtue: Haskell has not becometoo successful. The trouble with
runaway success, such as that of Java, is that you get too many
users, and the language becomes bogged down in standards, user
groups, and legacy issues. In contrast, the Haskell community is
small enough, and agile enough, that it usually not only absorbs
language changes but positively welcomes them: it’s like throwing
red meat to hyenas.

3.8 Haskell and Miranda

At the time Haskell was born, by far the most mature and widely
used non-strict functional language was Miranda. Miranda was a
product of David Turner’s company, Research Software Limited,
which he founded in 1983. Turner conceived Miranda to carry
lazy functional programming, with Hindley-Milner typing (Milner,
1978), into the commercial domain. First released in 1985, with
subsequent releases in 1987 and 1989, Miranda had a well sup-
ported implementation, a nice interactive user interface,and a vari-
ety of textbooks (four altogether, of which the first was particularly
influential (Bird and Wadler, 1988)). It was rapidly taken upby both
academic and commercial licences, and by the early 1990s Miranda
was installed (although not necessarily taught) at 250 universities
and around 50 companies in 20 countries.

Haskell’s design was, therefore, strongly influenced by Miranda.
At the time, Miranda was the fullest expression of a non-strict,
purely functional language with a Hindley-Milner type system and
algebraic data types—and that was precisely the kind of language
that Haskell aspired to be. As a result, there are many similarities
between the two languages, both in their basic approach (purity,
higher order, laziness, static typing) and in their syntactic look and
feel. Examples of the latter include: the equational style of func-
tion definitions, especially pattern matching, guards, andwhere
clauses; algebraic types; the notation for lists and list comprehen-
sions; writing pair types as(num,bool) rather than theint*bool
of ML; capitalisation of data constructors; lexically distinguished
user-defined infix operators; the use of a layout rule; and thenam-
ing of many standard functions.

There are notable differences from Miranda too, including:place-
ment of guards on the left of “=” in a definition; a richer syntax
for expressions (Section 4.4); different syntax for data type decla-
rations; capitalisation of type constructors as well as data construc-
tors; use of alphanumeric identifiers for type variables, rather than
Miranda’s*, **, etc.; how user-defined operators are distinguished
(x $op y in Miranda vs.x ‘op‘ y in Haskell); and the details
of the layout rule. More fundamentally, Haskell did not adopt Mi-
randa’s abstract data types, using the module system instead (Sec-
tion 5.3); added monadic I/O (Section 7.2); and incorporated many
innovations to the core Hindley-Milner type system, especially type
classes (Section 6).

Today, Miranda has largely been displaced by Haskell. One indi-
cation of that is the publication of textbooks: while Haskell books
continue to appear regularly, the last textbook in English to use
Miranda was published in 1995. This is at first sight surprising, be-
cause it can be hard to displace a well-established incumbent, but
the economics worked against Miranda: Research Software was a
small company seeking a return on its capital; academic licences
were cheaper than commercial ones, but neither were free, while
Haskell was produced by a group of universities with public funds
and available free to academic and commercial users alike. More-
over, Miranda ran only under Unix, and the absence of a Windows
version increasingly worked against it.

Although Miranda initially had the better implementation,Haskell
implementations improved more rapidly—it was hard for a small
company to keep up. Hugs gave Haskell a fast interactive interface
similar to that which Research Software supplied for Miranda (and
Hugs ran under both Unix and Windows), while Moore’s law made
Haskell’s slow compilers acceptably fast and the code they gener-
ated even faster. And Haskell had important new ideas, as this paper
describes. By the mid-1990s, Haskell was a much more practical
choice for real programming than Miranda.

Miranda’s proprietary status did not enjoy universal support in
the academic community. As required to safeguard his trademark,
Turner always footnoted the first occurrence of Miranda in his pa-
pers to state it was a trademark of Research Software Limited.
In response, some early Haskell presentations included a footnote
”Haskell is not a trademark”. Miranda’s licence conditionsat that
time required the licence holder to seek permission before distribut-
ing an implementation of Miranda or a language whose design was
substantially copied from Miranda. This led to friction between Ox-
ford University and Research Software over the possible distribu-
tion of Wadler’s language Orwell. However, despite Haskell’s clear
debt to Miranda, Turner raised no objections to Haskell.

The tale raises a tantalising “what if” question. What if David
Turner had placed Miranda in the public domain, as some urged
him to do? Would the mid ’80s have seen a standard lazy func-
tional language, supported by the research communityand with
a company backing it up? Could Research Software have found
a business model that enabled it to benefit, rather than suffer, from
university-based implementation efforts? Would the additional con-
straints of an existing design have precluded the creative and some-
times anarchic ferment that has characterised the Haskell commu-
nity? How different could history have been?

Miranda was certainly no failure, either commercially or scientif-
ically. It contributed a small, elegant language design with a well-
supported implementation, which was adopted in many universities
and undoubtedly helped encourage the spread of functional pro-
gramming in university curricula. Beyond academia, the useof Mi-
randa in several large projects (Major and Turcotte, 1991; Page and
Moe, 1993) demonstrated the industrial potential of a lazy func-
tional language. Miranda is still in use today: it is still taught in
some institutions, and the implementations for Linux and Solaris
(now free) continue to be downloaded. Turner’s efforts madea per-
manent and valuable contribution to the development of interest in
the subject in general, paving the way for Haskell a few yearslater.

Part II

Technical Contributions

4. Syntax
The phrase “syntax is not important” is often heard in discussions
about programming languages. In fact, in the 1980s this phrase was
heard more often than it is today, partly because there was somuch
interest at the time in developing the theory behind, and emphasis-
ing the importance of, theformal semanticsof programming lan-
guages, which was a relatively new field in itself. Many program-
ming language researchers considered syntax to be the trivial part
of language design, and semantics to be “where the action was.”

Despite this, the Haskell Committee worked very hard—meaning it
spent endless hours—on designing (and arguing about) the syntax
of Haskell. It wasn’t so much that we were boldly bucking the trend,
or that the phrase “syntax is important” was a new retro-phrase that
became part of our discourse, but rather that, for better or worse, we
found that syntax design could be not only fun, but an obsession.
We also found that syntax, being the user interface of a language,
could become very personal. There is no doubt that some of our
most heated debates were over syntax, not semantics.

In the end, was it worth it? Although not an explicit goal, oneof the
most pleasing consequences of our effort has been comments heard

many times over the years that “Haskell is a pretty language.” For
some reason, many people think that Haskell programs look nice.
Why is that? In this section we give historical perspectiveson many
of the syntactic language features that we think contributeto this
impression. Further historical details, including some ideas consid-
ered and ultimately rejected, may be found in Hudak’sComputing
Surveysarticle (Hudak, 1989).

4.1 Layout

Most imperative languages use a semicolon to separate sequential
commands. In a language without side effects, however, the notion
of sequencing is completely absent. There is still the need to sep-
arate declarations of various kinds, but the feeling of the Haskell
Committee was that we should avoid the semicolon and its sequen-
tial, imperative baggage.

Exploiting the physical layout of the program text is a simple and
elegant way to avoid syntactic clutter. We were familiar with the
idea, in the form of the “offside rule” from our use of Turner’s lan-
guages SASL (Turner, 1976) and Miranda (Turner, 1986), although
the idea goes back to Christopher Strachey’s CPL (Barron et al.,
1963), and it was also featured in ISWIM (Landin, 1966).

The layout rules needed to be very simple, otherwise users would
object, and we explored many variations. We ended up with a de-
sign that differed from our most immediate inspiration, Miranda,
in supporting larger function definitions with less enforced inden-
tation. Although we felt that good programming style involved
writing small, short function definitions, in practice we expected
that programmers would also want to write fairly large function
definitions—and it would be a shame if layout got in the way. So
Haskell’s layout rules are considerably more lenient than Miranda’s
in this respect. Like Miranda, we provided a way for the user to
override implicit layout selectively, in our case by using explicit
curly braces and semicolons instead. One reason we thought this
was important is that we expected people to write programs that
generated Haskell programs, and we thought it would be easier to
generate explicit separators than layout.

Influenced by these constraints and a desire to “do what the pro-
grammer expects”, Haskell evolved a fairly complex layout rule—
complex enough that it was formally specified for the first time
in the Haskell 98 Report. However, after a short adjustment pe-
riod, most users find it easy to adopt a programming style thatfalls
within the layout rules, and rarely resort to overriding them2.

4.2 Functions and function application

There are lots of ways to define functions in Haskell—after all, it is
a functional language—but the ways are simple and all fit together
in a sensible manner.

Currying Following a tradition going back to Frege, a function of
two arguments may be represented as a function of one argument
that itself returns a function of one argument. This tradition was
honed by Moses Schönfinkel and Haskell Curry and came to be
calledcurrying.

Function application is denoted by juxtaposition and associates to
the left. Thus,f x y is parsed(f x) y. This leads to concise and
powerful code. For example, to square each number in a list we
writemap square [1,2,3], while to square each number in a list
of lists we writemap (map square) [[1,2],[3]].

Haskell, like many other languages based on lambda calculus,
supports both curried and uncurried definitions:

2 The same is true of Miranda users.

hyp :: Float -> Float -> Float
hyp x y = sqrt (x*x + y*y)

hyp :: (Float, Float) -> Float
hyp (x,y) = sqrt (x*x + y*y)

In the latter, the function is viewed as taking a single argument,
which is a pair of numbers. One advantage of currying is that it
is often more compact:f x y contains three fewer lexemes than
f(x,y).

Anonymous functions The syntax for anonymous functions,
\x -> exp, was chosen to resemble lambda expressions, since
the backslash was the closest single ASCII character to the Greek
letter λ. However, “->” was used instead of a period in order to
reserve the period for function composition.

Prefix operators Haskell has only one prefix operator: arithmetic
negation. The Haskell Committee in fact did not wantany prefix
operators, but we couldn’t bring ourselves to force users towrite
something likeminus 42 or ~42 for the more conventional-42.
Nevertheless, the dearth of prefix operators makes it easierfor
readers to parse expressions.

Infix operators The Haskell Committee wanted expressions to
look as much like mathematics as possible, and thus from day one
we bought into the idea that Haskell would have infix operators.3

It was also important to us that infix operators be definable by
the user, including declarations of precedence and associativity.
Achieving all this was fairly conventional, but we also defined
the following simple relationship between infix application and
conventional function application: the formeralways binds less
tightly than the latter. Thusf x + g y never needs parentheses,
regardless of what infix operator is used. This design decision
proved to be a good one, as it contributes to the readability of
programs. (Sadly, this simple rule is not adhered to by@-patterns,
which bind more tightly than anything; this was probably a mistake,
although@-patterns are not used extensively enough to cause major
problems.)

Sections Although a commitment to infix operators was made
quite early, there was also the feeling that all values in Haskell
should be “first class”—especially functions. So there was con-
siderable concern about the fact that infix operators were not, by
themselves, first class, a problem made apparent by considering
the expressionf + x. Does this mean the functionf applied to
two arguments, or the function+ applied to two arguments?

The solution to this problem was to use a generalised notion of
sections, a notation that first appeared in David Wile’s disserta-
tion (Wile, 1973) and was then disseminated via IFIP WG2.1—
among others to Bird, who adopted it in his work, and Turner,
who introduced it into Miranda. A section is a partial application
of an infix operator to no arguments, the left argument, or theright
argument—and by surrounding the result in parentheses, onethen
has a first-class functional value. For example, the following equiv-
alences hold:

(+) = \x y -> x+y
(x+) = \y -> x+y
(+y) = \x -> x+y

Being able to partially apply infix operators is consistent with
being able to partially apply curried functions, so this wasa happy
solution to our problem.

3 This is in contrast to the Scheme designers, who consistently used prefix
application of functions and binary operators (for example, (+ x y)),
instead of adopting mathematical convention.

(Sections did introduce one problem though: Recall that Haskell
has only one prefix operator, namely negation. So the question
arises, what is the meaning of(-42)? The answer is negative
42! In order to get the function\x-> x-42 one must write either
\x-> x-42, or (subtract 42), wheresubtract is a predefined
function in Haskell. This “problem” with sections was viewed
more as a problem with prefix operators, but as mentioned earlier
the committee decided not to buck convention in its treatment of
negation.)

Once we had sections, and in particular a way to convert infix
operators into ordinary functional values, we then asked ourselves
why we couldn’t go the other way. Could we design a mechanism
to convert an ordinary function into an infix operator? Our simple
solution was to enclose a function identifier in backquotes.For
example,x ‘f‘ y is the same asf x y. We liked the generality
that this afforded, as well as the ability to use “words” as infix
operators. For example, we felt that list membership, say, was more
readable when written asx ‘elem‘ xs rather thanelem x xs.
Miranda used a similar notation,x $elem xs, taken from Art
Evans’ PAL (Evans, 1968).

4.3 Namespaces and keywords

Namespaces were a point of considerable discussion in the Haskell
Committee. We wanted the user to have as much freedom as possi-
ble, while avoiding any form of ambiguity. So we carefully defined
a set of lexemes for each namespace that wereorthogonalwhen
they needed to be, andoverlappedwhen context was sufficient to
distinguish their meaning. As an example of orthogonality,we de-
signed normal variables, infix operators, normal data constructors,
and infix data constructors to be mutually exclusive. As an exam-
ple of overlap, capitalised names can, in the same lexical scope,
refer to a type constructor, a data constructor,and a module, since
whenever the nameFoo appears, it is clear from context to which
entity it is referring. For example, it is quite common to declare a
single-constructor data type like this:

data Vector = Vector Float Float

Here,Vector is the name of the data type, and the name of the
single data constructor of that type.

We adopted from Miranda the convention that data constructors are
capitalised while variables are not, and added a similar convention
for infix constructors, which in Haskell must start with a colon. The
latter convention was chosen for consistency with our use (adopted
from SASL, KRC, and Miranda) of a single colon: for the list
“cons” operator. (The choice of “:” for cons and “::” for type
signatures, by the way, was a hotly contested issue (ML does the
opposite) and remains controversial to this day.)

As a final comment, a small contingent of the Haskell Committee
argued that shadowing of variables shouldnot be allowed, because
introducing a shadowed name might accidentally capture a variable
bound in an outer scope. But outlawing shadowing is inconsistent
with alpha renaming—it means that you must know the bound
names of the inner scope in order to choose a name for use in an
outer scope. So, in the end, Haskell allowed shadowing.

Haskell has 21 reserved keywords that cannot be used as names
for values or types. This is a relatively low number (Erlang has 28,
OCaml has 48, Java has 50, C++ has 63—and Miranda has only
10), and keeping it low was a priority of the Haskell Committee.
Also, we tried hard to avoid keywords (such as “as”) that might
otherwise be useful variable names.

4.4 Declaration style vs. expression style

As our discussions evolved, it became clear that there were two
different styles in which functional programs could be written:
“declaration style” and “expression style”. For example, here is
the filter function written in both styles4:

filter :: (a -> Bool) -> [a] -> [a]

-- Declaration style
filter p [] = []
filter p (x:xs) | p x = x : rest

| otherwise = rest
where
rest = filter p xs

-- Expression style
filter = \p -> \xs ->

case xs of
[] -> []
(x:xs) -> let

rest = filter p xs
in if (p x)

then x : rest
else rest

The declaration style attempts, so far as possible, to definea func-
tion by multiple equations, each of which uses pattern matching
and/or guards to identify the cases it covers. In contrast, in the ex-
pression style a function is built up by composing expressions to-
gether to make bigger expressions. Each style is characterised by a
set of syntactic constructs:

Declaration style Expression-style
where clause let expression
Function arguments on left hand side Lambda abstraction
Pattern matching in function definitions case expression
Guards on function definitions if expression

The declaration style was heavily emphasised in Turner’s languages
KRC (which introduced guards for the first time) and Miranda
(which introduced a where clause scoping over several guarded
equations,including the guards). The expression style dominates
in other functional languages, such as Lisp, ML, and Scheme.

It took some while to identify the stylistic choice as we havedone
here, but once we had done so, we engaged in furious debate about
which style was “better.” An underlying assumption was thatif
possible there should be “just one way to do something,” so that,
for example, having bothlet andwhere would be redundant and
confusing.

In the end, we abandoned the underlying assumption, and pro-
vided full syntactic support for both styles. This may seem like
a classic committee decision, but it is one that the present authors
believe was a fine choice, and that we now regard as a strength
of the language. Different constructs have different nuances, and
real programmers do in practice employ bothlet and where,
both guards and conditionals, both pattern-matching definitions and
case expressions—not only in the same program but sometimes in
the same function definition. It is certainly true that the additional
syntactic sugar makes the language seem more elaborate, butit is a
superficial sort of complexity, easily explained by purely syntactic
transformations.

4 The example is a little contrived. One might argue that the code would be
less cluttered (in both cases) if one eliminated thelet or where, replacing
rest with filter p xs.

Two small but important matters concern guards. First, Miranda
placed guards on the far right-hand side of equations, thus resem-
bling common notation used in mathematics, thus:

gcd x y = x, if x=y
= gcd (x-y) y, if x>y
= gcd x (y-x), otherwise

However, as mentioned earlier in the discussion of layout, the
Haskell Committee did not buy into the idea that programmers
should write (or feel forced to write)short function definitions, and
placing the guard on the far right of alongdefinition seemed like a
bad idea. So, we moved them to the left-hand side of the definition
(seefilter andf above), which had the added benefit of placing
the guard right next to the patterns on formal parameters (which
logically made more sense), and in a place more suggestive of
the evaluation order (which builds the right operational intuitions).
Because of this, we viewed our design as an improvement over
conventional mathematical notation.

Second, Haskell adopted from Miranda the idea that awhere clause
is attached to adeclaration, not an expression, and scopes over
the guards as well as the right-hand sides of the declarations. For
example, in Haskell one can write:

firstSat :: (a->Bool) -> [a] -> Maybe a
firstSat p xs | null xps = Nothing

| otherwise = Just xp
where
xps = filter p xs
xp = head xps

Here,xps is used in a guard as well as in the binding forxp. In
contrast, alet binding is attached to anexpression, as can be seen
in the second definition offilter near the beginning of this sub-
section. Note also thatxp is defined only in the second clause—but
that is fine since the bindings in thewhere clause are lazy.

4.5 List comprehensions

List comprehensions provide a very convenient notation formaps,
filters, and Cartesian products. For example,

[x*x | x <- xs]

returns the squares of the numbers in the listxs, and

[f | f <- [1..n], n ‘mod‘ f == 0]

returns a list of the factors of n, and

concatMap :: (a -> [b]) -> [a] -> [b]
concatMap f xs = [y | x <- xs, y <- f x]

applies a functionf to each element of a listxs, and concatenates
the resulting lists. Notice that each elementx chosen fromxs is
used to generate a new list(f x) for the second generator.

The list comprehension notation was first suggested by John Dar-
lington when he was a student of Rod Burstall. The notation was
popularised—and generalised to lazy lists—by David Turner’s use
of it in KRC, where it was called a “ZF expression” (named after
Zermelo-Fraenkel set theory). Turner put this notation to effective
use in his paper “The semantic elegance of applicative languages”
(Turner, 1981). Wadler introduced the name “list comprehension”
in his paper “How to replace failure by a list of successes” (Wadler,
1985).

For some reason, list comprehensions seem to be more popularin
lazy languages; for example they are found in Miranda and Haskell,
but not in SML or Scheme. However, they are present in Erlang and
more recently have been added to Python, and there are plans to add
them to Javascript as array comprehensions.

4.6 Comments

Comments provoked much discussion among the committee, and
Wadler later formulated a law to describe how effort was allotted
to various topics: semantics is discussed half as much as syntax,
syntax is discussed half as much as lexical syntax, and lexical
syntax is discussed half as much as the syntax of comments. This
was an exaggeration: a review of the mail archives shows that
well over half of the discussion concerned semantics, and infix
operators and layout provoked more discussion than comments.
Still, it accurately reflected that committee members held strong
views on low-level details.

Originally, Haskell supported two commenting styles. Depending
on your view, this was either a typical committee decision, or a
valid response to a disparate set of needs. Short comments begin
with a double dash-- and end with a newline; while longer com-
ments begin with{- and end with-}, and can be nested. The longer
form was designed to make it easy to comment out segments of
code, including code containing comments.

Later, Haskell added support for a third convention, literate com-
ments, which first appeared in OL at the suggestion of Richard
Bird. (Literate comments also were later adopted by Miranda.)
Bird, inspired by Knuth’s work on “literate programming” (Knuth,
1984), proposed reversing the usual comment convention: lines of
code, rather than lines ofcomment, should be the ones requiring
a special mark. Lines that were not comments were indicated by
a greater-than sign> to the left. For obvious reasons, these non-
comment indicators came to be called ‘Bird tracks’.

Haskell later supported a second style of literate comment,where
code was marked by\begin{code} and\end{code} as it is in
Latex, so that the same file could serve both as source for a typeset
paper and as an executable program.

5. Data types and pattern matching
Data types and pattern matching are fundamental to most modern
functional languages (with the notable exception of Scheme). The
inclusion of basic algebraic types was straightforward, but interest-
ing issues arose for pattern matching, abstract types, tuples, new
types, records,n+k patterns, and views.

The style of writing functional programs as a sequence of equa-
tions with pattern matching over algebraic types goes back at least
to Burstall’s work on structural induction (Burstall, 1969), and
his work with his student Darlington on program transformation
(Burstall and Darlington, 1977).

Algebraic types as a programming language feature first appeared
in Burstall’s NPL (Burstall, 1977) and Burstall, MacQueen,and
Sannella’s Hope (Burstall et al., 1980). They were absent from the
original ML (Gordon et al., 1979) and KRC (Turner, 1982), but
appeared in their successors Standard ML (Milner et al., 1997) and
Miranda (Turner, 1986). Equations with conditional guardswere
introduced by Turner in KRC (Turner, 1982).

5.1 Algebraic types

Here is a simple declaration of an algebraic data type and a function
accepting an argument of the type that illustrates the basicfeatures
of algebraic data types in Haskell.

data Maybe a = Nothing | Just a

mapMaybe :: (a->b) -> Maybe a -> Maybe b
mapMaybe f (Just x) = Just (f x)
mapMaybe f Nothing = Nothing

The data declaration declaresMaybe to be a data type, with two
data constructorsNothing and Just. The values of theMaybe
type take one of two forms: eitherNothing or (Just x). Data
constructors can be used both inpattern-matching, to decompose
a value ofMaybe type, and inan expression, to build a value of
Maybe type. Both are illustrated in the definition ofmapMaybe.

The use of pattern matching against algebraic data types greatly
increases readability. Here is another example, this time defining a
recursive data type of trees:

data Tree a = Leaf a | Branch (Tree a) (Tree a)

size :: Tree a -> Int
size (Leaf x) = 1
size (Branch t u) = size t + size u + 1

Haskell took from Miranda the notion of defining algebraic types as
a ‘sum of products’. In the above, a tree is either a leaf or a branch (a
sum with two alternatives), a leaf contains a value (a trivial product
with only one field), and a branch contains a left and right subtree
(a product with two fields). In contrast, Hope and Standard ML
separated sums (algebraic types) and products (tuple types); in the
equivalent definition of a tree, a branch would take one argument
which was itself a tuple of two trees.

In general, an algebraic type specifies a sum of one or more alter-
natives, where each alternative is a product of zero or more fields. It
might have been useful to permit a sum of zero alternatives, which
would be a completely empty type, but at the time the value of such
a type was not appreciated.

Haskell also took from Miranda the rule that constructor names
always begin with a capital, making it easy to distinguish construc-
tors (like Leaf andBranch) from variables (likex, t, andu). In
Standard ML, it is common to use lower case for both; if a pat-
tern consists of a single identifier it can be hard to tell whether this
is a variable (which will match anything) or a constructor with no
arguments (which matches only that constructor).

Haskell further extended this rule to apply to type constructors (like
Tree) and type variables (likea). This uniform rule was unusual.
In Standard ML type variables were distinguished by starting with
a tick (e.g.,tree ’a), and in Miranda type variables were written
as a sequence of one or more asterisks (e.g.,tree *).

5.2 Pattern matching

The semantics of pattern matching in lazy languages is more com-
plex than in strict languages, because laziness means that whether
one chooses to first match against a variable (doesn’t force evalu-
ation) or a constructor (does force evaluation) can change the se-
mantics of a program, in particular, whether or not the program
terminates.

In SASL, KRC, Hope, SML, and Miranda, matching against equa-
tions is in order from top to bottom, with the first matching equation
being used. Moreover in SASL, KRC, and Miranda, matching is
from left to right within each left-hand-side—which is important in
a lazy language, since as soon as a non-matching pattern is found,
matching proceeds to the next equation, potentially avoiding non-
termination or an error in a match further to the right. Eventually,
these choices were made for Haskell as well, after considering at
length and rejecting some other possibilities:

• Tightest match, as used in Hope+ (Field et al., 1992).

• Sequential equations, as introduced by Huet and Levy (Huet
and Levy, 1979).

• Uniform patterns, as described by Wadler in Chapter 5 of Pey-
ton Jones’s textbook (Peyton Jones, 1987).

Top-to-bottom, left-to-right matching was simple to implement, fit
nicely with guards, and offered greater expressiveness compared to
the other alternatives. But the other alternatives had a semantics in
which the order of equations did not matter, which aids equational
reasoning (see (Hudak, 1989) for more details). In the end, it was
thought better to adopt the more widely used top-to-bottom design
than to choose something that programmers might find limiting.

5.3 Abstract types

In Miranda, abstract data types were supported by a special lan-
guage construct,abstype:

abstype stack * == [*]
with push :: * -> stack * -> stack *

pop :: stack * -> *
empty :: stack *
top :: stack * -> *
isEmpty :: stack * -> bool

push x xs = x:xs
pop (x:xs) = xs
empty = []
top (x:xs) = x
isEmpty xs = xs = []

Here the typesstack * and[*] are synonyms within the defini-
tions of the named functions, but distinguished everywhereelse.

In Haskell, instead of a special construct, the module system is used
to support data abstraction. One constructs an abstract data type
by introducing an algebraic type, and then exporting the type but
hiding its constructors. Here is an example:

module Stack(Stack, push, pop,
empty, top, isEmpty) where

data Stack a = Stk [a]
push x (Stk xs) = Stk (x:xs)
pop (Stk (x:xs)) = Stk xs
empty = Stk []
top (Stk (x:xs)) = x
isEmpty (Stk xs) = null xs

Since the constructor for the data typeStack is hidden (the export
list would sayStack(Stk) if it were exposed), outside of this
module a stack can only be built from the operationspush, pop,
andempty, and examined withtop andisempty.

Haskell’s solution is somewhat cluttered by theStk constructors,
but in exchange an extra construct is avoided, and the types of the
operations can be inferred if desired. The most important point is
that Haskell’s solution allows one to give a different instance to a
type-class for the abstract type than for its representation:

instance Show Stack where
show s = ...

The Show instance forStack can be different from theShow in-
stance for lists, and there is no ambiguity about whether a given
subexpression is aStack or a list. It was unclear to us how to
achieve this effect withabstype.

5.4 Tuples and irrefutable patterns

An expression that diverges (or calls Haskell’serror function) is
considered to have the value “bottom”, usually written⊥, a value
that belongs to every type. There is an interesting choice tobe made
about the semantics of tuples: are⊥ and (⊥,⊥) distinct values?
In the jargon of denotational semantics, alifted tuple semantics
distinguishes the two values, while anunlifted semantics treats
them as the same value.

In an implementation, the two values will berepresenteddiffer-
ently, but under the unlifted semantics they must be indistinguish-
able to the programmer. The only way in which they might be dis-
tinguished is by pattern matching; for example:

f (x,y) = True

If this pattern match evaluatesf’s argument thenf ⊥ = ⊥, but
f (⊥,⊥) = True, thereby distinguishing the two values. One can
instead consider this definition to be equivalent to

f t = True
where

x = fst t
y = snd t

in which casef⊥ = True and the two values are indistinguishable.

This apparently arcane semantic point became a subject of great
controversy in the Haskell Committee. Miranda’s design identified
⊥ with (⊥,⊥), which influenced us considerably. Furthermore,
this identification made currying an exact isomorphism:

(a,b) -> c ∼= a -> b -> c

But there were a number of difficulties. For a start, should single-
constructor data types, such as

data Pair a b = Pair a b

share the same properties as tuples, with a semantic discontinuity
induced by adding a second constructor? We were also concerned
about the efficiency of this lazy form of pattern matching, and the
space leaks that might result. Lastly, the unlifted form of tuples is
essentially incompatible withseq—another controversial feature
of the language, discussed in Section 10.3—because parallel eval-
uation would be required to implementseq on unlifted tuples.

In the end, we decided to make both tuples and algebraic data types
have a lifted semantics, so that pattern matching always induces
evaluation. However, in a somewhat uneasy compromise, we also
reintroduced lazy pattern-matching, in the form of tilde-patterns,
thus:

g :: Bool -> (Int,Int) -> Int
g b ~(x,y) = if b then x+y else 0

The tilde “~” makes matching lazy, so that the pattern match for
(x,y) is performed only ifx or y is demanded; that is, in this
example, whenb is True. Furthermore, pattern matching inlet
andwhere clauses is always lazy, so thatg can also be written:

g x pr = if b then x+y else 0
where

(x,y) = pr

(This difference in the semantics of pattern matching between
let/where andcase/λ can perhaps be considered a wart on the
language design—certainly it complicates the language descrip-
tion.) All of this works uniformly when there is more than one
constructor in the data type:

h :: Bool -> Maybe Int -> Int
h b ~(Just x) = if b then x else 0

Here again,h evaluates its second argument only ifb is True.

5.5 Newtype

The same choice described above for tuples arose for any algebraic
type with one constructor. In this case, just as with tuples,there was
a choice as to whether or not the semantics should be lifted. From
Haskell 1.0, it was decided that algebraic types with a single con-
structor should have a lifted semantics. From Haskell 1.3 onwards

there was also a second way to introduce a new algebraic type with
a single constructor and a single component, with an unlifted se-
mantics. The main motivation for introducing this had to do with
abstract data types. It was unfortunate that the Haskell definition
of Stack given above forced the representation of stacks to be not
quite isomorphic to lists, as lifting added a new bottom value⊥ dis-
tinct fromStk ⊥. Now one could avoid this problem by replacing
the data declaration inStack above with the following declara-
tion.

newtype Stack a = Stk [a]

We can view this as a way to define a new type isomorphic to an
existing one.

5.6 Records

One of the most obvious omissions from early versions of Haskell
was the absence ofrecords, offering named fields. Given that
records are extremely useful in practice, why were they omitted?

The strongest reason seems to have been that there was no obvi-
ous “right” design. There are a huge number of record systems,
variously supporting record extension, concatenation, update, and
polymorphism. All of them have a complicating effect on the type
system (e.g., row polymorphism and/or subtyping), which was al-
ready complicated enough. This extra complexity seemed partic-
ularly undesirable as we became aware that type classes could be
used to encode at least some of the power of records.

By the time the Haskell 1.3 design was under way, in 1993, the user
pressure for named fields in data structures was strong, so the com-
mittee eventually adopted a minimalist design originally suggested
by Mark Jones: record syntax in Haskell 1.3 (and subsequently) is
simply syntactic sugar for equivalent operation on regularalgebraic
data types. Neither record-polymorphic operations nor subtyping
are supported.

This minimal design has left the field open for more sophisti-
cated proposals, of which the best documented is TRex (Gaster
and Jones, 1996) (Section 6.7). New record proposals continue to
appear regularly on the Haskell mailing list, along with ingenious
ways of encoding records using type classes (Kiselyov et al., 2004).

5.7 n+k patterns

An algebraic type isomorphic to the natural numbers can be defined
as follows:

data Nat = Zero | Succ Nat

This definition has the advantage that one can use pattern matching
in definitions, but the disadvantage that the unary representation
implied in the definition is far less efficient than the built-in repre-
sentation of integers. Instead, Haskell provides so-called n+k pat-
terns that provide the benefits of pattern matching without the loss
of efficiency. (Then+k pattern feature can be considered a special
case of aview(Wadler, 1987) (see Section 5.8) combined with con-
venient syntax.) Here is an example:

fib :: Int -> Int
fib 0 = 1
fib 1 = 1
fib (n+2) = fib n + fib (n+1)

The patternn+k only matches a valuem if m ≥ k, and if it
succeeds it bindsn to m − k.

Patterns of the formn+k were suggested for Haskell by Wadler,
who first saw them in Gödel’s incompleteness proof (Gödel,1931),
the core of which is a proof-checker for logic, coded using recur-
sive equations in a style that would seem not unfamiliar to users

of Haskell. They were earlier incorporated into Darlington’s NPL
(Burstall and Darlington, 1977), and (partially at Wadler’s instiga-
tion) into Miranda.

This seemingly innocuous bit of syntax provoked a great dealof
controversy. Some users consideredn+k patterns essential, because
they allowed function definition by cases over the natural numbers
(as infib above). But others worried that theInt type did not, in
fact, denote the natural numbers. Indeed, worse was to come:since
in Haskell the numeric literals (0, 1 etc) were overloaded, it seemed
only consistent thatfib’s type should be

fib :: Num a => a -> a

although the programmer is, as always, allowed to specify a less
general type, such asInt -> Int above. In Haskell, one can
perfectly well applyfib to matrices! This gave rise to a substantial
increase in the complexity of pattern matching, which now had
to invoke overloaded comparison and arithmetic operations. Even
syntactic niceties resulted:

n + 1 = 7

is a (function) definition of+, while

(n + 1) = 7

is a (pattern) definition ofn—so apparently redundant brackets
change the meaning completely!

Indeed, these complications led to the majority of the Haskell
Committee suggesting thatn+k patterns be removed. One of the
very few bits of horse-trading in the design of Haskell occurred
when Hudak, then Editor of the Report, tried to convince Wadler to
agree to removen+k patterns. Wadler said he would agree to their
removal only if some other feature went (we no longer remember
which). In the end,n+k patterns stayed.

5.8 Views

Wadler had noticed there was a tension between the convenience of
pattern matching and the advantages of data abstraction, and sug-
gestedviewsas a programming language feature that lessens this
tension. A view specifies an isomorphism between two data types,
where the second must be algebraic, and then permits constructors
of the second type to appear in patterns that match against the first
(Wadler, 1987). Several variations on this initial proposal have been
suggested, and Chris Okasaki (Okasaki, 1998b) provides an excel-
lent review of these.

The original design of Haskell included views, and was basedon
the notion that the constructors and views exported by a module
should be indistinguishable. This led to complications in export
lists and derived type classes, and by April 1989 Wadler was ar-
guing that the language could be simplified by removing views.

At the time views were removed, Peyton Jones wanted to add views
to an experimental extension of Haskell, and a detailed proposal
to include views in Haskell 1.3 was put forward by Burton and
others (Burton et al., 1996). But views never made it back into
the language nor appeared among the many extensions available
in some implementations.

There is some talk of including views or similar features in
Haskell′, a successor to Haskell now under discussion, but they
are unlikely to be included as they do not satisfy the criterion of
being “tried and true”.

6. Haskell as a type-system laboratory
Aside from laziness, type classes are undoubtedly Haskell’s most
distinctive feature. They were originally proposed early in the de-
sign process, by Wadler and Blott (Wadler and Blott, 1989), as a

principled solution to a relatively small problem (operator over-
loading for numeric operations and equality). As time went on, type
classes began to be generalised in a variety of interesting and sur-
prising ways, some of them summarised in a 1997 paper “Type
classes: exploring the design space” (Peyton Jones et al., 1997).

An entirely unforeseen development—perhaps encouraged bytype
classes—is that Haskell has become a kind of laboratory in which
numerous type-system extensions have been designed, imple-
mented, and applied. Examples include polymorphic recursion,
higher-kinded quantification, higher-rank types, lexically scoped
type variables, generic programming, template meta-programming,
and more besides. The rest of this section summarises the historical
development of the main ideas in Haskell’s type system, beginning
with type classes.

6.1 Type classes

The basic idea of type classes is simple enough. Consider equality,
for example. In Haskell we may write

class Eq a where
(==) :: a -> a -> Bool
(/=) :: a -> a -> Bool

instance Eq Int where
i1 == i2 = eqInt i1 i2
i1 /= i2 = not (i1 == i2)

instance (Eq a) => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = (x == y) && (xs == ys)
xs /= ys = not (xs == ys)

member :: Eq a => a -> [a] -> Bool
member x [] = False
member x (y:ys) | x==y = True

| otherwise = member x ys

In the instance forEq Int, we assume thateqInt is a primi-
tive function defining equality at typeInt. The type signature for
member uses a form of bounded quantification: it declares that
member has typea -> [a] -> Bool, for any typea that is an
instance of the classEq. A class declaration specifies the meth-
ods of the class (just two in this case, namely(==) and(/=)) and
their types. A type is made into an instance of the class usingan
instance declaration, which provides an implementation for each
of the class’s methods, at the appropriate instance type.

A particularly attractive feature of type classes is that they can
be translated into so-called “dictionary-passing style” by a type-
directed transformation. Here is the translation of the above code:

data Eq a = MkEq (a->a->Bool) (a->a->Bool)
eq (MkEq e _) = e
ne (MkEq _ n) = n

dEqInt :: Eq Int
dEqInt = MkEq eqInt (\x y -> not (eqInt x y))
dEqList :: Eq a -> Eq [a]
dEqList d = MkEq el (\x y -> not (el x y))

where el [] [] = True
el (x:xs) (y:ys) = eq d x y && el xs ys
el _ _ = False

member :: Eq a -> a -> [a] -> Bool
member d x [] = False
member d x (y:ys) | eq d x y = True

| otherwise = member d x ys

Theclass declaration translates to adata type declaration, which
declares adictionary for Eq, that is, a record of its methods. The
functionseq andne select the equality and inequality method from
this dictionary. Themember function takes a dictionary parameter
of typeEq a, corresponding to theEq a constraint in its original
type, and performs the membership test by extracting the equal-
ity method from this dictionary usingeq. Finally, aninstance
declaration translates to a function that takes some dictionaries and
returns a more complicated one. For example,dEqList takes a dic-
tionary forEq a and returns a dictionary forEq [a].

Once type classes were adopted as part of the language design, they
were immediately applied to support the following main groups
of operations: equality (Eq) and ordering (Ord); converting values
to and from strings (Read and Show); enumerations (Enum); nu-
meric operations (Num, Real, Integral, Fractional, Floating,
RealFrac andRealFloat); and array indexing (Ix). The rather
daunting collection of type classes used to categorise the numeric
operations reflected a slightly uneasy compromise between alge-
braic purity (which suggested many more classes, such asRing
andMonoid) and pragmatism (which suggested fewer).

In most statically typed languages, the type system checks consis-
tency, but one can understand how the program willexecutewithout
considering the types. Not so in Haskell: the dynamic semantics of
the program necessarily depends on the way that its type-class over-
loading is resolved by the type checker. Type classes have proved to
be a very powerful and convenient mechanism but, because more is
happening “behind the scenes”, it is more difficult for the program-
mer to reason about what is going to happen.

Type classes were extremely serendipitous: they were invented at
exactly the right moment to catch the imagination of the Haskell
Committee, and the fact that the very first release of Haskellhad
thirteen type classes in its standard library indicates howrapidly
they became pervasive. But beyond that, they led to a wildly richer
set of opportunities than their initial purpose, as we discuss in the
rest of this section.

6.2 The monomorphism restriction

A major source of controversy in the early stages was the so-called
“monomorphism restriction.” Suppose thatgenericLength has
this overloaded type:

genericLength :: Num a => [b] -> a

Now consider this definition:

f xs = (len, len)
where
len = genericLength xs

It looks as iflen should be computed only once, but it can ac-
tually be computedtwice. Why? Because we can infer the type
len :: (Num a) => a; when desugared with the dictionary-
passing translation,len becomes afunction that is called once
for each occurrence oflen, each of which might used at a different
type.

Hughes argued strongly that it was unacceptable to silentlydupli-
cate computation in this way. His argument was motivated by a
program he had written that ran exponentially slower than heex-
pected. (This was admittedly with a very simple compiler, but we
were reluctant to make performance differences as big as this de-
pendent on compiler optimisations.)

Following much debate, the committee adopted the now-notorious
monomorphism restriction. Stated briefly, it says that a definition
that does not look like a function (i.e. has no arguments on the
left-hand side) should be monomorphic in any overloaded type

variables. In this example, the rule forceslen to be used at the
same type at both its occurrences, which solves the performance
problem. The programmer can supply an explicit type signature for
len if polymorphic behaviour is required.

The monomorphism restriction is manifestly a wart on the lan-
guage. It seems to bite every new Haskell programmer by giving
rise to an unexpected or obscure error message. There has been
much discussion of alternatives. The Glasgow Haskell Compiler
(GHC, Section 9.1) provides a flag:

-fno-monomorphism-restriction

to suppress the restriction altogether. But in all this time, no truly
satisfactory alternative has evolved.

6.3 Ambiguity and type defaulting

We rapidly discovered a second source of difficulty with type
classes, namelyambiguity. Consider the following classic exam-
ple:

show :: Show a => a -> String
read :: Read a => String -> a

f :: String -> String
f s = show (read s)

Here,show converts a value of any type in classShow to aString,
while read does does the reverse for any type in classRead.
So f appears well-typed... but the difficulty is there is nothing
to specify the type of the intermediate subexpression(read s).
Shouldread parse anInt from s, or aFloat, or even a value of
typeMaybe Int? There is nothing to say which should be chosen,
and the choice affects the semantics of the program. Programs like
this are said to beambiguousand are rejected by the compiler. The
programmer may then say which types to use by adding a type
signature, thus:

f :: String -> String
f s = show (read s :: Int)

However, sometimes rejecting the un-annotated program seems
unacceptably pedantic. For example, consider the expression

(show (negate 4))

In Haskell, the literal4 is short for(fromInteger (4::Integer)),
and the types of the functions involved are as follows:

fromInteger :: Num a => Integer -> a
negate :: Num a => a -> a
show :: Show a => a -> String

Again the expression is ambiguous, because it is not clear whether
the computation should be done at typeInt, or Float, or indeed
any other numeric type. Performing numerical calculationson con-
stants is one of the very first things a Haskell programmer does,
and furthermore there is more reason to expect numeric opera-
tions to behave in similar ways for different types than there is
for non-numeric operations. After much debate, we compromised
by adding anad hoc rule for choosing a particular default type.
When at least one of the ambiguous constraints is numeric butall
the constraints involve only classes from the Standard Prelude, then
the constrained type variable isdefaultable. The programmer may
specify a list of types in a special top-leveldefault declaration,
and these types are tried, in order, until one satisfies all the con-
straints.

This rule is clumsy but conservative: it tries to avoid making an
arbitrary choice in all but a few tightly constrained situations. In
fact, it seemstoo conservative for Haskell interpreters. Notably,

consider the expression(show []). Are we trying toshow a list of
Char or a list ofInt, or what? Of course, it does not matter, since
the result is the same in all cases, but there is no way for the type
system to know that. GHC therefore relaxes the defaulting rules
further for its interactive version GHCi.

6.4 Higher-kinded polymorphism

The first major, unanticipated development in the type-class story
came when Mark Jones, then at Yale, suggested parameterising a
class over a typeconstructor instead of over atype, an idea he
calledconstructor classes(Jones, 1993). The most immediate and
persuasive application of this idea was to monads (discussed in
Section 7), thus:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

Here, the type variablem has kind5 *->*, so that theMonad class
can be instantiated at a type constructor. For example, thisdeclara-
tion makes theMaybe type an instance ofMonad by instantiatingm
with Maybe, which has kind*->*:

data Maybe a = Nothing | Just a

instance Monad Maybe where
return x = Just x
Nothing >>= k = Nothing
Just x >>= k = k x

So, for example, instantiatingreturn’s type (a -> m a) with
m=Maybe gives the type(a -> Maybe a), and that is indeed the
type of thereturn function in theinstance declaration.

Jones’s paper appeared in 1993, the same year that monads became
popular for I/O (Section 7). The fact that type classes so directly
supported monads made monads far more accessible and popu-
lar; and dually, the usefulness of monadic I/O ensured the adoption
of higher-kinded polymorphism. However, higher-kinded polymor-
phism has independent utility: it is entirely possible, andoccasion-
ally very useful, to declare data types parameterised over higher
kinds, such as:

data ListFunctor f a = Nil | Cons a (f a)

Furthermore, one may need functions quantified over higher-
kinded type variables to process nested data types (Okasaki, 1999;
Bird and Paterson, 1999).

Type inference for a system involving higher kinds seems at first to
require higher-order unification, which is both much harderthan
traditional first-order unification and lacks most general unifiers
(Huet, 1975). However, by treating higher-kinded type construc-
tors as uninterpreted functions and not allowing lambda at the type
level, Jones’s paper (Jones, 1993) shows that ordinary first-order
unification suffices. The solution is a littlead hoc—for example,
the order of type parameters in a data-type declaration can matter—
but it has an excellent power-to-weight ratio. In retrospect, higher-
kinded quantification is a simple, elegant, and useful generalisa-
tion of the conventional Hindley-Milner typing discipline(Milner,
1978). All this was solidified into the Haskell 1.3 Report, which
was published in 1996.

6.5 Multi-parameter type classes

While Wadler and Blott’s initial proposal focused on type classes
with a single parameter, they also observed that type classes might

5 Kinds classify types just as types classify values. The kind* is pronounced
“type”, so if m has kind*->*, thenm is a type-level function mapping one
type to another.

be generalised to multiple parameters. They gave the following
example:

class Coerce a b where
coerce :: a -> b

instance Coerce Int Float where
coerce = convertIntToFloat

Whereas a single-parameter type class can be viewed as a predicate
over types (for example,Eq a holds whenevera is a type for
which equality is defined), a multi-parameter class can be viewed a
relation between types (for example,Coerce a b holds whenever
a is a subtype ofb).

Multi-parameter type classes were discussed in several early pa-
pers on type classes (Jones, 1991; Jones, 1992; Chen et al., 1992),
and they were implemented in Jones’s language Gofer (see Sec-
tion 9.3) in its first 1991 release. The Haskell Committee wasre-
sistant to including them, however. We felt that single-parameter
type classes were already a big step beyond our initial conservative
design goals, and they solved the problem we initially addressed
(overloading equality and numeric operations). Going beyond that
would be an unforced step into the dark, and we were anxious about
questions of overlap, confluence, and decidability of type inference.
While it was easy to definecoerce as above, it was less clear when
type inference would make it usable in practice. As a result,Haskell
98 retained the single-parameter restriction.

As time went on, however, user pressure grew to adopt multi-
parameter type classes, and GHC adopted them in 1997 (version
3.00). However, multi-parameter type classes did not really come
into their own until the advent of functional dependencies.

6.6 Functional dependencies

The trouble with multi-parameter type classes is that it is very
easy to write ambiguous types. For example, consider the following
attempt to generalise theNum class:

class Add a b r where
(+) :: a -> b -> r

instance Add Int Int Int where ...
instance Add Int Float Float where ...
instance Add Float Int Float where ...
instance Add Float Float Float where ...

Here we allow the programmer to add numbers of different types,
choosing the result type based on the input types. Alas, eventrivial
programs have ambiguous types. For example, consider:

n = x + y

wherex andy have typeInt. The difficulty is that the compiler
has no way to figure out the type ofn. The programmer intended
that if the arguments of(+) are bothInt then so is the result, but
that intent is implied only by theabsenceof an instance declaration
such as

instance Add Int Int Float where ...

In 2000, Mark Jones published “Type classes with functionalde-
pendencies”, which solves the problem (Jones, 2000). The idea is
to borrow a technique from the database community and declare an
explicit functional dependency between the parameters of aclass,
thus:

class Add a b r | a b -> r where ...

The “a b -> r” says that fixinga andb should fixr, resolving
the ambiguity.

But that was not all. The combination of multi-parameter classes
and functional dependencies turned out to allow computation at the
type level. For example:

data Z = Z
data S a = S a

class Sum a b r | a b -> r

instance Sum Z b b
instance Sum a b r => Sum (S a) b (S r)

Here,Sum is a three-parameter class with no operations. The re-
lation Sum ta tb tc holds if the typetc is the Peano represen-
tation (at the type level) of the sum ofta andtb. By liberalising
other Haskell 98 restrictions on the form of instance declarations
(and perhaps thereby risking non-termination in the type checker),
it turned out that one could write arbitrary computations atthe type
level, in logic-programming style. This realisation gave rise to an
entire cottage industry of type-level programming that shows no
sign of abating (e.g., (Hallgren, 2001; McBride, 2002; Kiselyov
et al., 2004), as well as much traffic on the Haskell mailing list).
It also led to a series of papers suggesting more direct ways of ex-
pressing such programs (Neubauer et al., 2001; Neubauer et al.,
2002; Chakravarty et al., 2005b; Chakravarty et al., 2005a).

Jones’s original paper gave only an informal description offunc-
tional dependencies, but (as usual with Haskell) that did not stop
them from being implemented and widely used. These applications
have pushed functional dependencies well beyond their motivat-
ing application. Despite their apparent simplicity, functional depen-
dencies have turned out to be extremely tricky in detail, especially
when combined with other extensions such as local universaland
existential quantification (Section 6.7). Efforts to understand and
formalise the design space are still in progress (Glynn et al., 2000;
Sulzmann et al., 2007).

6.7 Beyond type classes

As if all this were not enough, type classes have spawned numer-
ous variants and extensions (Peyton Jones et al., 1997; Lämmel and
Peyton Jones, 2005; Shields and Peyton Jones, 2001). Furthermore,
even leaving type classes aside, Haskell has turned out to bea set-
ting in which advanced type systems can be explored and applied.
The rest of this section gives a series of examples; space precludes
a proper treatment of any of them, but we give citations for the
interested reader to follow up.

Existential data constructors A useful programming pattern is to
package up a value with functions over that value and existentially
quantify the package (Mitchell and Plotkin, 1985). Perry showed in
his dissertation (Perry, 1991b; Perry, 1991a) and in his implemen-
tation of Hope+ that this pattern could be expressed with almost no
new language complexity, simply by allowing a data constructor
to mention type variables in its arguments that do not appearin its
result. For example, in GHC one can say this:

data T = forall a. MkT a (a->Int)
f :: T -> Int
f (MkT x g) = g x

Here the constructorMkT has type∀a.a → (a → Int) → T;
note the occurrence ofa in the argument type but not the result.
A value of typeT is a package of a value of some (existentially
quantified) typeτ , and a function of typeτ → Int. The package
can be unpacked with ordinary pattern matching, as shown in the
definition off.

This simple but powerful idea was later formalised by Odersky
and Läufer (Läufer and Odersky, 1994). Läufer also described how

to integrate existentials with Haskell type classes (Läufer, 1996).
This extension was first implemented in hbc and is now a widely
used extension of Haskell 98: every current Haskell implementation
supports the extension.

Extensible records Mark Jones showed that type classes were
an example of a more general framework he calledqualified types
(Jones, 1994). With his student Benedict Gaster he developed a sec-
ond instance of the qualified-type idea, a system of polymorphic,
extensible records called TRex (Gaster and Jones, 1996; Gaster,
1998). The type qualification in this case is a collection oflacks
predicates, thus:

f :: (r\x, r\y)
=> Rec (x::Int, y::Int | r) -> Int

f p = (#x p) + (#y p)

The type should be read as follows:f takes an argument record with
anx andy fields, plus other fields described by the row-variabler,
and returns anInt. The lackspredicate(r\x, r\y) says thatr
should range only over rows that do not have anx or y field—
otherwise the argument typeRec (x::Int, y::Int | r)would
be ill formed. The selector#x selects thex field from its argument,
so (#x p) is what would more traditionally be writtenp.x. The
system can accommodate a full complement of polymorphic oper-
ations: selection, restriction, extension, update, and field renaming
(although not concatenation).

Just as each type-class constraint corresponds to a runtimeargu-
ment (a dictionary), so eachlackspredicate is also witnessed by a
runtime argument. The witness for the predicate(r\l) is the offset
in r at which a field labelledl would be inserted. Thusf receives
extra arguments that tell it where to find the fields it needs. The idea
of passing extra arguments to record-polymorphic functions is not
new (Ohori, 1995), but the integration with a more general frame-
work of qualified types is particularly elegant; the reader may find
a detailed comparison in Gaster’s dissertation (Gaster, 1998).

Implicit parameters A third instantiation of the qualified-type
framework, so-called “implicit parameters”, was developed by
Lewis, Shields, Meijer, and Launchbury (Lewis et al., 2000). Sup-
pose you want to write a pretty-printing library that is parame-
terised by the page width. Then each function in the library must
take the page width as an extra argument, and in turn pass it tothe
functions it calls:

pretty :: Int -> Doc -> String
pretty pw doc = if width doc > pw

then pretty2 pw doc
else pretty3 pw doc

These extra parameters are quite tiresome, especially whenthey
are only passed on unchanged. Implicit parameters arrange that
this parameter passing happens implicitly, rather like dictionary
passing, thus:

pretty :: (?pw::Int) => Doc -> String
pretty doc = if width doc > ?pw

then pretty2 doc
else pretty3 doc

The explicit parameter turns into an implicit-parameter type con-
straint; a reference to the page width itself is signalled by?pw; and
the calls topretty2 andpretty3 no longer pass an explicitpw pa-
rameter (it is passed implicitly instead). One way of understanding
implicit parameters is that they allow the programmer to make se-
lective use of dynamic (rather than lexical) scoping. (See (Kiselyov
and Shan, 2004) for another fascinating approach to the problem of
distributing configuration information such as the page width.)

Polymorphic recursion This feature allows a function to be used
polymorphically in its own definition. It is hard toinfer the type of
such a function, but easy tocheckthat the definition is well typed,
given the type signature of the function. So Haskell 98 allows poly-
morphic recursion when (and only when) the programmer explic-
itly specifies the type signature of the function. This innovation is
extremely simple to describe and implement, and sometimes turns
out to be essential, for example when using nested data types(Bird
and Paterson, 1999).

Higher-rank types Once one starts to use polymorphic recursion,
it is not long before one encounters the need to abstract overa
polymorphic function. Here is an example inspired by (Okasaki,
1999):

type Sq v a = v (v a) -- Square matrix:
-- A vector of vectors

sq_index :: (forall a . Int -> v a -> a)
-> Int -> Int -> Sq v a -> a

sq_index index i j m = index i (index j m)

The functionindex is used insidesq_index at two different types,
so it must be polymorphic. Hence the first argument tosq_index is
a polymorphic function, andsq_index has a so-called rank-2 type.
In the absence of any type annotations, higher-rank types make type
inference undecidable; but a few explicit type annotationsfrom the
programmer (such as that forsq_index above) transform the type
inference problem into an easy one (Peyton Jones et al., 2007).

Higher-rank types were first implemented in GHC in 2000, in
a ratherad hoc manner. At that time there were two main mo-
tivations: one was to allow data constructors with polymorphic
fields, and the other was to allow therunST function to be de-
fined (Launchbury and Peyton Jones, 1995). However, once im-
plemented, another cottage industry sprang up offering examples
of their usefulness in practice (Baars and Swierstra, 2002;Lämmel
and Peyton Jones, 2003; Hinze, 2000; Hinze, 2001), and GHC’sim-
plementation has become much more systematic and general (Pey-
ton Jones et al., 2007).

Generalised algebraic data typesGADTs are a simple but far-
reaching generalisation of ordinary algebraic data types (Section 5).
The idea is to allow a data constructor’s return type to be specified
directly:

data Term a where
Lit :: Int -> Term Int
Pair :: Term a -> Term b -> Term (a,b)
..etc..

In a function that performs pattern matching onTerm, the pattern
match givestypeas well asvalue information. For example, con-
sider this function:

eval :: Term a -> a
eval (Lit i) = i
eval (Pair a b) = (eval a, eval b)
...

If the argument matchesLit, it must have been built with aLit
constructor, soa must beInt, and hence we may returni (anInt)
in the right-hand side. This idea is very well known in the type-
theory community (Dybjer, 1991). Its advent in the world of pro-
gramming languages (under various names) is more recent, but it
seems to have many applications, including generic programming,
modelling programming languages, maintaining invariantsin data
structures (e.g., red-black trees), expressing constraints in domain-
specific embedded languages (e.g. security constraints), and mod-
elling objects (Hinze, 2003; Xi et al., 2003; Cheney and Hinze,

2003; Sheard and Pasalic, 2004; Sheard, 2004). Type inference for
GADTs is somewhat tricky, but is now becoming better understood
(Pottier and Régis-Gianas, 2006; Peyton Jones et al., 2004), and
support for GADTs was added to GHC in 2005.

Lexically scoped type variablesIn Haskell 98, it is sometimes
impossible to write a type signature for a function, becausetype
signatures are alwaysclosed. For example:

prefix :: a -> [[a]] -> [[a]]
prefix x yss = map xcons yss

where
xcons :: [a] -> [a] -- BAD!
xcons ys = x : ys

The type signature forxcons is treated by Haskell 98 as speci-
fying the type∀a.[a] → [a], and so the program is rejected. To
fix the problem, some kind of lexically scoped type variablesare
required, so that “a” is bound byprefix and used in the signa-
ture forxcons. In retrospect, the omission of lexically scoped type
variables was a mistake, because polymorphic recursion and(more
recently) higher-rank types absolutely require type signatures. In-
terestingly, though, scoped type variables were not omitted after
fierce debate; on the contrary, they were barely discussed; we sim-
ply never realised how important type signatures would prove to
be.

There are no great technical difficulties here, although there is an
interesting space of design choices (Milner et al., 1997; Meijer and
Claessen, 1997; Shields and Peyton Jones, 2002; Sulzmann, 2003).

Generic programming A genericfunction behaves in a uniform
way on arguments of any data types, while having a few type-
specific cases. An example might be a function that capitalises all
the strings that are in a big data structure: the generic behaviour is
to traverse the structure, while the type-specific case is for strings.
In another unforeseen development, Haskell has served as the host
language for a remarkable variety of experiments in genericpro-
gramming, including: approaches that use pure Haskell 98 (Hinze,
2004); ones that require higher-rank types (Lämmel and Peyton
Jones, 2003; Lämmel and Peyton Jones, 2005); ones that require
a more specific language extension, such as PolyP (Jansson and
Jeuring, 1997), and derivable type classes (Hinze and Peyton Jones,
2000); and whole new language designs, such as Generic Haskell
(Löh et al., 2003). See (Hinze et al., 2006) for a recent survey of
this active research area.

Template meta-programming Inspired by the template meta-
programming of C++ and the staged type system of MetaML
(Taha and Sheard, 1997), GHC supports a form of type-safe meta-
programming (Sheard and Peyton Jones, 2002).

6.8 Summary

Haskell’s type system has developed extremely anarchically. Many
of the new features described above were sketched, implemented,
and applied well before they were formalised. This anarchy,which
would be unthinkable in the Standard ML community, has both
strengths and weaknesses. The strength is that the design space is
explored much more quickly, and tricky corners are often (but not
always!) exposed. The weakness is that the end result is extremely
complex, and programs are sometimes reduced to experimentsto
see what will and will not be acceptable to the compiler.

Some notable attempts have been made to bring order to this chaos.
Karl-Filip Faxen wrote a static semantics for the whole of Haskell
98 (Faxen, 2002). Mark Jones, who played a prominent role in sev-
eral of these developments, developed a theory ofqualified types, of
which type classes, implicit parameters, and extensible records are
all instances (Jones, 1994; Jones, 1995). More recently, hewrote

a paper giving the complete code for a Haskell 98 type inference
engine, which is a different way to formalise the system (Jones,
1999). Martin Sulzmann and his colleagues have applied the the-
ory of constraint-handling rulesto give a rich framework to rea-
son about type classes (Sulzmann, 2006), including the subtleties
of functional dependencies (Glynn et al., 2000; Sulzmann etal.,
2007).

These works do indeed nail down some of the details, but the result
is still dauntingly complicated. The authors of the presentpaper
have the sense that we are still awaiting a unifying insight that will
not only explain but also simplify the chaotic world of type classes,
without throwing the baby out with the bath water.

Meanwhile, it is worth askingwhyHaskell has proved so friendly
a host language for type-system innovation. The following reasons
seem to us to have been important. On the technical side:

• The purity of the language removed a significant technical ob-
stacle to many type-system innovations, namely dealing with
mutable state.

• Type classes, and their generalisation to qualified types (Jones,
1994), provided a rich (albeit rather complex) framework into
which a number of innovations fitted neatly; examples include
extensible records and implicit parameters.

• Polymorphic recursion was in the language, so the idea that
every legal program should typecheck without type annotations
(a tenet of ML) had already been abandoned. This opens the
door to features for which unaided inference is infeasible.

But there were also nontechnical factors at work:

• The Haskell Committee encouraged innovation right from the
beginning and, far from exercising control over the language,
disbanded itself in 1999 (Section 3.7).

• The two most widely used implementations (GHC, Hugs) both
had teams that encouraged experimentation.

• Haskell has a smallish, and rather geeky, user base. New fea-
tures are welcomed, and even breaking changes are accepted.

7. Monads and input/output
Aside from type classes (discussed in Section 6),monadsare one
of the most distinctive language design features in Haskell. Monads
were not in the original Haskell design, because when Haskell was
born a “monad” was an obscure feature of category theory whose
implications for programming were largely unrecognised. In this
section we describe the symbiotic evolution of Haskell’s support
for input/output on the one hand, and monads on the other.

7.1 Streams and continuations

The story begins with I/O. The Haskell Committee was resolute in
its decision to keep the language pure—meaning no side effects—
so the design of the I/O system was an important issue. We did
not want to lose expressive power just because we were “pure,”
since interfacing to the real world was an important pragmatic
concern. Our greatest fear was that Haskell would be viewed as
a toy language because we did a poor job addressing this important
capability.

At the time, the two leading contenders for a solution to thisprob-
lem werestreamsand continuations. Both were understood well
enough theoretically, both seemed to offer considerable expressive-
ness, and both were certainly pure. In working out the details of
these approaches, we realised that in fact they were functionally
equivalent—that is, it was possible to completely model stream I/O
with continuations, and vice versa. Thus in the Haskell 1.0 Report,

we first defined I/O in terms of streams, but also included a com-
pletely equivalent design based on continuations.

It is worth mentioning that a third model for I/O was also discussed,
in which the state of the world is passed around and updated, much
as one would pass around and update any other data structure in a
pure functional language. This “world-passing” model was never a
serious contender for Haskell, however, because we saw no easy
way to ensure “single-threaded” access to the world state. (The
Clean designers eventually solved this problem through theuse
of “uniqueness types” (Achten and Plasmeijer, 1995; Barendsen
and Smetsers, 1996).) In any case, all three designs were consid-
ered, and Hudak and his student Sundaresh wrote a report describ-
ing them, comparing their expressiveness, and giving translations
between them during these deliberations (Hudak and Sundaresh,
1989). In this section we give a detailed account of the stream-
based and continuation-based models of I/O, and follow in Sec-
tion 7.2 with the monadic model of I/O that was adopted for Haskell
1.3 in 1996.

Stream-based I/O Using the stream-based model of purely func-
tional I/O, used by both Ponder and Miranda, a program is repre-
sented as a value of type:

type Behaviour = [Response] -> [Request]

The idea is that a program generates aRequest to the operating
system, and the operating system reacts with someResponse.
Lazy evaluation allows a program to generate a request priorto
processing any responses. A suitably rich set ofRequests and
Responses yields a suitably expressive I/O system. Here is a partial
definition of theRequest andResponse data types as defined in
Haskell 1.0:

data Request = ReadFile Name
| WriteFile Name String
| AppendFile Name String
| DeleteFile Name
| ...

data Response = Success
| Str String
| Failure IOError
| ...

type Name = String

As an example, Figure 3 presents a program, taken from the Haskell
1.0 Report, that prompts the user for the name of a file, echoesthe
filename as typed by the user, and then looks up and displays the
contents of the file on the standard output. Note the relianceon lazy
patterns (indicated by~) to assure that the response is not “looked
at” prior to the generation of the request.

With this treatment of I/O there was no need for any special-
purpose I/O syntax or I/O constructs. The I/O system was defined
entirely in terms of how the operating system interpreted a program
having the above type—that is, it was defined in terms of what re-
sponse the OS generated for each request. An abstract specification
of this behaviour was defined in the Appendix of the Haskell 1.0
Report, by giving a definition of the operating system as a function
that took as input an initial state and a collection of Haskell pro-
grams and used a single nondeterministic merge operator to capture
the parallel evaluation of the multiple Haskell programs.

Continuation-based I/O Using the continuation-based model of
I/O, a program was still represented as a value of typeBehaviour,
but instead of having the user manipulate the requests and re-
sponses directly, a collection oftransactionswere defined that cap-

tured the effect of each request/response pair in a continuation-
passing style. Transactions were just functions. For each request
(a constructor, such asReadFile) there corresponded a transaction
(a function, such asreadFile).

The requestReadFile name induced either a failure response
“Failure msg” or success response “Str contents” (see above).
So the corresponding transactionreadFile name accepted two
continuations, one for failure and one for success.

type Behaviour = [Response] -> [Request]
type FailCont = IOError -> Behaviour
type StrCont = String -> Behaviour

One can define this transaction in terms of streams as follows.

readFile :: Name -> FailCont -> StrCont -> Behaviour
readFile name fail succ ~(resp:resps) =

= ReadFile name :
case resp of

Str val -> succ val resps
Failure msg -> fail msg resps

If the transaction failed, the failure continuation would be applied
to the error message; if it succeeded, the success continuation
would be applied to the contents of the file. In a similar way, it
is straightforward to define each of the continuation-basedtransac-
tions in terms of the stream-based model of I/O.

Using this style of I/O, the example given earlier in stream-based
I/O can be rewritten as shown in Figure 4. The code uses the
standard failure continuation,abort, and an auxiliary function
let. The use of a function calledlet reflects the fact thatlet
expressions were not in Haskell 1.0! (They appeared in Haskell
1.1.)

Although the two examples look somewhat similar, the continua-
tion style was preferred by most programmers, since the flow of
control was more localised. In particular, the pattern matching re-
quired by stream-based I/O forces the reader’s focus to jumpback
and forth between the patterns (representing the responses) and the
requests.

Above we take streams as primitive and define continuations in
terms of them. Conversely, with some cleverness it is also possi-
ble to take continuations as primitive and define streams in terms
of them (see (Hudak and Sundaresh, 1989), where the definition
of streams in terms of continuations is attributed to PeytonJones).
However, the definition of streams in terms of continuationswas
inefficient, requiring linear space and quadratic time in terms of
the number of requests issued, as opposed to the expected constant
space and linear time. For this reason, Haskell 1.0 defined streams
as primitive, and continuations in terms of them, even though con-
tinuations were considered easier to use for most purposes.

7.2 Monads

We now pause the story of I/O while we bringmonadsonto the
scene. In 1989, Eugenio Moggi published at LICS a paper on
the use of monads from category theory to describe features of
programming languages, which immediately attracted a great deal
of attention (Moggi, 1989; Moggi, 1991). Moggi used monads to
modularise the structure of a denotational semantics, systematising
the treatment of diverse features such as state and exceptions. But
a denotational semantics can be viewed as an interpreter written in
a functional language. Wadler recognised that the technique Moggi
had used to structure semantics could be fruitfully appliedto struc-
ture other functional programs (Wadler, 1992a; Wadler, 1992b). In
effect, Wadler used monads toexpressthe same programming lan-
guage features that Moggi used monads todescribe.

For example, say that you want to write a program to rename every
occurrence of a bound variable in a data structure representing a
lambda expression. This requires some way to generate a fresh
name every time a bound variable is encountered. In ML, you
would probably introduce a reference cell that contains a count,
and increment this count each time a fresh name is required. In
Haskell, lacking reference cells, you would probably arrange that
each function that must generate fresh names accepts an old value
of the counter and returns an updated value of the counter. This
is straightforward but tedious, and errors are easily introduced by
misspelling one of the names used to pass the current count into
or out of a function application. Using astate transformermonad
would let you hide all the “plumbing.” The monad itself would
be responsible for passing counter values, so there is no chance
to misspell the associated names.

A monad consists of a type constructorM and a pair of functions,
return and >>= (sometimes pronounced “bind”). Here are their
types:

return :: a -> M a
(>>=) :: M a -> (a -> M b) -> M b

One should read “M a” as the type of acomputationthat returns a
value of typea (and perhaps performs some side effects). Say that
m is an expression of typeM a andn is an expression of typeM b
with a free variablex of typea. Then the expression

m >>= (\x -> n)

has typeM b. This performs the computation indicated bym, binds
the value returned tox, and performs the computation indicated by
n. It is analogous to the expression

let x = m in n

in a language with side effects such as ML, except that the types
do not indicate the presence of the effects: in the ML version,
m has typea instead ofM a, and n has typeb instead ofM b.
Further, monads give quite a bit of freedom in how one defines the
operatorsreturn and>>=, while ML fixes a single built-in notion
of computation and sequencing.

Here are a few examples of the notions of side effects that onecan
define with monads:

• A state transformeris used to thread state through a program.
HereM a is ST s a, where s is the state type.

type ST s a = s -> (a,s)

A state transformer is a function that takes the old state (oftype
s) and returns a value (of typea) and the new state (of types).
For instance, to thread a counter through a program we might
takes to be integer.

• A state readeris a simplified state transformer. It accepts a state
that the computation may depend upon, but the computation
never changes the state. HereM a is SR s a, where s is the
state type.

type SR s a = s -> a

• An exceptionmonad either returns a value or raises an excep-
tion. HereM a is Exc e a, wheree is the type of the error
message.

data Exc e a = Exception e | OK a

• A continuation monad accepts a continuation. HereM a is
Cont r a, wherer is the result type of the continuation.

type Cont r a = (a -> r) -> r

main :: Behaviour
main ~(Success : ~((Str userInput) : ~(Success : ~(r4 : _))))

= [AppendChan stdout "enter filename\n",
ReadChan stdin,
AppendChan stdout name,
ReadFile name,
AppendChan stdout

(case r4 of
Str contents -> contents
Failure ioerr -> "can’t open file")

] where (name : _) = lines userInput

Figure 3. Stream-based I/O

main :: Behaviour
main = appendChan stdout "enter filename\n" abort (

readChan stdin abort (\userInput ->
letE (lines userInput) (\(name : _) ->
appendChan stdout name abort (
readFile name fail (\contents ->
appendChan stdout contents abort done)))))

where
fail ioerr = appendChan stdout "can’t open file" abort done

abort :: FailCont
abort err resps = []

letE :: a -> (a -> b) -> b
letE x k = k x

Figure 4. Continuation I/O

main :: IO ()
main = appendChan stdout "enter filename\n" >>

readChan stdin >>= \userInput ->
let (name : _) = lines userInput in
appendChan stdout name >>
catch (readFile name >>= \contents ->

appendChan stdout contents)
(appendChan stdout "can’t open file")

Figure 5. Monadic I/O

main :: IO ()
main = do appendChan stdout "enter filename\n"

userInput <- readChan stdin
let (name : _) = lines userInput
appendChan stdout name
catch (do contents <- readFile name

appendChan stdout contents)
(appendChan stdout "can’t open file")

Figure 6. Monadic I/O usingdo notation

• A list monad can be used to model nondeterministic computa-
tions, which return a sequence of values. HereM a is List a,
which is just the type of lists of values of typea.

type List a = [a]

• A parser monad can be used to model parsers. The input is
the string to be parsed, and the result is list of possible parses,
each consisting of the value parsed and the remaining unparsed
string. It can be viewed as a combination of the state trans-
former monad (where the state is the string being parsed) and
the list monad (to return each possible parse in turn). HereM a
is Parser a.

type Parser a = String -> [(a,String)]

Each of the above monads has corresponding definitions ofreturn
and>>=. There are three laws that these definitions should satisfy
in order to be a true monad in the sense defined by category
theory. These laws guarantee that composition of functionswith
side effects isassociativeand has anidentity(Wadler, 1992b). For
example, the latter law is this:

return x >>= f = f x

Each of the monads above has definitions ofreturn and>>= that
satisfy these laws, although Haskell provides no mechanismto
ensure this. Indeed, in practice some Haskell programmers use the
monadic types and programming patterns in situations wherethe
monad laws do not hold.

A monad is a kind of “programming pattern”. It turned out thatthis
pattern can be directly expressed in Haskell, using a type class, as
we saw earlier in Section 6.4:

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

The Monad class gives concrete expression to the mathematical
idea that any type constructor that has suitably typed unit and bind
operators is a monad. That concrete expression has direct practical
utility, because we can now write useful monadic combinators that
will work for anymonad. For example:

sequence :: Monad m => [m a] -> m [a]
sequence [] = return []
sequence (m:ms) = m >>= \x ->

sequence ms >>= \ xs ->
return (x:xs)

The intellectual reuse of the idea of a monad is directly reflected
in actual code reuse in Haskell. Indeed, there are whole Haskell
libraries of monadic functions that work foranymonad. This happy
conjunction of monads and type classes gave the two a symbiotic
relationship: each made the other much more attractive.

Monads turned out to be very helpful in structuring quite a few
functional programs. For example, GHC’s type checker uses a
monad that combines a state transformer (representing the current
substitution used by the unifier), an exception monad (to indicate
an error if some type failed to unify), and a state reader monad
(to pass around the current program location, used when reporting
an error). Monads are often used in combination, as this example
suggests, and by abstracting one level further one can buildmonad
transformersin Haskell (Steele, 1993; Liang et al., 1995; Harrison
and Kamin, 1998). The Liang, Hudak, and Jones paper was the first
to show that a modular interpreter could be written in Haskell us-
ing monad transformers, but it required type class extensions sup-
ported only in Gofer (an early Haskell interpreter—see Section 9).
This was one of the examples that motivated a flurry of extensions
to type classes (see Section 6) and to the development of the monad

tranformer library. Despite the utility of monad transformers, mon-
ads do not compose in a nice, modular way, a research problem that
is still open (Jones and Duponcheel, 1994; Lüth and Ghani, 2002).

Two different forms of syntactic sugar for monads appeared
in Haskell at different times. Haskell 1.3 adopted Jones’s “do-
notation,” which was itself derived from John Launchbury’spa-
per on lazy imperative programming (Launchbury, 1993). Subse-
quently, Haskell 1.4 supported “monad comprehensions” as well
asdo-notation (Wadler, 1990a)—an interesting reversal, sincethe
comprehension notation was proposed beforedo-notation! Most
users preferred thedo-notation, and generalising comprehensions
to monads meant that errors in ordinary list comprehensionscould
be difficult for novices to understand, so monad comprehensions
were removed in Haskell 98.

7.3 Monadic I/O

Although Wadler’s development of Moggi’s ideas was not directed
towards the question of input/output, he and others at Glasgow soon
realised that monads provided an ideal framework for I/O. The
key idea is to treat a value of typeIO a as a “computation” that,
when performed, might perform input and output before delivering
a value of typea. For example,readFile can be given the type

readFile :: Name -> IO String

SoreadFile is a function that takes aName and returns a compu-
tation that, when performed, reads the file and returns its contents
as aString.

Figure 5 shows our example program rewritten using monads in
two forms. It makes use of the monad operators>>=, return, >>,
andcatch, which we discuss next. The first two are exactly as de-
scribed in the previous section, but specialised for theIO monad.
Soreturn x is the trivial computation of typeIO a (wherex::a)
that performs no input or output and returns the valuex. Simi-
larly, (>>=) is sequential composition;(m >>= k) is a compu-
tation that, when performed, performsm, appliesk to the result to
yield a computation, which it then performs. The operator(>>) is
sequential composition when we want to discard the result ofthe
first computation:

(>>) :: IO a -> IO b -> IO b
m >> n = m >>= \ _ -> n

The HaskellIO monad also supportsexceptions, offering two new
primitives:

ioError :: IOError -> IO a
catch :: IO a -> (IOError -> IO a) -> IO a

The computation(ioError e) fails, throwing exceptione. The
computation(catch m h) runs computationm; if it succeeds, then
its result is the result of thecatch; but if it fails, the exception is
caught and passed toh.

The same example program is shown once more, rewritten us-
ing Haskell’sdo-notation, in Figure 6. This notation makes (the
monadic parts of) Haskell programs appear much more imperative!

Haskell’s input/output interface isspecifiedmonadically. It can be
implementedusing continuations, thus:

type IO a = FailCont -> SuccCont a -> Behaviour

(The reader may like to write implementations ofreturn, (>>=),
catch and so on, using this definition ofIO.) However, it is also
possible to implement theIO monad in a completely different style,
without any recourse to a stream of requests and responses. The
implementation in GHC uses the following one:

type IO a = World -> (a, World)

An IO computation is a function that (logically) takes the state of
the world, and returns a modified world as well as the return value.
Of course, GHC does not actually pass the world around; instead,
it passes a dummy “token,” to ensure proper sequencing of actions
in the presence of lazy evaluation, and performs input and output
as actual side effects! Peyton Jones and Wadler dubbed the result
“imperative functional programming” (Peyton Jones and Wadler,
1993).

The monadic approach rapidly dominated earlier models. Thetypes
are more compact, and more informative. For example, in the
continuation model we had

readFile :: Name -> FailCont -> StrCont -> Behaviour

The type is cluttered with success and failure continuations (which
must be passed by the programmer) and fails to show that the result
is aString. Furthermore, the types ofIO computations could be
polymorphic:

readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

These types cannot be written with a fixedRequest andResponse
type. However, the big advantage is conceptual. It is much easier
to think abstractly in terms of computations than concretely in
terms of the details of failure and success continuations. The monad
abstracts away from these details, and makes it easy to change
them in future. The reader may find a tutorial introduction tothe
IO monad, together with various further developments in (Peyton
Jones, 2001).

Syntax matters An interesting syntactic issue is worth pointing
out in the context of the development of Haskell’s I/O system. Note
in the continuation example in Figure 4 the plethora of parentheses
that tend to pile up as lambda expressions become nested. Since this
style of programming was probably going to be fairly common,
the Haskell Committee decided quite late in the design process
to change the precedence rules for lambda in the context of infix
operators, so that the continuation example could be written as
follows:

main :: Behaviour
main = appendChan stdout "enter filename\n" >>>

readChan stdin >>> \ userInput ->
let (name : _) = lines userInput in
appendChan stdout name >>>
readFile name fail (\ contents ->
appendChan stdout contents abort done)

where
fail ioerr = appendChan stdout "can’t open file"

abort done

wheref >>> x = f abort x. Note the striking similarity of this
code to the monadic code in Figure 5. It can be made even more
similar by defining a suitablecatch function, although doing so
would be somewhat pedantic.

Although these two code fragments have a somewhat imperative
feel because of the way they are laid out, it was really the advent
of do-notation—not monads themselves—that made Haskell pro-
grams look more like conventional imperative programs (forbetter
or worse). This syntax seriously blurred the line between purely
functional programs and imperative programs, yet was heartily
adopted by the Haskell Committee. In retrospect it is worth ask-
ing whether this same (or similar) syntactic device could have been
used to make stream or continuation-based I/O look more natural.

7.4 Subsequent developments

Once theIO monad was established, it was rapidly developed in
various ways that were not part of Haskell 98 (Peyton Jones, 2001).
Some of the main ones are listed below.

Mutable state. From the very beginning it was clear that theIO
monad could also support mutable locations and arrays (Pey-
ton Jones and Wadler, 1993), using these monadic operations:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

An exciting and entirely unexpected development was Launch-
bury and Peyton Jones’s discovery that imperative computa-
tions could be securely encapsulated inside a pure function. The
idea was to parameterise a state monad with a type parameter
s that “infected” the references that could be generated in that
monad:

newSTRef :: a -> ST s (STRef s a)
readSTRef :: STRef s a -> ST s a
writeSTRef :: STRef s a -> a -> ST s ()

The encapsulation was performed by a single constant,runST,
with a rank-2 type (Section 6.7):

runST :: (forall s. ST s a) -> a

A proof based on parametricity ensures that no references can
“leak” from one encapsulated computation to another (Launch-
bury and Peyton Jones, 1995). For the first time this offered
the ability to implement a function using an imperative algo-
rithm, with a solid guarantee that no side effects could acciden-
tally leak. The idea was subsequently extended to accommo-
date block-structured regions (Launchbury and Sabry, 1997),
and reused to support encapsulated continuations (Dybvig et al.,
2005).

Random numbers need a seed, and the Haskell 98Random library
uses theIO monad as a source of such seeds.

Concurrent Haskell (Peyton Jones et al., 1996) extends theIO
monad with the ability to fork lightweight threads, each of
which can perform I/O by itself (so that the language seman-
tics becomes, by design, nondeterministic). Threads can com-
municate with each other using synchronised, mutable loca-
tions called MVars, which were themselves inspired by the M-
structures of Id (Barth et al., 1991).

Transactional memory. The trouble with MVars is that programs
built using them are notcomposable; that is, it is difficult
to build big, correct programs by gluing small correct sub-
programs together, a problem that is endemic to all concurrent
programming technology.Software transactional memoryis
a recent and apparently very promising new approach to this
problem, and one that fits particularly beautifully into Haskell
(Harris et al., 2005).

Exceptions were built into theIO monad from the start—see the
use ofcatch above—but Haskell originally only supported a
single exception mechanism in purely functional code, namely
the functionerror, which was specified as bringing the entire
program to a halt. This behaviour is rather inflexible for real
applications, which might want to catch, and recover from, calls
to error, as well as pattern-match failures (which also call
error). The IO monad provides a way to achieve this goal
without giving up the simple, deterministic semantics of purely
functional code (Peyton Jones et al., 1999).

UnsafePerformIO Almost everyone who starts using Haskell
eventually asks “how do I getout of the IO monad?” Alas,

unlikerunST, which safely encapsulates an imperative compu-
tation, there is no safe way to escape from theIO monad. That
does not stop programmers from wanting to do it, and occasion-
ally with some good reason, such as printing debug messages,
whose order and interleaving is immaterial. All Haskell imple-
mentations, blushing slightly, therefore provide:

unsafePerformIO :: IO a -> a

As its name implies, it is not safe, and its use amounts to a
promise by the programmer that it does not matter whether the
I/O is performed once, many times, or never; and that its relative
order with other I/O is immaterial. Somewhat less obviously, it
is possible to useunsafePerformIO to completely subvert the
type system:

cast :: a -> b
cast x = unsafePerformIO

(do writeIORef r x
readIORef r)

where r :: IORef a
r = unsafePerformIO

(newIORef (error "urk"))

It should probably have an even longer name, to discourage its
use by beginners, who often use it unnecessarily.

Arrows are an abstract view of computation with the same flavour
as monads, but in a more general setting. Originally proposed
by Hughes in 1998 (Hughes, 2000; Paterson, 2003), arrows
have found a string of applications in graphical user interfaces
(Courtney and Elliott, 2001), reactive programming (Hudak
et al., 2003), and polytypic programming (Jansson and Jeuring,
1999). As in the case of monads (only more so), arrow pro-
gramming is very much easier if syntactic support is provided
(Paterson, 2001), and this syntax is treated directly by thetype
checker.

Underlying all these developments is the realisation thatbeing ex-
plicit about effects is extremely useful, and this is something that we
believe may ultimately be seen as one of Haskell’s main impacts on
mainstream programming6. A good example is the development of
transactional memory. In an implementation of transactional mem-
ory, every read and write to a mutable location must be loggedin
some way. Haskell’s crude effect system (theIO monad) means that
almost all memory operations belong to purely functional compu-
tations, and hence, by construction, do not need to be logged. That
makes Haskell a very natural setting for experiments with transac-
tional memory. And so it proved: although transactional memory
had a ten-year history in imperative settings, when Harris,Marlow,
Herlilhy and Peyton Jones transposed it into the Haskell setting
they immediately stumbled on two powerful new composition op-
erators (retry and orElse) that had lain hidden until then (see
(Harris et al., 2005) for details).

8. Haskell in middle age
As Haskell has become more widely used for real applications,
more and more attention has been paid to areas that received short
shrift from the original designers of the language. These areas
are of enormous practical importance, but they have evolvedmore
recently and are still in flux, so we have less historical perspective
on them. We therefore content ourselves with a brief overview here,
in very rough order of first appearance.

6 “Effects” is shorthand for “side effects”.

8.1 The Foreign Function Interface

One feature that very many applications need is the ability to
call procedures written in some other language from Haskell, and
preferably vice versa. Once theIO monad was established, a variety
of ad hocmechanisms rapidly appeared; for example, GHC’s very
first release allowed the inclusion of literal C code in monadic
procedures, and Hugs had an extensibility mechanism that made it
possible to expose C functions as Haskell primitives. The difficulty
was that these mechanisms tended to be implementation-specific.

An effort gradually emerged to specify an implementation-independent
way for Haskell to call C procedures, and vice versa. This so-called
Foreign Function Interface (FFI) treats C as a lowest commonde-
nominator: once you can call C you can call practically anything
else. This exercise was seen as so valuable that the idea of “Blessed
Addenda” emerged, a well-specified Appendix to the Haskell 98
Report that contained precise advice regarding the implementation
of a variety of language extensions. The FFI Addendum effortwas
led by Manuel Chakravarty in the period 2001–2003, and finally re-
sulted in the 30-page publication of Version 1.0 in 2003. In parallel
with, and symbiotic with, this standardisation effort werea number
of pre-processing tools designed to ease the labour of writing all
theforeign import declarations required for a large binding; ex-
amples include Green Card (Nordin et al., 1997), H/Direct (Finne
et al., 1998), and C2Hs (Chakravarty, 1999a) among others.

We have used passive verbs in describing this process (“an effort
emerged,” “the exercise was seen as valuable”) because it was dif-
ferent in kind to the original development of the Haskell language.
The exercise was open to all, but depended critically on the will-
ingness of one person (in this case Manuel Chakravarty) to drive
the process and act as Editor for the specification.

8.2 Modules and packages

Haskell’s module system emerged with surprisingly little debate.
At the time, the sophisticated ML module system was becoming
well established, and one might have anticipated a vigorousdebate
about whether to adopt it for Haskell. In fact, this debate never
really happened. Perhaps no member of the committee was suffi-
ciently familiar with ML’s module system to advocate it, or perhaps
there was a tacit agreement that the combination of type classes
and ML modules was a bridge too far. In any case, we eventually
converged on a very simple design: the module system is a name-
space control mechanism, nothing more and nothing less. This had
the great merit of simplicity and clarity—for example, the module
system is specified completely separately from the type system—
but, even so, some tricky corners remained unexplored for several
years (Diatchki et al., 2002).

In versions 1.0–1.3 of the language, every module was specified
by an interfaceas well as animplementation. A great deal of dis-
cussion took place about the syntax and semantics of interfaces;
issues such as the duplication of information between interfaces
and implementations, especially when a module re-exports entities
defined in one of its imports; whether one can deduce from an inter-
face which module ultimately defines an entity; a tension between
what a compiler might want in an interface and what a programmer
might want to write; and so on. In the end, Haskell 1.4 completely
abandoned interfaces as a formal part of the language; instead in-
terface files were regarded as a possible artifact of separate compi-
lation. As a result, Haskell sadly lacks a formally checked language
in which a programmer can advertise the interface that the module
supports.

8.2.1 Hierarchical module names

As Haskell became more widely used, the fact that the module
name space was completely flat became increasingly irksome;for
example, if there are two collection libraries, they cannotboth use
the module nameMap.

This motivated an effort led by Malcolm Wallace to specify anex-
tension to Haskell that would allow multi-component hierarchical
module names (e.g.,Data.Map), using a design largely borrowed
from Java. This design constituted the second “Blessed Adden-
dum,” consisting of a single page that never moved beyond ver-
sion 0.0 and “Candidate” status7. Nevertheless, it was swiftly im-
plemented by GHC, Hugs, and nhc, and has survived unchanged
since.

8.2.2 Packaging and distribution

Modules form a reasonable unit of programconstruction, but not
of distribution. Developers want to distribute a related group of
modules as a “package,” including its documentation, licencing
information, details about dependencies on other packages, include
files, build information, and much more besides. None of thiswas
part of the Haskell language design.

In 2004, Isaac Jones took up the challenge of leading an effort
to specify and implement a system called Cabal that supportsthe
construction and distribution of Haskell packages8. Subsequently,
David Himmelstrup implemented Hackage, a Cabal package server
that enables people to find and download Cabal packages. Thisis
not the place to describe these tools, but the historical perspective
is interesting: it has taken more than fifteen years for Haskell
to gain enough momentum that these distribution and discovery
mechanisms have become important.

8.2.3 Summary

The result of all this evolution is a module system distinguished by
its modesty. It does about as little as it is possible for a language
to do and still call itself a practical programming tool. Perhaps this
was a good choice; it certainly avoids a technically complicated
area, as a glance at the literature on ML modules will confirm.

8.3 Libraries

It did not take long for the importance of well-specified and well-
implemented libraries to become apparent. The initial Haskell Re-
port included an Appendix defining the Standard Prelude, butby
Haskell 1.3 (May 1996) the volume of standard library code had
grown to the extent that it was given a separate companion Library
Report, alongside the language definition.

The libraries defined as part of Haskell 98 were still fairly modest in
scope. Of the 240 pages of the Haskell 98 Language and Libraries
Report, 140 are language definition while only 100 define the
libraries. But real applications need much richer libraries, and an
informal library evolution mechanism began, based around Haskell
language implementations. Initially, GHC began to distribute a
bundle of libraries calledhslibs but, driven by user desire for
cross-implementation compatibility, the Hugs, GHC andnhc teams
began in 2001 to work together on a common, open-source set of
libraries that could be shipped with each of their compilers, an
effort that continues to this day.

7http://haskell.org/definition
8http://haskell.org/cabal

Part III

Implementations and Tools

9. Implementations
Haskell is a big language, and it is quite a lot of work to imple-
ment. Nevertheless, several implementations are available, and we
discuss their development in this section.

9.1 The Glasgow Haskell Compiler

Probably the most fully featured Haskell compiler today is the
Glasgow Haskell Compiler (GHC), an open-source project with a
liberal BSD-style licence.

GHC was begun in January 1989 at the University of Glasgow, as
soon as the initial language design was fixed. The first version of
GHC was written in LML by Kevin Hammond, and was essentially
a new front end to the Chalmers LML compiler. This prototype
started to work in June 1989, just as Peyton Jones arrived in Glas-
gow to join the burgeoning functional programming group there.
The prototype compiler implemented essentially all of Haskell 1.0
including views (later removed), type classes, the deriving mecha-
nism, the full module system, and binary I/O as well as both streams
and continuations. It was reasonably robust (with occasional spec-
tacular failures), but the larger Haskell prelude stressedthe LML
prelude mechanism quite badly, and the added complexity of type
classes meant the compiler was quite a lot bigger and slower than
the base LML compiler. There were quite a few grumbles about
this: most people had 4–8Mbyte workstations at that time, and
the compiler used a reasonable amount of that memory (upwards
of 2Mbytes!). Partly through experience with this compiler, the
Haskell Committee introduced the monomorphism restriction, re-
moved views, and made various other changes to the language.

GHC proper was begun in the autumn of 1989, by a team consist-
ing initially of Cordelia Hall, Will Partain, and Peyton Jones. It
was designed from the ground up as a complete implementationof
Haskell in Haskell, bootstrapped via the prototype compiler. The
only part that was shared with the prototype was the parser, which
at that stage was still written in Yacc and C. The first beta release
was on 1 April 1991 (the date was no accident), but it was another
18 months before the first full release (version 0.10) was made in
December 1992. This version of GHC already supported several
extensions to Haskell: monadic I/O (which only made it officially
into Haskell in 1996), mutable arrays, unboxed data types (Pey-
ton Jones and Launchbury, 1991), and a novel system for spaceand
time profiling (Sansom and Peyton Jones, 1995). A subsequentre-
lease (July 1993) added a strictness analyser.

A big difference from the prototype is that GHC uses a very large
data type in its front end that accurately reflects the full glory of
Haskell’s syntax. All processing that can generate error messages
(notably resolving lexical scopes, and type inference) is performed
on this data type. This approach contrasts with the more popular
method of first removing syntactic sugar, and only then processing
a much smaller language. The GHC approach required us to write
a great deal of code (broad, but not deep) to process the many
constructors of the syntax tree, but has the huge advantage that the
error messages could report exactly what the programmer wrote.

After type checking, the program is desugared into an explicitly
typed intermediate language called simply “Core” and then pro-
cessed by a long sequence of Core-to-Core analyses and opti-
mising transformations. The final Core program is transformed in

the Spineless Tagless G-machine (STG) language (Peyton Jones,
1992), before being translated into C or machine code.

The Core language is extremely small — its data type has only
a dozen constructors in total — which makes it easy to write a
Core-to-Core transformation or analysis pass. We initially based
Core on the lambda calculus but then, wondering how to decorate
it with types, we realised in 1992 that a ready-made basis layto
hand, namely Girard’s SystemFω (Girard, 1990); all we needed to
do was to add data types,let-expressions, andcase expressions.
GHC appears to be the first compiler to use System F as a typed
intermediate language, although at the time we thought it was such
a simple idea that we did not think it worth publishing, except as a
small section in (Peyton Jones et al., 1993). Shortly afterwards, the
same idea was used independently by Morrisett, Harper and Tarditi
at Carnegie Mellon in their TIL compiler (Tarditi et al., 1996). They
understood its significance much better than the GHC team, and the
whole approach of type-directed compilation subsequentlybecame
extremely influential.

Several years later, we added a “Core Lint” typechecker that
checked that the output of each pass remained well-typed. Ifthe
compiler is correct, this check will always succeed, but it provides
a surprisingly strong consistency check—many, perhaps most bugs
in the optimiser produce type-incorrect code. Furthermore, catch-
ing compiler bugs this way is vastly cheaper than generatingin-
correct code, running it, getting a segmentation fault, debugging
it with gdb, and gradually tracing the problem back to its original
cause. Core Lint often nails the error immediately. This consistency
checking turned out to be one of the biggest benefits of a typedin-
termediate language, although it took us a remarkably long time to
recognise this fact.

Over the fifteen years of its life so far, GHC has grown a huge num-
ber of features. It supports dozens of language extensions (notably
in the type system), an interactive read/eval/print interface (GHCi),
concurrency (Peyton Jones et al., 1996; Marlow et al., 2004), trans-
actional memory (Harris et al., 2005), Template Haskell (Sheard
and Peyton Jones, 2002), support for packages, and much morebe-
sides. This makes GHC a dauntingly complex beast to understand
and modify and, mainly for that reason, development of the core
GHC functionality remains with Peyton Jones and Simon Marlow,
who both moved to Microsoft Research in 1997.

9.2 hbc

Thehbc compiler was written by Lennart Augustsson, a researcher
at Chalmers University whose programming productivity beggars
belief. Augustsson writes:

“During the spring of 1990 I was eagerly awaiting the first Haskell
compiler, it was supposed to come from Glasgow and be based
on the LML compiler. And I waited and waited. After talking to
Glasgow people at the LISP & Functional Programming conference
in Nice in late June of 1990 Staffan Truvé and I decided that instead
of waiting even longer we would write our own Haskell compiler
based on the LML compiler.

“For various reasons Truvé couldn’t help in the coding of the
compiler, so I ended up spending most of July and August cod-
ing, sometimes in an almost trance-like state; my head filledwith
Haskell to the brim. At the end of August I had a mostly com-
plete implementation of Haskell. I decided thathbc would be a
cool name for the compiler since it is Haskell Curry’s initials. (I
later learnt that this is the name the Glasgow people wanted for
their compiler too. But first come, first served.)

“The first release, 0.99, was on August 21, 1990. The implementa-
tion had everything from the report (except for File operations) and

also several extensions, many of which are now in Haskell 98 (e.g.,
operator sections).

“The testing of the compiler at the time of release was reallymin-
imal, but it could compile the Standard Prelude—and the Prelude
uses alot of Haskell features. Speaking of the Prelude I think it’s
worth pointing out that Joe Fasel’s prelude code must be about the
oldest Haskell code in existence, and large parts of it are still un-
changed! The prelude code was also remarkably un-buggy for code
that had never been compiled (or even type checked) beforehbc
came along.

“Concerning the implementation, I only remember two problematic
areas: modules and type checking. The export/import of names in
modules were different in those days (renaming) and there were
many conditions to check to make sure a module was valid. But
the big stumbling block was the type checking. It washard to do.
This was way before there were any good papers about how it was
supposed to be done.

“After the first release hbc became a test bed for various extensions
and new features and it lived an active life for over five years. But
since the compiler was written in LML it was more or less doomed
to dwindle.”

9.3 Gofer and Hugs9

GHC and hbc were both fully fledged compilers, themselves im-
plemented in a functional language, and requiring a good deal of
memory and disk space. In August 1991, Mark Jones, then a D.Phil.
student at the University of Oxford, released an entirely different
implementation called Gofer (short for “GOod For Equational Rea-
soning”). Gofer was an interpreter, implemented in C, developed on
an 8MHz 8086 PC with 640KB of memory, and small enough to fit
on a single (360KB) floppy disk.

Jones wrote Gofer as a side project to his D.Phil. studies—indeed,
he reports that he did not dare tell his thesis adviser about Gofer
until it was essentially finished—to learn more about the imple-
mentation of functional programming languages. Over time,how-
ever, understanding type classes became a central theme of Jones’
dissertation work (Jones, 1994), and he began to use Gofer asa
testbed for his experiments. For example, Gofer included the first
implementation of multi-parameter type classes, as originally sug-
gested by Wadler and Blott (Wadler and Blott, 1989) and a regular
topic of both conversation and speculation on the Haskell mailing
list at the time. Gofer also adopted an interesting variant of Wadler
and Blott’s dictionary-passing translation (Section 6.1)that was de-
signed to minimise the construction of dictionaries at run time, to
work with multiple parameter type classes, and to provide more
accurate principal types. At the same time, however, this resulted
in small but significant differences between the Haskell andGofer
type systems, so that some Haskell programs would not work in
Gofer, and vice versa.

Moving to take a post-doctoral post at Yale in 1992, Jones contin-
ued to develop and maintain Gofer, adding support for construc-
tor classes (Section 6.4) in 1992–93 and producing the first imple-
mentation of thedo-notation in 1994. Both of these features were
subsequently adopted in Haskell 98. By modifying the interpreter’s
back end, Jones also developed a Gofer-to-C compiler, and heused
this as a basis for the first “dictionary-free” implementation of type
classes, using techniques from partial evaluation to specialise away
the results of the dictionary-passing translation.

After he left Yale in the summer of 1994, Jones undertook a major
rewrite of the Gofer code base, to more closely track the Haskell

9 The material in this section was largely written by Mark Jones, the author
of Gofer and Hugs.

standard. Briefly christened “Hg” (short for Haskell-gofer), the new
system soon acquired the name “Hugs” (for “the Haskell User’s
Gofer System”). The main development work was mostly complete
by the time Jones started work at the University of Nottingham in
October 1994, and he hoped that Hugs would not only appease the
critics but also help to put his newly founded research groupin
Nottingham onto the functional programming map. Always enjoy-
ing the opportunity for a pun, Jones worked to complete the first
release of the system so that he could announce it on February14,
1995 with the greeting “Hugs on Valentine’s Day!” The first re-
lease of Hugs supported almost all of the features of Haskell1.2,
including Haskell-style type classes, stream-based I/O, afull pre-
lude, derived instances, defaults, overloaded numeric literals, and
bignum arithmetic. The most prominent missing feature was the
Haskell module system; Hugs 1.0 would parse but otherwise ignore
module headers and import declarations.

Meanwhile, at Yale, working from Hugs 1.0 and striving to further
close the gap with Haskell, Alastair Reid began modifying Hugs
to support the Haskell module system. The results of Reid’s work
appeared for the first time in the Yale Hugs0 release in June 1996.
Meanwhile, Jones had continued his own independent development
of Hugs, leading to an independent release of Hugs 1.3 in August
1996 that provided support for new Haskell 1.3 features suchas
monadic I/O, the labelled field syntax, newtype declarations, and
strictness annotations, as well as adding user interface enhance-
ments such as import chasing.

Even before the release of these two different versions of Hugs,
Jones and Reid had started to talk about combining their efforts into
a single system. The first joint release, Hugs 1.4, was completed in
January 1998, its name reflecting the fact that the Haskell standard
had also moved on to a new version by that time. Jones, however,
had also been working on a significant overhaul of the Hugs type
checker to include experimental support for advanced type system
features including rank-2 polymorphism, polymorphic recursion,
scoped type variables, existentials, and extensible records, and also
to restore the support for multi-parameter type classes that had been
eliminated in the transition from Gofer to Hugs. These features
were considered too experimental for Hugs 1.4 and were released
independently as Hugs 1.3c, which was the last version of Hugs to
be released without support for Haskell modules.

It had been a confusing time for Hugs users (and developers!)while
there were multiple versions of Hugs under development at the
same time. This problem was finally addressed with the release of
Hugs 98 in March 1999, which merged the features of the previous
Yale and Nottingham releases into a single system. Moreover, as
the name suggests, this was the first version of Hugs to support
the Haskell 98 standard. In fact Hugs 98 was also the last of the
Nottingham and Yale releases of Hugs, as both Jones and Reid
moved on to other universities at around that time (Jones to OGI
and Reid to Utah).

Hugs development has proceeded at a more gentle pace since the
first release of Hugs 98, benefiting in part from the stabilitypro-
vided by the standardisation of Haskell 98. But Hugs development
has certainly not stood still, with roughly one new formal release
each year. Various maintainers and contributors have worked on
Hugs during this period, including Jones and Reid, albeit ata re-
duced level, as well as Peterson, Andy Gill, Johan Nordlander, Jeff
Lewis, Sigbjorn Finne, Ross Paterson, and Dimitry Golubovsky.
In addition to fixing bugs, these developers have added support
for new features including implicit parameters, functional depen-
dencies, Microsoft’s .NET, an enhanced foreign function interface,
hierarchical module names, Unicode characters, and a greatly ex-
panded collection of libraries.

9.4 nhc

The originalnhc was developed by Niklas Röjemo when he was
a PhD student at Chalmers (Rojemo, 1995a). His motivation from
the start was to have a space-efficient compiler (Rojemo, 1995b)
that could be bootstrapped in a much smaller memory space than
required by systems such ashbc and GHC. Specifically he wanted
to bootstrap it on his personal machine which had around 2Mbytes
main memory.

To help achieve this space-efficiency he made use during develop-
ment of the first-generation heap-profiling tools—which hadpre-
viously been developed at York and used to reveal space-leaks
in hbc (Runciman and Wakeling, 1992; Runciman and Wakeling,
1993). Because of this link, Röjemo came to York as a post-doctoral
researcher where, in collaboration with Colin Runciman, hede-
vised more advanced heap-profiling methods, and used them tofind
residual space-inefficiencies innhc, leading to a still more space-
efficient version (Rjemo and Runciman, 1996a).

When Röjemo left York around 1996 he handednhc over to Runci-
man’s group, for development and free distribution (with due ac-
knowledgements). Malcolm Wallace, a post-doc at York working
on functional programming for embedded systems, became the
principal keeper and developer ofnhc—he has since released a se-
ries of distributed versions, tracking Haskell 98, adding standard
foreign-function interface and libraries, and making various im-
provements (Wallace, 1998).

Thenhc system has been host to various further experiments. For
example, a continuing strand of work relates to space efficiency
(Wallace and Runciman, 1998), and more recently the development
of the Hat tools for tracing programs (Wallace et al., 2001).In 2006,
the York Haskell Compiler project,yhc, was started to re-engineer
nhc.

9.5 Yale Haskell

In the 1980s, prior to the development of Haskell, there was an
active research project at Yale involving Scheme and a dialect of
Scheme calledT. Several MS and PhD theses grew out of this work,
supervised mostly by Hudak. TheOrbit compiler, an optimising
compiler for T, was one of the key results of this effort (Kranz et al.,
2004; Kranz et al., 1986).

So once Hudak became actively involved in the design of Haskell,
it was only natural to apply Scheme compilation techniques in an
implementation of Haskell. However, rather than port the ideas to a
stand-alone Haskell compiler, it seemed easier to compile Haskell
into Scheme or T, and then use a Scheme compiler as a back end.
Unfortunately, the T compiler was no longer being maintained and
had problems with compilation speed. T was then abandoned in
favour of Common Lispto address performance and portability
issues. This resulted in what became known asYale Haskell.

John Peterson and Sandra Loosemore, both Research Scientists at
Yale, were the primary implementers of Yale Haskell. To achieve
reasonable performance, Yale Haskell used strictness analysis and
type information to compile the strict part of Haskell into very ef-
ficient Lisp code. The CMU lisp compiler was able to generate
very good numeric code from Lisp with appropriate type annota-
tions. The compiler used a dual-entry point approach to allow very
efficient first-order function calls. Aggressive in-liningwas able
to generate code competitive with other languages (Hartel et al.,
1996). In addition, Yale Haskell performed various optimisations
intended to reduce the overhead of lazy evaluation (Hudak and
Young, 1986; Bloss et al., 1988b; Bloss et al., 1988a; Young,1988;
Bloss, 1988).

Although performance was an important aspect of the Yale com-
piler, the underlying Lisp system allowed the Yale effort tofocus at-
tention on the the Haskell programming environment. Yale Haskell
was the first implementation to support both compiled and inter-
preted code in the same program (straightforward, since Lisp sys-
tems had been doing that for years). It also had a very nice emacs-
based programming environment in which simple two-keystroke
commands could be used to evaluate expressions, run dialogues,
compile modules, turn specific compiler diagnostics on and off, en-
able and disable various optimisers, and run a tutorial on Haskell.
Commands could even be queued, thus allowing, for example, a
compilation to run in the background as the editing of a source file
continued in emacs in the foreground.

Another nice feature of Yale Haskell was a “scratch pad” thatcould
be automatically created for any module. A scratch pad was a log-
ical extension of a module in which additional function and value
definitions could be added, but whose evaluation did not result in
recompilation of the module. Yale Haskell also supported many
Haskell language extensions at the time, and thus served as an ex-
cellent test bed for new ideas. These extensions included monads,
dynamic types, polymorphic recursion, strictness annotations, in-
lining pragmas, specialising over-loaded functions, mutually recur-
sive modules, and a flexible foreign function interface for both C
and Common Lisp.

Ultimately, the limitations of basing a Haskell compiler ona Com-
mon Lisp back-end caught up with the project. Although early
on Yale Haskell was competitive with GHC and other compilers,
GHC programs were soon running two to three times faster than
Yale Haskell programs. Worse, there was no real hope of making
Yale Haskell run any faster without replacing the back-end and run-
time system. Optimisations such as reusing the storage in a thunk
to hold the result after evaluation were impossible with theCom-
mon Lisp runtime system. The imperative nature of Lisp prevented
many other optimisations that could be done in a Haskell-specific
garbage collector and memory manager. Every thunk introduced an
extra level of indirection (a Lisp cons cell) that was unnecessary in
the other Haskell implementations. While performance within the
strict subset of Haskell was comparable with other systems,there
was a factor of 3 to 5 in lazy code that could not be overcome due
to the limitations of the Lisp back end. For this reason, in addition
to the lack of funding to pursue further research in this direction,
the Yale Haskell implementation was abandoned circa 1995.

9.6 Other Haskell compilers

One of the original inspirations for Haskell was the MIT dataflow
project, led by Arvind, whose programming language was called
Id. In 1993 Arvind and his colleagues decided to adopt Haskell’s
syntax and type system, while retaining Id’s eager, parallel evalu-
ation order, I-structures, and M-structures. The resulting language
was calledpH (short for “parallel Haskell”), and formed the ba-
sis of Nikhil and Arvind’s textbook on implicit parallel program-
ming (Nikhil and Arvind, 2001). The idea of evaluating Haskell
eagerly rather than lazily (while retaining non-strict semantics), but
on a uniprocessor, was also explored by Maessen’s Eager Haskell
(Maessen, 2002) and Ennals’s optimistic evaluation (Ennals and
Peyton Jones, 2003).

All the compilers described so far were projects begun in the
early or mid ’90s, and it had begun to seem that Haskell was
such a dauntingly large language that no further implementations
would emerge. However, in the last five years several new Haskell
implementation projects have been started.

Helium. The Helium compiler, based at Utrecht, is focused espe-
cially on teaching, and on giving high-quality type error mes-
sages (Heeren et al., 2003b; Heeren et al., 2003a).

UHC and EHC. Utrecht is also host to two other Haskell com-
piler projects, UHC and EHC (http://www.cs.uu.nl/wiki/
Center/ResearchProjects).

jhc is a new compiler, developed by John Meacham. It is fo-
cused on aggressive optimisation using whole-program anal-
ysis. This whole-program approach allows a completely dif-
ferent approach to implementing type classes, without using
dictionary-passing. Based on early work by Johnsson and Bo-
quist (Boquist, 1999),jhc uses flow analysis to support a de-
functionalised representation of thunks, which can be extremely
efficient.

The York Haskell Compiler, yhc, is a new compiler for Haskell
98, based onnhc but with an entirely new back end.

9.7 Programming Environments

Until recently, with the notable exception of Yale Haskell,little
attention has been paid by Haskell implementers to the program-
ming environment. That is now beginning to change. Notable ex-
amples include the Haskell Refactorer (Li et al., 2003); theGHC
Visual Studio plug-in (Visual Haskell), developed by Krasimir An-
gelov and Simon Marlow (Angelov and Marlow, 2005); and the
EclipseFP plug-in for Haskell, developed by Leif Frenzel, Thiago
Arrais, and Andrei de A Formiga10.

10. Profiling and debugging
One of the disadvantages of lazy evaluation is that operational
aspects such as evaluation order, or the contents of a snapshot
of memory at any particular time, are not easily predictablefrom
the source code—and indeed, can vary between executions of the
same code, depending on the demands the context makes on its
result. As a result, conventional profiling and debugging methods
are hard to apply. We have alltried adding side-effecting print
calls to record a trace of execution, or printing a backtraceof the
stack on errors, only to discover that the information obtained was
too hard to interpret to be useful. Developing successful profiling
and debugging tools for Haskell has taken considerable research,
beginning in the early 1990s.

10.1 Time profiling

At the beginning of the 1990s, Patrick Sansom and Peyton Jones
began working on profiling Haskell. The major difficulty was find-
ing a sensible way to assign costs. The conventional approach,
of assigning costs to functions and procedures, works poorly for
higher-order functions such asmap. Haskell provides many such
functions, which are designed to be reusable in many different
contexts and for many different tasks—so these functions feature
prominently in time profiles. But knowing thatmap consumes 20%
of execution time is little help to the programmer—we need to
know insteadwhich occurrence ofmap stands for a large fraction
of the time. Likewise, when one logical task is implemented by
a combination of higher-order functions, then the time devoted to
the task is divided among these functions in a way that disguises
the time spent on the task itself. Thus a new approach to assigning
costs was needed.

The new idea Sansom and Peyton Jones introduced was to label
the source code withcost centres, either manually (to reflect the
programmer’s intuitive decomposition into tasks) or automatically.

10http://eclipsefp.sourceforge.net

The profiling tool they built then assigned time and space costs
to one of these cost centres, thus aggregating all the costs for one
logical task into one count (Sansom and Peyton Jones, 1995).

Assigning costs to explicitly labelled cost centres is muchmore
subtle than it sounds. Programmers expect that costs shouldbe
assigned to the closest enclosing cost centre—but should this be
the closestlexicallyenclosing or the closestdynamicallyenclosing
cost centre? (Surprisingly, the best answer is the closest lexically
enclosing one (Sansom and Peyton Jones, 1995).) In a language
with first-class functions, should the cost ofevaluatinga function
necessarily be assigned to the same cost centre as the costs of
calling the function? In a call-by-need implementation, where the
cost of using a value the first time can be much greater than thecost
of using it subsequently, how can one ensure that cost assignments
are independent of evaluation order (which the programmer should
not need to be aware of)? These questions are hard enough to
answer that Sansom and Peyton Jones felt the need to develop
a formal cost semantics, making the assignment of costs to cost
centres precise. This semantics was published at POPL in 1995, but
a prototype profiling tool was already in use with GHC in 1992.
Not surprisingly, the availability of a profiler led rapidlyto faster
Haskell programs, in particular speeding up GHC itself by a factor
of two.

10.2 Space profiling

Sansom and Peyton Jones focused on profilingtime costs, but at
the same time Colin Runciman and David Wakeling were work-
ing on space, by profiling the contents of the heap. It had been
known for some time that lazy programs could sometimes exhibit
astonishingly poor space behaviour—so-calledspace leaks. Indeed,
the problem was discussed in Hughes’s dissertation in 1984,along
with the selective introduction of strictness to partiallyfix them,
but there was no practical way offinding the causes of space leaks
in large programs. Runciman and Wakeling developed a profiler
that could display a graph of heap contents over time, classified
by the function that allocated the data, the top-level constructor of
the data, or even combinations of the two (for example, “showthe
allocating functions of all the cons cells in the heap over the en-
tire program run”). The detailed information now availableenabled
lazy programmers to make dramatic improvements to space effi-
ciency: as the first case study, Runciman and Wakeling reduced the
peak space requirements of a clausification program for proposi-
tional logic by two orders of magnitude, from 1.3 megabytes to
only 10K (Runciman and Wakeling, 1993). Runciman and Wakel-
ing’s original profiler worked for LML, but it was rapidly adopted
by Haskell compilers, and the visualisation tool they wroteto dis-
play heap profiles is still in use to this day.

By abstracting away fromevaluation order, lazy evaluation also
abstracts away fromobject lifetimes, and that is why lazy evalua-
tion contributes to space leaks. Programmers who cannot predict—
and indeed do not think about—evaluation order also cannot pre-
dict which data structures will live for a long time. Since Haskell
programs allocate objects very fast, if large numbers of them end
up with long lifetimes, then the peak space requirements canbe
very high indeed. The next step was thus to extend the heap profiler
to provide direct information about object lifetimes. Thisstep was
taken by Runciman and Röjemo (the author ofnhc), who had by
this time joined Runciman at the University of York. The new pro-
filer could show how much of the heap contained data that was not
yet needed (lag), would never be used again (drag), or, indeed, was
never used at all (void) (Rjemo and Runciman, 1996a). A further
extension introducedretainer profiling, which could explainwhy
data was not garbage collected by showing which objects pointed
at the data of interest (Rjemo and Runciman, 1996b). Combina-

tions of these forms made it possible for programmers to get an-
swers to very specific questions about space use, such as “what
kind of objects point at cons cells allocated by function foo, after
their last use?” With information at this level of detail, Runciman
and Röjemo were able to improve the peak space requirementsof
their clausify program to less than 1K—three orders of magnitude
better than the original version. They also achieved a factor-of-two
improvement in thenhc compiler itself, which had already been
optimised using their earlier tools.

10.3 Controlling evaluation order

In 1996, Haskell 1.3 introduced two features that give the program-
mer better control over evaluation order:

• the standard functionseq, which evaluates its first argument,
and then returns its second:

seq x y =

{

⊥, if x =⊥
y, otherwise

• strictness annotations indata definitions, as in:

data SList a = SNil | SCons !a !(SList a)

where the exclamation points denote strict fields, and thus here
define a type of strict lists, whose elements are evaluated before
the list is constructed.

Using these constructs, a programmer can move selected compu-
tations earlier, sometimes dramatically shortening the lifetimes of
data structures. Bothseq and strict components of data structures
were already present in Miranda for the same reasons (Turner,
1985), and indeedseq had been used to fix space leaks in lazy
programs since the early 1980s (Scheevel, 1984; Hughes, 1983).

Today, introducing aseq at a carefully chosen point is a very com-
mon way of fixing a space leak, but interestingly, this was not
the main reason for introducing it into Haskell. On the contrary,
seq was primarily introduced to improve thespeedof Haskell pro-
grams! By 1996, we understood the importance of using strictness
analysis to recognise strict functions, in order to invoke them us-
ing call-by-value rather than the more expensive call-by-need, but
the results of strictness analysis were not always as good aswe
hoped. The reason was that many functions were “nearly,” butnot
quite, strict, and so the strictness analyser was forced to (safely)
classify them as non-strict. By introducing calls ofseq, the pro-
grammer could help the strictness analyser deliver better results.
Strictness analysers were particularly poor at analysing data types,
hence the introduction of strictness annotations in data type decla-
rations, which not only made many more functions strict, butalso
allowed the compiler to optimise the representation of the data type
in some cases.

Although seq was not introduced into Haskell primarily to fix
space leaks, Hughes and Runciman were by this time well aware
of its importance for this purpose. Runciman had spent a sabbatical
at Chalmers in 1993, when he was working on his heap profiler and
Hughes had a program with particularly stubborn space leaks—the
two spent much time working together to track them down. This
program was in LML, which already hadseq, and time and again
a carefully placedseq proved critical to plugging a leak. Hughes
was very concerned that Haskell’s version ofseq should support
space debugging well.

But addingseq to Haskell was controversial because of its neg-
ative effect on semantic properties. In particular,seq is not de-
finable in the lambda calculus, and is the only way to distin-
guish\x -> ⊥ from ⊥ (sinceseq ⊥ 0 goes into a loop, while
seq (\x -> ⊥) 0 does not)—a distinction that Jon Fairbairn, in

particular, was dead set against making. Moreover,seq weakens
the parametricity property that polymorphic functions enjoy, be-
causeseq does not satisfy the parametricity property for its type
∀a,b.a -> b -> b, and neither do polymorphic functions that
use it. This would weaken Wadler’s “free theorems” in Haskell
(Wadler, 1989) in a way that has recently been precisely char-
acterised by Patricia Johann and Janis Voigtländer (Johann and
Voigtländer, 2004).

Unfortunately, parametricity was by this time not just a nice bonus,
but the justification for an important compiler optimisation, namely
deforestation—the transformation of programs to eliminate inter-
mediate data structures. Deforestation is an important optimisation
for programs written in the “listful” style that Haskell encourages,
but Wadler’s original transformation algorithm (Wadler, 1990b)
had proven too expensive for daily use. Instead, GHC usedshort-
cut deforestation, which depends on two combinators:foldr,
which consumes a list, and

build g = g (:) []

which constructs one, with the property that

foldr k z (build g) = g k z

(the “foldr/build rule”) (Gill et al., 1993). Applying this rewrite
rule from left to right eliminates an intermediate list verycheaply. It
turns out that thefoldr/build rule is not true forany functiong;
it holds only if g has a sufficiently polymorphic type, and that can
in turn be guaranteed by givingbuild a rank-2 type (Section 6.7).
The proof relies on the parametrictity properties ofg’s type.

This elegant use of parametricity to guarantee a sophisticated pro-
gram transformation was cast into doubt byseq. Launchbury ar-
gued forcefully that parametricity was too important to give up,
for this very reason. Hughes, on the other hand, was very con-
cerned thatseq should be applicable to values ofany type—even
type variables—so that space leaks could be fixed even in polymor-
phic code. These two goals are virtually incompatible. The solution
adopted for Haskell 1.3 was to makeseq anoverloadedfunction,
rather than a polymorphic one, thus weakening the parametricity
property that it should satisfy. Haskell 1.3 introduced a class

class Eval a where
strict :: (a->b) -> a -> b
seq :: a -> b -> b
strict f x = x ‘seq‘ f x

with the suspect operations as its members. However, programmers
were not allowed to define their own instances of this class—which
might not have been strict (!)—instead its instances were derived
automatically. The point of theEval class was to record uses of
seq in the typesof polymorphic functions, as contexts of the form
Eval a =>, thus warning the programmer and the compiler that
parametricity properties in that type variable were restricted. Thus
short-cut deforestation remained sound, while space leakscould be
fixed at any type.

However, the limitations of this solution soon became apparent. In-
spired by the Fox project at CMU, two of Hughes’s students imple-
mented a TCP/IP stack in Haskell, making heavy use of polymor-
phism in the different layers. Their code turned out to contain seri-
ous space leaks, which they attempted to fix usingseq. But when-
ever they inserted a call ofseq on a type variable, the type signa-
ture of the enclosing function changed to require anEval instance
for that variable—just as the designers of Haskell 1.3 intended.
But often, the type signatures of very many functions changed as
a consequence of a singleseq. This would not have mattered if
the type signatures were inferred by the compiler—but the students
had written them explicitly in their code. Moreover, they had done

so not from choice, but because Haskell’s monomorphism restric-
tion required type signatures on these particular definitions (Sec-
tion 6.2). As a result, each insertion of aseq became a nightmare,
requiring repeated compilations to find affected type signatures and
manual correction of each one. Since space debugging is to some
extent a question of trial and error, the students needed to insert
and remove calls ofseq time and time again. In the end they were
forced to conclude that fixing their space leaks was simply not fea-
sible in the time available to complete the project—not because
they were hard to find, but because making the necessary correc-
tions was simply too heavyweight. This experience providedam-
munition for the eventual removal of classEval in Haskell 98.

Thus, today,seq is a simple polymorphic function that can be
inserted or removed freely to fix space leaks, without changing
the types of enclosing functions. We have sacrificed parametric-
ity in the interests of programming agility and (sometimes dra-
matic) optimisations. GHC still uses short-cut deforestation, but it
is unsound—for example, this equation doesnot hold

foldr ⊥ 0 (build seq) 6= seq ⊥ 0

Haskell’s designers love semantics, but even semantics hasits price.

It’s worth noting that making programs stricter is not the only way
to fix space leaks in Haskell. Object lifetimes can be shortened by
moving their last use earlier—or by creating them later. In their
famous case study, the first optimisation Runciman and Wakeling
made was to make the programmore lazy, delaying the construction
of a long list until just before it was needed. Hearing Runciman
describe the first heap profiler at a meeting of Working Group
2.8, Peter Lee decided to translate the code into ML to discover
the effect of introducing strictness everywhere. Sure enough, his
translation used only one third as much space as the lazy original—
but Runciman and Wakeling’s first optimisation made the now-
lazier program twice as efficient as Peter Lee’s version.

The extreme sensitivity of Haskell’s space use to evaluation order
is a two-edged sword. Tiny changes—the addition or removal of
a seq in one place—can dramatically change space requirements.
On the one hand, it is very hard for programmers toanticipate
their program’s space behaviour and place calls ofseq correctly
when the program is first written. On the other hand, given suffi-
ciently good profiling information, space performance can be im-
proved dramatically by very small changes in just the right place—
without changing the overall structure of the program. As design-
ers who believe in reasoning, we are a little ashamed that reasoning
about space use in Haskell is so intractable. Yet Haskell encour-
ages programmers—even forces them—to forget space optimisa-
tion until after the code is written, profiled, and the major space
leaks found, and at that point puts powerful tools at the program-
mer’s disposal to fix them. Maybe this is nothing to be ashamedof,
after all.

10.4 Debugging and tracing

Haskell’s rather unpredictable evaluation order also madeconven-
tional approaches to tracing and debugging difficult to apply. Most
Haskell implementations provide a “function”

trace :: String -> a -> a

that prints its first argument as a side-effect, then returnsits
second—but it is not at all uncommon for the printing of the first
argument to triggeranothercall of trace before the printing is com-
plete, leading to very garbled output. To avoid such problems, more
sophisticated debuggers aim toabstract awayfrom the evaluation
order.

10.4.1 Algorithmic debugging

One way to do so is viaalgorithmic debugging(Shapiro, 1983),
an approach in which the debugger, rather than the user, takes
the initiative to explore the program’s behaviour. The debugger
presents function calls from a faulty run to the user, together with
their arguments and results, and asks whether the result is correct.
If not, the debugger proceeds to the calls made from the faulty one
(its “children”), finally identifying a call with an incorrect result,
all of whose children behaved correctly. This is then reported as
the location of the bug.

Since algorithmic debugging just depends on the input-output be-
haviour of functions, it seems well suited to lazy programs.But
there is a difficulty—the values of function arguments and (parts
of their) results are often not computed until longafter the func-
tion call is complete, because they are not needed until later. If they
were computed early by an algorithmic debugger, in order to dis-
play them in questions to the user, then this itself might trigger
faults or loops that would otherwise not have been a problem at all!
Henrik Nilsson solved this problem in 1993 (Nilsson and Fritzson,
1994), in an algorithmic debugger for a small lazy language called
Freja, by waiting until execution was complete before starting al-
gorithmic debugging. At the end of program execution, it is known
whether or not each value was required—if it was, then its value
is now known and can be used in a question, and if it wasn’t, then
the value was irrelevant to the bug anyway. This “post mortem” ap-
proach abstracts nicely from evaluation order, and has beenused by
all Haskell debuggers since.

Although Nilsson’s debugger did not handle Haskell, Jan Sparud
was meanwhile developing one that did, by transforming Haskell
program source code to collect debugging information whilecom-
puting its result. Nilsson and Sparud then collaborated to com-
bine and scale up their work, developing efficient methods tobuild
“evaluation dependence trees” (Nilsson and Sparud, 1997),data
structures that provided all the necessary information forpost-
mortem algorithmic debugging. Nilsson and Sparud’s tools are no
longer extant, but the ideas are being pursued by Bernie Popein his
algorithmic debugger Buddha for Haskell 98 (Pope, 2005), and by
the Hat tools described next.

10.4.2 Debugging via redex trails

In 1996, Sparud joined Colin Runciman’s group at the University
of York to begin working onredex trails, another form of program
trace which supports stepping backwards through the execution
(Sparud and Runciman, 1997). Programmers can thus ask “Whydid
we callf with these arguments?” as well as inspect the evaluation
of the call itself.

Runciman realised that, with a little generalisation, thesametrace
could be used to support several different kinds of debugging (Wal-
lace et al., 2001). This was the origin of the new Hat project,
which has developed a new tracer for Haskell 98 and a variety
of trace browsing tools. Initially usable only withnhc, in 2002 Hat
became a separate tool, working by source-to-source transforma-
tion, and usable with any Haskell 98 compiler. Today, there are
trace browsers supporting redex-trail debugging, algorithmic de-
bugging, observational debugging, single-stepping, and even test
coverage measurement, together with several more specific tools
for tracking down particular kinds of problem in the trace—see
http://www.haskell.org/hat/. Since 2001, Runciman has
regularly invited colleagues to send him their bugs, or evenin-
sert bugs into his own code while his back was turned, for the sheer
joy of tracking them down with Hat!

The Hat suite are currently the most widely used debugging tools
for Haskell, but despite their power and flexibility, they have not

become a regular part of programming for most users11. This is
probably because Haskell, as it is used in practice, has remained
a moving target: new extensions appear frequently, and so itis
hard for a language-aware tool such as Hat to keep up. Indeed,
Hat was long restricted to Haskell 98 programs only—a subsetto
which few serious users restrict themselves. Furthermore,the key to
Hat’s implementation is an ingenious, systematic source-to-source
transformation of the entire program. This transformationincludes
the libraries (which are often large and use language extensions),
and imposes a substantial performance penalty on the running
program.

10.4.3 Observational debugging

A more lightweight idea was pursued by Andy Gill, who developed
HOOD, the Haskell Object Observation Debugger, in 1999–2000
(Gill, 2000). HOOD is also a post-mortem debugger, but usersin-
dicate explicitly which information should be collected byinserting
calls of

observe :: String -> a -> a

in the program to be debugged. In contrast totrace, observe
prints nothing when it is called—it just collects the value of its sec-
ond argument, tagged with the first. When execution is complete,
all the collected values are printed, with values with the same tag
gathered together. Thus the programmer can observe the collection
of values that appeared at a program point, which is often enough
to find bugs.

As in Nilsson and Sparud’s work, values that were collected but
never evaluated are displayed as a dummy value “_”. For example,

Observe> take 2 (observe "nats" [0..])
[0,1]

>>>>>>> Observations <<<<<<

nats
(0 : 1 : _)

This actually provides useful information about lazy evaluation,
showing ushow muchof the input was needed to produce the given
result.

HOOD can even observe function values, displaying them as a table
of observed arguments and results—the same information that an
algorithmic debugger would use to track down the bug location.
However, HOOD leaves locating the bug to the programmer.

10.5 Testing tools

While debugging tools have not yet really reached the Haskell
mainstream, testing tools have been more successful. The most
widely used is QuickCheck, developed by Koen Claessen and
Hughes. QuickCheck is based on a cool idea that turned out to work
very well in practice, namely that programs can be tested against
specifications by formulating specifications as boolean functions
that should always returnTrue, and then invoking these functions
on random data. For example, the function definition

prop_reverse :: [Integer] -> [Integer] -> Bool
prop_reverse xs ys =
reverse (xs++ys) == reverse ys++reverse xs

expresses a relationship betweenreverse and++ that should al-
ways hold. The QuickCheck user can test that it does just by evalu-
atingquickCheck prop_reverse in a Haskell interpreter. In this

11 In a web survey we conducted, only 3% of respondents named Hatas one
of the “most useful tools and libraries.”

case testing succeeds, but when properties fail then QuickCheck
displays a counter example. Thus, for the effort of writing asimple
property, programmers can test a very large number of cases,and
find counter examples very quickly.

To make this work for larger-than-toy examples, programmers need
to be able to control the random generation. QuickCheck supports
this via an abstract data type of “generators,” which conceptually
represent sets of values (together with a probability distribution).
For example, to test that insertion into an ordered list preserves
ordering, the programmer could write

prop_insert :: Integer -> Bool
prop_insert x
= forAll orderedList

(\xs -> ordered (insert x xs))

We read the first line as quantification over the set of orderedlists,
but in realityorderedList is a test data generator, whichforAll
invokes to generate a value forxs. QuickCheck provides a library
of combinators to make such generators easy to define.

QuickCheck was first released in 1999 and was included in the
GHC and Hugs distributions from July 2000, making it easily
accessible to most users. A first paper appeared in 2000 (Claessen
and Hughes, 2000), with a follow-up article on testing monadic
code in 2002 (Claessen and Hughes, 2002). Some early success
stories came from the annual ICFP programming contests: Tom
Moertel (“Team Functional Beer”) wrote an account12 of his entry
in 2001, with quotable quotes such as “QuickCheck to the rescue!”
and “Not so fast, QuickCheck spotted a corner case. . . ,” concluding

QuickCheck found these problems and more, many that I
wouldn’t have found without a massive investment in test
cases, and it did so quickly and easily. From now on, I’m a
QuickCheck man!

Today, QuickCheck is widely used in the Haskell community and
is one of the tools that has been adopted by Haskell programmers
in industry, even appearing in job ads from Galois Connections
and Aetion Technologies. Perhaps QuickCheck has succeededin
part because of who Haskell programmers are: given the question
“What is more fun, testing code or writing formal specifications?”
many Haskell users would choose the latter—if you can test code
by writing formal specifications, then so much the better!

QuickCheck is not only a useful tool, but also a good example of
applying some of Haskell’s unique features. It defines a domain-
specific language of testable properties, in the classic Haskell tradi-
tion. The class system is used to associate a test data generator with
each type, and to overload thequickCheck function so that it can
test properties with any number of arguments, of any types. The
abstract data type of generators is a monad, and Haskell’s syntactic
sugar for monads is exploited to make generators easy to write. The
Haskell language thus had a profound influence on QuickCheck’s
design.

This design has been emulated in many other languages. One of
the most interesting examples is due to Christian Lindig, who
found bugs in production-quality C compilers’ calling conven-
tions by generating random C programs in a manner inspired by
QuickCheck (Lindig, 2005). A port to Erlang has been used to find
unexpected errors in a pre-release version of an Ericsson Media
Gateway (Arts et al., 2006).

QuickCheck is not the only testing tool for Haskell. In 2002,Dean
Herington released HUnit (Herington, 2002), a test framework in-
spired by the JUnit framework for Java, which has also acquired a

12Seehttp://www.kuro5hin.org/story/2001/7/31/0102/11014.

dedicated following. HUnit supports more traditional unittesting: it
does not generate test cases, but rather provides ways to define test
cases, structure them into a hierarchy, and run tests automatically
with a summary of the results.

Part IV

Applications and Impact
A language does not have to have a direct impact on the real world
to hold a prominent place in the history of programming languages.
For example, Algol was never used substantially in the real world,
but its impact was huge. On the other hand, impact on the real world
was an important goal of the Haskell Committee, so it is worthwhile
to consider how well we have achieved this goal.

The good news is that there are far too many interesting applica-
tions of Haskell to enumerate in this paper. The bad news is that
Haskell is still not a mainstream language used by the masses! Nev-
ertheless, there are certain niches where Haskell has faredwell. In
this section we discuss some of the more interesting applications
and real-world impacts, with an emphasis on successes attributable
to specific language characteristics.

11. Applications
Some of the most important applications of Haskell were origi-
nally developed as libraries. The Haskell standard includes a mod-
est selection of libraries, but many more are available. TheHaskell
web site (haskell.org) lists more than a score of categories, with
the average category itself containing a score of entries. For ex-
ample, the Edison library of efficient data structures, originated by
Okasaki (Okasaki, 1998a) and maintained by Robert Dockins,pro-
vides multiple implementations of sequences and collections, or-
ganised using type classes. The HSQL library interfaces to avari-
ety of databases, including MySQL, Postgres, ODBC, SQLite,and
Oracle; it is maintained by Angelov.

Haskell also has the usual complement of parser and lexer genera-
tors. Marlow’sHappywas designed to be similar to yacc and gen-
erated LALR parsers. (“Happy” is a “dyslexic acronym” for Yet
Another Haskell Parser.) Paul Callaghan recently extendedHappy
to produce Generalised LR parsers, which work with ambiguous
grammars, returning all possible parses. Parser combinator libraries
are discussed later in this section. Documentation of Haskell pro-
grams is supported by several systems, including Marlow’s Had-
dock tool.

11.1 Combinator libraries

One of the earliest success stories of Haskell was the development
of so-calledcombinator libraries. What is a combinator library?
The reader will search in vain for a definition of this heavilyused
term, but the key idea is this: a combinator library offers functions
(the combinators) that combinefunctionstogether to make bigger
functions.

For example, an early paper that made the design of combinator
libraries a central theme was Hughes’s paper “The design of a
pretty-printing library” (Hughes, 1995). In this paper a “smart
document” was an abstract type that can be thought of like this:

type Doc = Int -> String

That is, a document takes anInt, being the available width of the
paper, and lays itself out in a suitable fashion, returning aString

that can be printed. Now a library of combinators can be defined
such as:

above :: Doc -> Doc -> Doc
beside :: Doc -> Doc -> Doc
sep :: [Doc] -> Doc

The functionsep lays the subdocuments out beside each other if
there is room, or above each other if not.

While aDoc can bethought ofas a function, it may not beimple-
mentedas a function; indeed, this trade-off is a theme of Hughes’s
paper. Another productive way to think of a combinator library is as
a domain-specific language(DSL) for describing values of a par-
ticular type (for example, document layout in the case of pretty-
printing). DSLs in Haskell are described in more detail in Sec-
tion 11.2.

11.1.1 Parser combinators

One of the most fertile applications for combinator libraries has
undoubtedly beenparser combinators. Like many ingenious pro-
gramming techniques, this one goes back to Burge’s astonishing
bookRecursive Programming Techniques(Burge, 1975), but it was
probably Wadler’s paper “How to replace failure by a list of suc-
cesses” (Wadler, 1985) that brought it wider attention, although he
did not use the word “combinator” and described the work as “folk-
lore”.

A parser may be thought of as a function:

type Parser = String -> [String]

That is, aParser takes a string and attempts to parse it, returning
zero or more depleted input strings, depending on how many ways
the parse could succeed. Failure is represented by the emptylist of
results. Now it is easy to define a library of combinators thatcom-
bine parsers together to make bigger parsers, and doing so allows
an extraordinarily direct transcription of BNF into executable code.
For example, the BNF

float ::= sign? digit+ (′.′ digit+)?

might translate to this Haskell code:

float :: Parser
float = optional sign <*> oneOrMore digit <*>

optional (lit ’.’ <*> oneOrMore digit)

The combinatorsoptional, oneOrMore, and (<*>) combine
parsers to make bigger parsers:

optional, oneOrMore :: Parser -> Parser
(<*>) :: Parser -> Parser -> Parser

It is easy for the programmer to make new parser combinators by
combining existing ones.

A parser of this kind is only arecogniserthat succeeds or fails.
Usually, however, one wants a parser to return a value as well, a re-
quirement that dovetails precisely with Haskell’s notion of a monad
(Section 7). The type of parsers is parameterised toParser t,
wheret is the type of value returned by the parser. Now we can
write thefloat parser usingdo-notation, like this:

float :: Parser Float
float
= do mb_sgn <- optional sign

digs <- oneOrMore digit
mb_frac <- optional (do lit ’.’

oneOrMore digit)
return (mkFloat mb_sgn digs mb_frac)

where optional :: Parser a -> Parser (Maybe a), and
oneOrMore :: Parser a -> Parser [a].

The interested reader may find the short tutorial by Hutton and
Meijer helpful (Hutton and Meijer, 1998). There are dozens of
papers about cunning variants of parser combinators, including
error-correcting parsers (Swierstra and Duponcheel, 1996), paral-
lel parsing (Claessen, 2004), parsing permutation phrases(Baars
et al., 2004), packrat parsing (Ford, 2002), and lexical analysis
(Chakravarty, 1999b). In practice, the most complete and widely
used library is probably Parsec, written by Daan Leijen.

11.1.2 Other combinator libraries

In a way, combinator libraries do not embody anything fundamen-
tally new. Nevertheless, the idea has been extremely influential,
with dozens of combinator libraries appearing in widely different
areas. Examples include pretty printing (Hughes, 1995; Wadler,
2003), generic programming (Lämmel and Peyton Jones, 2003),
embedding Prolog in Haskell (Spivey and Seres, 2003), financial
contracts (Peyton Jones et al., 2000), XML processing (Wallace
and Runciman, 1999), synchronous programming (Scholz, 1998),
database queries (Leijen and Meijer, 1999), and many others.

What makes Haskell such a natural fit for combinator libraries?
Aside from higher-order functions and data abstraction, there seem
to be two main factors, both concerning laziness. First, onecan
write recursive combinators without fuss, such as this recursive
parser for terms:

term :: Parser Term
term = choice [float, integer,

variable, parens term, ...]

In call-by-value languages, recursive definitions like this are gen-
erally not allowed. Instead, one would have to eta-expand the def-
inition, thereby cluttering the code and (much more importantly)
wrecking the abstraction (Syme, 2005).

Second, laziness makes it extremely easy to write combinator li-
braries with unusual control flow. Even in Wadler’s originallist-
of-successes paper, laziness plays a central role, and thatis true of
many other libraries mentioned above, such as embedding Prolog
and parallel parsing.

11.2 Domain-specific embedded languages

A common theme among many successful Haskell applications
is the idea of writing a library that turns Haskell into adomain-
specific embedded language(DSEL), a term first coined by Hu-
dak (Hudak, 1996a; Hudak, 1998). Such DSELs have appeared in
a diverse set of application areas, including graphics, animation,
vision, control, GUIs, scripting, music, XML processing, robotics,
hardware design, and more.

By “embedded language” we mean that the domain-specific lan-
guage is simply an extension of Haskell itself, sharing its syntax,
function definition mechanism, type system, modules and so on.
The “domain-specific” part is just the new data types and functions
offered by a library. The phrase “embedded language” is commonly
used in the Lisp community, where Lisp macros are used to design
“new” languages; in Haskell, thanks to lazy evaluation, much (al-
though emphatically not all) of the power of macros is available
through ordinary function definitions. Typically, a data type is de-
fined whose essential nature is often, at least conceptually, a func-
tion, and operators are defined that combine these abstract func-
tions into larger ones of the same kind. The final program is then
“executed” by decomposing these larger pieces and applyingthe
embedded functions in a suitable manner.

In contrast, a non-embedded DSL can be implemented by writ-
ing a conventional parser, type checker, and interpreter (or com-
piler) for the language. Haskell is very well suited to such ap-

proaches as well. However, Haskell has been particularly success-
ful for domain-specific embedded languages. Below is a collection
of examples.

11.2.1 Functional Reactive Programming

In the early 1990s, Conal Elliott, then working at Sun Microsys-
tems, developed a DSL calledTBAG for constraint-based, semi-
declarative modelling of 3D animations (Elliott et al., 1994;
Schechter et al., 1994). Although largely declarative, TBAG was
implemented entirely in C++. The success of his work resulted in
Microsoft hiring Elliot and a few of his colleagues into the graph-
ics group at Microsoft Research. Once at Microsoft, Elliott’s group
released in 1995 a DSL calledActiveVRMLthat was more declar-
ative than TBAG, and was in fact based on an ML-like syntax
(Elliott, 1996). It was about that time that Elliott also became in-
terested in Haskell, and began collaborating with several people in
the Haskell community on implementing ActiveVRML in Haskell.
Collaborations with Hudak at Yale on design issues, formal seman-
tics, and implementation techniques led in 1998 to a language that
they calledFran, which stood for “functional reactive animation”
(Elliott and Hudak, 1997; Elliott, 1997).

The key idea in Fran is the notion of abehaviour, a first-class data
type that represents atime-varyingvalue. For example, consider
this Fran expression:

pulse :: Behavior Image
pulse = circle (sin time)

In Fran,pulse is a time-varying image value, describing a circle
whose radius is the sine of the time, in seconds, since the program
began executing. A good way to understand behaviours is via the
following data type definition:

newtype Behavior a = Beh (Time -> a)
type Time = Float

That is, a behaviour in Fran is really just a function from time to
values. Using this representation, the valuetime used in thepulse
example would be defined as:

time :: Behaviour Time
time = Beh (\t -> t)

i.e., the identity function. Since many Fran behaviours arenumeric,
Haskell’sNum and Floating classes (for example) allow one to
specify how to add two behaviours or take the sine of a behaviour,
respectively:

instance Num (Behavior a) where
Beh f + Beh g = Beh (\t -> f t + g t)

instance Floating (Behaviour a) where
sin (Beh f) = Beh (\t -> sin (f t))

Thinking of behaviours as functions is perhaps the easiest way to
reason about Fran programs, but of course behaviours are abstract,
and thus can be implemented in other ways, just as with combinator
libraries described earlier.

Another key idea in Fran is the notion of an infinite stream of
events. Various “switching” combinators provide the connection
between behaviours and events—i.e. between the continuousand
the discrete—thus making Fran-like languages suitable forso-
called “hybrid systems.”

This work, a classic DSEL, was extremely influential. In particu-
lar, Hudak’s research group and others began a flurry of research
strands which they collectively referred to asfunctional reactive
programming, or FRP. These efforts included: the application of

FRP to real-world physical systems, including both mobile and hu-
manoid robots (Peterson et al., 1999a; Peterson et al., 1999b); the
formal semantics of FRP, both denotational and operational, and the
connection between them (Wan and Hudak, 2000); real-time vari-
ants of FRP targeted for real-time embedded systems (Wan et al.,
2002; Wan et al., 2001; Wan, 2002); the development of an arrow-
based version of FRP calledYampain 2002, that improves both the
modularity and performance of previous implementations (Hudak
et al., 2003); the use of FRP and Yampa in the design of graphical
user interfaces (Courtney and Elliott, 2001; Courtney, 2004; Sage,
2000) (discussed further in Section 11.3); and the use of Yampa in
the design of a 3D first-person shooter game calledFrag in 2005
(Cheong, 2005). Researchers at Brown have more recently ported
the basic ideas of FRP into a Scheme environment called “Father
Time” (Cooper and Krishnamurthi, 2006).

11.2.2 XML and web-scripting languages

Demonstrating the ease with which Haskell can support domain-
specific languages, Wallace and Runciman were one of the firstto
extend an existing programming language with features for XML
programming, with a library and toolset called HaXml (Wallace
and Runciman, 1999). They actually provided two approachesto
XML processing. One was a small combinator library for manip-
ulating XML, that captured in a uniform way much of the same
functionality provided by the XPath language at the core of XSLT
(and later XQuery). The other was a data-binding approach (im-
plemented as a pre-processor) that mapped XML data onto Haskell
data structures, and vice versa. The two approaches have comple-
mentary strengths: the combinator library is flexible but all XML
data has the same type; the data-binding approach captures more
precise types but is less flexible. Both approaches are stillcommon
in many other languages that process XML, and most of these lan-
guages still face the same trade-offs.

Haskell was also one of the first languages to support what has
become one of the standard approaches to implementing web ap-
plications. The traditional approach to implementing a webappli-
cation requires breaking the logic into one separate program for
each interaction between the client and the web server. Eachpro-
gram writes an HTML form, and the responses to this form become
the input to the next program in the series. Arguably, it is better to
invert this view, and instead to write a single program containing
calls to a primitive that takes an HTML form as argument and re-
turns the responses as the result, and this approach was firsttaken
by the domain-specific language MAWL (Atkins et al., 1999).

However, one does not need to invent a completely new language
for the purpose; instead, this idea can be supported using concepts
available in functional languages, either continuations or mon-
ads (the two approaches are quite similar). Paul Graham useda
continuation-based approach as the basis for one of the firstcom-
mercial applications for building web stores, which later became
Yahoo Stores (Graham, 2004). The same approach was indepen-
dently discovered by Christian Queinnec (Queinnec, 2000) and fur-
ther developed by Matthias Felleisen and others in PLT Scheme
(Graunke et al., 2001). Independently, an approach based ona gen-
eralisation of monads called arrows was discovered by Hughes
(Hughes, 2000) (Section 6.7). Hughes’s approach was further de-
veloped by Peter Thiemann in the WASH system for Haskell, who
revised it to use monads in place of arrows (Thiemann, 2002b). It
turns out that the approach using arrows or monads is closelyre-
lated to the continuation approach (since continuations arise as a
special case of monads or arrows). The continuation approach has
since been adopted in a number of web frameworks widely used by
developers, such as Seaside and RIFE.

Most of this work has been done in languages (Scheme, Smalltalk,
Ruby) without static typing. Thiemann’s work has shown thatthe
same approach works with a static type system that can guarantee
that the type of information returned by the form matches the
type of information that the application expects. Thiemannalso
introduced a sophisticated use of type classes to ensure that HTML
or XML used in such applications satisfies the regular expression
types imposed by the document type declarations (DTD) used in
XML (Thiemann, 2002a).

11.2.3 Hardware design languages

Lazy functional languages have a long history of use for describ-
ing and modelling synchronous hardware, for two fundamental rea-
sons: first, because lazy streams provide a natural model fordis-
crete time-varying signals, making simulation of functional mod-
els very easy; and second, because higher-order functions are ideal
for expressing the regular structure of many circuits. Using lazy
streams dates to Steve Johnson’s work in the early eighties,for
which he won the ACM Distinguished Dissertation award in 1984
(Johnson, 1984). Higher-order functions for capturing regular cir-
cuit structure were pioneered by Mary Sheeran in her languageµFP
(Sheeran, 1983; Sheeran, 1984), inspired by Backus’ FP (Backus,
1978b).

It was not long before Haskell too was applied to this domain.One
of the first to do so was John O’Donnell, whose Hydra hardware
description language is embedded in Haskell (O’Donnell, 1995).
Another was Dave Barton at Intermetrics, who proposed MHDL
(Microwave Hardware Description Language) based on Haskell
1.2 (Barton, 1995). This was one of the earliest signs of industrial
interest in Haskell, and Dave Barton was later invited to join the
Haskell Committee as a result.

A little later, Launchbury and his group used Haskell to describe
microprocessor architectures in the Hawk system (Matthewset al.,
1998), and Mary Sheeran et al. developed Lava (Bjesse et al.,
1998), a system for describing regular circuits in particular, which
can simulate, verify, and generate net-lists for the circuits de-
scribed. Both Hawk and Lava are examples of domain-specific
languages embedded in Haskell.

When Satnam Singh moved to Xilinx in California, he took Lava
with him and added the ability to generate FPGA layouts for Xilinx
chips from Lava descriptions. This was one of the first success-
ful industrial applications of Haskell: Singh was able to generate
highly efficient and reconfigurable cores for accelerating applica-
tions such as Adobe Photoshop (Singh and Slous, 1998). For years
thereafter, Singh used Lava to develop specialised core generators,
delivered to Xilinx customers as compiled programs that, given
appropriate parameters, generated important parts of an FPGA
design—in most cases without anyone outside Xilinx being aware
that Haskell was involved! Singh tells an amusing anecdote from
these years: on one occasion, a bug in GHC prevented his latest
core generator from compiling. Singh mailed his code to Peyton
Jones at Microsoft Research, who was able to compile it with the
development version of GHC, and sent the result back to Singhthe
next day. When Singh told his manager, the manager exclaimed
incredulously, “You mean to say you got 24-hour support from
Microsoft?”

Lava in particular exercised Haskell’s ability to embed domain spe-
cific languages to the limit. Clever use of the class system enables
signals-of-lists and lists-of-signals, for example, to beused almost
interchangeably, without a profusion of zips and unzips. Captur-
ing sharing proved to be particularly tricky, though. Consider the
following code fragment:

let x = nand a b
y = nand a b

in ...

Here it seems clear that the designer intends to model two separate
NAND-gates. But what about

let x = nand a b
y = x

in ...

Now, clearly, the designer intends to model a single NAND-gate
whose output signal is shared byx andy. Net-lists generated from
these two descriptions should therefore bedifferent—yet according
to Haskell’s intended semantics, these two fragments should be
indistinguishable. For a while, Lava used a “circuit monad”to make
the difference observable:

do x <- nand a b
y <- nand a b
...

versus

do x <- nand a b
y <- return x
...

which are perfectly distinguishable in Haskell. This is therecom-
mended “Haskellish” approach—yet adopting a monadic syntax
uniformly imposes quite a heavy cost on Lava users, which is frus-
trating given that the only reason for the monad is to distinguish
sharing from duplication! Lava has been used to teach VLSI design
to electrical engineering students, and in the end, the struggle to
teach monadic Lava syntax to non-Haskell users became too much.
Claessen usedunsafePerformIO to implement “observable shar-
ing”, allowing Lava to use the first syntax above, but still todistin-
guish sharing from duplication when generating net-lists,theorem-
prover input, and so on. Despite its unsafe implementation,observ-
able sharing turns out to have a rather tractable theory (Claessen
and Sands, 1999), and thus Lava has both tested Haskell’s ability to
embed other languages to the limit, and contributed a new mecha-
nism to extend its power.

Via this and other work, lazy functional programming has had
an important impact on industrial hardware design. Intel’slarge-
scale formal verification work is based on a lazy language, in
both the earlier Forté and current IDV systems. Sandburst was
founded by Arvind to exploit Bluespec, a proprietary hardware
description language closely based on Haskell (see Section12.4.2).
The language is now being marketed (with a System Verilog front
end) by a spin-off company called Bluespec, but the tools arestill
implemented in Haskell.

A retrospective on the development of the field, and Lava in partic-
ular, can be found in Sheeran’s JUCS paper (Sheeran, 2005).

11.2.4 Computer music

Haskoreis a computer music library written in Haskell that allows
expressing high-level musical concepts in a purely declarative way
(Hudak et al., 1996; Hudak, 1996b; Hudak, 2003). Primitive values
corresponding to notes and rests are combined using combinators
for sequential and parallel composition to form larger musical val-
ues. In addition, musical ornamentation and embellishment(legato,
crescendo, etc.) are treated by an object-oriented approach to mu-
sical instruments to provide flexible degrees of interpretation.

The first version of Haskore was written in the mid ’90s by Hudak
and his students at Yale. Over the years it has matured in a number
of different ways, and aside from the standard distributionat Yale,

Henning Thielemann maintains an open-source Darcs repository
(Section 12.3) to support further development. Haskore hasbeen
used as the basis of a number of computer music projects, and
is actively used for computer music composition and education.
One of the more recent additions to the system is the ability to
specify musical sounds—i.e. instruments—in a declarativeway, in
which oscillators, filters, envelope generators, etc. are combined in
a signal-processing-like manner.

Haskore is based on a very simple declarative model of music
with nice algebraic properties that can, in fact, be generalized to
other forms of time-varying media (Hudak, 2004). Although many
other computer music languages preceded Haskore, none of them,
perhaps surprisingly, reflects this simple structure. Haskell’s purity,
lazy evaluation, and higher-order functions are the key features that
make possible this elegant design.

11.2.5 Summary

Why has Haskell been so successful in the DSEL arena? After
all, many languages provide the ability to define new data types
together with operations over them, and a DSEL is little morethan
that! No single feature seems dominant, but we may identify the
following ways in which Haskell is a particularly friendly host
language for a DSEL:

1. Type classespermit overloading of many standard operations
(such as those for arithmetic) on many nonstandard types (such
as theBehaviour type above).

2. Higher-order functionsallow encoding nonstandard behaviours
and also provide the glue to combine operations.

3. Infix syntaxallows one to emulate infix operators that are com-
mon in other domains.

4. Over-loaded numeric literalsallow one to use numbers in new
domains without tagging or coercing them in awkward ways.

5. Monads and arrows are flexible mechanisms for combining
operations in ways that reflect the semantics of the intended
domain.

6. Lazy evaluationallows writing recursive definitions in the new
language that are well defined in the DSEL, but would not
terminate in a strict language.

The reader will also note that there is not much difference in
concept between the combinator libraries described earlier and
DSELs. For example, a parser combinator library can be viewed
as a DSEL for BNF, which is just a meta-language for context-
free grammars. And Haskell libraries for XML processing share a
lot in common with parsing and layout, and thus with combinator
libraries. It is probably only for historical reasons that one project
might use the term “combinator library” and another the term
“DSL” (or “DSEL”).

11.3 Graphical user interfaces

Once Haskell had a sensible I/O system (Section 7), the next ob-
vious question was how to drive a graphical user interface (GUI).
People interested in this area rapidly split into two groups: the ide-
alistsand thepragmatists.

The idealists took a radical approach. Rather than adopt theimper-
ative, event-loop-based interaction model of mainstream program-
ming languages, they sought to answer the question, “What isthe
right way to interact with a GUI in a purely declarative setting?”
This question led to several quite unusual GUI systems:

• The Fudgetssystem was developed by Magnus Carlsson and
Thomas Hallgren, at Chalmers University in Sweden. They
treated the GUI as a network of“stream processors”, or stream

transformers (Carlsson and Hallgren, 1993). Each processor
had a visual appearance, as well as being connected to other
stream processors, and the shape of the network could change
dynamically. There was no central event loop: instead each
stream processor processed its own individual stream of events.

• Sigbjorn Finne, then a research student at Glasgow, devel-
oped Haggis, which replaced the event loop with extremely
lightweight concurrency; for example, each button might have
a thread dedicated to listening for clicks on that button. The
stress was on widgetcomposition, so that complex widgets
could be made by composing together simpler ones (Finne and
Peyton Jones, 1995). The requirements of Haggis directly drove
the development of Concurrent Haskell (Peyton Jones et al.,
1996).

• Based on ideas in Fran (see section 11.2.1), Meurig Sage devel-
opedFranTk (Sage, 2000), which combined the best ideas in
Fran with those of the GUI toolkit Tk, including an imperative
model of call-backs.

• Antony Courtney took a more declarative approach based en-
tirely on FRP and Yampa, but with many similarities to Fudgets,
in a system that he calledFruit (Courtney and Elliott, 2001;
Courtney, 2004). Fruit is purely declarative, and uses arrows to
“wire together” GUI components in a data-flow-like style.

Despite the elegance and innovative nature of these GUIs, none
of them broke through to become the GUI toolkit of choice for a
critical mass of Haskell programmers, and they all remainedsingle-
site implementations with a handful of users. It is easy to see why.
First, developing a fully featured GUI is a huge task, and each
system lacked the full range of widgets, and snazzy appearance,
that programmers have come to expect. Second, the quest for purity
always led to programming inconvenience in one form or another.
The search for an elegant, usable, declarative GUI toolkit remains
open.

Meanwhile, the pragmatists were not idle. They just wanted to get
the job done, by the direct route of interfacing to some widely
available GUI toolkit library, a so-called “binding.” Early efforts
included an interface to Tcl/Tk called swish (Sinclair, 1992), and
an interface to X windows (the Yale Haskell project), but there
were many subsequent variants (e.g., TkGofer, TclHaskell,HTk)
and bindings to other tool kits such as OpenGL (HOpenGL), GTK
(e.g., Gtk2Hs, Gtk+Hs) and WxWidgets (WxHaskell). These ef-
forts were hampered by the absence of a well defined foreign-
function interface for Haskell, especially as the libraries involved
have huge interfaces. As a direct result, early bindings were often
somewhat compiler specific, and implemented only part of thefull
interface. More recent bindings, such as Gtk2Hs and WxHaskell,
are generated automatically by transforming the machine-readable
descriptions of the library API into the Haskell 98 standardFFI.

These bindings all necessarily adopt the interaction modelof the
underlying toolkit, invariably based on imperative widgetcreation
and modification, together with an event loop and call-backs. Nev-
ertheless, their authors often developed quite sophisticated Haskell
wrapper libraries that present a somewhat higher-level interface to
the programmer. A notable example is the Clean graphical I/Oli-
brary, which formed an integral part of the Clean system froma
very early stage (Achten et al., 1992) (unlike the fragmented ap-
proach to GUIs taken by Haskell). The underlying GUI toolkit
for Clean was the Macintosh, but Clean allows the user to spec-
ify the interface by means of a data structure containing call-back
functions. Much later, the Clean I/O library was ported to Haskell
(Achten and Peyton Jones, 2000).

To this day, the Haskell community periodically agonises over the
absence of a single standard Haskell GUI. Lacking such a standard
is undoubtedly an inhibiting factor on Haskell’s development. Yet
no one approach has garnered enough support to becomethe de-
sign, despite various putative standardisation efforts, although Wx-
Haskell (another side project of the indefatigable Daan Leijen) has
perhaps captured the majority of the pragmatist market.

11.4 Operating Systems

An early operating system for Haskell was hOp, a micro-kernel
based on the runtime system of GHC, implemented by Sebastian
Carlier and Jeremy Bobbio (Carlier and Bobbio, 2004). Building
on hOp, a later project, House, implemented a system in which
the kernel, window system, and all device drivers are written in
Haskell (Hallgren et al., 2005). It uses a monad to provide access to
the Intel IA32 architecture, including virtual memory management,
protected execution of user binaries, and low-level IO operations.

11.5 Natural language processing13

Haskell has been used successfully in the development of a va-
riety of natural language processing systems and tools. Richard
Frost (Frost, 2006) gives a comprehensive review of relevant work
in Haskell and related languages, and discusses new tools and li-
braries that are emerging, written in Haskell and related languages.
We highlight two substantial applications that make significant use
of Haskell.

Durham’sLOLITA system (Large-scale, Object-based, Linguistic
Interactor, Translator and Analyzer) was developed by Garigliano
and colleagues at the University of Durham (UK) between 1986
and 2000. It was designed as a general-purpose tool for processing
unrestricted text that could be the basis of a wide variety ofapplica-
tions. At its core was a semantic network containing some 90,000
interlinked concepts. Text could be parsed and analysed then in-
corporated into the semantic net, where it could be reasonedabout
(Long and Garigliano, 1993). Fragments of semantic net could also
be rendered back to English or Spanish. Several applications were
built using the system, including financial information analysers
and information extraction tools for Darpa’s “Message Understand-
ing Conference Competitions” (MUC-6 and MUC-7). The latter
involved processing original Wall Street Journal articles, to per-
form tasks such as identifying key job changes in businessesand
summarising articles. LOLITA was one of a small number of sys-
tems worldwide to compete in all sections of the tasks. A system
description and an analysis of the MUC-6 results were written by
Callaghan (Callaghan, 1998).

LOLITA was an early example of a substantial application writ-
ten in a functional language: it consisted of around 50,000 lines
of Haskell (with around 6000 lines of C). It is also a complex and
demanding application, in which many aspects of Haskell were in-
valuable in development. LOLITA was designed to handle unre-
stricted text, so that ambiguity at various levels was unavoidable
and significant. Laziness was essential in handling the explosion
of syntactic ambiguity resulting from a large grammar, and it was
much used with semantic ambiguity too. The system used multiple
DSELs (Section 11.2) for semantic and pragmatic processingand
for generation of natural language text from the semantic net. Also
important was the ability to work with complex abstractionsand to
prototype new analysis algorithms quickly.

TheGrammatical Framework(GF) (Ranta, 2004) is a language for
defining grammars based on type theory, developed by Ranta and
colleagues at Chalmers University. GF allows users to describe a

13This section is based on material contributed by Paul Callaghan.

precise abstract syntax together with one or more concrete syn-
taxes; the same description specifies both how to parse concrete
syntax into abstract syntax, and how to linearise the abstract syntax
into concrete syntax. An editing mode allows incremental construc-
tion of well formed texts, even using multiple languages simulta-
neously. The GF system has many applications, including high-
quality translation, multi-lingual authoring, verifyingmathemati-
cal proof texts and software specifications, communicationin con-
trolled language, and interactive dialogue systems. Many reusable
“resource grammars” are available, easing the construction of new
applications.

The main GF system is written in Haskell and the whole system is
open-source software (under a GPL licence). Haskell was chosen
as a suitable language for this kind of system, particularlyfor the
compilation and partial evaluation aspects (of grammars).Monads
and type classes are extensively used in the implementation.

12. The impact of Haskell
Haskell has been used in education, by the open-source community,
and by companies. The language is the focal point of an activeand
still-growing user community. In this section we survey some of
these groups of users and briefly assess Haskell’s impact on other
programming languages.

12.1 Education

One of the explicit goals of Haskell’s designers was to create a lan-
guage suitable for teaching. Indeed, almost as soon as the language
was defined, it was being taught to undergraduates at Oxford and
Yale, but initially there was a dearth both of textbooks and of robust
implementations suitable for teaching. Both problems weresoon
addressed. The first Haskell book—Tony Davie’sAn Introduction
to Functional Programming Systems Using Haskell—appeared in
1992. The release of Gofer in 1991 made an “almost Haskell” sys-
tem available with a fast, interactive interface, good for teaching. In
1995, when Hugs was released, Haskell finally had an implemen-
tation perfect for teaching—which students could also install and
use on their PCs at home. In 1996, Simon Thompson published a
Haskell version of hisCraft of Functional Programmingtextbook,
which had first appeared as a Miranda textbook a year earlier.This
book (revised in 1998) has become the top-selling book on Haskell,
far ahead of its closest competitor in Amazon’s sales rankings.

The arrival of Haskell 98 gave textbooks another boost. Birdre-
vised Introduction to Functional Programming, using Haskell, in
1998, and in the same year Okasaki published the first textbook
to use Haskell to teach another subject—Purely Functional Data
Structures. This was followed the next year by Fethi Rabhi and
Guy Lapalme’s algorithms textAlgorithms: A functional program-
ming approach, and new texts continue to appear, such as Graham
Hutton’s 2006 bookProgramming in Haskell.

The first Haskell texts were quite introductory in nature, intended
for teaching functional programming to first-year students. At the
turn of the millennium, textbooks teaching more advanced tech-
niques began to appear. Hudak’sHaskell School of Expression(Hu-
dak, 2000) uses multimedia applications (such as graphics,anima-
tion, and music) to teach Haskell idioms in novel ways that gowell
beyond earlier books. A unique aspect of this book is its use of
DSELs (for animation, music, and robotics) as an underlyingtheme
(see Section 11.2). Although often suggested for first-yearteach-
ing, it is widely regarded as being more suitable for an advanced
course. In 2002, Gibbons and de Moor editedThe Fun of Program-
ming, an advanced book on Haskell programming with contribu-
tions by many authors, dedicated to Richard Bird and intended as a
follow-up to his text.

Another trend is to teach discrete mathematics and logic using
Haskell as a medium of instruction, exploiting Haskell’s mathemat-
ical look and feel. Cordelia Hall and John O’Donnell published the
first textbook taking this approach in 2000—Discrete Mathemat-
ics Using a Computer. Rex Page carried out a careful three-year
study, in which students were randomly assigned to a group taught
discrete mathematics in the conventional way, or a group taught
using Hall and O’Donnell’s text, and found that students in the lat-
ter group became significantly more effective programmers (Page,
2003). Recently (in 2004) Doets and van Eijck have publishedan-
other textbook in this vein,The Haskell Road to Logic, Maths and
Programming, which has rapidly become popular.

For the more advanced students, there has been an excellent se-
ries of International Summer Schools on Advanced Functional Pro-
gramming, at which projects involving Haskell have always had a
significant presence. There have been five such summer schools to
date, held in 1995, 1996, 1998, 2002, and 2004.

12.1.1 A survey of Haskell in higher education

To try to form an impression of the use of Haskell in university
education today, we carried out a web survey of courses taught in
the 2005–2006 academic year. We make no claim that our survey
is complete, but it was quite extensive: 126 teachers responded,
from 89 universities in 22 countries; together they teach Haskell to
5,000–10,000 students every year14. 25% of these courses began
using Haskell only in the last two years (since 2004), which sug-
gests that the use of Haskell in teaching is currently seeingrapid
growth.

Enthusiasts have long argued that functional languages areide-
ally suited to teaching introductory programming, and indeed, most
textbooks on Haskell programming are intended for that purpose.
Surprisingly, only 28 of the courses in our survey were aimedat
beginners (i.e. taught in the first year, or assuming no previous
programming experience). We also asked respondents which pro-
gramming languages students learn first and second at their Uni-
versities, on the assumption that basic programming will teach
at least two languages. We found that—even at Universities that
teach Haskell—Java was the first language taught in 47% of cases,
and also the most commonly taught second language (in 22% of
cases). Haskell was among the first two programming languages
only in 35% of cases (15% as first language, 20% as second lan-
guage). However, beginners’ courses did account for the largest
single group of students to study Haskell, 2–4,000 every year, be-
cause each such course is taken by more students on average than
later courses are.

The most common courses taught using Haskell are explicitly
intended to teach functional programmingper se(or sometimes
declarative programming). We received responses from 48 courses
of this type, with total student numbers of 1,300–2,900 per year.
A typical comment from respondees was that the course was in-
tended to teach “a different style of programming” from the object-
oriented paradigm that otherwise predominates. Four othermore
advanced programming courses (with 3–700 students) can be said
to have a similar aim.

The third large group of courses we found were programming
language courses—ranging from comparative programming lan-
guages through formal semantics. There were 25 such courses,
with 800–1,700 students annually. Surprisingly, there is currently
no Haskell-based textbook aimed at this market—an opportunity,
perhaps?

14We asked only for approximate student numbers, hence the wide range
of possibilities.

Haskell is used to teach nine compilers courses, with 3–700 stu-
dents. It is also used to teach six courses in theoretical computer
science (2–400 students). Both take advantage of well-known
strengths of the language—symbolic computation and its mathe-
matical flavour. Finally, there are two courses in hardware descrip-
tion (50–100 students), and one course in each of domain-specific
languages, computer music, quantum computing, and distributed
and parallel programming—revealing a surprising variety in the
subjects where Haskell appears.

Most Haskell courses are aimed at experienced programmers see-
ing the language for the first time: 85% of respondents taughtstu-
dents with prior programming experience, but only 23% taught
students who already knew Haskell. The years in which Haskell
courses are taught are shown in this table:

Year %ge
1st undergrad 20%
2nd undergrad 23%
3rd undergrad 25%
4–5th undergrad 16%
Postgrad 12%

This illustrates once again that the majority of courses aretaught at
more advanced levels.

The countries from which we received most responses were the
USA (22%), the UK (19%), Germany (11%), Sweden (8%), Aus-
tralia (7%), and Portugal (5%).

How does Haskell measure up in teaching? Some observations we
received were:

• Both respondents and their students are generally happy with
the choice of language—“Even though I am not a FL researcher,
I enjoy teaching the course more than most of my other courses
and students also seem to like the course.”

• Haskell attracts good students—“The students who take the
Haskell track are invariably among the best computer science
students I have taught.”

• Fundamental concepts such as types and recursion are ham-
mered home early.

• Students can tackle more ambitious and interesting problems
earlier than they could using a language like Java.

• Simple loop programs can be harder for students to grasp when
expressed using recursion.

• The class system causes minor irritations, sometimes leading to
puzzling error messages for students.

• Array processing and algorithms using in-place update are
messier in Haskell.

• Haskell input/output is not well covered by current textbooks:
“my impression was that students are mostly interested in things
which Simon Peyton Jones addressed in his paper ‘Tackling
the Awkward Squad’ (Peyton Jones, 2001). I think, for the
purpose of teaching FP, we are in dire need of a book on FP
that not only presents the purely functional aspects, but also
comprehensively covers issues discussed in that paper.”

As mentioned earlier, a simplified version of Haskell,Helium,
is being developed at Utrecht specifically for teaching—thefirst
release was in 2002. Helium lacks classes, which enables it to give
clearer error messages, but then it also lacks textbooks andthe
ability to “tackle the awkward squad.” It remains to be seen how
successful it will be.

12.2 Haskell and software productivity

Occasionally we hear anecdotes about Haskell providing an “order-
of-magnitude” reduction in code size, program developmenttime,
software maintenance costs, or whatever. However, it is very diffi-
cult to conduct a rigorous study to substantiate such claims, for any
language.

One attempt at such a study was an exercise sponsored by Darpa
(the U.S. Defense Advanced Research Projects Agency) in the
early 1990s. About ten years earlier, Darpa had christened Ada as
the standard programming language to be used for future software
development contracts with the U.S. government. Riding on that
wave of wisdom, they then commissioned a program calledPro-
toTechto develop software prototyping technology, including the
development of a “common prototyping language,” to help in the
design phase of large software systems. Potential problemsasso-
ciated with standardisation efforts notwithstanding, Darpa’s Pro-
toTech program funded lots of interesting programming language
research, including Hudak’s effort at Yale.

Toward the end of the ProtoTech Program, the Naval Surface War-
fare Center (NSWC) conducted an experiment to see which of
many languages—some new (such as Haskell) and some old (such
as Ada and C++)—could best be used to prototype a “geometric
region server.” Ten different programmers, using nine different pro-
gramming languages, built prototypes for this software component.
Mark Jones, then a Research Scientist at Yale, was the primary
Haskell programmer in the experiment. The results, described in
(Carlson et al., 1993), although informal and partly subjective and
too lengthy to describe in detail here, indicate fairly convincingly
the superiority of Haskell in this particular experiment.

Sadly, nothing of substance ever came from this experiment.No
recommendations were made to use Haskell in any kind of govern-
ment software development, not even in the context of prototyping,
an area where Haskell could have had significant impact. The com-
munity was simply not ready to adopt such a radical programming
language.

In recent years there have been a few other informal efforts at run-
ning experiments of this sort. Most notably, the functionalprogram-
ming community, through ICFP, developed its very own Program-
ming Contest, a three-day programming sprint that has been held
every year since 1998. These contests have been open to anyone,
and it is common to receive entries written in C and other impera-
tive languages, in addition to pretty much every functionallanguage
in common use. The first ICFP Programming Contest, run by Olin
Shivers in 1998, attracted 48 entries. The contest has grownsub-
stantially since then, with a peak of 230 entries in 2004—more
teams (let alone team members) than conference participants! In
every year only a minority of the entries are in functional lan-
guages; for example in 2004, of the 230 entries, only 67 were func-
tional (24 OCaml, 20 Haskell, 12 Lisp, 9 Scheme, 2 SML, 1 Mer-
cury, 1 Erlang). Nevertheless, functional languages dominate the
winners: of the first prizes awarded in the eight years of the Contest
so far, three have gone to OCaml, three to Haskell, one to C++,and
one to Cilk (Blumofe et al., 1996).

12.3 Open source: Darcs and Pugs

One of the turning points in a language’s evolution is when people
start to learn it because of the applications that are written in it
rather than because they are interested in the language itself. In
the last few years two open-source projects, Darcs and Pugs,have
started to have that effect for Haskell.

Darcs is an open-source revision-control system written inHaskell
by the physicist David Roundy (Roundy, 2005). It addresses the

same challenges as the well-established incumbents such asCVS
and Subversion, but its data model is very different. Ratherthan
thinking in terms of a master repository of which users take copies,
Darcs considers each user to have a fully fledged repository,with
repositories exchanging updates by means of patches. This rather
democratic architecture (similar to that of Arch) seems very attrac-
tive to the open-source community, and has numerous technical ad-
vantages as well (Roundy, 2005). It is impossible to say how many
people use Darcs, but the user-group mailing list has 350 members,
and the Darcs home page lists nearly 60 projects that use Darcs.

Darcs was originally written in C++ but, as Roundy puts it, “af-
ter working on it for a while I had an essentially solid mass of
bugs” (Stosberg, 2005). He came across Haskell and, after a few
experiments in 2002, rewrote Darcs in Haskell. Four years later,
the source code is still a relatively compact 28,000 lines ofliter-
ate Haskell (thus including the source for the 100-page manual).
Roundy reports that some developers now are learning Haskell
specifically in order to contribute to Darcs.

One of these programmers was Audrey Tang. She came across
Darcs, spent a month learning Haskell, and jumped from thereto
Pierce’s bookTypes and Programming Languages(Pierce, 2002).
The book suggests implementing a toy language as an exercise, so
Tang picked Perl 6. At the time there were no implementationsof
Perl 6, at least partly because it is a ferociously difficult language
to implement. Tang started her project on 1 February 2005. A year
later there were 200 developers contributing to it; perhapsamaz-
ingly (considering this number) the compiler is only 18,000lines
of Haskell (including comments) (Tang, 2005). Pugs makes heavy
use of parser combinators (to support a dynamically changeable
parser) and several more sophisticated Haskell idioms, including
GADTs (Section 6.7) and delimited continuations (Dybvig etal.,
2005).

12.4 Companies using Haskell

In the commercial world, Haskell still plays only a minor role.
While many Haskell programmers work for companies, they usu-
ally have an uphill battle to persuade their management to take
Haskell seriously. Much of this reluctance is associated with func-
tional programming in general, rather than Haskell in particular,
although the climate is beginning to change; witness, for example,
the workshops for Commercial Users of Functional Programming,
held annually at ICFP since 2004. We invited four companies that
use Haskell regularly to write about their experience. Their lightly
edited responses constitute the rest of this section.

12.4.1 Galois Connections15

The late ’90s were the heady days of Internet companies and ridicu-
lous valuations. At just this time Launchbury, then a professor in the
functional programming research group at the Oregon Graduate In-
stitute, began to wonder: can wedosomething with functional lan-
guages, and with Haskell in particular? He founded Galois Connec-
tions Inc, a company that began with the idea of finding clients for
whom they could build great solutions simply by using the power
of Haskell. The company tagline reflected this: Galois Connections,
Purely Functional.

Things started well for Galois. Initial contracts came fromthe U.S.
government for building a domain-specific language for cryptogra-
phy, soon to be followed by contracts with local industry. One of
these involved building a code translator for test program for chip
testing equipment. Because this was a C-based problem, the Galois
engineers shifted to ML, to leverage the power of the ML C-Kit

15This section is based on material contributed by John Launchbury of
Galois Connections.

library. In a few months, a comprehensive code translation tool was
built and kept so precisely to a compressed code-delivery schedule
that the client was amazed.

From a language perspective, there were no surprises here: com-
pilers and other code translation are natural applicationsfor func-
tional languages, and the abstraction and non-interference proper-
ties of functional languages meant that productivity was very high,
even with minimal project management overhead. There were busi-
ness challenges, however: a “can do anything” business doesn’t get
known for doing anything. It has to resell its capabilities from the
ground up on every sale. Market focus is needed.

Galois selected a focus area of high-confidence software, with spe-
cial emphasis on information assurance. This was seen as a growth
area and one in which the U.S. government already had major con-
cerns, both for its own networks and for the public Internet.It also
appeared to present significant opportunity for introducing highly
innovative approaches. In this environment Haskell provided some-
thing more than simple productivity. Because of referential trans-
parency, Haskell programs can be viewed as executable mathemat-
ics, as equations over the category of complete partial orders. In
principle, at least, the specificationbecomesthe program.

Examples of Haskell projects at Galois include: development tools
for Cryptol, a domain-specific language for specifying crypto-
graphic algorithms; a debugging environment for a government-
grade programmable crypto-coprocessor; tools for generating FPGA
layouts from Cryptol; a high-assurance compiler for the ASN.1
data-description language; a non-blocking cross-domain file sys-
tem suitable for fielding in systems with multiple independent lev-
els of security (MILS); a WebDAV server with audit trails andlog-
ging; and a wiki for providing collaboration across distinct security
levels.

12.4.2 Bluespec16

Founded in June, 2003 by Arvind (MIT), Bluespec, Inc. manu-
factures an industry standards-based electronic design automation
(EDA) toolset that is intended to raise the level of abstraction for
hardware design while retaining the ability to automatically syn-
thesise high-quality register-transfer code without compromising
speed, power or area.

The name Bluespec comes from a hardware description language
by the same name, which is a key enabling technology for the
company. Bluespec’s design was heavily influenced by Haskell.
It is basically Haskell with some extra syntactic constructs for
the term rewriting system (TRS) that describes what the hardware
does. The type system has been extended with types of numeric
kind. Using the class system, arithmetic can be performed onthese
numeric types. Their purpose is to give accurate types to things like
bit vectors (instead of using lists where the sizes cannot bechecked
by the type checker). For example:

bundle :: Bit[n] -> Bit[m] -> Bit[n+m]

Here,n andm are type variables, but they have kindNat, and (lim-
ited) arithmetic is allowed (and statically checked) at thetype level.
Bluespec is really a two-level language. The full power of Haskell
is available at compile time, but almost all Haskell language con-
structs are eliminated by a partial evaluator to get down to the basic
TRS that the hardware can execute.

16This section was contributed by Rishiyur Nikhil of Bluespec.

12.4.3 Aetion17

Aetion Technologies LLC is a company with some nine employ-
ees, based in Columbus, Ohio, USA. The company specialises in
artificial intelligence software for decision support.

In 2001 Aetion was about to begin a significant new software devel-
opment project. They chose Haskell, because of its rich static type
system, open-source compilers, and its active research community.
At the time, no one at Aetion was an experienced Haskell program-
mer, though some employees had some experience with ML and
Lisp.

Overall, their experience was extremely positive, and theynow
use Haskell for all their software development except for GUIs
(where they use Java). They found that Haskell allows them towrite
succinct but readable code for rapid prototypes. As Haskellis a very
high-level language, they find they can concentrate on the problem
at hand without being distracted by all the attendant programming
boilerplate and housekeeping. Aetion does a lot of researchand
invention, so efficiency in prototyping is very important. Use of
Haskell has also helped the company to hire good programmers:
it takes some intelligence to learn and use Haskell, and Aetion’s
rare use of such an agreeable programming language promotes
employee retention.

The main difficulty that Aetion encountered concerns efficiency:
how to construct software that uses both strict and lazy evalua-
tion well. Also, there is an initial period of difficulty while one
learns what sorts of bugs evoke which incomprehensible error mes-
sages. And, although Aetion has been able to hire largely when
they needed to, the pool of candidates with good Haskell program-
ming skills is certainly small. A problem that Aetion has notyet
encountered, but fears, is that a customer may object to the use of
Haskell because of its unfamiliarity. (Customers sometimes ask the
company to place source code in escrow, so that they are able to
maintain the product if Aetion is no longer willing or able todo
so.)

12.4.4 Linspire18

Linspire makes a Linux distribution targeted for the consumer mar-
ket. The core OS team settled in 2006 on Haskell as the preferred
choice for systems programming. This is an unusual choice. In this
domain, it is much more common to use a combination of several
shells and script languages (such asbash, awk, sed, Perl, Python).
However, the results are often fragile and fraught withad hoccon-
ventions. Problems that are not solved directly by the shellare
handed off to a bewildering array of tools, each with its own syntax,
capabilities and shortcomings.

While not as specialised, Haskell has comparable versatility but
promotes much greater uniformity. Haskell’s interpretersprovide
sufficient interactivity for constructing programs quickly; its li-
braries are expanding to cover the necessary diversity withtruly
reusable algorithms; and it has the added benefit that transition to
compiled programs is trivial. The idioms for expressing systems
programming are not quite as compact as in languages such as Perl,
but this is an active area of research and the other language benefits
outweigh this lack.

Static type-checking has proved invaluable, catching manyerrors
that might have otherwise occurred in the field, especially when the
cycle of development and testing is spread thin in space and time.
For example, detecting and configuring hardware is impossible to
test fully in the lab. Even if it were possible to collect all the

17This section was contributed by Mark Carroll of Aetion.
18This section was contributed by Clifford Beshers of Linspire.

1990 1995 2000 2005

100

200

300

400

500

600

Figure 7. Growth of the “hard-core” Haskell community

various components, the time to assemble and test all the possible
combinations is prohibitive. Another example is that Linspire’s
tools must handle legacy data formats. Explicitly segregating these
formats into separate data types prevented the mysterious errors
that always seem to propagate through shell programs when the
format changes.

Runtime efficiency can be a problem, but the Haskell community
has been addressing this aggressively. In particular, the recent de-
velopment of theData.ByteString library fills the most impor-
tant gap. Linspire recently converted a parser to use this module,
reducing memory requirements by a factor of ten and increasing
speed to be comparable with the standard commandcat.

Learning Haskell is not a trivial task, but the economy of expression
and the resulting readability seem to provide a calm inside the
storm. The language, libraries and culture lead to solutions that feel
like minimal surfaces: simple expressions that comprise significant
complexity, with forms that seem natural, recurring in problem
after problem. Open source software remains somewhat brittle,
relying on the fact that most users are developers aware of its
weak points. At Linspire, Haskell offers the promise of annealing a
stronger whole.

12.5 The Haskell community

A language that is over 15 years old might be expected to be
entering its twilight years. Perhaps surprisingly, though, Haskell
appears to be in a particularly vibrant phase at the time of writing.
Its use is growing strongly and appears for the first time to show
signs of breaking out of its specialist-geeky niche.

The last five years have seen a variety of new community initia-
tives, led by a broad range of people including some outside the
academic/research community. For example:

The Haskell Workshops.The first Haskell Workshop was held in
conjunction with ICFP in 1995, as a one-day forum to discuss

the language and the research ideas it had begun to spawn. Sub-
sequent workshops were held in 1997 and 1999, after which it
became an annual institution. It now has a refereed proceedings
published by ACM and a steady attendance of 60-90 partici-
pants. Since there is no Haskell Committee (Section 3.7), the
Haskell workshop is the only forum at which corporate deci-
sions can be, and occasionally are, taken.

The Haskell Communities and Activities Report (HCAR). In
November 2001 Claus Reinke edited the first edition of the
Haskell Communities and Activities Report19, a biannual news-
letter that reports on what projects are going on in the Haskell
community. The idea really caught on: the first edition listed
19 authors and consisted of 20 pages; but the November 2005
edition (edited by Andres Löh) lists 96 authors and runs to over
60 pages.

The #haskell IRC channel first appeared in the late 1990s, but
really got going in early 2001 with the help of Shae Erisson
(akashapr)20. It has grown extremely rapidly; at the time of
writing, there are typically 200 people logged into the channel
at any moment, with upward of 2,000 participants over a full
year. The#haskell channel has spawned a particularly suc-
cessful software client calledlambdabot (written in Haskell,
of course) whose many plugins include language translation,
dictionary lookup, searching for Haskell functions, a theorem
prover, Darcs patch tracking, and more besides.

The Haskell Weekly News.In 2005, John Goerzen decided to
help people cope with the rising volume of mailing list ac-
tivity by distributing a weekly summary of the most important
points—theHaskell Weekly News, first published on the 2nd of
August21. TheHWN covers new releases, resources and tools,
discussion, papers, a “Darcs corner,” and quotes-of-the-week—
the latter typically being “in” jokes such as “Haskell separates
Church and state.”

The Monad Reader.Another recent initiative to help a wider
audience learn about Haskell is Shae Erisson’sThe Monad
Reader22, a web publication that first appeared in March 2005.
The first issue declared:“There are plenty of academic pa-
pers about Haskell, and plenty of informative pages on the
Haskell Wiki. But there’s not much between the two extremes.
The Monad.Reader aims to fit in there; more formal than a
Wiki page, but less formal than a journal article.”Five issues
have already appeared, with many articles by practitioners, il-
lustrated with useful code fragments.

Planet Haskell is a site for Haskell bloggers23, started by Antti-
Juhani Kaijanaho in 2006.

The Google Summer of Coderan for the first time in 2005, and
included just one Haskell project, carried out by Paolo Mar-
tini. Fired by his experience, Martini spearheaded a much larger
Haskell participation in the 2006 Summer of Code. He organ-
ised a panel of 20 mentors, establishedhaskell.org as a men-
toring organisation, and attracted an astonishing 114 project
proposals, of which nine were ultimately funded24.

It seems clear from all this that the last five years has seen partic-
ularly rapid growth. To substantiate our gut feel, we carried out an

19http://haskell.org/communities/
20http://haskell.org/haskellwiki/IRC_channel
21http://sequence.complete.org/hwn
22http://www.haskell.org/hawiki/TheMonadReader
23http://planet.haskell.org
24http://hackage.haskell.org/trac/summer-of-code

informal survey of the Haskell community via the Haskell mailing
list, and obtained almost 600 responses from 40 countries. Clearly,
our respondees belong to a self-selected group who are sufficiently
enthusiastic about the language itself to follow discussion on the
list, and so are not representative of Haskell users in general. In
particular, it is clear from the responses that the majorityof stu-
dents currently being taught Haskell did not reply. Nevertheless, as
a survey of the “hard core” of the community, the results are inter-
esting.

We asked respondees when they first learnt Haskell, so we could
estimate how the size of the community has changed over the
years25. The results are shown in Figure 7, where the bars show the
total number of respondees who had learnt Haskell by the yearin
question. Clearly the community has been enjoying much stronger
growth since 1999. This is the year that the Haskell 98 standard was
published—the year that Haskell took the step from a frequently
changing vehicle for research to a language with a guaranteeof
long-term stability. It is tempting to conclude that this iscause and
effect.

Further indications of rapid growth come from mailing list activity.
While the “official” Haskell mailing list has seen relatively flat
traffic, the “Haskell Café” list, started explicitly in October 2000
as a forum for beginners’ questions and informal discussions, has
seen traffic grow by a factor of six between 2002 and 2005. The
Haskell Café is most active in the winters: warm weather seems to
discourage discussion of functional programming26!

Our survey also revealed a great deal about who the hard-core
Haskell programmers are. One lesson is that Haskell is a program-
ming language for the whole family—the oldest respondent was 80
years old, and the youngest just 16! It is sobering to realisethat
Haskell was conceived before its youngest users. Younger users do
predominate, though: respondents’ median age was 27, some 25%
were 35 or over, and 25% were 23 or younger.

Surprisingly, given the importance we usually attach to university
teaching for technology transfer, only 48% of respondees learned
Haskell as part of a university course. The majority of our respon-
dents discovered the language by other means. Only 10% of re-
spondents learnt Haskell as their first programming language (and
7% as their second), despite the efforts that have been made to pro-
mote Haskell for teaching introductory programming27. Four out
of five hard-core Haskell users were already experienced program-
mers by the time they learnt the language.

Haskell is still most firmly established in academia. Half ofour
respondents were students, and a further quarter employed in a uni-
versity. 50% were using Haskell as part of their studies and 40%
for research projects, so our goals of designing a language suitable
for teaching and research have certainly been fulfilled. But22%
of respondents work in industry (evenly divided between large and
small companies), and 10% of respondents are using Haskell for
product development, so our goal of designing a language suitable
for applications has also been fulfilled. Interestingly, 22% are us-
ing Haskell for open-source projects, which are also applications.
Perhaps open-source projects are less constrained in the choice of
programming language than industrial projects are.

The country with the most Haskell enthusiasts is the United States
(115), closely followed by Portugal (91) and Germany (85). Tra-
ditional “hotbeds of functional programming” come lower down:

25Of course, this omits users who learnt Haskell but then stopped using it
before our survey.
26This may explain its relative popularity in Scandinavia.
27Most Haskell textbooks are aimed at introductory programming courses.

the UK is in fourth place (49), and Sweden in sixth (29). Other
countries with 20 or more respondees were the Netherlands (42)
and Australia (25). It is curious that France has only six, whereas
Germany has 85—perhaps French functional programmers prefer
OCaml.

The picture changes, though, when we consider the proportion of
Haskell enthusiasts in the general population. Now the Cayman Is-
lands top the chart, with one Haskell enthusiast per 44,000 people.
Portugal comes second, with one in 116,000, then Scandinavia—
Iceland, Finland, and Sweden all have around one Haskeller per
300,000 inhabitants. In the UK, and many other countries, Haskell
enthusiasts are truly “one in a million.” The United States falls
between Bulgaria and Belgium, with one Haskeller for every
2,500,000 inhabitants.

If we look instead at the density of Haskell enthusiasts per unit
of land mass, then the Cayman Islands are positively crowded:
each Haskeller has only 262 square kilometres to program in.
In Singapore, Haskellers have a little more room, at 346 square
kilometres, while in the Netherlands and Portugal they have1,000
square kilometres each. Other countries offer significantly more
space—over a million square kilometres each in India, Russia, and
Brazil.

12.6 Influence on other languages

Haskell has influenced several other programming languages. In
many cases it is hard to ascertain whether there is acausalrela-
tionship between the features of a particular language and those of
Haskell, so we content ourselves with mentioning similarities.

Clean is a lazy functional programming language, like Miranda
and Haskell, and it bears a strong resemblance to both of these
(Brus et al., 1987). Clean has adopted type classes from Haskell,
but instead of using monads for input-output it uses an approach
based on uniqueness (or linear) types (Achten et al., 1992).

Mercury is a language for logic programming with declared types
and modes (Somogyi et al., 1996). It is influenced by Haskell in
a number of ways, especially its adoption of type classes.Hal, a
language for constraint programming built on top of Mercury, uses
type classes in innovative ways to permit use of multiple constraint
solvers (de la Banda et al., 2002).

Curry is a language for functional-logic programming (Hanus et al.,
1995). As its name indicates, it is intended as a sort of successor
to Haskell, bringing together researchers working on functional-
logic languages in the same way that Haskell brought together
researchers working on lazy languages.Escheris another language
for functional-logic programming (Lloyd, 1999). Both languages
have a syntax influenced by Haskell and use monads for input-
output.

Cayenneis a functional language with fully fledged dependent
types, designed and implemented by Lennart Augustsson (Augusts-
son, 1998). Cayenne is explicitly based on Haskell, although its
type system differs in fundamental ways. It is significant asthe first
example of integrating the full power of dependent types into a pro-
gramming language.

Isabelleis a theorem-proving system that makes extensive use of
type classes to structure proofs (Paulson, 2004). When a type class
is declared one associates with it the laws obeyed by the operations
in a class (for example, that plus, times, and negation form aring),
and when an instance is declared one must prove that the instance
satisfies those properties (for example, that the integers are a ring).

Pythonis a dynamically typed language for scripting (van Rossum,
1995). Layout is significant in Python, and it has also adopted the

list comprehension notation. In turn,Javascript, another dynami-
cally typed language for scripting, is planned to adopt listcompre-
hensions from Python, but called array comprehensions instead.

Java. The generic type system introduced in Java 5 is based on the
Hindley-Milner type system (introduced in ML, and promotedby
Miranda and Haskell). The use of bounded types in that systemis
closely related to type classes in Haskell. The type system is based
on GJ, of which Wadler is a codesigner (Bracha et al., 1998).

C# and Visual Basic. The LINQ (Language INtegrated Query) fea-
tures of C# 3.0 and Visual Basic 9.0 are based on monad compre-
hensions from Haskell. Their inclusion is due largely to theefforts
of Erik Meijer, a member of the Haskell Committee, and they were
inspired by his previous attempts to apply Haskell to build web ap-
plications (Meijer, 2000).

Scala. Scala is a statically typed programming language that at-
tempts to integrate features of functional and object-oriented pro-
gramming (Odersky et al., 2004; Odersky, 2006). It includesfor
comprehensions that are similar to monad comprehensions, and
view bounds and implicit parameters that are similar to type
classes.

We believe the most important legacy of Haskell will be how it
influences the languages that succeed it.

12.7 Current developments

Haskell is currently undergoing a new revision. At the 2005 Haskell
Workshop, Launchbury called for the definition of “Industrial
Haskell” to succeed Haskell 98. So many extensions have appeared
since the latter was defined that few real programs adhere to the
standard nowadays. As a result, it is awkward for users to sayex-
actly what language their application is written in, difficult for tool
builders to know which extensions they should support, and im-
possible for teachers to know which extensions they should teach.
A new standard, covering the extensions that are heavily used in
industry, will solve these problems—for the time being at least. A
new committee has been formed to design the new language, ap-
propriately named Haskell′ (Haskell-prime), and the Haskell com-
munity is heavily engaged in public debate on the features tobe
included or excluded. When the new standard is complete, it will
give Haskell a form that is tempered by real-world use.

Much energy has been spent recently on performance. One light-
hearted sign of that is Haskell’s ranking in the Great Computer Lan-
guage Shootout28. The shootout is a benchmarking web site where
over thirty language implementations compete on eighteen differ-
ent benchmarks, with points awarded for speed, memory efficiency,
and concise code. Anyone can upload new versions of the bench-
mark programs to improve their favourite language’s ranking, and
early in 2006 the Haskell community began doing just that. Toev-
eryone’s amazement, despite a rather poor initial placement, on the
10th of February 2006 Haskell and GHC occupied the first placeon
the list! Although the shootout makes no pretence to be a scientific
comparison, this does show that competitive performance isnow
achievable in Haskell—the inferiority complex over performance
that Haskell users have suffered for so long seems now misplaced.

Part of the reason for this lies in the efficient new librariesthat the
growing community is developing. For example,Data.ByteString
(by Coutts, Stewart and Leshchinskiy) represents strings as byte
vectors rather than lists of characters, providing the sameinterface
but running between one and two orders of magnitude faster. It
achieves this partly thanks to an efficient representation,but also
by using GHC’s rewrite rules to program the compiler’s optimiser,

28Seehttp://shootout.alioth.debian.org

so that loop fusion is performed when bytestring functions are com-
posed. The correctness of the rewrite rules is crucial, so itis tested
by QuickCheck properties, as is agreement between corresponding
bytestring andString operations. This is a great example of us-
ing Haskell’s advanced features to achieve good performance and
reliability without compromising elegance.

We interpret these as signs that, eighteen years after it waschris-
tened, Haskell is maturing. It is becoming more and more suitable
for real-world applications, and the Haskell community, while still
small in absolute terms, is growing strongly. We hope and expect
to see this continue.

13. Conclusion
Functional programming, particularly in its purely functional form,
is a radical and principled attack on the challenge of writing pro-
grams that work. It was precisely this quirky elegance that attracted
many of us to the field. Back in the early ’80s, purely functional
languages might have been radical and elegant, but they werealso
laughably impractical: they were slow, took lots of memory,and
had no input/output. Things are very different now! We believe that
Haskell has contributed to that progress, by sticking remorselessly
to the discipline of purity, and by building a critical mass of interest
and research effort behind a single language.

Purely functional programming is not necessarily the RightWay
to write programs. Nevertheless, beyond our instinctive attraction
to the discipline, many of us were consciously making a long-
term bet that principled control of effects would ultimately turn
out to be important, despite the dominance of effects-by-default in
mainstream languages.

Whether that bet will truly pay off remains to be seen. But we
can already see convergence. At one end, the purely functional
community has learnt both the merit of effects, and at least one way
to tame them. At the other end, mainstream languages are adopting
more and more declarative constructs: comprehensions, iterators,
database query expressions, first-class functions, and more besides.
We expect this trend to continue, driven especially by the goad of
parallelism, which punishes unrestricted effects cruelly.

One day, Haskell will be no more than a distant memory. But we
believe that, when that day comes, the ideas and techniques that it
nurtured will prove to have been of enduring value through their
influence on languages of the future.

14. Acknowledgements
The Haskell community is open and vibrant, and many, many peo-
ple have contributed to the language design beyond those men-
tioned in our paper.

The members of the Haskell Committee played a particularly im-
portant role, however. Here they are, with their affiliations dur-
ing the lifetime of the committee, and identifying those who
served as Editor for some iteration of the language: Arvind (MIT),
Lennart Augustsson (Chalmers University), Dave Barton (Mitre
Corp), Richard Bird (University of Oxford), Brian Boutel (Victoria
University of Wellington), Warren Burton (Simon Fraser Univer-
sity), Jon Fairbairn (University of Cambridge), Joseph Fasel (Los
Alamos National Laboratory), Andy Gordon (University of Cam-
bridge), Maria Guzman (Yale University), Kevin Hammond [edi-
tor] (University of Glasgow), Ralf Hinze (University of Bonn), Paul
Hudak [editor] (Yale University), John Hughes [editor] (University
of Glasgow, Chalmers University), Thomas Johnsson (Chalmers
University), Mark Jones (Yale University, University of Notting-
ham, Oregon Graduate Institute), Dick Kieburtz (Oregon Graduate

Institute), John Launchbury (University of Glasgow, Oregon Grad-
uate Institute), Erik Meijer (Utrecht University), Rishiyur Nikhil
(MIT), John Peterson [editor] (Yale University), Simon Peyton
Jones [editor] (University of Glasgow, Microsoft ResearchLtd),
Mike Reeve (Imperial College), Alastair Reid (University of Glas-
gow, Yale University), Colin Runciman (University of York), Philip
Wadler [editor] (University of Glasgow), David Wise (Indiana Uni-
versity), and Jonathan Young (Yale University).

We also thank those who commented on a draft of this paper,
or contributed their recollections: Thiaggo Arrais, Lennart Au-
gustsson, Dave Bayer, Alistair Bayley, Richard Bird, JamesBo-
stock, Warren Burton, Paul Callahan, Michael Cartmell, Robert
Dockins, Susan Eisenbach, Jon Fairbairn, Tony Field, Jeremy
Gibbons, Kevin Glynn, Kevin Hammond, Graham Hutton, Jo-
han Jeuring, Thomas Johnsson, Mark Jones, Jevgeni Kabanov,
John Kraemer, Ralf Lämmel, Jan-Willem Maessen, Michael Ma-
honey, Ketil Malde, Evan Martin, Paolo Martini, Conor McBride,
Greg Michaelson, Neil Mitchell, Ben Moseley, Denis Moskvin,
Russell O’Connor, Chris Okasaki, Rex Page, Andre Pang, Will
Partain, John Peterson, Benjamin Pierce, Bernie Pope, GregRe-
stall, Alberto Ruiz, Colin Runciman, Kostis Sagonas, Andres
Sicard, Christian Sievers, Ganesh Sittampalam, Don Stewart, Joe
Stoy, Peter Stuckey, Martin Sulzmann, Josef Svenningsson,Si-
mon Thompson, David Turner, Jared Updike, Michael Vanier, Ja-
nis Voigtländer, Johannes Waldmann, Malcolm Wallace, Mitchell
Wand, Eric Willigers, and Marc van Woerkom.

Some sections of this paper are based directly on material con-
tributed by Lennart Augustsson, Clifford Beshers, Paul Callaghan,
Mark Carroll, Mark Jones, John Launchbury, Rishiyur Nikhil,
David Roundy, Audrey Tang, and David Turner. We thank them
very much for their input. We would also like to give our particular
thanks to Bernie Pope and Don Stewart, who prepared the time line
given in Figure 2.

Finally, we thank the program committee and referees of HOPLIII.

References
Achten, P. and Peyton Jones, S. (2000). Porting the Clean Object

I/O library to Haskell. In Mohnen, M. and Koopman, P., ed-
itors,Proceedings of the 12th International Workshop on the
Implementation of Functional Languages, Aachen (IFL’00),
selected papers, number 2011 in Lecture Notes in Computer
Science, pages 194–213. Springer.

Achten, P. and Plasmeijer, R. (1995). The ins and outs of clean I/O.
Journal of Functional Programming, 5(1):81–110.

Achten, P., van Groningen, J., and Plasmeijer, M. (1992). High-
level specification of I/O in functional languages. In (Launch-
bury and Sansom, 1992), pages 1–17.

Angelov, K. and Marlow, S. (2005). Visual Haskell: a full-featured
Haskell development environment. InProceedings of ACM
Workshop on Haskell, Tallinn, Tallinn, Estonia. ACM.

Appel, A. and MacQueen, D. (1987). A standard ML compiler.
In Kahn, G., editor,Proceedings of the Conference on Func-
tional Programming and Computer Architecture, Portland.
LNCS 274, Springer Verlag.

Arts, T., Hughes, J., Johansson, J., and Wiger, U. (2006). Testing
telecoms software with quviq quickcheck. In Trinder, P.,
editor,ACM SIGPLAN Erlang Workshop, Portland, Oregon.
ACM SIGPLAN.

Arvind and Nikhil, R. (1987). Executing a program on the MIT
tagged-token dataflow architecture. InProc PARLE (Paral-

lel Languages and Architectures, Europe) Conference, Eind-
hoven. Springer Verlag LNCS.

Atkins, D., Ball, T., Bruns, G., and Cox, K. (1999). Mawl: A
domain-specific language for form-based services.IEEE
Transactions on Software Engineering, 25(3):334–346.

Augustsson, L. (1984). A compiler for lazy ML. In (LFP84, 1984),
pages 218–227.

Augustsson, L. (1998). Cayenne — a language with dependent
types. In (ICFP98, 1998), pages 239–250.

Baars, A., Lh, A., and Swierstra, D. (2004). Parsing pemutation
phrases.Journal of Functional Programming, 14:635–646.

Baars, A. L. and Swierstra, S. D. (2002). Typing dynamic typing.
In (ICFP02, 2002), pages 157–166.

Backus, J. (1978a). Can programming be liberated from the von
Neumann style?Communications of the ACM, 21(8).

Backus, J. (1978b). Can programming be liberated from the von
Neumann style? A functional style and its algebra of pro-
grams.Communications of the ACM, 21(8):613–41.

Barendsen, E. and Smetsers, S. (1996). Uniqueness typing for func-
tional languages with graph rewriting semantics.Mathemati-
cal Structures in Computer Science, 6:579–612.

Barron, D., Buxton, J., Hartley, D., Nixon, E., and Strachey, C.
(1963). The main features of cpl.The Computer Journal,
6(2):134–143.

Barth, P., Nikhil, R., and Arvind (1991). M-structures: extending a
parallel, non-strict functional language with state. In Hughes,
R., editor,ACM Conference on Functional Programming and
Computer Architecture (FPCA’91), volume 523 ofLecture
Notes in Computer Science, pages 538–568. Springer Verlag,
Boston.

Barton, D. (1995). Advanced modeling features of MHDL. InPro-
ceedings of International Conference on Electronic Hardware
Description Languages.

Bird, R. and Paterson, R. (1999). De Bruijn notation as a nested
datatype.Journal of Functional Programming, 9(1):77–91.

Bird, R. and Wadler, P. (1988).Introduction to Functional Pro-
gramming. Prentice Hall.

Bjesse, P., Claessen, K., Sheeran, M., and Singh, S. (1998).Lava:
Hardware design in haskell. InInternational Conference on
Functional Programming, pages 174–184.

Bloss, A. (1988).Path Analysis: Using Order-of-Evaluation Infor-
mation to Optimize Lazy Functional Languages. PhD thesis,
Yale University, Department of Computer Science.

Bloss, A., Hudak, P., and Young, J. (1988a). Code optimizations
for lazy evaluation. Lisp and Symbolic Computation: An
International Journal, 1(2):147–164.

Bloss, A., Hudak, P., and Young, J. (1988b). An optimizing com-
piler for a modern functional language.The Computer Jour-
nal, 31(6):152–161.

Blott, S. (1991). Type Classes. PhD thesis, Department of Com-
puting Science, Glasgow University.

Blumofe, R. D., Joerg, C. F., Kuszmaul, B. C., Leiserson, C. E.,
Randall, K. H., and Zhou, Y. (1996). Cilk: An efficient multi-
threaded runtime system.Journal of Parallel and Distributed
Computing, 37(1):55–69.

Boquist, U. (1999).Code Optimisation Techniques for Lazy Func-
tional Languages. PhD thesis, Chalmers University of Tech-

nology, Sweden.

Bracha, G., Odersky, M., Stoutamire, D., and Wadler, P. (1998).
Making the future safe for the past: Adding genericity to the
Java programming language. In Chambers, C., editor,ACM
Symposium on Object Oriented Programming: Systems, Lan-
guages, and Applications (OOPSLA), pages 183–200, Van-
couver, BC.

Brus, T., van Eckelen, M., van Leer, M., and Plasmeijer, M. (1987).
Clean — a language for functional graph rewriting. In Kahn,
G., editor, Functional Programming Languages and Com-
puter Architecture, pages 364–384. LNCS 274, Springer Ver-
lag.

Burge, W. (1975).Recursive Programming Techniques. Addison
Wesley.

Burstall, R. (1969). Proving properties of programs by structural
induction.The Computer Journal, pages 41–48.

Burstall, R. (1977). Design considerations for a functional pro-
gramming language. InThe Software Revolution. Infotech.

Burstall, R. and Darlington, J. (1977). A transformation system for
developing recursive programs.JACM, 24(1):44–67.

Burstall, R. M., MacQueen, D. B., and Sannella, D. T. (1980).
HOPE: An experimental applicative language. InConference
Record of the 1980 LISP Conference, pages 136–143.

Burton, W., Meijer, E., Sansom, P., Thompson, S., and Wadler, P.
(1996). Views: An extension to Haskell pattern matching,
http://haskell.org/development/views.html.

Callaghan, P. (1998).An Evaluation of LOLITA and Related Nat-
ural Language Processing Systems. PhD thesis, Department
of Computer Science, University of Durham.

Carlier, S. and Bobbio, J. (2004). hop.

Carlson, W., Hudak, P., and Jones, M. (1993). An experiment using
Haskell to prototype “geometric region servers” for Navy
command and control. Research Report 1031, Department
of Computer Science, Yale University.

Carlsson, M. and Hallgren, T. (1993). Fudgets — a graphical user
interface in a lazy functional language. In (FPCA93, 1993),
pages 321–330.

Chakravarty, M. (1999a). C-> Haskell: yet another interfacing
tool. In Koopman, P. and Clack, C., editors,International
Workshop on Implementing Functional Languages (IFL’99),
number 1868 in Lecture Notes in Computer Science, Lochem,
The Netherlands. Springer Verlag.

Chakravarty, M. (1999b). Lazy lexing is fast. In Middeldorp, A.
and Sato, T., editors,Fourth Fuji International Symposium
on Functional and Logic Programming, Lecture Notes in
Computer Science. Springer Verlag.

Chakravarty, M., editor (2002).Proceedings of the 2002 Haskell
Workshop, Pittsburgh.

Chakravarty, M., Keller, G., and Peyton Jones, S. (2005a). Asso-
ciated type synonyms. InACM SIGPLAN International Con-
ference on Functional Programming (ICFP’05), Tallinn, Es-
tonia.

Chakravarty, M., Keller, G., Peyton Jones, S., and Marlow, S.
(2005b). Associated types with class. InACM Symposium
on Principles of Programming Languages (POPL’05). ACM
Press.

Chen, K., Hudak, P., and Odersky, M. (1992). Parametric type
classes. InProceedings of ACM Conference on Lisp and

Functional Programming, pages 170–181. ACM.

Cheney, J. and Hinze, R. (2003). First-class phantom types.CUCIS
TR2003-1901, Cornell University.

Cheong, M. H. (2005).Functional Programming and 3D Games.
Undergraduate thesis, University of New South Wales.

Church, A. (1941). The calculi of lambda-conversion.Annals of
Mathematics Studies, 6.

Claessen, K. (2004). Parallel parsing processes.Journal of Func-
tional Programming, 14:741–757.

Claessen, K. and Hughes, J. (2000). QuickCheck: a lightweight tool
for random testing of Haskell programs. In (ICFP00, 2000),
pages 268–279.

Claessen, K. and Hughes, J. (2002). Testing monadic code with
QuickCheck. In (Chakravarty, 2002).

Claessen, K. and Sands, D. (1999). Observable sharing for func-
tional circuit description. In Thiagarajan, P. and Yap, R.,edi-
tors,Advances in Computing Science (ASIAN’99); 5th Asian
Computing Science Conference, Lecture Notes in Computer
Science, pages 62–73. Springer Verlag.

Cooper, G. and Krishnamurthi, S. (2006). Embedding dynamic
dataflow in a call-by-value language. In15th European Sym-
posium on Programming, volume 3924 ofLNCS. Springer-
Verlag.

Courtney, A. (2004).Modelling User Interfaces in a Functional
Language. PhD thesis, Department of Computer Science,
Yale University.

Courtney, A. and Elliott, C. (2001). Genuinely functional user
interfaces. InProc. of the 2001 Haskell Workshop, pages 41–
69.

Curry, H. and Feys, R. (1958).Combinatory Logic, Vol. 1. North-
Holland, Amsterdam.

Damas, L. and Milner, R. (1982). Principal type-schemes for
functional programs. InConference Record of the 9th Annual
ACM Symposium on Principles of Programming Languages,
pages 207–12, New York. ACM Press.

Danielsson, N. A., Hughes, J., Jansson, P., and Gibbons, J. (2006).
Fast and loose reasoning is morally correct.SIGPLAN Not.,
41(1):206–217.

Darlington, J., Henderson, P., and Turner, D. (1982).Advanced
Course on Functional Programming and its Applications.
Cambridge University Press.

Darlington, J. and Reeve, M. (1981). ALICE — a multiproces-
sor reduction machine for the parallel evaluation of applica-
tive languages. InProc Conference on Functional Program-
ming Languages and Computer Architecture, Portsmouth,
New Hampshire, pages 66–76. ACM.

Davis, A. (1977). The architecture of ddm1: a recursively struc-
tured data driven machine. Technical Report UUCS-77-113,
University of Utah.

de la Banda, M. G., Demoen, B., Marriott, K., and Stuckey, P.
(2002). To the gates of HAL: a HAL tutorial. InProceed-
ings of the Sixth International Symposium on Functional and
Logic Programming. Springer Verlag LNCS 2441.

Diatchki, I., Jones, M., and Hallgren, T. (2002). A formal speci-
fication of the Haskell 98 module system. In (Chakravarty,
2002).

Dijkstra, E. (1981). Trip report E.W. Dijkstra, Newcastle,19-25
July 1981. Dijkstra working note EWD798.

Dybjer, P. (1991). Inductive sets and families in Martin-L¨of’s
type theory. In Huet, G. and Plotkin, G., editors,Logical
Frameworks. Cambridge University Press.

Dybvig, K., Peyton Jones, S., and Sabry, A. (2005). A monadic
framework for delimited continuations. To appear in the
Journal of Functional Programming.

Elliott, C. (1996). A brief introduction to activevrml. Technical
Report MSR-TR-96-05, Microsoft Research.

Elliott, C. (1997). Modeling interactive 3D and multimediaanima-
tion with an embedded language. InProceedings of the first
conference on Domain-Specific Languages, pages 285–296.
USENIX.

Elliott, C. and Hudak, P. (1997). Functional reactive animation. In
International Conference on Functional Programming, pages
263–273.

Elliott, C., Schechter, G., Yeung, R., and Abi-Ezzi, S. (1994). Tbag:
A high level framework for interactive, animated 3d graphics
applications. InProceedings of SIGGRAPH ’94, pages 421–
434. ACM SIGGRAPH.

Ennals, R. and Peyton Jones, S. (2003). Optimistic evaluation:
an adaptive evaluation strategy for non-strict programs. In
(ICFP03, 2003).

Evans, A. (1968). Pal—a language designed for teaching program-
ming linguistics. InProceedings ACM National Conference.

Fairbairn, J. (1982). Ponder and its type system. TechnicalReport
TR-31, Cambridge University Computer Lab.

Fairbairn, J. (1985). Design and implementation of a simpletyped
language based on the lambda-calculus. Technical Report 75,
University of Cambridge Computer Laboratory.

Faxen, K.-F. (2002). A static semantics for Haskell.Journal of
Functional Programming, 12(4&5).

Field, A., Hunt, L., and While, R. (1992). The semantics and
implementation of various best-fit pattern matching schemes
for functional languages. Technical Report Doc 92/13, Dept
of Computing, Imperial College.

Finne, S., Leijen, D., Meijer, E., and Peyton Jones, S. (1998).
H/Direct: a binary foreign language interface for Haskell.
In ACM SIGPLAN International Conference on Functional
Programming (ICFP’98), volume 34(1) ofACM SIGPLAN
Notices, pages 153–162. ACM Press, Baltimore.

Finne, S. and Peyton Jones, S. (1995). Composing Haggis. InProc
5th Eurographics Workshop on Programming Paradigms in
Graphics, Maastricht.

Ford, B. (2002). Packrat parsing: simple, powerful, lazy, linear
time. In (ICFP02, 2002), pages 36–47.

FPCA93 (1993). ACM Conference on Functional Programming
and Computer Architecture (FPCA’93), Cophenhagen. ACM.

FPCA95 (1995). ACM Conference on Functional Programming
and Computer Architecture (FPCA’95), La Jolla, California.
ACM.

Friedman, D. and Wise, D. (1976). CONS should not evaluate its
arguments.Automata, Languages, and Programming, pages
257–281.

Frost, R. (2006). Realization of natural-language interfaces us-
ing lazy functional programming.ACM Computing Surveys,
38(4). Article No. 11.

Gaster, B. (1998).Records, Variants, and Qualified Types. PhD
thesis, Department of Computer Science, University of Not-

tingham.

Gaster, B. R. and Jones, M. P. (1996). A polymorphic type system
for extensible records and variants. Technical Report TR-96-
3, Department of Computer Science, University of Notting-
ham.

Gill, A. (2000). Debugging Haskell by observing intermediate data
structures. InHaskell Workshop. ACM SIGPLAN.

Gill, A., Launchbury, J., and Peyton Jones, S. (1993). A short cut to
deforestation. InACM Conference on Functional Program-
ming and Computer Architecture (FPCA’93), pages 223–232,
Cophenhagen. ACM Press. ISBN 0-89791-595-X.

Girard, J.-Y. (1990). The system F of variable types: fifteenyears
later. In Huet, G., editor,Logical Foundations of Functional
Programming. Addison-Wesley.

Glynn, K., Stuckey, P., and Sulzmann, M. (2000). Type classes and
constraint handling rules. InFirst Workshop on Rule-Based
Constraint Reasoning and Programming.

Gödel, K. (1931).Über formal unentscheidbare sätze der principia
mathematica und verwandter Systeme I.Monatshefte für
Mathematik und Physik, 38:173–198. Pages 596–616 of (van
Heijenoort, 1967).

Gordon, M., Milner, R., and Wadsworth, C. (1979).Edinburgh
LCF. Springer Verlag LNCS 78.

Graham, P. (2004). Beating the averages. InHackers and Painters.
O’Reilly.

Graunke, P., Krishnamurthi, S., Hoeven, S. V. D., and Felleisen, M.
(2001). Programming the web with high-level programming
languages. InProceedings 10th European Symposium on
Programming, pages 122–136. Springer Verlag LNCS 2028.

Hall, C. and O’Donnell, J. (1985). Debugging in a side-effect-
free programming environment. InProc ACM Symposium
on Language Issues and Programming Environments. ACM,
Seattle.

Hallgren, T. (2001). Fun with functional dependencies. InProc
Joint CS/CE Winter Meeting, Chalmers Univerity, Varberg,
Sweden.

Hallgren, T., Jones, M. P., Leslie, R., and Tolmach, A. (2005).
A principled approach to operating system construction in
Haskell. In ICFP ’05: Proceedings of the Tenth ACM SIG-
PLAN International Conference on Functional Programming,
pages 116–128, New York, NY, USA. ACM Press.

Hanus, M., Kuchen, H., and Moreno-Navarro, J. (1995). Curry: A
truly functional logic language. InProceedings of the ILPS
’95 Postconference Workshop on Visions for the Future of
Logic Programming.

Harris, T., Marlow, S., Peyton Jones, S., and Herlihy, M.
(2005). Composable memory transactions. InACM Sym-
posium on Principles and Practice of Parallel Programming
(PPoPP’05).

Harrison, W. and Kamin, S. (1998). Modular compilers based on
monad transformers. InProc International Conference on
Computer Languages, pages 122–131.

Hartel, P., Feeley, M., Alt, M., Augustsson, L., Bauman, P.,Weis,
P., and Wentworth, P. (1996). Pseudoknot: a float-intensive
benchmark for functional compilers.Journal of Functional
Programming, 6(4).

Haskell01 (2001). Proceedings of the 2001 Haskell Workshop,
Florence.

Haskell04 (2004). Proceedings of ACM Workshop on Haskell,
Snowbird, Snowbird, Utah. ACM.

Heeren, B., Hage, J., and Swierstra, S. (2003a). Scripting the type
inference process. In (ICFP03, 2003), pages 3–14.

Heeren, B., Leijen, D., and van IJzendoorn, A. (2003b). Helium, for
learning Haskell. InACM Sigplan 2003 Haskell Workshop,
pages 62 – 71, New York. ACM Press.

Henderson, P. (1982). Functional geometry. InProc ACM Sympo-
sium on Lisp and Functional Programming, pages 179–187.
ACM.

Henderson, P. and Morris, J. (1976). A lazy evaluator. InIn
Proceedings of 3rd International Conference on Principlesof
Programming Languages (POPL’76), pages 95–103.

Herington, D. (2002). Hunit home page.http://hunit.
sourceforge.net.

Hinze, R. (2000). A new approach to generic functional program-
ming. In (POPL00, 2000), pages 119–132.

Hinze, R. (2001). Manufacturing datatypes.Journal of Functional
Programming, 1.

Hinze, R. (2003). Fun with phantom types. In Gibbons, J. and
de Moor, O., editors,The Fun of Programming, pages 245–
262. Palgrave.

Hinze, R. (2004). Generics for the masses. InACM SIGPLAN Inter-
national Conference on Functional Programming (ICFP’04),
Snowbird, Utah. ACM.

Hinze, R., Jeuring, J., and Lh, A. (2006). Comparing approaches to
generic programming in Haskell. InGeneric Programming,
Advanced Lectures, LNCS. Springer-Verlag.

Hinze, R. and Peyton Jones, S. (2000). Derivable type classes.
In Hutton, G., editor,Proceedings of the 2000 Haskell Work-
shop, Montreal. Nottingham University Department of Com-
puter Science Technical Report NOTTCS-TR-00-1.

Hudak, P. (1984a). ALFL Reference Manual and Programmer’s
Guide. Research Report YALEU/DCS/RR-322, Second Edi-
tion, Yale University, Dept. of Computer Science.

Hudak, P. (1984b). Distributed applicative processing systems –
project goals, motivation and status report. Research Report
YALEU/DCS/RR-317, Yale University, Dept. of Computer
Science.

Hudak, P. (1989). Conception, evolution, and application of func-
tional programming languages.ACM Computing Surveys,
21(3):359–411.

Hudak, P. (1996a). Building domain-specific embedded languages.
ACM Computing Surveys, 28A.

Hudak, P. (1996b). Haskore music tutorial. InSecond International
School on Advanced Functional Programming, pages 38–68.
Springer Verlag, LNCS 1129.

Hudak, P. (1998). Modular domain specific languages and tools.
In Proceedings of Fifth International Conference on Software
Reuse, pages 134–142. IEEE Computer Society.

Hudak, P. (2000).The Haskell School of Expression – Learning
Functional Programming Through Multimedia. Cambridge
University Press, New York.

Hudak, P. (2003). Describing and interpreting music in Haskell. In
Gibbons, J. and de Moor, O., editors,The Fun of Program-
ming, chapter 4. Palgrave.

Hudak, P. (2004). Polymorphic temporal media. InProceedings of
PADL’04: 6th International Workshop on Practical Aspects
of Declarative Languages. Springer Verlag LNCS.

Hudak, P., Courtney, A., Nilsson, H., and Peterson, J. (2003). Ar-
rows, robots, and functional reactive programming. In Jeur-
ing, J. and Jones, S. P., editors,Advanced Functional Pro-
gramming, 4th International School, volume 2638 ofLecture
Notes in Computer Science. Springer-Verlag.

Hudak, P., Makucevich, T., Gadde, S., and Whong, B. (1996).
Haskore music notation – an algebra of music.Journal of
Functional Programming, 6(3):465–483.

Hudak, P. and Sundaresh, R. (1989). On the expressive-
ness of purely-functional I/O systems. Research Report
YALEU/DCS/RR-665, Department of Computer Science,
Yale University.

Hudak, P. and Young, J. (1986). Higher-order strictness analysis in
untyped lambda calculus. InACM Symposium on Principles
of Programming Languages, pages 97–109.

Huet, G. (1975). A unification algorithm for typed lambda-
calculus.Theoretical Computer Science, 1:22–58.

Huet, G. and Levy, J. (1979). Call by need computations in non-
ambiguous linear term-rewriting systems. Report 359, IN-
RIA.

Hughes, J. (1989). Why functional programming matters.The
Computer Journal, 32(2):98–107.

Hughes, J. (1995). The design of a pretty-printing library.In Jeur-
ing, J. and Meijer, E., editors,Advanced Functional Program-
ming, pages 53–96. Springer Verlag, LNCS 925.

Hughes, J. (2000). Generalising monads to arrows.Science of
Computer Programming, 37:67–111.

Hughes, R. (1983). The Design and Implementation of Pro-
gramming Languages. Ph.D. thesis, Programming Research
Group, Oxford University.

Hutton, G. and Meijer, E. (1998). Monadic parsing in Haskell.
Journal of Functional Programming, 8:437–444.

ICFP00 (2000). ACM SIGPLAN International Conference on
Functional Programming (ICFP’00), Montreal. ACM.

ICFP02 (2002). ACM SIGPLAN International Conference on
Functional Programming (ICFP’02), Pittsburgh. ACM.

ICFP03 (2003). ACM SIGPLAN International Conference
on Functional Programming (ICFP’03), Uppsala, Sweden.
ACM.

ICFP97 (1997). ACM SIGPLAN International Conference on
Functional Programming (ICFP’97), Amsterdam. ACM.

ICFP98 (1998). ACM SIGPLAN International Conference on
Functional Programming (ICFP’98), volume 34(1) ofACM
SIGPLAN Notices, Baltimore. ACM.

ICFP99 (1999). ACM SIGPLAN International Conference on
Functional Programming (ICFP’99), Paris. ACM.

Jansson, P. and Jeuring, J. (1997). PolyP — a polytypic program-
ming language extension. In24th ACM Symposium on Princi-
ples of Programming Languages (POPL’97), pages 470–482,
Paris. ACM.

Jansson, P. and Jeuring, J. (1999). Polytypic compact printing and
parsing. InEuropean Symposium on Programming, volume
1576 ofLecture Notes in Computer Science, pages 273–287.
Springer-Verlag.

Johann, P. and Voigtländer, J. (2004). Free theorems in thepresence
of seq. InACM Symposium on Principles of Programming
Languages (POPL’04), pages 99–110, Charleston. ACM.

Johnson, S. (1984).Synthesis of Digital Designs from Recursive
Equations. ACM Distinguished Dissertation. MIT Press.

Johnsson, T. (1984). Efficient compilation of lazy evaluation.
In Proc SIGPLAN Symposium on Compiler Construction,
Montreal. ACM.

Jones, M. (1991). Type inference for qualified types. PRG-
TR-10-91, Programming Research Group, Oxford, Oxford
University.

Jones, M. (1992). A theory of qualified types. InEuropean Sym-
posium on Programming (ESOP’92), number 582 in Lecture
Notes in Computer Science, Rennes, France. Springer Verlag.

Jones, M. (1993). A system of constructor classes: overloading and
implicit higher-order polymorphism. In (FPCA93, 1993).

Jones, M. (1994).Qualified Types: Theory and Practice. Cam-
bridge University Press.

Jones, M. (1995). Simplifying and improving qualified types. In
(FPCA95, 1995).

Jones, M. (1999). Typing Haskell in Haskell. In (Meijer,
1999). Available atftp://ftp.cs.uu.nl/pub/RUU/CS/
techreps/CS-1999/1999-28.pdf.

Jones, M. (2000). Type classes with functional dependencies. In
European Symposium on Programming (ESOP’00), number
1782 in Lecture Notes in Computer Science, Berlin, Ger-
many. Springer Verlag.

Jones, M. and Duponcheel, L. (1994). Composing monads. Tech-
nical Report YALEU/DCS/RR-1004, Yale Univesrity.

Jouannaud, J.-P., editor (1985).ACM Conference on Functional
Programming and Computer Architecture (FPCA’85), vol-
ume 201 of Lecture Notes in Computer Science, Nancy,
France. Springer-Verlag.

Kaes, S. (1988). Parametric overloading in polymorphic program-
ming languages. InProceedings of the 2nd European Sympo-
sium on Programming.

Keller, R., Lindstrom, G., and Patil, S. (1979). A loosely coupled
applicative multiprocessing system. InAFIPS Conference
Proceedings, pages 613–622.

Kelsey, R., Clinger, W., and Rees, J. (1998). Revised5 report on the
algorithmic language Scheme.SIGPLAN Notices, 33(9):26–
76.

Kiselyov, O., Lmmel, R., and Schupke, K. (2004). Strongly typed
heterogeneous collections. In (Haskell04, 2004), pages 96–
107.

Kiselyov, O. and Shan, K. (2004). Implicit configurations; or, type
classes reflect the values of types. In (Haskell04, 2004), pages
33–44.

Knuth, D. (1984). Literate programming.Computer Journal,
27(2):97–111.

Kranz, D., Kelsey, R., Rees, J., Hudak, P., Philbin, J., and Adams,
N. (1986). Orbit: an optimizing compiler for Scheme. In
SIGPLAN ’86 Symposium on Compiler Construction, pages
219–233. ACM. Published as SIGPLAN Notices Vol. 21, No.
7, July 1986.

Kranz, D., Kesley, R., Rees, J., Hudak, P., Philbin, J., and Adams,
N. (2004). Retrospective on: Orbit: an optimizing com-

piler for Scheme.ACM SIGPLAN Notices, 20 Years of the
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (1979–1999): A Selection, 39(4).

Lämmel, R. and Peyton Jones, S. (2003). Scrap your boilerplate:
a practical approach to generic programming. InACM SIG-
PLAN International Workshop on Types in Language Design
and Implementation (TLDI’03), pages 26–37, New Orleans.
ACM Press.

Lämmel, R. and Peyton Jones, S. (2005). Scrap your boiler-
plate with class: Extensible generic functions. InACM SIG-
PLAN International Conference on Functional Programming
(ICFP’05), Tallinn, Estonia.

Landin, P. (1966). The next 700 programming languages.Commu-
nications of the ACM, 9(3):157–166.

Landin, P. J. (1964). The mechanical evaluation of expressions.
Computer Journal, 6(4):308–320.

Läufer, K. (1996). Type classes with existential types.Journal of
Functional Programming, 6(3):485–517.

Läufer, K. and Odersky, M. (1994). Polymorphic type inference
and abstract data types.ACM Transactions on Programming
Languages and Systems, 16(5):1411–1430.

Launchbury, J. (1993). Lazy imperative programming. InProc
ACM Sigplan Workshop on State in Programming Languages,
Copenhagen (available as YALEU/DCS/RR-968, Yale Uni-
versity), pages pp46–56.

Launchbury, J. and Peyton Jones, S. (1995). State in Haskell. Lisp
and Symbolic Computation, 8(4):293–342.

Launchbury, J. and Sabry, A. (1997). Monadic state: Axiomatiza-
tion and type safety. In (ICFP97, 1997), pages 227–238.

Launchbury, J. and Sansom, P., editors (1992).Functional
Programming, Glasgow 1992, Workshops in Computing.
Springer Verlag.

Leijen, D. and Meijer, E. (1999). Domain-specific embedded com-
pilers. In Proc 2nd Conference on Domain-Specific Lan-
guages (DSL’99), pages 109–122.

Lewis, J., Shields, M., Meijer, E., and Launchbury, J. (2000). Im-
plicit parameters: dynamic scoping with static types. In
(POPL00, 2000).

LFP84 (1984).ACM Symposium on Lisp and Functional Program-
ming (LFP’84). ACM.

Li, H., Reinke, C., and Thompson, S. (2003). Tool support for
refactoring functional programs. In Jeuring, J., editor,Pro-
ceedings of the 2003 Haskell Workshop, Uppsala.

Liang, S., Hudak, P., and Jones, M. (1995). Monad transformers
and modular interpreters. In22nd ACM Symposium on Princi-
ples of Programming Languages (POPL’95), pages 333–343.
ACM.

Lindig, C. (2005). Random testing of C calling conventions.In
AADEBUG, pages 3–12.

Lloyd, J. W. (1999). Programming in an integrated functional and
logic language.Journal of Functional and Logic Program-
ming.

Löh, A., Clarke, D., and Jeuring, J. (2003). Dependency-style
Generic Haskell. In (ICFP03, 2003), pages 141–152.

Long, D. and Garigliano, R. (1993).Reasoning by Analogy and
Causality (A Model and Application). Ellis Horwood.

Lüth, C. and Ghani, N. (2002). Composing monads using coprod-
ucts. In (ICFP02, 2002), pages 133–144.

Maessen, J.-W. (2002). Eager Haskell: Resource-bounded execu-
tion yields efficient iteration. InThe Haskell Workshop, Pitts-
burgh.

Major, F. and Turcotte, M. (1991). The combination of symbolic
and numerical computation for three-dimensional modelling
of RNA. SCIENCE, 253:1255–1260.

Marlow, S., Peyton Jones, S., and Thaller, W. (2004). Extending
the Haskell Foreign Function Interface with concurrency. In
Proceedings of Haskell Workshop, Snowbird, Utah, pages 57–
68.

Matthews, J., Cook, B., and Launchbury, J. (1998). Microproces-
sor specification in Hawk. InInternational Conference on
Computer Languages, pages 90–101.

McBride, C. (2002). Faking it: Simulating dependent types in
Haskell.Journal of Functional Programming, 12(4&5):375–
392.

McCarthy, J. L. (1960). Recursive functions of symbolic expres-
sions and their computation by machine, Part I.Communica-
tions of the ACM, 3(4):184–195. The original Lisp paper.

Meijer, E., editor (1999).Proceedings of the 1999 Haskell Work-
shop, number UU-CS-1999-28 in Technical Reports. Avail-
able at ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/
CS-1999/1999-28.pdf.

Meijer, E. (2000). Server side web scripting in Haskell.Journal of
Functional Programming, 10(1):1–18.

Meijer, E. and Claessen, K. (1997). The design and implementation
of Mondrian. In Launchbury, J., editor,Haskell Workshop,
Amsterdam, Netherlands.

Milner, R. (1978). A theory of type polymorphism in programming.
JCSS, 13(3).

Milner, R. (1984). A proposal for Standard ML. InACM Sympo-
sium on LISP and Functional Programming, pages 184–197.

Milner, R. and Tofte, M. (1990).The Definition of Standard ML.
MIT Press.

Milner, R., Tofte, M., Harper, R., and MacQueen, D. (1997).The
Definition of Standard ML (Revised). MIT Press, Cambridge,
Massachusetts.

Mitchell, J. and Plotkin, G. (1985). Abstract types have existential
type. In Twelfth Annual ACM Symposium on Principles of
Programming Languages (POPL’85), pages 37–51.

Moggi, E. (1989). Computational lambda calculus and monads. In
Logic in Computer Science, California. IEEE.

Moggi, E. (1991). Notions of computation and monads.Informa-
tion and Computation, 93:55–92.

Neubauer, M., Thiemann, P., Gasbichler, M., and Sperber, M.
(2001). A functional notation for functional dependencies.
In (Haskell01, 2001).

Neubauer, M., Thiemann, P., Gasbichler, M., and Sperber, M.
(2002). Functional logic overloading. InACM Symposium
on Principles of Programming Languages (POPL’02), pages
233–244, Portland. ACM.

Nikhil, R. S. and Arvind (2001).Implicit Parallel Programming in
pH. Morgan Kaufman.

Nilsson, H. and Fritzson, P. (1994). Algorithmic debuggingfor lazy
functional languages.Journal of Functional Programming,

4(3):337–370.

Nilsson, H. and Sparud, J. (1997). The evaluation dependence tree
as a basis for lazy functional debugging.Automated Software
Engineering, 4(2):121–150.

Nordin, T., Peyton Jones, S., and Reid, A. (1997). Green Card:
a foreign-language interface for Haskell. In Launchbury, J.,
editor,Haskell Workshop, Amsterdam.

Odersky, M. (2006). Changes between Scala version 1.0 and 2.0.
Technical report, EPFL Lausanne.

Odersky, M., Altherr, P., Cremet, V., Emir, B., Maneth, S., Miche-
loud, S., Mihaylov, N., Schinz, M., Stenman, E., and Zenger,
M. (2004). An overview of the Scala programming language.
Technical Report IC/2004/640, EPFL Lausanne.

O’Donnell, J. (1995). From transistors to computer architecture:
teaching functional circuit specification in Hydra. InSympo-
sium on Functional Programming Languages in Education,
volume 1022 ofLNCS. Springer-Verlag.

Ohori, A. (1995). A polymorphic record calculus and its compi-
lation. ACM Transactions on Programming Languages and
Systems, 17:844–895.

Okasaki, C. (1998a).Purely functional data structures. Cambridge
University Press.

Okasaki, C. (1998b). Views for Standard ML. InACM SIGPLAN
Workshop on ML, Baltimore, Maryland.

Okasaki, C. (1999). From fast exponentiation to square matrices:
an adventure in types. In (ICFP99, 1999), pages 28–35.

Page, R. (2003). Software is discrete mathematics. In (ICFP03,
2003), pages 79–86.

Page, R. and Moe, B. (1993). Experience with a large scientific
application in a functional language. In (FPCA93, 1993).

Paterson, R. (2001). A new notation for arrows. InInterna-
tional Conference on Functional Programming, pages 229–
240. ACM Press.

Paterson, R. (2003). Arrows and computation. In Gibbons, J.and
de Moor, O., editors,The Fun of Programming, pages 201–
222. Palgrave.

Paulson, L. (2004). Organizing numerical theories using axiomatic
type classes.Journal of Automated Reasoning, 33(1):29–49.

Perry, N. (1991a). An extended type system supporting polymor-
phism, abstract data types, overloading and inference. InProc
15th Australian Computer Science Conference.

Perry, N. (1991b). The Implementation of Practical Functional
Programming Languages. Ph.D. thesis, Imperial College,
London.

Peterson, J., Hager, G., and Hudak, P. (1999a). A language for
declarative robotic programming. InInternational Confer-
ence on Robotics and Automation.

Peterson, J., Hudak, P., and Elliott, C. (1999b). Lambda in motion:
Controlling robots with Haskell. InFirst International Work-
shop on Practical Aspects of Declarative Languages. SIG-
PLAN.

Peyton Jones, S. (1987).The Implementation of Functional Pro-
gramming Languages. Prentice Hall.

Peyton Jones, S. (2001). Tackling the awkward squad: monadic
input/output, concurrency, exceptions, and foreign-language
calls in Haskell. In Hoare, C., Broy, M., and Steinbrueggen,
R., editors,Engineering Theories of Software Construction,

Marktoberdorf Summer School 2000, NATO ASI Series,
pages 47–96. IOS Press.

Peyton Jones, S., Eber, J.-M., and Seward, J. (2000). Composing
contracts: an adventure in financial engineering. InACM SIG-
PLAN International Conference on Functional Programming
(ICFP’00), pages 280–292, Montreal. ACM Press.

Peyton Jones, S., Gordon, A., and Finne, S. (1996). Concurrent
Haskell. In23rd ACM Symposium on Principles of Program-
ming Languages (POPL’96), pages 295–308, St Petersburg
Beach, Florida. ACM Press.

Peyton Jones, S., Hall, C., Hammond, K., Partain, W., and Wadler,
P. (1993). The Glasgow Haskell Compiler: a technical
overview. InProceedings of Joint Framework for Informa-
tion Technology Technical Conference, Keele, pages 249–257.
DTI/SERC.

Peyton Jones, S., Jones, M., and Meijer, E. (1997). Type classes:
an exploration of the design space. In Launchbury, J., editor,
Haskell workshop, Amsterdam.

Peyton Jones, S. and Launchbury, J. (1991). Unboxed values
as first class citizens. In Hughes, R., editor,ACM Confer-
ence on Functional Programming and Computer Architecture
(FPCA’91), volume 523 ofLecture Notes in Computer Sci-
ence, pages 636–666, Boston. Springer.

Peyton Jones, S., Reid, A., Hoare, C., Marlow, S., and Henderson,
F. (1999). A semantics for imprecise exceptions. InACM
Conference on Programming Languages Design and Imple-
mentation (PLDI’99), pages 25–36, Atlanta. ACM Press.

Peyton Jones, S., Vytiniotis, D., Weirich, S., and Shields,M.
(2007). Practical type inference for arbitrary-rank types.
Journal of Functional Programming, 17:1–82.

Peyton Jones, S. and Wadler, P. (1993). Imperative functional pro-
gramming. In20th ACM Symposium on Principles of Pro-
gramming Languages (POPL’93), pages 71–84. ACM Press.

Peyton Jones, S., Washburn, G., and Weirich, S. (2004). Wobbly
types: type inference for generalised algebraic data types.
Microsoft Research.

Peyton Jones, S. L. (1992). Implementing lazy functional lan-
guages on stock hardware: The spineless tagless G-machine.
Journal of Functional Programming, 2(2):127–202.

Pierce, B. (2002).Types and Programming Languages. MIT Press.

Pope, B. (2005). Declarative debugging with Buddha. In Vene, V.
and Uustalu, T., editors,Advanced Functional Programming,
5th International School, AFP 2004, Tartu, Estonia, August
14-21, 2004, Revised Lectures, volume 3622 ofLecture Notes
in Computer Science. Springer.

POPL00 (2000).27th ACM Symposium on Principles of Program-
ming Languages (POPL’00), Boston. ACM.

Pottier, F. and Régis-Gianas, Y. (2006). Stratified type inference for
generalized algebraic data types. InACM Symposium on Prin-
ciples of Programming Languages (POPL’06), Charleston.
ACM.

Queinnec, C. (2000). The influence of browsers on evaluators
or, continuations to program web servers. InInternational
Conference on Functional Programming.

Ranta, A. (2004). Grammatical framework.Journal of Functional
Programming, 14(2):145–189.

Rees, J. and Clinger, W. (1986). Revised report on the algorithmic
language scheme.ACM SIGPLAN Notices, 21:37–79.

Rojemo, N. (1995a).Garbage Collection and Memory Efficiency
in Lazy Functional Languages. Ph.D. thesis, Department of
Computing Science, Chalmers University.

Rojemo, N. (1995b). Highlights from nhc: a space-efficient Haskell
compiler. In (FPCA95, 1995).

Roundy, D. (2005). Darcs home page.http://www.darcs.net.

Runciman, C. and Wakeling, D. (1992). Heap profiling a lazy
functional compiler. In (Launchbury and Sansom, 1992),
pages 203–214.

Runciman, C. and Wakeling, D. (1993). Heap profiling of lazy
functional programs.Journal of Functional Programming,
3(2):217–246.

Rjemo, N. and Runciman, C. (1996a). Lag, drag, void, and use:
heap profiling and space-efficient compilation revisited. In
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP’96), pages 34–41. ACM, Philadelphia.

Rjemo, N. and Runciman, C. (1996b). New dimensions in heap
profiling. Journal of Functional Programming, 6(4).

Sage, M. (2000). FranTk: a declarative GUI language for Haskell.
In (ICFP00, 2000).

Sansom, P. and Peyton Jones, S. (1995). Time and space profiling
for non-strict, higher-order functional languages. In22nd
ACM Symposium on Principles of Programming Languages
(POPL’95), pages 355–366. ACM Press.

Schechter, G., Elliott, C., Yeung, R., and Abi-Ezzi, S. (1994).
Functional 3D graphics in C++ — with an object-oriented,
multiple dispatching implementation. InProceedings of the
1994 Eurographics Object-Oriented Graphics Workshop. Eu-
rographics, Springer Verlag.

Scheevel, M. (1984). NORMA SASL manual. Technical report,
Burroughs Corporation Austin Research Center.

Scheevel, M. (1986). NORMA — a graph reduction processor. In
Proc ACM Conference on Lisp and Functional Programming,
pages 212–219.

Scholz, E. (1998). Imperative streams – a monadic combinator
library for synchronous programming. In (ICFP98, 1998).

Scott, D. (1976). Data types as lattices.SIAM Journal on Comput-
ing, 5(3):522–587.

Scott, D. and Strachey, C. (1971). Towards a mathematical seman-
tics for computer languages. PRG-6, Programming Research
Group, Oxford University.

Shapiro, E. (1983).Algorithmic Debugging. MIT Press.

Sheard, T. (2004). Languages of the future. InACM Conference
on Object Oriented Programming Systems, Languages and
Applicatioons (OOPSLA’04).

Sheard, T. and Pasalic, E. (2004). Meta-programming with built-
in type equality. InProceedings of the Fourth Interna-
tional Workshop on Logical Frameworks and Meta-languages
(LFM’04), Cork.

Sheard, T. and Peyton Jones, S. (2002). Template meta-
programming for Haskell. In Chakravarty, M., editor,Pro-
ceedings of the 2002 Haskell Workshop, Pittsburgh.

Sheeran, M. (1983).µFP — An Algebraic VLSI Design Language.
PhD thesis, Programming Research Group, Oxford Univer-
sity.

Sheeran, M. (1984).µFP, a language for VLSI design. InSymp.
on LISP and Functional Programming. ACM.

Sheeran, M. (2005). Hardware design and functional program-
ming: a perfect match.Journal of Universal Computer Sci-
ence, 11(7):1135–1158.http://www.jucs.org/jucs_11_
7/hardware_design_and_functional.

Shields, M. and Peyton Jones, S. (2001). Object-oriented style
overloading for Haskell. InWorkshop on Multi-Language In-
frastructure and Interoperability (BABEL’01), Florence, Italy.

Shields, M. and Peyton Jones, S. (2002). Lexically scoped type
variables. Microsoft Research.

Sinclair, D. (1992). Graphical user intefaces for Haskell.In
(Launchbury and Sansom, 1992), pages 252–257.

Singh, S. and Slous, R. (1998). Accelerating Adobe Photoshop
with reconfigurable logic. InIEEE Symposium on Field-
Programmable Custom Computing Machines. IEEE Com-
puter Society Press.

Somogyi, Z., Henderson, F., and Conway, T. (1996). The execution
algorithm of Mercury, an efficient purely declarative logic
programming language.Journal of Logic Programming.

Sparud, J. and Runciman, C. (1997). Tracing lazy functionalcom-
putations using redex trails. InInternational Symposium on
Programming Languages Implementations, Logics, and Pro-
grams (PLILP’97), volume 1292 ofLecture Notes in Com-
puter Science, pages 291–308. Springer Verlag.

Spivey, M. and Seres, S. (2003). Combinators for logic program-
ming. In Gibbons, J. and de Moor, O., editors,The Fun of
Programming, pages 177–200. Palgrave.

Steele, G. (1993). Building interpreters by composing monads. In
21st ACM Symposium on Principles of Programming Lan-
guages (POPL’94), pages 472–492, Charleston. ACM.

Steele, Jr., G. L. (1978). Rabbit: A compiler for Scheme. Technical
Report AI-TR-474, Artificial Intelligence Laboratory, MIT,
Cambridge, MA.

Stosberg, M. (2005). Interview with David Roundy of Darcs on
source control.OSDir News.

Stoye, W., Clarke, T., and Norman, A. (1984). Some practical
methods for rapid combinator reduction. In (LFP84, 1984),
pages 159–166.

Strachey, C. (1964). Towards a formal semantics. InFormal Lan-
guage Description Languages for Computer Programming,
pages 198–220. North Holland. IFIP Working Conference.

Sulzmann, M. (2003). A Haskell programmer’s guide to
Chameleon. Available athttp://www.comp.nus.edu.sg/
~sulzmann/chameleon/download/haskell.html.

Sulzmann, M. (2006). Extracting programs from type class
proofs. InInternational Symposium on Principles and Prac-
tice of Declarative Programming (PPDP’06), pages 97–108,
Venice. ACM.

Sulzmann, M., Duck, G., Peyton Jones, S., and Stuckey, P. (2007).
Understanding functional dependencies via constraint han-
dling rules.Journal of Functional Programming, 17:83–130.

Sussman, G. and Steele, G. (1975). Scheme — an interpreter for
extended lambda calculus. AI Memo 349, MIT.

Swierstra, S. and Duponcheel, L. (1996).Deterministic, Error-
Correcting Combinator Parsers, pages 184–207. Number
1129 in Lecture Notes in Computer Science. Springer Verlag,
Olympia, Washington.

Syme, D. (2005). Initialising mutually-referential abstract objects:
the value recursion challenge. In Benton, N. and Leroy, X.,

editors,Proc ACM Workshop on ML (ML’2005), pages 5–26,
Tallinn, Estonia.

Taha, W. and Sheard, T. (1997). Multi-stage programming with
explicit annotations. InACM SIGPLAN Symposium on Par-
tial Evaluation and Semantics-Based Program Manipulation
(PEPM ’97), volume 32 ofSIGPLAN Notices, pages 203–
217. ACM, Amsterdam.

Tang, A. (2005). Pugs home page.http://www.pugscode.org.

Tarditi, D., Morrisett, G., Cheng, P., Stone, C., Harper, R., and Lee,
P. (1996). TIL: A type-directed optimizing compiler for ML.
In ACM Conference on Programming Languages Design and
Implementation (PLDI’96), pages 181–192. ACM, Philadel-
phia.

Thiemann, P. (2002a). A typed representation for HTML and XML
documents in Haskell.Journal of Functional Programming,
12(5):435–468.

Thiemann, P. (2002b). Wash/cgi: Server-side web scriptingwith
sessions and typed, compositional forms. InPractical Appli-
cations of Declarative Languages, pages 192–208. Springer
Verlag LNCS 2257.

Turner, D. A. (1976). The SASL language manual. Technical
report, University of St Andrews.

Turner, D. A. (1979a). Another algorithm for bracket abstraction.
Journal of Symbolic Logic, 44(2):267–270.

Turner, D. A. (1979b). A new implementation technique for ap-
plicative languages.Software Practice and Experience, 9:31–
49.

Turner, D. A. (1981). The semantic elegance of applicative lan-
guages. InProceedings of the 1981 Conference on Functional
Programming Languages and Computer Architecture, pages
85–92. ACM.

Turner, D. A. (1982). Recursion equations as a programming
language. In Darlington, J., Henderson, P., and Turner, D.,
editors,Functional Programming and its Applications. CUP.

Turner, D. A. (1985). Miranda: A non-strict functional language
with polymorphic types. In (Jouannaud, 1985), pages 1–
16. This and other materials on Miranda are available at
http://miranda.org.uk.

Turner, D. A. (1986). An overview of Miranda.SIGPLAN Notices,
21(12):158–166.

van Heijenoort, J. (1967).From Frege to Godel, A Sourcebook in
Mathematical Logic. Harvard University Press.

van Rossum, G. (1995). Python reference manual. Technical
Report Report CS-R9525, CWI, Amsterdam.

Vuillemin, J. (1974). Correct and optimal placement of recursion
in a simple programming language.Journal of Computer and
System Sciences, 9.

Wadler, P. (1985). How to replace failure by a list of successes. In
(Jouannaud, 1985), pages 113–128.

Wadler, P. (1987). Views: a way for pattern matching to cohabit
with data abstraction. In14th ACM Symposium on Principles
of Programming Languages, Munich.

Wadler, P. (1989). Theorems for free! In MacQueen, editor,Fourth
International Conference on Functional Programming and
Computer Architecture, London. Addison Wesley.

Wadler, P. (1990a). Comprehending monads. InProc ACM Con-
ference on Lisp and Functional Programming, Nice. ACM.

Wadler, P. (1990b). Deforestation: transforming programsto elim-
inate trees.Theoretical Computer Science, 73:231–248.

Wadler, P. (1992a). Comprehending monads.Mathematical Struc-
tures in Computer Science, 2:461–493.

Wadler, P. (1992b). The essence of functional programming.In
20th ACM Symposium on Principles of Programming Lan-
guages (POPL’92), pages 1–14. ACM, Albuquerque.

Wadler, P. (2003). A prettier printer. In Gibbons, J. and de Moor,
O., editors,The Fun of Programming. Palgrave.

Wadler, P. and Blott, S. (1989). How to make ad-hoc polymorphism
less ad hoc. InProc 16th ACM Symposium on Principles of
Programming Languages, Austin, Texas. ACM.

Wadler, P., Taha, W., and MacQueen, D. (1988). How to add
laziness to a strict language, without even being odd. In
Workshop on Standard ML, Baltimore.

Wadsworth, C. (1971).Semantics and Pragmatics of the Lambda
Calculus. PhD thesis, Oxford University.

Wallace, M. (1998). The nhc98 web pages. Available athttp:
//www.cs.york.ac.uk/fp/nhc98.

Wallace, M., Chitil, Brehm, T., and Runciman, C. (2001). Multiple-
view tracing for Haskell: a new Hat. In (Haskell01, 2001).

Wallace, M. and Runciman, C. (1998). The bits between the lamb-
das: binary data in a lazy functional language. InInterna-
tional Symposium on Memory Management.

Wallace, M. and Runciman, C. (1999). Haskell and XML: Generic
combinators or type-based translation. In (ICFP99, 1999),
pages 148–159.

Wan, Z. (December 2002).Functional Reactive Programming for
Real-Time Embedded Systems. PhD thesis, Department of
Computer Science, Yale University.

Wan, Z. and Hudak, P. (2000). Functional reactive program-
ming from first principles. InProceedings of the ACM SIG-
PLAN ’00 Conference on Programming Language Design
and Implementation (PLDI), pages 242–252, Vancouver, BC,
Canada. ACM.

Wan, Z., Taha, W., and Hudak, P. (2001). Real-time FRP. InPro-
ceedings of Sixth ACM SIGPLAN International Conference
on Functional Programming, Florence, Italy. ACM.

Wan, Z., Taha, W., and Hudak, P. (2002). Event-driven FRP. In
Proceedings of Fourth International Symposium on Practical
Aspects of Declarative Languages. ACM.

Watson, I. and Gurd, J. (1982). A practical data flow computer.
IEEE Computer, pages 51–57.

Wile, D. (1973). A Generative, Nested-Sequential Basis for Gen-
eral Purpose Programming Languages. PhD thesis, Dept. of
Computer Science, Carnegie-Mellon University. First use of
sections, on page 30.

Xi, H., Chen, C., and Chen, G. (2003). Guarded recursive datatype
constructors. InProceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages, pages 224–235. ACM Press.

Young, J. (1988).The Semantic Analysis of Functional Programs:
Theory and Practice. PhD thesis, Yale University, Depart-
ment of Computer Science.

