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Abstract
Dependently typed programming languages, such as Idris
and Agda, feature rich interactive environments that use
informative types to assist users with the construction of
programs. However, these environments have been provided
by the authors of the language, and users have not had an
easy way to extend and customize them. We address this
problem by extending Idris’s metaprogramming facilities
with primitives for describing new type-directed editing fea-
tures, making Idris’s editors as extensible as its elaborator.
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1 Introduction
Rich type systems give programmers a way to express their
intentions as types, statically ruling out many incorrect pro-
grams. But rich types are useful for much more than pre-
venting mistakes: the information provided by informative
types can be used by programming tools to guide program
construction, automating away tedious details and freeing
programmers to concentrate on the parts of their problem
that require human creativity.

Type-driven programming environments are necessarily
built according to language developers’ assumptions about
how programmers will use them. These assumptions, how-
ever, can never hold for all members of a diverse community
working on a variety of problems. Unfortunately, the inter-
active features of Idris and Agda are presently built in to
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their respective compilers, and skill in dependently typed
programming does not imply the ability to extend the im-
plementation of dependently typed languages and maintain
those extensions so that they continue to work as compilers
are improved.

The Idris elaborator [7] translates programs written in
Idris into a smaller core type theory, called TT. The elab-
orator is written in Haskell, making use of an elaboration
monad to track the complicated state that is involved. The
high-level Idris language is extensible using elaborator reflec-
tion [8, 10], which directly exposes the elaboration monad
to Idris programs so that Idris can be extended in itself. Con-
cretely, elaborator reflection extends Idris with a primitive
monad Elab. Just as IO values describe effectful programs
to be executed by the run-time system, Elab values describe
effectful programs to be run during elaboration.

We have extended Idris’s implementation of elaborator
reflection with new primitives that enable it to be used to
construct editor actions. These editor actions have access to
the full power of Elab, but instead of running in the course of
elaboration, they are manually invoked by programmers to
modify already-elaborated programs. With these new prim-
itives, it becomes possible to write domain-specific editor
actions for embedded domain-specific languages [23] and
to replace parts of the compiler with customizable library
code written in Idris. Even more importantly, users who were
previously stuck with whatever the developers provided are
now empowered to make not only their language, but also
their programming environment, their own.

Contributions
We make the following contributions in this paper:
• We explore the features that are necessary to use

elaborator reflection to implement editor actions.
• We describe a concrete realization of this design, and the

communication protocol that allows it to work in multiple
interactive environments.

• We describe a non-trivial editor action that invokes a the-
orem prover for intuitionistic propositional logic to inter-
actively fill a hole in an incomplete program.

• We demonstrate that editor actions written in Idris are
sufficiently powerful to replace parts of implementation
by reimplementing a feature that constructs initial imple-
mentations of functions, based on their type signatures.
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1.1 Editor Interaction
An interactive environment for Idris programming has two
key components: the Idris compiler, which is responsible for
type checking and code generation, and a text editor, which
provides an interface in which users can write programs.
While some IDEs tightly couple the text editor component
to the compiler component, requiring them to run in the
same process and to be written in the same language, Idris
provides an interaction protocol that can be used to bring
type-directed program construction to any sufficiently exten-
sible text editor. While this protocol is based on the Swank
protocol used by Common Lisp and Dylan implementations
since 2003, it is also similar to the more recent Language
Server Protocol used in Visual Studio Code.

Using this protocol, client editors can invoke the type
checker, request that the compiler perform a case split on a
pattern variable, generate initial implementations for func-
tions based on their type signature, discover the callers of
a function, or request documentation. The protocol even al-
lows interactive environments to request the normal form
of an expression displayed in an error message, allowing
in-place evaluation. However, the file that is being edited has
to be loaded to the compiler, which allows the compiler to
use the context in the file for the editor actions above. Idris
does not yet support a mode of interaction similar to that of
Lean, which incrementally type checks the buffer as users
type; like Agda, the Idris type checker must be explicitly
invoked.

At the time of writing, there are Idris editing modes for
GNU Emacs, Atom, Sublime Text, and Visual Studio Code
that communicate with the Idris compiler over the IDE proto-
col and allow compiler-supported editor actions. Each editor
requires a certain amount of custom code to connect the
user interface to the underlying Idris compiler commands.
Because the Idris mode for GNU Emacs is the most feature-
ful, we use it as our running example, but there is nothing
inherently Emacs-specific about this technique.

Editor
(Emacs, Vim, etc.)

the Idris compiler
in IDE mode

request S-expression

response S-expression

Figure 1. Communication between an editor and Idris

When the user invokes an editor action, the editor has
to tell the Idris compiler what to run. Since the editor and
the compiler run in separate processes, for each interaction
the editor has to send a message to the compiler, and the
compiler has to send a one or more replies back to the editor,
as seen in figure 1. For ease of parsing, these messages are
formatted as McCarthy’s S-expressions [33].

The Idris compiler, including its editing commands, is writ-
ten in Haskell. Traditionally, implementing a new command

required extending the compiler, updating the IDE protocol,
and then finally extending the user interface of the editor
modes.

1.2 Extending An Editor in Idris
Dependently typed languages typically both allow programs
to be incomplete and provide support for making them more
complete. A limited version of this support could be a facil-
ity that substitutes the unit constructor (written (), as in
Haskell) for a hole of the unit type (also written (), as in
Haskell), and the reflexivity constructor Refl when the goal
is a reflexive case of the equality type.

Figure 2 presents an implementation of this editor action.
The %editor keyword registers the declaration as an editor
action. Its type states that, when passed a representation of a
name from Idris’s core language, it will produce a represen-
tation of a term in Idris’s core language, potentially having
elaboration-time side effects. It is passed a name because
Idris holes are identified by name.

The first step is to look up the type of the hole to be
replaced, using getType, which takes a name and returns
the type of the definition associated with that name. If the
name is ambiguous, getType fails. Having discovered the
name’s type, it then pattern-matches on said type, using
Idris’s quasiquotation syntax [9].

The first case to be considered is the unit type. In this
pattern, a type annotation is needed due to the Haskell-style
overloading of the double-parentheses. If the case is the unit
type, the quoted form of the unit constructor is returned
with pure, which is analogous to Haskell’s return.

%editor
easy : TTName -¿ Elab TT
easy n =

do ty ¡- getType n
case ty of
`(() : Type) =¿
pure `(() : ())

`((=) {A=˜a} {B=˜b} ˜x ˜y) =¿
do converts a b

converts x y
pure `(Refl {A=˜a} {x=˜x})

˙ =¿
fail [TextPart ”Cannot solve”]

(defun idris-easy ()
”Invoke the first example action.”
(interactive)
(idris-elab-hole-arg
”easy” (list (idris-name-at-point))))

Figure 2. A simple editor action in Idris (top) and its
Emacs Lisp support code (bottom)
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The second case to be considered is the equality type,
which is heterogeneous [30] in the Idris standard library. The
equality type requires two implicit arguments [37], called A
and B, as well as explicit arguments x and y. When A and B
are the same type, and x and y can be judged to be equal ac-
cording to that type, Refl proves the equality. The converts
action checks whether two quoted terms are judgmentally
equal, and fails if they are not. Having checked that the types
and their inhabitants coincide, the second case returns Refl.

The third and final case matches any other goal, and it fails.
Additional cases could be added on an ad hoc basis, or a more
automatic approach could be taken. See Christiansen [10]
or Christiansen and Brady [8] for a description of how to
increase the level of automation; this example is chosen to
be easier to understand.

Each of Idris’s editor actions requires a small amount of
editor-specific code to provide a user interface, and editor
actions written in Idris are no exception. With a suitable
library, most editing actions can be accommodated with
fewer than five lines of Emacs Lisp, and we expect the burden
to be similar for other extensible editors. Including in-editor
documentation, this example requires five lines of Emacs
Lisp.

ex1 : ()
ex1 = ?ex1˙impl

ex2 : not False = True
ex2 = ?ex2˙impl

ex3 : False = True
ex3 = ?ex3˙impl

ex1 : ()
ex1 = ()

ex2 : not False = True
ex2 = Refl

ex3 : False = True
ex3 =

:::::::::
?ex3˙impl

Figure 3. Before and after invoking easy

Figure 3 displays the results of executing this editor action
on three holes. In the first two examples, the program is
completed automatically. In the third example, however, an
error is indicated because the underlying Elab action fails.

2 Design
The Elab monad in Idris primitively keeps track of a state in-
volving a potentially incomplete expression, its type, and any
new declarations generated as side effects during elaboration.
When an Elab script is executed, the incomplete expression
is expected to have been completed. Because these updates
to the expression occur via side effects, elaborator reflection
scripts have the type Elab (). Since the desired metapro-
gramming effects are captured by the elaboration state, there
is nothing interesting to return.

However, Elab scripts that are used as editor actions are
not able to effect changes to the program by modifying the
elaboration state, because the contents of the text editor are

not part of the state. Thus, editor actions return their results
explicitly, and the serialized results are sent to the editor.

If an editor action needs to send back an expression to the
editor, then the action should have the return type Elab TT,
where TT is the type of quoted core Idris terms. Similarly,
if a user needs to define an action that creates a function
definition, then the action that does that should have the
return type Elab FunDefn, where FunDefn is the type of
quoted function definitions. A simple editor action that only
needs to send a number back to the editor should return an
Elab Nat, where Nat is the type of natural numbers.

Using the TT datatype to send and receive Idris expressions
from the editor instead of a precise representation of the con-
crete syntax of high-level Idris allows programmers to reuse
existing Elab scripts in custom editor actions. Additionally,
TT works with the existing elaboration infrastructure, in-
cluding type checking and evaluation, and we expect it to
be far more robust in the face of future changes to Idris, be-
cause the high-level language changes much more frequently
than the core language. However, since TT represents terms
and declarations in TT rather than high-level Idris, editor
actions cannot return an exact concrete syntax. We explain
our solution for the gap between the core language terms in
Elab actions and the concrete syntax used in the editor in
sections 2.1.2 and 3.2.

2.1 The Editorable Type Class
The problem with allowing editor actions to return inhabi-
tants of any type is that the compiler cannot serialize values
of arbitrary types as S-expressions. In order to give users
the power to define how each type should be represented
as S-expressions, we define a type class1 called Editorable,
which outlines what the compiler needs to know about a
type to be able to serialize and deserialize values of that type.

interface Editorable a where
fromEditor : SExp -¿ Elab a
toEditor : a -¿ Elab SExp

Figure 4. Definition of the Editorable type class.

Whenever users want to inform the compiler about the
S-expression representation of values of a type, they have to
define an instance of the Editorable type class. Later when
a user runs an editor action from an editor, the Editorable
instances are used for communication via S-expressions.

2.1.1 Some Editorable Instances
The collection of atoms in Idris’s S-expressions already in-
cludes many primitive types, such as String. Deserializing a

1In Idris, type classes are called interfaces and instances are called imple-
mentations.
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string succeeds when provided with a string, and fails other-
wise. The message thrown on failure can be a non-trivial list
structure, which allows Idris’s pretty printer to be used to
render substrings, but here we elide the concrete messages
and focus on the successful cases. Serialization tags the atom
appropriately.

implementation Editorable String where
fromEditor (StringAtom s) = pure s
fromEditor x = fail [{- elided -}]
toEditor x = pure (StringAtom x)

Figure 5. String instance of the Editorable type class.

Inductive types, such as Maybe a, can be represented as
lists in which the first element is a tag specifying the chosen
constructor. For instance, Just ”abc” can be represented as
(:Just ”abc”), a list S-expression with a symbol atom as
the first element and then the S-expression representation
of a string, and Nothing can be represented as the symbol
:Nothing. This can be implemented as follows:

implementation Editorable a
=¿ Editorable (Maybe a) where

fromEditor (SExpList [SymbolAtom ”Nothing”]) =
pure Nothing

fromEditor (SExpList [SymbolAtom ”Just”, x]) =
do x' ¡- fromEditor x

pure (Just x')
fromEditor x = fail [{- elided -}]
toEditor (Just x) =
do x' ¡- toEditor x

pure (SExpList [SymbolAtom ”Just”, x'])
toEditor Nothing =
pure (SExpList [SymbolAtom ”Nothing”])

Figure 6. Maybe instance of the Editorable type class.

The idea that is introduced here can be used to define an
Editorable instance for any inductively-defined data type,
so long as the arguments to its constructors are also induc-
tively defined. Constructors that do not take any argument
are represented as symbol atoms, and the ones that do take
arguments are represented as a list S-expression, in which
the first element is a symbol atom and the other elements
represent the arguments that the constructor takes. We will
call this the constructor-based S-expression representation of
a type.

It is not, however, possible to use the constructor-based
representation for every type. In particular, functions and
infinite coinductive datatypes do not, in general, admit finite
serializations.

In other cases, the constructor-based representation re-
quires too much work to encode and decode in editors. For

instance, Idris names have a rich structure, but users know
them by their syntax rather than by their internal repre-
sentation. The Editorable instance for the type of quoted
Idris names, TTName, which appeared in figure 2, represents
names using their user-facing syntax. For instance, the Idris
name Prelude.Bool.not, which has the data type represen-
tation NS ”not” [”Bool”, ”Prelude”], is represented by
a string atom S-expression, namely ”Prelude.Bool.not”.

2.1.2 Primitive Editorable Instances
The S-expression representations of quoted Idris code, such
as TT and TyDecl, are the most challenging ones. These types
mirror the internal representation of Idris’s core language,
but they are ordinary inductive data types defined in Idris,
which means that the constructor-based representation suf-
fices to represent them.

However, that representation is not particularly conve-
nient for extending editors. The constructor-based represen-
tation would be an abstract syntax tree of the TT representa-
tion of an Idris expression. Users, however, work with the
concrete syntax of Idris itself. When they use editor actions,
they expect to see concrete syntax put back into the file, and
converting from TT to concrete Idris syntax requires a lot of
code that should not be duplicated in each editor when it
already exists in the Idris compiler. Therefore, for these core
datatypes, the editor sends and receive concrete syntax.

If the compiler receives concrete syntax and needs to run
Elab actions on that, there are many missing steps in be-
tween, most important of which is elaboration from a high-
level language to the core language. Similarly, if the compiler
needs to send back concrete syntax after running Elab ac-
tions, then it needs to reverse all those steps. In other words,
there is a colossal gap between concrete syntax and the core
language that needs to be bridged, and this task can be dele-
gated to the Editorable type class.

When the S-expression received by the compiler is a
string atom that is a piece of Idris code, i.e. concrete syn-
tax, fromEditor should parse that string into a high-level
language term, and then elaborate that into a core language
term. Only after that can the compiler run the Elab editor
action. Similarly, when the Elab action finishes, toEditor
should convert core language terms into the high-level lan-
guage terms, a process called delaboration in the Idris com-
piler. Then, the compiler should invoke the pretty printer to
get concrete syntax that represents that term. The resulting
string can be sent back from the compiler to the editor as a
string atom S-expression.

Bridging this gap requires an Editorable instance for
TT that does parsing, elaboration, conversion from the core
language to the surface language, and pretty printing. Rather
than reimplementing this from scratch in Idris itself, we ex-
tended Elab to expose these features of the compiler as prim-
itives, following Barzilay’s program of direct reflection [5]. In
particular, these primitives are used to define the instances
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data HasPrim : Type -¿ Type where
HasTT : HasPrim TT
HasTyDecl : HasPrim TyDecl
HasDataDefn : HasPrim DataDefn
HasFunDefn : HasPrim (FunDefn TT)
HasFunClause : HasPrim (FunClause TT)

Figure 7. Definition of the HasPrim predicate in Idris.

prim˙˙fromEditor : HasPrim a -¿ SExp -¿ Elab a
prim˙˙toEditor : HasPrim a -¿ a -¿ Elab SExp

Figure 8. The new Elab primitives.

implementation Editorable TT where
fromEditor x = prim˙˙fromEditor HasTT x
toEditor x = prim˙˙toEditor HasTT x

Figure 9. An Editorable instance depending on the new
primitives.

of Editorable for the core language types like TT, TyDecl
and FunDefn. Hard-coding the Editorable instances of TT,
TyDecl, DataDefn, FunDefn, and FunClause into the com-
piler allows by making use of the already existing compiler
implementations of the steps listed above.

To achieve this, the existing Elab monad needs to be
extended with primitives that go through the steps men-
tioned above. One Elab primitive for fromEditor and one
for toEditor suffice; polymorphic primitives constrained by
an indexed family provide a principled way to manage the
primitive instances of Editorable.

Figure 8 uses HasPrim to describe the new Elab primitives.
Using these two primitives, the Editorable instances for
the core language types all look alike; an example can be
seen in figure 9.

2.2 How the Compiler Uses Editorable for
Communication

We have extended Idris’s IDE protocol to support an addi-
tional message that represents an invocation of a custom
editor action. This message includes the name of the custom
action and a list of arguments, and its reply contains Idris’s
response.

When the editor fires up Idris in IDE mode and loads
the file, then it can send a custom action message to Idris.
If the compiler receives such a message from the editor, it
looks up the name and type of the editor action from the
context. From types of the arguments of the Elab action, it
can find the necessary Editorable instances and use the
fromEditor definitions in them to parse the S-expressions
into Idris values. If the number of arguments in the action
type and the argument list match, and all arguments can be

parsed without any errors, then the compiler can run the
Elab action, and use toEditor to serialize the output, and
send it back to the editor.

The compiler can use Elab actions whose arguments and
return type have Editorable instances as custom editor ac-
tions. The easy action from figure 2 is an example of this,
and its usage can be seen in figure 3. When the user puts
the cursor on ?ex1 impl and invokes idris-easy in their
Emacs session, Emacs sends a message to the compiler that
specifies that it wants to run easy, and provides a list of
arguments, (list ”ex1 impl”), which is a singleton list
containing a string atom. When Idris receives this message,
it looks up the name easy from the context and finds out that
it has the type TTName -¿ Elab TT. Therefore it looks up
the Editorable instance of TTName and runs its fromEditor
implementation on ”ex1 impl”, which results in the Idris
name for ?ex1 impl. Then the compiler can execute easy
and get a core language term () as a result. Since core lan-
guage terms are represented by the TT type, Idris has to find
the Editorable instance of TT and run its implementation
of toEditor on that term, which produces an S-expression
to be sent back to the editor.

2.3 Using Editorable in Type-Checking
The motivation behind the Editorable type class is twofold:

1. to use the fromEditor and toEditor definitions to seri-
alize and deserialize data before and after an Elab action
is run; and

2. to check whether a given Elab action is suitable to be used
as an editor action.

The first motivation is already covered in the previous
sections. When Idris encounters a definition that is tagged
with the %editor keyword as an editor action, it first elabo-
rates the type. The next step is to check whether this type
is suitable as an editor action. It does this by ensuring that
each argument type has an Editorable instance, that the
return type has Elab at its head, and that the argument to
Elab is also Editorable. This rules out dependent types for
editor actions—section 6.2 discusses a potential way to lift
this restriction in the future.

3 Implementation Concerns
The overall design described in section 2 is not completely
sufficient to implement extensible type-directed editing.
Some additional machinery proves to be necessary in prac-
tice.

3.1 Local Contexts
Expressions can be understood only in a local context that
explains the types, and sometimes the values, of their free
variables. Editor actions should have access to the local con-
text of bound variables in addition to the global definition



TyDe ’18, September 27, 2018, St. Louis, MO, USA Joomy Korkut and David Christiansen

context. The design in section 2, however, has no means of
providing them with this local context.

For example, the editor might send an expression like
not a to the compiler, where a is bound in the local context.
The compiler can parse this expression, but it cannot elabo-
rate it, because without the local context, a is meaningless.
In a call to a custom editor action, expressions stand alone;
they do not come with a context. It can deal with not, which
is defined in the global context, but when it comes to the
local context, elaboration is doomed to fail.

Editor actions have, thus far, been provided with their
arguments explicitly. However, local contexts do not have a
concrete representation in Idris’s syntax, so they cannot be
selected directly.

To solve this problem, we take advantage of the fact that
lexical contexts correspond to source spans. Each local bind-
ing form has a defined scope; this scope corresponds to a
production of the abstract syntax tree that originates from a
specific range of positions in the editor buffer. We extended
the protocol for custom editor actions so that the editor
sends a source position along with the action name and its
arguments.

Prior to our work, local context information was only
available for holes, and they were tied to names of the holes,
not their source positions. To be able to keep track of the
correspondence between source positions of all expressions
and their local contexts, we extended the internal compiler
state with an interval map that connects ranges of source
positions to the local context that corresponds to the process
of elaborating the expression found in that range. We used
the standard Haskell finger tree implementation of interval
maps [22]. Entries in interval maps are accumulated during
elaboration and saved, to be used later in editor interaction.

When initializing the reflected elaboration monad prior
to executing an editor action, the local context is initialized

with the one that corresponds to the cursor location sent
by the editor. The compiler can use that information in the
elaboration of terms depending on the local context, such
as not a. This constrains editor actions to have a single
privileged source position; this constraint has not proven
difficult in practice, but it could be lifted by making source
positions Editorable and providing any number of them
as ordinary arguments. Editor actions could then have a
primitive to enter the lexical scope corresponding to a source
position, and to check whether a source span is contained
within a particular scope.

We expect that the remembered association between
source spans and contexts will enable additional editor fea-
tures, such as displaying the local context as the user navi-
gates a source file, but we have not yet implemented these
features.

3.2 Hard-Coding Editorable Instances
Implementing hard-coded instances of the Editorable type
class in the compiler is challenging to describe since there are
many languages involved in different ways. Idris’s compiler
is written in Haskell, hence there is a Haskell data type that
represents Idris syntax trees. Idris’s elaborator [7] describes a
core language that is smaller than Idris’s high-level language,
there is also a Haskell data type that represents Idris core
syntax trees.

However, elaborator reflection [8, 10] provides new Idris
data types that correspond to the Haskell data types to rep-
resent Idris core language terms. Outlining how a metapro-
gramming feature is implemented introduces another layer
of metadiscussion, therefore it becomes difficult to use pre-
cise terminology. Figure 10 describes the relationship be-
tween the different languages and representations and spells
out the specific names for moving from one to another.

Haskell terms
such as the () term

()

Haskell representation of
Idris core language terms

such as the Term term
P (DCon 0 0 False) (UN
”MkUnit”) (P (TCon 0 0

False) (UN ”Unit”) Erased)

Idris terms
such as the () term

()

Idris core terms
such as the Unit term

MkUnit

Idris representation of the
Haskell representation of
Idris core language terms

such as the TT term
P (DCon 0 0) (UN ”MkUnit”)
(P (TCon 0 0) (UN ”Unit”)

Erased)

reflection

reification

elaboration

delaboration

quotation

internally represented as

unquotation
correspondence

Figure 10. The relationship between reflection, reification, quotation, unquotation, elaboration and delaboration.
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During the execution of prim fromEditor in the elab-
orator, it is given arg, a Haskell representation of an Idris
core language term representing an S-expression, and ty, a
Haskell representation of an Idris type. When the elabora-
tor finishes running prim fromEditor, it should create the
Haskell representation of an Idris core language term, which
should have the type ty. The elaborator should have a case
for each primitive Editorable implementation. For brevity,
we will only consider the case in which ty corresponds to
the Idris type TT. Then the elaborator should
1. reify arg to get a Haskell S-expression and make sure it

is a string atom;
2. parse the string inside the S-expression and get a high-

level language term;
3. traverse the high-level language term and resolve names-

paces for names, for when it is unambiguous;
4. elaborate the new high-level language term into a core

language term, using the local context obtained through
section 3.1;

5. reflect the core language term, in order to create a core
language term that represents an Idris term of the type
TT; and finally

6. normalize the reflected term to get a syntax tree in canon-
ical form, and return it.
During the execution of prim toEditor in the elaborator,

it is given ty, a Haskell representation of an Idris type, and
arg, a Haskell representation of an Idris core language term
representing a term of the type ty. When the elaborator fin-
ishes running prim toEditor, it should create the Haskell
representation of an Idris core language term representing
an S-expression. The TT case for prim toEditor should
1. reify arg to get a Haskell representation of an Idris core

language term;
2. delaborate and resugar the core language term into a high-

level language term;
3. use pretty printing to get a string that is a piece of code;
4. create a string atom S-expression with that string;
5. reflect the S-expression to get a Haskell term representing

an Idris core language term representing an S-expression;
and finally

6. normalize the reflected term to get a syntax tree in canon-
ical form, and return it.

The other primitive instances behave similarly.

4 Applications
In this section, we present a custom domain-specific editor
action, an editor action that is meant to replace a built-in
Idris IDE mode feature, and an editor action that improves
on Idris’s proof search mechanism in a specific logic.

4.1 Regular Expression Simplification
One of the most promising benefits of our work is that it
allows authors of embedded domain-specific languages [23]

(or eDSLs) to write domain-specific custom editor actions
that assist eDSL users. One such language that most pro-
grammers are already familiar with is regular expressions.

data Regex = Empty
— Epsilon
— Lit Char
— Concat Regex Regex
— Or Regex Regex
— Star Regex

Figure 11. Definition of regular expressions.

Mirroring the formal definition of regular expressions, the
Idris definition of regexes has constructors for ∅, ε , literal
characters, concatenation (·), alternation (|) and the Kleene
star (∗), as seen in figure 11.

The most common usage of regular expressions is to de-
termine whether a string is in its language. For that, users
would have to write regular expression literals using the
Regex data type. If the user wants to check whether the reg-
ular expression a∗ accepts the string “aaa”, they would call
accepts (Star (Lit ’a’)) ”aaa”.

However, there is no guarantee that the user would write
the regular expression in its simplest form. Especially for
more complex regular expressions, it is easy to overlook sim-
pler versions. For instance, a user might write the regex term
Or Epsilon (Star (Lit ’a’)), representing ε |a∗, instead
of Star (Lit ’a’), representing a∗. A custom editor action
can perform this simplification automatically.

For reasons of space, we will not explain the actual simplifi-
cation algorithm, since there are many external sources such
as Ortiz and Anaya [36] and Harper [21] that do, and it is
not essential to understanding how the custom editor action
works. We take the function simplify : Regex -¿ Regex
as a given, and proceed to describe how it can be used to
construct an editor action.2

The custom editor action to simplify regexes should con-
sume a regex, returning a potentially simpler regex. However,
when the editor sends expressions to the compiler, it sends
them as strings containing snippets of code, which are then
parsed and elaborated in the compiler. The editor action
should therefore have the type TT -¿ Elab TT. The input
and output are not regular expressions; they are ASTs of
Idris code that represents regular expressions.

Simplification, however, is a function from Regex to Regex,
not from TT to TT. At the same time, regular expression sim-
plification is vastly easier to implement on actual Regexes,
rather than on their quotations. To implement the editor
action, figure 12 defines two functions unquote and quote
that converts between TT and the constructors of Regex. The
2Full source code is available at http://github.com/joom/edit-time-tactics/
tree/master/code/regex.

http://github.com/joom/edit-time-tactics/tree/master/code/regex
http://github.com/joom/edit-time-tactics/tree/master/code/regex
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conversion from Regex to TT in the quote function cannot
fail, since all regexes must have a core language representa-
tion. However, the conversion from TT to Regex can fail in
the unquote function, since if unquote can be given any core
language term, including ones that represent ill-typed Idris
terms, ones that have types other than Regex, or Regexes
that contain free variables.

The unquote and quote functions are boilerplate code
that should eventually either be derived [10] or added as
polymorphic primitives in the Elab monad that directly re-
flect the internal term, similar to Agda’s TC monad [1]. We
leave either of these for future work.

unquote : TT -¿ Elab Regex
unquote `(Empty) = pure Empty
unquote `(Epsilon) = pure Epsilon
unquote `(Lit ˜c) = do c' ¡- unquote c

pure (Lit c')
unquote `(Concat ˜x ˜y) = do x' ¡- unquote x

y' ¡- unquote y
pure (Concat x' y')

unquote `(Or ˜x ˜y) = do x' ¡- unquote x
y' ¡- unquote y
pure (Or x' y')

unquote `(Star ˜x) = do x' ¡- unquote x
pure (Star x')

unquote t = fail [{- elided -}]

quote : Regex -¿ TT
quote Empty = `(Empty)
quote Epsilon = `(Epsilon)
quote (Lit c) = `(Lit ˜(quote c))
quote (Concat x y) =

`(Concat ˜(quote x) ˜(quote y))
quote (Or x y) = `(Or ˜(quote x) ˜(quote y))
quote (Star x) = `(Star ˜(quote x))

Figure 12. Functions to convert between values of the Regex
type and their representation in the core language.

The functions unquote, quote, and simplify provide all
the building blocks needed to define the custom editor action,
which are combined in figure 13 to make up the necessary
Elab action.

The Emacs Lisp support code required to run the custom
editor action gets the region selected in the editor by the user,
sends it as the first argument for the simplifyInEditor
editor action, receives a response from the compiler, and
replaces the code in the response with the selected region.

Figure 14 shows an example editor session using the regex
simplification editor action. The user selects a region con-
taining an expression and executes the Emacs Lisp function,
which replaces the selected expression with the simplified
version of the same regex.

%editor
simplifyInEditor : TT -¿ Elab TT
simplifyInEditor t =
do r ¡- unquote t

pure (quote (simplify r))

(defun idris-simplify-regex ()
”Replace selection with simplified regex.”
(interactive)
(let* ((regexp (buffer-substring-no-properties

(region-beginning)
(region-end)))

(result (idris-elab-edit
”simplifyInEditor” regexp)))

(replace-region
(region-beginning) (region-end) result)))

Figure 13. Definition of Elab action for regex simplification,
and the necessary Emacs Lisp support code to run.

if accepts ( Or Epsilon (Star (Lit 'a')) ) ”aaa”
then {- elided -} else {- elided -}

if accepts (Star (Lit 'a')) ”aaa”
then {- elided -} else {- elided -}

Figure 14. Before and after invoking regular expression
simplification

4.2 Reimplementing the Built-In “Add Clause”
Action

Idris’s editor modes support a built-in editor action called
“Add initial match clause to type declaration.” When the
cursor is on the type signature of a function that does not
have any clauses, the user can run this editor action and
get an initial pattern clause for the function. For instance,
invoking the command on the declaration
copy : (n : Nat) -¿ a -¿ Vect n a

results in the clause
copy n x = ?copy˙rhs

which has a bound variable for each explicit argument in
copy’s type.

There is no longer any need to implement this feature in
Haskell as part of the compiler. This section describes the
implementation of an editor action in Idris itself that gen-
erates initial clauses for top-level type declarations without
implicit arguments or interface constraints. A version that
handles these additional features is longer, but involves no
additional concepts. The complete Idris code that implements
this editor action can be seen in figure 15.
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collectTypes : TT -¿ (List TT, TT)
collectTypes (Bind ˙ (Pi ty ˙) t) =

let (xs, t') = collectTypes t in
(ty :: xs, t')

collectTypes t = ([], t)

%editor
addClause : TTName -¿ Elab (FunClause TT)
addClause n =
do ty ¡- getType n

env ¡- getEnv
ty' ¡- normalise env ty
let (argTys, retTy) = collectTypes ty'
argNames ¡- for argTys (const fresh)
let lhsUntyped =
foldl RApp (Var n) (map Var argNames)

(lhsTyped, ˙) ¡- check env lhsUntyped
holeName ¡- fresh
let rhs = Bind holeName (GHole retTy) (V 0)
pure (MkFunClause lhsTyped rhs)

Figure 15. Implementation of the editor action for “add
clause”.

The collectTypes function takes a type and dis-
sects it into components, and returns a pair of the
list of inputs and the output type. For instance, calling
collectTypes with the input `(Nat -¿ Bool -¿ String)
returns ([`(Nat), `(Bool)],`(String)).

The addClause action only takes one input, which is the
name of the function declaration for which an initial clause
has been requested. Using this name, it looks up the type
of that function, normalizes the type, and gets its compo-
nents using collectTypes. The list of input types is named
argTys, and the output type is named retTy. For each mem-
ber of argTys, it generates a new user-accessible name using
fresh. A more featureful implementation would attempt to
preserve names from the type signature, only generating
fresh names when the user had not provided a name or in
the presence of shadowing.

A pattern match clause consists of a left-hand side, which
is an application of the function being defined to either con-
structors or pattern variables, and a right-hand side, which
is the expression that results when the pattern on the left-
hand side matches. Having found names for each pattern
variable, the left hand side of the initial clause is constructed
by applying the function being defined, using RApp. The Var
constructor injects names into terms. The right hand side of
the initial clause should consist only of a hole for the user
to fill in, indicated by the GHole term constructor. Because
Idris holes are binding forms, the de Bruijn index 0 refers
back to this new hole.

The Emacs Lisp code necessary to run addClause as a
custom editor action is almost identical to the existing add-
clause editor action. The only difference is that the call to
the primitive add-clause editor action in the IDE protocol is
replaced by a call to addClause.

Using this editor action on the declaration
copy : (n : Nat) -¿ a -¿ Vect n a

results in an initial match clause
copy a b = ?c

which was just as expected. However, this new version is
much more readily extensible by users.

4.3 ATheorem Prover for Intuitionistic
Propositional Logic

In this section, we describe the procedure Hezarfen,3 which
can decide intuitionistic propositional logic theorems, similar
to Coq’s tauto tactic. This procedure will be based on Dy-
ckhoff’s LJT [13] and its Haskell implementation Djinn [4],
which generates Haskell expressions for a given type. Djinn
is a standalone program that takes commands interactively,
and when it generates an expression it prints it on the screen.
Hezarfen, on the other hand, is a library that provides an
Elab action that can be used as a tactic in proofs, and a cus-
tom editor action to be run when the built-in proof search
mechanism does not suffice.

The prover consists of mutually recursive functions that
try to break the goal type down into components, recursively
finds terms that satisfy the components, and then glues them
together based on the initial matched goal type.

Later in the prover there is also a term simplifier, similar to
Haskell’s pointfree style converter.4 It performs η-reduction,
removes unused let bindings, and similar simplification
steps repeatedly until it reaches a fixed point. However, this
simplifier is tailored for Hezarfen’s proof terms; it is not
general-purpose. The necessity of further work on a general
purpose one is discussed in section 6.1.

comm : (a, b : Type) -¿ Either a b -¿ Either b a
comm = ?comm˙impl

comm : (a, b : Type) -¿ Either a b -¿ Either b a
comm = ∖x, y =¿ either Right Left

Figure 16. Before and after invoking Hezarfen

Figure 16 displays the results of executing this editor ac-
tion on a hole: Hezarfen finds a term with the desired type
in which either is a non-dependent eliminator for Either.
Observe that the type of comm corresponds to the proposition
3The name is pronounced “has are fan”, and it means polymath in Turkish.
Source code is available at http://github.com/joom/hezarfen.
4http://hackage.haskell.org/package/pointfree

http://github.com/joom/hezarfen
http://hackage.haskell.org/package/pointfree
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(a ∨ b) → (b ∨ a), and by finding the term, Hezarfen proves
the proposition.

5 Related Work
Type-directed editing, metaprogramming, and extensible pro-
gramming environments are not unique to Idris. Our work
was inspired by a long tradition of empowering programmers
to customize their tools.

5.1 In Lean
Lean [12] has a tactic metaprogramming system [14] that is
similar to Idris’s elaborator reflection. During a visit to Mi-
crosoft Research, Leonardo de Moura and the second author
added support to Lean for hole commands, which are tactics
that implement editor actions, but only in the context of a
hole. They allow the contents of the hole to be transformed
into an arbitrary string, which replaces the hole. Using the
pretty-printing features of Lean’s tactic system, terms can
be placed in holes.

Because Lean’s editor actions only work in the context
of a hole, and can only take quoted terms as arguments, no
custom Emacs Lisp is necessary to invoke them. The user
simply right-clicks a hole, and a list of commands appears.
In comparison to our custom editor action mechanism pre-
sented in our work, Lean’s system is less expressive, but
more convenient. It only allows editor action that run on
holes, but our system allows any kind of editor action as
long as the user writes the necessary glue code in the editor
mode language. A system like Lean’s hole commands could
be implemented as a small extension to Idris’s editor actions
that allows them to be specially registered and imposes the
same restrictions on the action types.

5.2 In Haskell
Template Haskell [39] is the primary metaprogramming
mechanism in Haskell. It is similar to elaborator reflection in
the sense that metaprograms are defined in a monad called
Q, which allows metaprograms to create fresh names and
look up definitions. Unlike elaborator reflection, Template
Haskell does not expose the general-purpose elaboration
mechanisms (such as GHC’s constraint solver) through Q.
Template Haskell metaprograms generate only expressions
and definitions.

Brian McKenna, however, has implemented a simplifier5

for the output of Template Haskell and arranged for the
simplified code to be inserted into Emacs automatically. With
further development, this feature could eventually gain the
expressive power of Idris editor actions.

5.3 In Agda
Lindblad and Benke [26] introduced a term search algorithm
called Agsy that saves users’ time by automating parts of
5http://hackage.haskell.org/package/th-pprint

a proof or program that are straightforward but tedious
to write. Agsy is used regularly by Agda users. Kokke and
Swierstra [24] used Agda’s prior reflection system to define
a new proof search mechanism in Agda itself. The Hezarfen
editor action we discussed in section 4.3 is not as advanced
as their auto function, yet in their paper, they suggested an
IDE feature that replaces a call to their auto with the proof
terms it generates. We generalized their suggestion to all
Elab procedures, and specified how the editor/IDE and the
compiler should communicate with each other in order to
successfully call a “tactic” with inputs of the correct types.

5.4 In Coq
Coq has a metaprogramming mechanism called
template-coq6 that is based on Malecha’s term reifi-
cation [29]. Recently, a typed version of this system was
also introduced [3], making it easier to write reliable code
that uses quotations. However, we are not aware of any
work on using template metaprograms in Coq to write new
features for the editor.

5.5 Other Languages
Not every new language is conceived of as being primarily
a mapping from the set of strings to the disjoint union of
machine code and error messages, with its users and tooling
as an afterthought. Some are designed from the start with a
customizable interactive environment in mind. This tradition
dates back to early work on Lisp, particularly the Lisp ma-
chines and Interlisp-D [40], as well as Smalltalk [19]. These
environments are highly customizable, but they do not allow
users to continue to use their preferred editors. Idris now
occupies a space between the total freedom of Smalltalk and
a language such as Haskell for which editor support is an
afterthought.

Racket is a language that focuses on the paradigm of
language-oriented programming [15], in which problems are
solved by first constructing the most appropriate language
to solve them. One part of this process is extensible, metapro-
grammable tooling, especially the DrRacket [17] IDE. For
instance, Feltey et al. [16] demonstrate a quite concise im-
plementation of a Java-like language, including refactoring
tools. It is certainly possible to implement dependently typed
languages in the Racket ecosystem: both Cur [6] and Pie [18]
already exist, and the latter includes a simple editor action
system that is presently extensible only in Racket but could
support other languages as well.

Structured editors are an alternative means of interacting
with a programming language. Alfa is a structural proof edi-
tor [20], descended from an earlier system called Alf [27, 28].
These structure editors are not, however, customizable using
programs written in their type theories. Likewise, while Epi-
gram [31] supported type-driven structured editing, it was

6https://github.com/Template-Coq/template-coq

http://hackage.haskell.org/package/th-pprint
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not extensible in itself. The ongoing Hazel project [34, 35] em-
ploys the tools of programming language theory to describe
interactions with a type-aware structured editor; however,
they have not yet reflected this language of interactions back
into their object language.

6 Future Work
The story of dependently typed languages that can be re-
programmed in themselves is only just beginning. Further
developments can increase the convenience and reliability
of Idris’s editor actions.

6.1 Proof Simplification
Christiansen and Brady [8] showed that elaborator reflection
can be used as a tactic language for interactive theorem
proving. It is possible to use Elab tactics to define custom
editor actions and reuse existing proof automation efforts
directly from the editor.

Elab tactics generate a proof term during elaboration,
but the artifact is only a call to the tactic, which allows
users to ignore the proof terms generated by the tactics.
However gigantic or hideous the proof terms are, readers of
the code will only see that the tactics satisfy the goal, while
the proof term itself remains hidden. Many well-known proof
automation procedures, such as Coq’s omega [38], make use
of this fact to hide large, complicated proof terms. However,
when using Elab tactics to define custom editor actions, the
result of the action is an expression that is visible to the
user. Thus, brevity and readability are desirable qualities in
the proof terms generated by those tactics. Requiring all
tactic authors to simplify their own expressions qualities is
burdensome, and it hampers the reuse of existing tactics. If
there were a generic mechanism to simplify and minimize
generated proof terms, and even write them in a way that
makes use of dependent pattern matching, then existing
tactics would become much more useful for implementing
editor actions. Ideally, a finished program that was written
with custom editor actions based on proof automation should
be indistinguishable from one written without.

6.2 A Universe of Actions
Section 2.3 described how the Idris compiler checks whether
all components of an editor action type have an instance of
the Editorable type class. However, it is not necessary to
implement this as an additional step during elaboration: it
would suffice to encode the allowed types of editor actions
as a universe à la Tarski [2]. The universe would include only
those functions whose domains have Editorable instances
and whose ranges are in the universe, as well as other types
that have Editorable instances. Figure 17 demonstrates an
implementation of this universe.

data Act : Type where
Done : (a : Type) -¿ Editorable a =¿ Act
Arg : (a : Type) -¿ Editorable a =¿

(a -¿ Act) -¿ Act

actTy : Act -¿ Type
actTy (Done ty) = Elab ty
actTy (Arg ty f) = (v : ty) -¿ actTy (f v)

Figure 17. Universe encoding of types feasible to be treated
as editor actions.

easy : actTy (Arg TTName (∖n =¿ Done TT))
easy n = {- elided, same as before -}

Figure 18. easy rewritten as a universe encoded editor ac-
tion.

getTypes : actTy (Arg Nat (∖n =¿
Arg (Vect n TTName) (∖˙ =¿
Done (Vect n (Maybe TT)))))

getTypes n v =
for v (∖n =¿
do l ¡- lookupTy n

case l of
[(˙, ˙, ty)] =¿ pure (Just ty)
˙ =¿ pure Nothing)

Figure 19. A dependently typed editor action that would be
possible with the universe encoding.

Figure 18 shows how the type of the easy editor ac-
tion from figure 2 would change with this encoding. Ob-
serve that actTy (Arg TTName (Done TT)) evaluates to
TTName -¿ Elab TT, therefore the definition of easy does
not have to change.

The most important outcome of this change would be
the increase in the expressiveness of editor action types,
enabling interesting dependent types to be used for editor
actions. The current implementation rules out dependently
typed editor actions, while this universe encoding would
allow them. Figure 19 shows a hypothetical editor action
that takes a vector of some length that contains function
names and returns a vector of the same length that contains
the types found for the function names.

However, writing editor actions with dependent data types
would require writing more complex Editorable instances.
Figure 20 shows the Editorable instance for length-indexed
vectors, which uses lists to denote vectors and hence has to
check if the lengths match in every deserialization. The prob-
lem of interoperability between indexed families and simple
datatypes is known as dependent interoperability; Dagand
et al. [11] provide a solution that could be adopted in Idris.
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implementation Editorable a
=¿ Editorable (Vect n a) where

fromEditor {a} {n} (SExpList l) =
do l' ¡- traverse (fromEditor {a = a}) l

¡—¿ fail [{- elided -}]
case decEq (length l') n of
Yes pf =¿

pure (replace {P = ∖k =¿ Vect k a}
pf (fromList l'))

No ˙ =¿ fail [{- elided -}]
fromEditor ˙ = fail [{- elided -}]
toEditor v = toEditor (toList v)

Figure 20. Editorable instance for length-indexed vectors.

6.3 Surface-Language Syntax
Editor actions presently accept and produce representations
of TT, rather than high-level Idris, which greatly simplifies
the implementation and maintenance of editor actions. For
many applications, this does not matter, because the meaning
of an expression is more important than how it is written. In
some cases, however, this lack of expressive power might be
a problem. For instance, it is presently impossible to define
an editor action that converts a use of idiom brackets [32]
into the equivalent do-notation, as both expressions have the
same representation in the core language. In the future, it
would be interesting to explore representations of the syntax
of high-level Idris that are robust in the face of change and
extension.

7 Conclusion
In this paper, we extended the capabilities of the editor inter-
action mode of Idris by allowing users to define new editor
actions in Idris itself. We did so through a metaprogramming
technique that was introduced to Idris recently by Chris-
tiansen and Brady [8].

Editors communicate with the compiler via S-expressions,
so we gave users the power to dictate how a value of a given
Idris type should exactly be communicated; through the
Editorable interface users are now able to define how a
received S-expression should be parsed by the compiler, and
how the compiler should send the result as an S-expression.
To achieve this, we reflected the SExp type to Idris, and ex-
tended elaborator reflection by adding new Elab primitives,
with which we defined the Editorable implementations for
Idris types representing the Haskell representation of Idris
core language terms. This demonstrates the value of directly
reusing the compiler’s implementations.

We have demonstrated editor actions such as simple proof
searches and a DSL-specific action, as well as a demonstra-
tion of rewriting part of Idris in itself. We hope that Hezarfen
will eventually be a better proof search than the built in ac-
tion. We believe there is potential to replace even more of

the built-in editor actions with custom editor actions written
in Idris, such as case-splitting and lifting a hole into a lemma.
We can also add new general editor actions such as renaming
a binder, renaming a function within a file, pruning unused
arguments in a function, and so forth.

As the library of elaborator actions grows, more building
blocks will be available for custom editor actions. Even today,
however, authors of libraries and DSLs can include custom
editor actions with their packages, giving library and DSL
authors access to power that was previously reserved for
compiler implementors.

If we are serious about type-driven interactive program-
ming, we need to give users the power to control not only
their programming language, but also their programming en-
vironment. Idris’s editor actions are one small step towards
that goal.
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