Pharmacology of Ibogaine and related alkaloids
Pharmacology of Ibogaine and Ibogaine-Related Alkaloids
Piotr Popik, Institute of Pharmacology, Polish Academy of Sciences,
31-343 Kraków, Poland
and Phil Skolnick, Neuroscience Discovery,
Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA
Appeared as Chapter #3, in "THE ALKALOIDS", Vol.52, pp. 197-231. 1998, San Diego, USA. ISBN 0-12-469552-3. Edited by G.A. Cordell. © 1998 by Academic Press
CONTENT
I. INTRODUCTION
Ibogaine
(12-methoxyibogamine, NIH 10567, Endabuse) is one of the psychoactive indole
alkaloids found in the West African shrub, Tabernanthe iboga. For over a
century, both extracts of T. Iboga and its constituent alkaloids,
including ibogaine, have been used as medicinals (1). What makes this
alkaloid of particular interest to contemporary pharmacology are anecdotal
observations indicating that ibogaine possesses "anti-addictive" properties.
Thus, ibogaine (6-25 mg/kg, in humans) has been claimed to attenuate both
dependence and withdrawal symptoms to a variety of abused drugs including
opiates, alcohol, nicotine and psychostimulants (2-9). Preclinical
studies demonstrating that ibogaine reduces self-administration of both cocaine
and morphine, and attenuates the symptoms of morphine-withdrawal, are consistent
with these claims [reviewed in (Popik and Glick (10)]. This chapter
reviews the pharmacological properties of ibogaine and related alkaloids. Since
our last comprehensive review (11), more than one hundred new reports on
the pharmacological actions of ibogaine and ibogaine-like alkaloids have
appeared. The chemistry of ibogaine has been reviewed by Taylor in this series
(12,13).
TOP
II. HISTORICAL OVERVIEW.
Ibogaine is
derived from Tabernanthe iboga, a shrub indigenous to Central-West
Africa. The iboga shrub, a member of the family Apocynaceae (order Contortae),
is typically found in the undergrowth of tropical forests (14). The roots
of Tabernanthe iboga were used in tribal initiation rites (15,16).
Although the details of such ceremonies vary, it was believed that iboga root
enabled initiates to make contact with ancestors in the spirit world. Ibogaine
has also been found in Tabernanthe crassa (17). Nineteenth century
reports from French and Belgian explorers first described the stimulant and
aphrodisiac effects of eating iboga root (1,16). The first botanical
description of the plant, was made by Baillon in 1889 (18).
Dybovsky and Landrin (19), as well as Haller and Heckel (20), were
the first to isolate a crystalline alkaloid from iboga root, which they called
"ibogaine" or "ibogine". In 1901 French pharmacologists found ibogaine to have
an unusual type of excitatory effect in animals (21-23). Phisalix
(23) suggested that ibogaine could produce hallucinations based on
observations of unusual behavior in dogs. The alkaloid was subsequently tested
in Western clinical settings, and was recommended as a stimulant for the
treatment of convalescence and neurasthenia (24). Despite such
recommendations, ibogaine never enjoyed wide clinical use and was neglected by
researchers for almost 30 years. In the 1940's Raymond-Hamet and coworkers
published a series of papers describing the pharmacological properties of
ibogaine on isolated tissues and the cardiovascular system (25-32).
Lambarene, an extract of the roots of the iboga relative
Tabernanthe manii, was sold in France during the 1930's. It contained
about 8 mg of ibogaine, and was described as a stimulant. Iperton, another
ibogaine extract, was also used as a tonic or stimulant (33). Ibogaine
has been used by athletes as a performance enhancing drug (34). In many
countries, including the United States, ibogaine use is prohibited, perhaps
because of its purported hallucinogenic effects (widely publicized in the late
1960's) and its appearance on the illicit drug market. In 1970, the United
States Food and Drug Administration classified ibogaine as a Schedule I
substance (all non-research use forbidden).
Beginning in 1985, a series
of patents was issued for the use of ibogaine as a rapid means of interrupting
addiction to narcotics (morphine and heroin) (3), cocaine and amphetamine (4),
alcohol (5), nicotine (6) and poly-drug dependency syndrome (35). These
patents claim that an oral or rectal dose of ibogaine (4-25 mg/kg) interrupts
the dependence syndrome, allowing patients to maintain a drug-free lifestyle for
at least 6 months.
Based on open clinical studies, it has been claimed
(36) that ibogaine therapy resulted in 25% of patients remaining
drug-free without craving for 6 months. This group included those who were both
highly motivated to quit and had relatively stable home environments. Another
40-50% of patients had their addictions interrupted successfully, and required
psychotherapy. Twenty to 30% of patients had returned to drug use within a month
following treatment. Somewhat lower success rates (10-15%) are cited by
Touchette (37).
In the absence of appropriately controlled
clinical studies, the efficacy of ibogaine as an anti-addictive agent cannot be
rigorously assessed at the present time. Nonetheless, interest in ibogaine as a
treatment for addiction has increased. In 1985 NDA International, Inc. (Staten
Island, NY, USA) began a campaign to persuade the U.S. government to initiate
controlled clinical trials with ibogaine (38). At the same time, the use
of ibogaine for treating opioid dependence has increased in Europe (39).
At present, clinical trials to evaluate the safety of ibogaine are underway at
the University of Miami and are planned in New York. Clinical trials to test the
anti-addictive efficacy of ibogaine are underway in The Netherlands and Panama
(38,40-44). According to Ali et al., (45), the U.S. Food
and Drug Administration and the National Institute for Drug Abuse has approved
the use of ibogaine on a limited basis to treat cocaine addiction.
TOP
III. CHEMICAL STRUCTURE AND PROPERTIES.
Figure 1.
Compound | R1 | R2 | R3 | R4 |
Ibogaine | CH2CH3 | H | OCH3 | H |
O-Desmethylibogaine | CH2CH3 | H | OH | H |
(± )-Ibogamine | CH2CH3 | H | H | H |
(± )-Coronaridine | CH2CH3 | CO2CH3 | H | H |
Tabernanthine | CH2CH3 | H | H | OCH3 |
O-t-Butyl-O-Desmethylibogaine | CH2CH3 | H | OC(CH3)3 | H |
Although ibogaine was first isolated and identified in 1901,
(19-21,46), the structure of this and related alkaloids (Fig. 1) were
first established by Taylor in 1957 (47) [see also Taylor
(12,13)]. Total synthesis from nicotinamide was reported using a 13-
(48) or 14-step (49) sequence. The 13C NMR spectra of
several iboga alkaloids were published in 1976 (50). The synthesis of
tritiated ibogaine was recently reported (51,52).
Ibogaine (mol.
wt. 310.44) has a melting point of 153° at 0.01 mm Hg and a
pKa of 8.1 in 80% methylcellosolve. The absorption maxima in
methanol are 226 (log e 4.39) and 296 (log e 3.93) nm. Ibogaine crystallizes from alcoholic solutions
into small, reddish prismatic needles; it is levorotatory [a ]D -53° (in 95% ethanol) and is soluble in
ethanol, methanol, chloroform and acetone, but insoluble in water. Ibogaine
hydrochloride (freezing point 299°C, [a ]D
-63° (ethanol), [a ]D -49° (H2O))
is soluble in water, ethanol and methanol, is slightly soluble in acetone and
chloroform, and is practically insoluble in ether (53). Ibogaine is heat-
and light-sensitive (54) and can spontaneously oxidize in solution,
giving iboluteine and ibochine (16,34). Alkaloids structurally related to
ibogaine include tabernanthine, ibogamine, iboxigaine, gabonine, iboquine,
kisantine and ibolutenine. Structural similarities between ibogaine and other
indole alkaloid hallucinogens have also been reported (55). The synthesis
of several ibogaine derivatives has recently been published by Repke and
coworkers (56).
TOP
IV. PHARMACOKINETICS.
After parenteral
administration, ibogaine has been identified in various biological materials,
including blood and urine (humans) and in the liver, kidney and brain of
laboratory animals (54,57-59). One hour after intraperitoneal
administration, high concentrations of ibogaine were present in rat liver and
kidneys (60). After intravenous injection of 10 mg/kg to mice, maximal
brain concentrations (48 µg/g of wet weight [~133 µM]) were achieved in 10 sec
(61).
Recently, Gallagher et al., (62) have
developed a highly sensitive and specific method to quantify ibogaine in plasma
and tissues. This method uses organic extraction, derivatization with
trifluroacetic anhydride, and detection by gas chromatography-mass spectrometry
(GC/MS). Similar methods were developed by Hearn et al., (63),
Alburges et al., (64) and Ley et al., (65). Using a
GC/MS method, Pearl and colleagues (66) reported that 1, 5 and 19 hours
after intraperitoneal administration of 40 mg/kg of ibogaine, the whole brain
levels of ibogaine were 10, 1 and 0.7 µM in female rats and 6, 0.9 and 0.2 µM in
male rats, respectively. Hough et al., (67) studied the tissue
distribution of ibogaine after i.p. and s.c. administration in rats. One hour
after i.p. dosing (40 mg/kg), drug levels ranged from 106 ng/ml (~ 0.3 µM) in
plasma to 11,308 ng/g (~ 36 µM) in fat, with significantly higher values after
s.c. administration of the same dose. Drug levels were 10-20 fold lower 12 hours
later. These data indicate that ibogaine is subject to a significant "first
pass" effect after i.p. dosing, and that there is a marked propensity for
ibogaine to be deposited in adipose tissue, reflecting its lipophilicity.
Consistent with its lipophilicity, ibogaine levels in adipose tissue were very
high for at least 12 hours after administration. Based on these data, it was
suggested that a single dose of ibogaine may provide a long-acting, depot-like
time course of action (67).
The reported long-term effects of
ibogaine (e.g. (68-70)), have led to the hypothesis that this alkaloid
may be metabolized to an active principle with a long half life (71). At
present, there is no direct evidence to support this hypothesis. Ibogaine
was reported to disappear from the rat at a rate of ~4% of the administered dose
per hour with ~ 5% of the injected dose eliminated unchanged in urine.
Elimination kinetics from brain yielded a half-life of 60 min in rodents
(60,61) and suggest a one-compartment model. After administration of
ibogaine (10 mg/kg, p.o.) to rabbits, urine concentrations reached a maximum 4-5
hours later, then decreased rapidly and disappeared after 6 hours
(54,60). Taken together, these data suggest that ibogaine is extensively
metabolized. Inspection of ibogaine's structure (Fig. 1) led us to hypothesize
that a likely degradation pathway is O-demethylation at C12. Based on
this hypothesis, O-desmethylibogaine (also known as noribogaine or
12-hydroxyibogamine), was synthesized by Dr. C. Bertha at the National
Institutes of Health in 1994. At the same time,
O-tert-butyl-O-desmethylibogaine was synthesized in an
attempt to make an ibogaine derivative resistant to O-demethylation (Fig.
1). Thus, the first compound was synthesized to investigate the potential
pharmacological actions of a likely ibogaine metabolite. The second compound
permitted examination of the pharmacological effects of an ibogaine derivative
that would not be degraded by O-demethylation. The synthesis of these
compounds was described by Layer et al., (72).
Recent
studies have indeed demonstrated that ibogaine is metabolized, and that
O-desmethylibogaine can be detected in human plasma (73) as well
as in the plasma and brains of ibogaine-treated rats (66). Behavioral and
neurochemical studies in rodents have established that
O-desmethylibogaine is pharmacologically active (discussed later).
Following an i.p. dose of ibogaine (40 mg/kg), Pearl et al.,
(66) reported brain O-desmethylibogaine concentrations of 20, 10
and 0.8 µM in female rats and 13, 7 and 0.1 µM in male rats, respectively, at 1,
5, and 19 hours after administration. These data suggest that gender differences
in pharmacological responses to ibogaine may be attributed to pharmacokinetic,
rather than pharmacodynamic, factors. While a report of one human subject
(73) indicated that O-desmethylibogaine persisted in plasma at
high levels for at least 24 hours after oral ibogaine administration, it is not
clear if this pattern will be representative.
There is evidence
indicating that the various pharmacological effects of ibogaine may be
attributable, at least in part, to its metabolite(s). For example, the
tremorigenic effects of ibogaine dissipate much more rapidly than its ability to
attenuate the morphine withdrawal syndrome in rats (74). This finding
suggests that an active principle(s) responsible for one action may be more
rapidly metabolized than compound(s) involved in other actions. Alternatively,
the various pharmacological effects of ibogaine may involve different
neurotransmitter pathways (discussed later).
TOP
V. GENERAL PHARMACOLOGICAL ACTIONS.
A. Animal
Studies
1. Locomotor activity.
Ibogaine produces complex effects on locomotor activity in rodents. A dose of 20
mg/kg (i.p.) slightly increased locomotor activity in mice (75) while
Sershen et al., (76) reported that 40 mg/kg (i.p.) decreased
locomotor activity in male mice at 1, but not 24, hours after injection. The
same dose inhibited locomotion in female rats during the first hour after
injection, whereas one week later locomotor activity was increased (69).
Recently, Pearl and colleagues (66) noted gender differences in
the effects of ibogaine on locomotor activity (40 mg/kg, i.p., 5 or 19 hours
before test). In control males and females the locomotor activity decreased
during the second hour of observation. Ibogaine treatment in females prevented
this decrease in locomotor activity. In females, but not males, ibogaine
decreased locomotor activity when given 19 hours before the test (66).
Another study revealed that in male rats, a single dose of 40 mg/kg inhibited
locomotor activity 4 hours after injection; a dose of 80 mg/kg decreased motor
activity 24 hours after injection (77).
Rats injected with doses
of 20-60 mg/kg of ibogaine displayed slower response times on sensory and
sensory-motor tests and were also impaired in performing specific motor reflexes
at doses of 40-60 mg/kg. Furthermore, these rats exhibited a marked reduction in
locomotor activity as well as in emotionality at doses ranging from 10- 40
mg/kg. At higher doses (40 mg/kg), rats appeared virtually inactive (78).
In other studies, at doses above 25 mg/kg, ibogaine produced ataxia, splayed
hind limbs, outstretched forelimbs, Straub tail and hyperexcitability
(79).
One hour after O-desmethylibogaine or
18-methoxy-coronaridine injection (40 mg/kg), locomotor activity was increased
during the second hour of observation (66,80). In our studies, high doses
(120 mg/kg) of O-desmethylibogaine and
O-t-butyl-O-desmethylibogaine produced profound ataxia and
convulsions (72). Ibogaine, O-desmethylibogaine, and
O-t-butyl-O-desmethylibogaine, (80 mg/kg) did not
significantly influence rotorod performance in mice (72).
TOP
a. Effects on
locomotor activity induced by other drugs
Ibogaine has
been found to affect the motor stimulant properties of amphetamine, cocaine, and
morphine in rodents (hyperlocomotion induced by these drugs is believed to
reflect their "psychotomimetic" qualities in man). Although the results of these
studies are not uniform, in general, it has been found that in female
rats this alkaloid potentiates the locomotor response to amphetamine and
cocaine, whereas opposite effects were reported in male rats and mice.
Sershen et al., (81) found that ibogaine (40 mg/ kg i.p.,
2 or 18 hours before amphetamine) enhanced amphetamine (1 mg/kg) - induced
hypermotility in female rats. In other studies, an amphetamine-induced increase
in locomotor activity was potentiated in female rats pretreated with ibogaine
(40 mg/kg, i.p.) 19 hours earlier (82). Cocaine-induced hypermotility in
female rats was also potentiated by ibogaine (83,84). Broderick et
al., (85,86) reported that ibogaine (20-40 mg/kg, i.p.)
administration to male rats for four days reduced cocaine (20 mg/kg) - induced
hypermotility. Ibogaine (40 mg/kg, i.p.) administration also reduced cocaine-
(25 mg/kg, s.c.) induced hypermotility in male mice (76), a finding in
agreement with the amphetamine (1 mg/kg) - ibogaine interaction (81) in
this gender and species. Recent data demonstrate that the effects of ibogaine on
cocaine (20 mg/kg) -induced hyperactivity in female rats are time dependent.
Thus, given 1 h before cocaine, ibogaine and O-desmethylibogaine (40
mg/kg) inhibited cocaine-induced hyperactivity, but when given 19 h before
cocaine they produced the opposite effect (80).
Ibogaine
pretreatment (40 mg/kg, i.p. 19 hours before measurement) decreased or blocked
the locomotor stimulation induced by morphine (0.5-20 mg/kg) in rats
(69,71). Ibogaine administered one week (but not one month) before
morphine (5 mg/kg) reduced the motor stimulant effects of this opiate
(69). Pearl et al., (87) found that ibogaine (5-60 mg/kg)
is more potent in inhibiting morphine-induced hyperlocomotion in rats pretreated
with morphine for several (1-4) days compared to non-pretreated rats. Doses of
ibogaine (5-10 mg/kg) that alone were inactive in drug-naive animals attenuated
morphine-induced hyperactivity in the morphine pretreated rats. The inhibitory
effects of ibogaine on morphine-induced hyperlocomotion appear gender related,
because ibogaine is more potent in female rats (66). Ibogaine-induced
inhibition of morphine - induced hyperlocomotion can be reversed by
coadministration of a kappa antagonist (norbinaltorphine, 10 mg/kg) and an NMDA
agonist (NMDA, 20 mg/kg). However, neither norbinaltorphine nor NMDA alone
blocked this action of ibogaine (88).
O-Desmethylibogaine
(10-40 mg/kg) also inhibited morphine-induced hyperlocomotion in female rats.
However in male rats, the dose of 10 mg/kg potentiated and 40 mg/kg inhibited
morphine-induced hyperlocomotion (66,89).
TOP
2.
Tremor.
Like the somewhat structurally related alkaloid
harmaline, ibogaine produces tremors. In mice, ibogaine is tremorigenic both
when given intracerebrally (ED50 127 nmol/g brain, ~ 46 µ g/g with a
latency to tremor of about 1 minute) (90), and systemically
(ED50 12 mg/kg, s.c.) (61). In rats, ibogaine produced fine
tremors, flattening of body posture, and flaccid hind limbs up to 2 hours after
administration of 40 mg/kg (i.p.) (91). Low-amplitude whole body tremors
appearing within 10 min after administration of as little as 10 mg/kg of
ibogaine have also been reported (92). O'Hearn et al., (93)
reported that a high dose of ibogaine (100 mg/kg) produced ataxia and
high-frequency tremor of the head and trunk in rats. Ibogaine-induced tremor
preferentially involves the head and upper extremity in rats and mice
(94). Ibogaine (20 mg/kg) - induced tremors in mice were blocked more
potently by CCK-8 and ceruletide compared to other reference compounds,
including prolyl-leucylglycine amide (MIF), atropine, haloperidol, biperiden,
ethopropazine, trihexyphenidyl, methixene and clonazepam (95).
Zetler et al., (61) established the tremorigenic
structure-activity relationship of several ibogaine-like compounds in descending
order of potency: tabernanthine > ibogaline > ibogaine > iboxygaine
> O-desmethylibogaine. Glick et al., (96) found that at
behaviorally effective doses (2-80 mg/kg) ibogaine, desethylcoronaridine,
harmaline and tabernanthine produced tremors for at least 2-3 hours. Both the
R and S enantioners of ibogamine and coronaridine were devoid of
this action. The ibogaine-like alkaloids, 18-methoxycoronaridine and
O-desmethylibogaine were also found to lack tremorigenic effects
(89,97).
The tremorigenic properties of ibogaine and related
compounds have been attributed to an action on GABAergic pathways
(98-100) and to the blockade of voltage-dependent sodium channels.
TOP
3. Anxiety and
fear.
Schneider and Sigg (101) described the
behavioral effects of ibogaine in cats. The authors concluded that after
intravenous administration of 2-10 mg/kg, ibogaine produced fear-like reactions
that persisted for 10-20 minutes with a normal appearance observed 1-2 hours
after injection. The electroencephalographic pattern obtained after ibogaine
administration (2-5 mg/kg) showed a typical arousal syndrome, resembling that
observed after direct stimulation of the reticular formation. This arousal
syndrome was inhibited by atropine (2 mg/kg) (101). Gershon and Lang
(102) described the effects of ibogaine in dogs, which become more tense
and alert, interpreted as the appearance of anxiety. Moreover, they observed
that the dogs exhibited a lack of recognition of both their regular handlers and
environment.
Recently, Benwell et al., (103) reported
reductions in open arm entries in the elevated plus-maze test when rats were
tested 22 hours after pretreatment with ibogaine (40 mg/kg, i.p.). In mice,
ibogaine (2.5 mg/kg) exhibited anxiogenic actions, whereas a dose of 1 mg/kg had
anxiolytic effects (104). These are perhaps the most compelling
preclinical data that ibogaine may influence anxiety levels because anxiolytic
agents (e.g. benzodiazepines) increase open arm entries in this test.
TOP
4. Effects on
self-administration of other drugs.
Ibogaine (40 mg/kg,
i.p.) inhibits the self-administration of cocaine in rodents. Cappendijk and
Dzoljic (105) trained male Wistar rats to intravenously self-administer
cocaine; a single dose of ibogaine (40 mg/kg) decreased cocaine intake by 40-60%
for several days, and repeated treatment with ibogaine at one-week intervals
decreased cocaine self-administration by 60-80%. This decrease was maintained
for several weeks. Similar effects were found in mice that developed a
preference for cocaine in the drinking water. Thus, ibogaine administration (two
weeks after the beginning of a choice period, 2 doses of 40 mg/kg, 6 hours
apart) diminished cocaine preference for five days (70). According to Vocci and
London (106), some investigators have failed to replicate ibogaine's
effect on cocaine self-administration in the rat (107) and rhesus monkey
(108). Also Dworkin et al., (109) reported that neither 40
mg/kg of ibogaine given 60 min prior to the session, nor 80 mg/kg given 24 hour
before the session, suppressed responding maintained by intravenous cocaine
infusions. In this study, cocaine self-administration was inhibited by
pretreatment with ibogaine (80 mg/kg) either 60 or 90 min prior to the session
(109). However, because this dose of ibogaine reduced scheduled food
intake, these latter effects of ibogaine on cocaine self-administration appear
to be unspecific.
Glick et al., (96) demonstrated that
ibogaine and several iboga alkaloids (tabernanthine, R- and
S-coronaridine, R- and S- ibogamine, desethylcoronaridine,
and harmaline) reduced cocaine self-administration in rats in a dose-related
fashion (2.5-80 mg/kg). For some alkaloids, these effects were seen the day
after injection. O-Desmethylibogaine (40 mg/kg) (89) and
18-methoxycoronaridine (97) were also reported to inhibit cocaine
self-administration.
Ibogaine dose dependently (2.5-40 mg/kg) reduced
intravenous morphine self-administration in female Sprague-Dawley rats
immediately after injection as well as on the next day (68). In some
animals, a reduced morphine intake was observed for several days; other rats
required several doses of ibogaine to achieve a prolonged reduction. Similar
effects were demonstrated for other ibogaine-like alkaloids including
O-desmethylibogaine (89), tabernanthine, R- and
S-coronaridine, R- and S- ibogamine, desethylcoronaridine,
harmaline (96) and 18-methoxycoronaridine (97). However, data from
another study revealed somewhat different results. Thus, Dworkin et al.,
(109) found that ibogaine (40 or 80 mg/kg) diminished heroin
self-administration in male Fisher rats only on the day it was administered.
Moreover, the same study revealed that ibogaine treatment resulted in a 97%
decrease in responding for a food reinforcement schedule, suggesting that its
effects on heroin self-administration were unspecific.
Ibogaine-induced
inhibition of morphine self-administration has been found to be reversed by
sequential administration of a kappa antagonist (norbinaltorphine, 10 mg/kg) and
an NMDA agonist (NMDA, 20 mg/kg). Neither norbinaltorphine nor NMDA alone were
effective in this respect (88).
Ibogaine (10-60 mg/kg) reduced alcohol
intake in alcohol-preferring Fawn Hooded rats, without affecting either blood
alcohol concentrations or food intake (110,111). The authors concluded
that a metabolite could be involved, because ibogaine was effective in this
measure when administered intraperitoneally and intragastrically, but not
subcutaneously (112). A recent study demonstrated an attenuation of
alcohol consumption by the ibogaine congener, 18-methoxycoronaridine in rats
(113).
TOP
5. Effects on
drug dependence.
Repeated administration of ibogaine (10
or 40 mg/kg) did not produce dependence in rats as measured using the Primary
Physical Dependence test (114).
In morphine-dependent rats, the
opioid antagonist naloxone induces a withdrawal syndrome, characterized (in
rats) by increased rearing, digging, jumping, salivation and "wet-dog" head
shaking. Ibogaine dose-dependently reduced the frequency of some of these
withdrawal symptoms (jumping, rearing, digging, head hiding, chewing, teeth
chattering, writhing, penile licking) after both intracerebroventricular (4-16
µg) (115) and i.p. administration (40 and 80 mg/kg) (74,116).
However, these effects could not be replicated in other studies in either rats
(39,117) or mice (118). At least the second failure to replicate
can be attributed to the fact that in the Frances et al., (118)
study, ibogaine was administered to animals that developed a full withdrawal
syndrome. In morphine-dependent monkeys, ibogaine (2 and 8 mg/kg, s.c.)
partially suppressed the total number of withdrawal signs (114). Our
studies (72,119) demonstrate that ibogaine inhibits the morphine
withdrawal syndrome in mice in a dose-related fashion. This effect was reversed
by combining ibogaine treatment with glycine. Structure-activity studies
revealed that among various ibogaine-like compounds (including
O-desmethylibogaine and
O-t-butyl-O-desmethylibogaine), only ibogaine inhibited the
intensity of morphine withdrawal (72). Both the ability of glycine to
inhibit this effect of ibogaine and the failure of other ibogaine derivatives to
potently inhibit the binding of noncompetitive NMDA antagonists (e.g.,
[3H]–N-[1-(2-thienyl)cyclo-hexyl]-3,4-pipenoline (TCP) and
[3H]–MK-801) suggests that the NMDA antagonist actions of ibogaine
are responsible for its anti-withdrawal effects. This hypothesis is supported by
the observation that while O-desmethylibogaine and
O-t-butyl-O-desmethylibogaine had much higher affinities
for kappa opioid receptors than ibogaine did, only ibogaine exhibited a
significant affinity for NMDA receptors.
TOP
6. Pain and
analgesia.
Ibogaine did not mimic the analgesic action of
morphine in either the tail flick (1-40 mg/kg, i.p.) or hot plate (up to 20
mg/kg, i.p.) tests, although it exhibited analgesic activity in the
phenylquinone writhing test (ED50 9.7 mg/kg) (114,120,121).
Ibogaine did not exhibit antinociceptive activity when given twice a day for 4
days (122). Ibogaine either increased (120,123) or did not affect
(114,121) morphine analgesia in the tail flick test. Similarly, it did
not influence analgesia produced by either a kappa opioid agonist (U-50,488H) or
a delta opioid agonist [D-Pen2,D-Pen5]enkephalin (DPDPE)
(121). Ibogaine has been reported to decrease analgesia in rats when
given 19 hours prior to morphine (123), but another report indicates
ibogaine is not effective when given 4-24 hours prior to morphine administration
in mice (121). In addition, Cao and Bhargava (122) demonstrated
that ibogaine (40-80 mg/kg) inhibited the development of analgesia to mu, but
not kappa or delta, agonists in mice.
O-Desmethylibogaine (40
mg/kg) potentiated morphine-induced analgesia in rats (123) and mice
(121). This effect was no longer apparent 19 hours after its
administration (123). The potentiation of morphine-induced analgesia may
be attributed to the relatively high affinity of O-desmethylibogaine at
opioid mu (Ki 2.66 ± 0.62 µM) and kappa
(Ki 0.96 ± 0.08 µ M) receptors (124).
However, this interpretation appears unlikely because O-desmethylibogaine
pretreatment did not influence either kappa - or delta - opioid agonist -
induced antinociception (121).
Ibogaine (10-40 mg/kg) completely
blocked the antinociceptive effect of (–)-epibatidine in rodents, but was
ineffective when given at a dose of 40 mg/kg 24 h before epibatidine. These data
suggest that this was an effect of ibogaine and not that of its putative,
long-lasting metabolite (125). This blockade of the antinociceptive
effect of epibatidine is not surprising, because epibatidine-induced analgesia
is mediated by a mechanism fundamentally different from that of the opioids.
TOP
7.
Aggression.
Compared to other psychoactive compounds (e.g.
psilocybin, JB-336, and bufotenine), ibogaine (10 mg/kg) had a negligible effect
on the aggressiveness of isolated mice and muricidal behavior in rats
(126).
TOP
8.
Interoceptive properties.
Animals can be trained to
"recognize" similarities among drugs. Such discriminative (interoceptive)
properties may suggest a similar mechanism of action not necessarily related to
the structure of a compound.
No generalization between ibogaine and
serotonergic ligands (e.g. fenfluramine,
N-(3-trifluoromethylphenyl)piperazine [TFMPP],
1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane [DOI],
methyl-enedioxymethamphetamine [MDMA], quipazine or LSD) was found in
drug-discrimination paradigms (127,128). However, Palumbo and Winter
(129) did observe a generalization between ibogaine (15-20 mg/kg) and
dimethoxymethylamphetamine [DOM] (0.6 mg/kg), as well as between ibogaine and
LSD (0.1 mg/kg) in a two-lever discrimination task. Because pizotyline (BC-105)
blocked DOM-appropriate and LSD-appropriate responses, an involvement of
5-HT2 or 5-HT1 receptors in the stimulus properties of
ibogaine was suggested. Similarly, no generalization between ibogaine and CGS
10476B (a dopamine release-inhibiting agent) was found in a drug-discrimination
paradigm (127).
In contrast, ibogaine substituted as an
interoceptive cue in mice trained to recognize MK-801 (dizocilpine)
(119), but not to [(+)-HA-966] (a low efficacy partial agonist of the
glycine site at the NMDA receptor) (130) in a T-maze drug discrimination
paradigm.
Helsley and colleagues (131) studied the interoceptive
cue produced by ibogaine in male Fisher rats. The time course of the ibogaine
(10 mg/kg) cue revealed that a maximum of ibogaine-appropriate responses were
observed at a 60 min pretreatment time, and, that at the pretreatment time of 8
hours, no ibogaine-like responses were observed. These findings, together with
observation that O-desmethylibogaine substituted only partially to the
ibogaine cue, suggest that the subjective effects of ibogaine are not due to
this putative metabolite. The same study however, revealed that harmaline
completely substituted as an ibogaine cue (131). This later finding
indicates that animals may recognize the tremorigenic effects of ibogaine.
TOP
9. Reinforcing
effects.
Ibogaine does not appear to possess rewarding or
aversive effects as measured in the conditioned place preference/aversion test
(132), a preclinical procedure that can predict abuse potential in
humans. Nonetheless, the same authors reported that ibogaine (40 mg/kg) may
attenuate the acquisition, but not expression of morphine and amphetamine
place-preference in male rats (77,132,133). This dose of ibogaine did not
interfere with the acquisition of conditioned place aversion induced by either
naloxone or lithium chloride (132). Ibogaine (40 mg/kg, 22 hours before
the test) attenuated the establishment of lithium- and morphine-induced
conditioned taste aversion (134). These results suggest a specific action
of ibogaine on the neurochemical and behavioral (both reinforcing and aversive)
actions of morphine rather than on opioid system(s), because the reinforcing
effects of naloxone were unaffected. In support to these findings, it has been
reported that ibogaine (20 or 40 mg/kg, 24 h before the test) neither decreased
the preference for a sweet solution nor attenuated conditioned preference for a
flavor previously associated with sweet taste (135).
TOP
10. Effects on
learning and memory.
At a dose used in the majority of
contemporary behavioral studies in rodents (40 mg/kg), ibogaine has been found
to attenuate the acquisition of spatial memory, perhaps due to reductions in
locomotor activity and in detection of sensory information (78). However,
at much lower doses (0.25 - 2.5 mg/kg), ibogaine as well as
O-desmethylibogaine (but not
O-t-butyl-O-desmethylibogaine) facilitated spatial memory
retrieval (136). Using a spatial memory task, Helsley et al.,
(92) found that: 1) two doses of ibogaine (50 mg/kg, spaced by 8 hours)
decreased the response rate, but did not affect acquisition rate; 2) ibogaine,
even at the highest doses of 30 and 46 mg/kg given 20 min before the learning
trial did not affect task acquisition; 3) 30 mg/kg of ibogaine administered just
after the learning trial facilitated the consolidation of memory trace.
TOP
11.
Cardiovascular actions.
Gershon and Lang (102)
found that ibogaine produced a rise in blood pressure and increased heart rate
in conscious dogs. These effects were blocked by atropine (137). However,
in anesthetized dogs, ibogaine produced a fall in blood pressure and reduced
heart rate reduction, leading the authors to propose an interaction between
anaesthesia and the cardiovascular effects of ibogaine (102). Schneider
and Rinehart (137) postulated a centrally mediated stimulatory effect of
ibogaine. Ibogaine also potentiated the pressor response to both adrenaline and
noradrenaline. More recently, Hajo-Tello et al., (138) found that
tabernanthine (an alkaloid closely related to ibogaine) induced a negative
inotropic effect in electrically stimulated myocardial tissue and a negative
chronotropic effect in the perfused rat heart. Tabernanthine also produced
bradycardia and hypotension in anesthetized rats and dogs (139). Binienda
et al. (140) reported that ibogaine (50 mg/kg) reduced heart rate
in rats immediately after injection; this reduction persisted up to 90 minutes
after injection.
TOP
B. Human
Studies.
Numerous psychotropic actions of ibogaine
have been reported. These actions seem to depend on both dose and setting. In
addition, the psychoactive effects of iboga extracts (which are likely to
contain additional alkaloids and are usually taken in a ritualistic setting) may
be different from those of ibogaine. Thus, users of the crude extract of
Tabernanthe iboga taken in sufficiently high doses have reported
fantastic visions, feelings of excitement, drunkenness, mental confusion and
hallucinations when (101). The total extract of iboga shrub is certainly
a central stimulant, and in higher doses may lead to convulsions, paralysis and
finally respiratory arrest. The psychotropic actions of the plant extract
include visual sensations; objects are seen to be surrounded by specters or
rainbows. In high doses it may produce auditory, olfactory and taste
synesthesias. The state of mind has been reported to vary from profound fear to
frank euphoria (141).
When given orally, both ibogaine and the
total iboga extract elicits subjective reactions that last for approximately 6
hours. Fifty percent of subjects are reported to experience dizziness,
incoordination, nausea, and vomiting (7,33,142). Typically, the drug
produced a state of drowsiness in which subjects did not want to move, open
their eyes, or attend to the environment. Many subjects were light-sensitive,
and covered their eyes or asked that the lights be turned off. Sounds or noises
were disturbing. Ibogalin (0.1-1.2 mg/kg, p.o.), an alkaloid closely related to
ibogaine and a constituent of the total iboga extract, did not produce
psychotomimetic effects in humans (143). Ibogalin also differs from
ibogaine in pharmacokinetics and tremorigenic activity (90).
The
psychoactive properties of ibogaine and related compounds were studied by
Naranjo (33,142) who reported that patients described the psychic state
produced by ibogaine (~ 300 mg) as similar to a dream state without loss
of consciousness. Ibogaine-induced fantasies [often described as a "movie run
at high speed" or "slide show" (7)] were reported as rich in
archetypal contents, involving animals and/or the subject with or without other
individuals. These fantasies were easy to manipulate by both the subjects and
the psychotherapist (33,142). At higher doses, ibogaine appears to
produce visual and other hallucinations associated with severe anxiety and
apprehension (101,144,145).
TOP
VI. LETHALITY AND NEUROTOXIC EFFECTS.
The LD50 of ibogaine has been determined in guinea pig (82 mg/kg,
i.p.) and rat (327 mg/kg, intragastrically and 145 mg/kg, i.p.) (60,146).
No significant pathological changes in rat liver, kidney, heart and
brain following chronic ibogaine treatment (10 mg/kg, for 30 days or 40 mg/kg,
for 12 days, i.p.) were reported (60). Sanchez-Ramos and Mash (42)
found no evidence of gross pathology in African green monkeys given ibogaine in
doses of 5-25 mg/kg, p.o. for 4 consecutive days.
However, O'Hearn et
al., (147,148) and O'Hearn and Molliver, (93) reported that
repeated administration of ibogaine (100 mg/kg, i.p.) to rats caused the
degeneration of a subset of Purkinje cells in the cerebellar vermis. This
degeneration was accompanied by a loss of microtubule-associated protein 2
(MAP-2) and calbindin. Argyrophilic degeneration, astrocytosis and microgliosis
were also observed. The damage seemed to be dependent on the presence of an
intact inferior olivary nucleus (149). Ibogaine-induced cerebellar
toxicity seem to be independent on its action at NMDA receptors, because neither
MK-801 nor phencyclidine produce the same pattern of degeneration (150).
The neurotoxic effects of high doses of ibogaine were confirmed in rats, but not
mice, by Scallet et al., (151,152) and Molinari et al.,
(153), who, in addition found that the "typical" dose of 40 mg/kg did not
produce significant damage to female rat cerebellum. The lack of neurotoxicity
after lower, behaviorally active doses of ibogaine was also demonstrated by
showing that chronic administration (60 days) of 10 mg/kg of ibogaine produced
no change in the number of Purkinje cerebellar cells (154).
In
spite of these findings, examination of cellular markers that are more sensitive
toneurotoxic agents than gross histology indicates that ibogaine administration
may produce significant change in many other brain structures. Thus, O'Callaghan
et al., (155,156) examined the effects of acute and chronic
administration of ibogaine on glial fibrillary acidic protein (GFAP) levels.
Acutely, ibogaine increased GFAP in both sexes; whereas chronic administration
(14 days) produced increases only in females. Ibogaine - induced changes in GFAP
were dose-related, and, contrary to other studies, observed in other brain
structures including hippocampus, olfactory bulb, brain stem and striatum. In
addition, these authors reported that in females treated chronically with
ibogaine, severe hippocampal damage was present as measured by increases in the
cytoskeletal proteins neurofilament 68 (NF-68) and beta-tubulin. These latter
markers indicate a damage-induced sprouting response (156). Ibogaine
administration also produced an increase in c-fos immunostaining in several
brain regions of mice and rats; the effects in rats were observed in all
cortical layers while in mice the response was limited to cortical layer 2
(152). Human SK-N-SH neuroblastoma cells cultured in the presence of 3-30
µ M ibogaine (but not O-desmethylibogaine or 18-methoxycoronaridine)
demonstrated concentration- and time-dependent morphological changes
characterized by the loss of processes, cell rounding, detachment and ultimately
cell death (157). Similar results were observed with primary cultures of
rat cerebellar granulae cells. Because in this study only alkaloids that had
marked affinity at sigma2 sites were neurotoxic, Vilner et
al., (157) proposed that sigma2 sites may be implicated in
the neurotoxicity of ibogaine. The neurotoxic effects of ibogaine have been
recently reviewed by Vocci and London (106).
Acute treatment with
the ibogaine-like alkaloid, 18-methoxycoronaridine (100 mg/kg) did not produce
gross pathological changes in the cerebellum (97). In contrast, another
indole alkaloid, harmaline, produced ibogaine-like degeneration of Purkinje
cells in the cerebellar vermis (93).
It has been reported that
multiple doses of a non-NMDA antagonist (GYKI 52466) resulted in a substantially
greater loss of Purkinje cells and microglial activation compared to ibogaine
(50-100 mg/kg) alone (158). On the other hand, the noncompetitive NMDA
antagonist MK-801 (1 mg/kg) markedly attenuated the degree of Purkinje cell loss
caused by ibogaine (158). This later finding strongly supports the notion
that the loss of cerebellar Purkinje cells produced by ibogaine is unrelated to
its NMDA antagonist properties (159). In fact, ibogaine can also exhibit
neuroprotective properties, reducing glutamate-induced neurotoxicity in primary
cultures of cerebellar granule cell neurons with an EC50 of 4-5 µM
(119). These neuroprotective effects of ibogaine have recently been
patented by Olney (160). Consistent with its properties as an NMDA
antagonist, ibogaine inhibited NMDA - induced lethality in mice in a
dose-dependent manner (161), and also protected mice from maximal
electroshock seizures (ED50 ~ 31 mg/kg) (162).
Phase I
toxicity studies in drug-addicted individuals are in progress at the University
of Miami (42,163).
TOP
VII. EFFECTS ON SPECIFIC NEUROTRANSMITTER
SYSTEMS
A. Ibogaine Effects on Dopaminergic
Systems.
Ibogaine (at concentrations £ 100 µM) does not affect radioligand binding to dopamine
receptors (D1, D2, D3, D4)
(164-166). The affinity of ibogaine for dopamine transporters as measured
by inhibition of [3H]WIN 35,248, [125I]RTI-121 or
[125I]RTI-55 binding was ~ 1.5 - 4 µ M (73,76,166,167).
However, in another study, ibogaine did not affect binding of
[3H]GBR-12935, a ligand that also appears to label dopamine
transporters (85). Ibogaine inhibited [3H]dopamine uptake in
porcine kidney cells transfected with dopamine transporter with a Ki
~86 µM (168).
The in vivo and ex vivo effects of
ibogaine on dopamine metabolism in mesolimbic areas of the rodent brain
(striatum, nucleus accumbens) are controversial and highly inconsistent. In an
attempt to reconcile several contradictory findings, one may note the following.
Dopamine concentrations are reduced and dopamine metabolites
dihydroxyphenyl-acetic acid (DOPAC) and homovanilic acid (HVA) are increased by
ibogaine under certain experimental conditions. For example, when either
measurements are taken shortly (within 2 h) after ibogaine administration or
when relatively high concentrations (£ 100 µM) are used
(69,71,76,81,169-173). Reductions in extracellular dopamine
concentrations were also observed after administration of a number of ibogaine
derivatives, including O-desmethylibogaine (89) and
18-methoxycoronaridine (97).
When dopamine is measured at longer
periods after ibogaine administration (e.g., up to a week) or low concentrations
(e.g., 10 µM) are applied, brain concentrations appear unchanged and metabolite
concentrations are decreased (69,71,76,81,82,169,170,172).
The
increased levels of extracellular dopamine metabolites together with decreased
or unchanged levels of dopamine suggests that ibogaine increases dopamine
turnover shortly after administration. This may be followed by a decrease in
turnover that may persist for some time after ibogaine administration. French
et al., (91) demonstrated that doses of ibogaine (~ 1.5 mg/kg,
i.v.), much lower than a "typical" dose of 40-80 mg/kg, markedly excited
dopaminergic neurons in the ventral tegmental area of the rat.
TOP
1.
Dopaminergic effects: Pharmacological Specificity.
Administration of a kappa antagonist (norbinaltorphimine, 10 mg/kg) and NMDA (10
mg/kg) (either jointly or individually) reversed ibogaine (40 mg/kg) induced
decreases in striatal dopamine and increases in dopamine metabolites
(88). Similarly, Reid et al., (172) observed that the
decrease in dopamine levels produced by ibogaine (100 µ M ) was reversed by
either naloxone (1 µM) or norbinaltorphimine (1-10 µM). However, functionally
opposite effects were observed by Sershen et al., (174,175) who
reported that the ability of the kappa opioid agonist (U-62066) to inhibit
electrical- or cocaine-induced [3H]dopamine release from mouse
striatum was attenuated by pretreatment of mice with ibogaine (40 mg/kg, i.p., 2
hours prior; or 2 x 40 mg/kg, 6 hours apart, killed 18 hours later)
(174,175).
Ibogaine-induced dopamine release from the isolated
mouse striatum has been studied by Harsing et al., (176). Ibogaine
increased basal tritium outflow ([3H]dopamine (DA) and
[3H]DOPAC), but was without effect on electrically stimulated tritium
overflow. This dopamine releasing effect was: a) reduced by the dopamine uptake
inhibitors cocaine and nomifensine, b) unaltered by omission of Ca++
from the perfusion buffer, c) tetrodotoxin insensitive, d) unaffected by an
agonist (quinpirole) or an antagonist (sulpiride) of the D2 dopamine
receptor, and e) unaffected by pretreatment with reserpine. In this study,
ibogaine did not affect dopamine uptake, whereas Reid et al.,
(172) found that both ibogaine and harmaline (10 µM-1 mM) inhibited it.
As mentioned above, ibogaine has been reported to inhibit radioligand binding to
the dopamine transporter with relatively high affinity.
Sershen et
al., (177) reported an involvement of serotonin receptors in the
regulation of dopamine release by ibogaine. Thus, administration of ibogaine
blocked the ability of a 5HT1B agonist (CGS-12066A [10 µM]) to
increase [3H]dopamine increase in striatal slices. In other studies,
a concentration of ibogaine (1 µM) that was without effect on dopamine efflux
inhibited both NMDA (25 µ M) and (± )pentazocine (100
nM) - induced dopamine release in striatal slices (178).
There
are few reports of the effects of ibogaine-like alkaloids on dopamine
metabolism. Like ibogaine, O-desmethylibogaine acutely decreases dopamine
release in the rat nucleus accumbens and striatum (89). Administration of
the R- entantiomers of coronaridine and ibogamine decreased dopamine
levels in both nucleus accumbens and striatum, whereas the S-enantiomers
produced no significant changes in dopamine levels in either region (96).
In an attempt to reconcile several conflicting findings, Staley et
al., (167) proposed that ibogaine might promote redistribution of
intraneuronal dopamine from vesicular to cytoplasmic pools. Ibogaine displays
micromolar affinity for vesicular monoamine transporters labeled with
[125I]-tetrabenazine (167); these sites are crucial for the
translocation of dopamine into synaptic vesicles. The inhibitory effect of
ibogaine on vesicular monoamine transporters could result in redistribution of
dopamine in the cytoplasm. Under such conditions, rapid metabolism of dopamine
by monoamine oxidase would account for the decrease in tissue dopamine content
and the parallel increase in its metabolites.
Multiple transmitter
systems have been shown to modulate dopaminergic function in the central nervous
system. Because ibogaine can interact with many of these systems, including
kappa opioid receptors, NMDA receptors, serotonin receptors, and dopamine
transporters, it is not surprising that this alkaloid can produce complex (and
sometimes apparently opposite) effects on dopaminergic function. Thus, the
effects of ibogaine on dopaminergic function described in this section likely
reflect the dose (or concentration) of alkaloid, preparation employed (e.g.,
slice versus intact animal), and brain region studied.
TOP
2. Ibogaine
alters the effects of abused drugs on dopaminergic systems.
In general, ibogaine attenuates the increases in mesolimbic dopamine
produced by drugs (e.g, nicotine, morphine) that appear to act preferentially at
dopaminergic cell bodies. In the case of drugs that act at terminal regions
(e.g., cocaine and amphetamine), a gender difference has been observed. In
female rats, ibogaine enhances stimulant-induced increases in dopamine
concentrations, whereas it decreases the effects of these stimulants in male
rats and mice.
Neurochemical studies were performed in male mice given
two doses of ibogaine (40 mg/kg, i.p., 18 hours apart) followed by amphetamine
(5 mg/kg) administered 2 hours after the second dose of ibogaine (81).
Striatal levels of dopamine and dopamine metabolites [DOPAC, HVA and
3-methoxytyramine (3-MT)] measured 1 hour after amphetamine were decreased in
mice that received ibogaine relative to saline-pretreated, amphetamine-treated
controls. Compared to controls, levels of DOPAC and HVA were decreased in the
amphetamine and ibogaine groups, and further decreased in the group that
received ibogaine and amphetamine. However, in female rats, amphetamine-induced
increases in extracellular dopamine concentrations in both the striatum and the
nucleus accumbens were further potentiated by ibogaine (40 mg/kg, i.p., 19 hours
preceding amphetamine) (82). Similarly, Glick et al., (169)
found that ibogaine potentiated amphetamine-induced increases in extracellular
dopamine concentrations in female rat nucleus accumbens and striatum. In this
study, however, no effect of ibogaine was seen on amphetamine-induced decreases
in extracellular concentrations of dopamine metabolites. Similarly, ibogaine
potentiated cocaine-induced increases in extracellular dopamine levels in
striatum and nucleus accumbens of female rats (84). However, quite
opposite data were obtained by Broderick et al., (85,86) who
examined dopamine release in male rats using semiderivative in vivo
voltametry. In these experiments, ibogaine (40 mg/kg i.p. given for four days)
reduced the increase in dopamine release from nucleus accumbens induced by
cocaine (20-40 mg/kg, s.c.). A presynaptic mechanism for these actions was
suggested. An inhibitory effect of ibogaine on amphetamine metabolism has been
proposed (179), because amphetamine levels were higher after ibogaine
administration in female rats. However, ibogaine administration had no effect on
brain cocaine levels (169).
Ibogaine (40 mg/kg, i.p. in rats)
given 19 hours before morphine (5 mg/kg) prevented the increase in extracellular
dopamine concentration in the striatum, prefrontal cortex and nucleus accumbens
typically observed in rats (71,83). However, in the ibogaine plus
morphine group, the levels of dopamine metabolites were increased (as was
observed in the morphine group), suggesting that ibogaine did not prevent
morphine from activating dopamine neurons. The authors suggest that ibogaine
treatment may change the properties of dopaminergic neurons in such a way that
dopamine release is unaffected under normal conditions, but altered when
stimulated (in this case, by morphine). Nineteen hours after placebo or ibogaine
(10 mg/kg, i.p.), female rats responded similarly with increased dopamine
release in nucleus accumbens following a morphine challenge (180).
However, in rats that received two doses of morphine during two days preceding
the experiment, ibogaine pretreatment had inhibitory effects on dopamine
response to a morphine challenge. A pharmacokinetic explanation for the effects
of ibogaine on morphine-induced actions is unlikely, because ibogaine (40 mg/kg,
i.p. 19 hours before measurement) did not modify brain levels of morphine (10
mg/kg) in rats (71).
Benwell et al., (103) reported
that ibogaine (given 22 hours before nicotine) attenuated the increase in
dopamine overflow in the nucleus accumbens evoked by nicotine administration.
Similar effects were demonstrated, when ibogaine was administered 19 hours prior
to nicotine infusion (181).
TOP
B.
Opioid Systems
At concentrations of up to 100 µM,
ibogaine was reported not to affect [3H]carfentanil or
[3H]enkephalin binding indicating that this alkaloid does not affect
mu or delta opioid receptors (124,165). In contrast, Pearl et al.,
(124) and Sweetnam et al., (166) demonstrated that ibogaine
inhibited radioligand binding to mu opioid receptors with Ki values ~
11-20 µM. Ex vivo studies demonstrated that ibogaine and
O-desmethylibogaine enhanced the inhibition of adenylyl cyclase activity
by a maximally effective concentration of morphine in the rat frontal cortex,
midbrain and striartum (182). This later effect is not likely mediated
via a direct action at opioid receptors because it was observed at maximally
effective concentration of morphine.
Ibogaine inhibits (Ki
~2-4 µM) [3H]U-69593 binding to kappa opioid receptors
(56,72,124,165). This binding is reversible, suggesting that the
long-term effects of ibogaine cannot be attributed to an irreversible effect at
this site. Recently, Codd (183) demonstrated that ibogaine inhibits
binding to sites labeled by [3H]naloxone characterized by a two-site
model, with Ki values of 130 nM and 4 µM.
O-Desmethylibogaine had a higher affinity than ibogaine for all of the
opioid receptors studied: kappa Ki ~ 1 µM, mu Ki ~ 2.7 µM
and delta Ki ~ 24.7 µM (124) (a recent study showed much higher
affinity of O-desmethylibogaine at the mu receptor; Ki ~ 160
nM (184)). Our work (72) demonstrated that
O-desmethylibogaine had a 10- to 100-fold higher affinity for kappa
receptors compared to ibogaine. The magnitude of this potency difference was
species-specific (e.g., in rats: IC50 ~ 0.3 µM for
O-desmethylibogaine and IC50 ~30 µM for ibogaine). The same
study demonstrated a moderate affinity of
O-t-butyl-O-desmethylibogaine for kappa receptors
(IC50 ~17 µM in rat forebrain) suggesting that if any of ibogaine's
in vivo actions are produced at kappa receptors, then
O-t-butyl-O-desmethylibogaine would be active. In this
respect, O-t-butyl-O-desmethylibogaine did not influence
the morphine withdrawal syndrome (72) at doses comparable to ibogaine.
TOP
C.
Serotonergic Systems.
Ibogaine (at concentrations
up to 1 µM) had no effect on [3H]serotonin binding (185) and
concentrations of up to 3.5 µM had no effect on [3H]LSD binding
(186). More recent studies using serotonin subtype selective ligands are
discrepant. Deecher et al., (165) reported that ibogaine did not
displace ligands acting at 5-HT1a, 5-HT1b,
5-HT1c, 5-HT1d, 5-HT2, or 5-HT3
receptors. However, Repke et al., (56) reported that ibogaine
inhibited binding of 5-HT1a, 5-HT2a, or 5-HT3
ligands with low affinity (Ki values: >100, 12.5 and >100 µM,
respectively) and Sweetnam et al., (166) reported IC50
values of ~ 4 µM to inhibit radioligand binding to both 5-HT2, and
5-HT3 receptors.
Despite these discrepancies, both ex
vivo and in vivo studies suggest that ibogaine can affect
serotonergic transmission. Ex vivo studies indicate that ibogaine and
O-desmethylibogaine enhance the inhibitory effects of serotonin on
adenylyl cyclase activity in rat hippocampus (182). Broderick et
al., (86) reported that ibogaine (40 mg/kg, i.p. for 4 days)
increased 5-HT concentrations in rat nucleus accumbens. Consistent with this
finding, Ali et al., (171) demonstrated that ibogaine increased
5-HT levels in striatum. Sershen et al., (76) reported that
ibogaine (40-50 mg/kg) decreased levels of the serotonin metabolite
5-hydroxy-indoleacetic acid [5-HIAA] in mouse frontal cortex, hippocampus and
olfactory tubercle 2 and 24 hours after injection. Ibogaine also decreased
5-HIAA levels in rat nucleus accumbens and striatum (103,171), but
increased 5-HIAA and decreased 5-HT (lasting at least 7 days) in medial
prefrontal cortex (103). Long and Lerrin (187) demonstrated that
ibogaine is a reversible inhibitor of the active transport of serotonin into
blood platelets, a finding supported by a recent observation that ibogaine
inhibited serotonin transporters (in a porcine kidney cell line) with a
Ki ~ 10 µM (168).
Sershen et al., (177)
demonstrated that ibogaine inhibited the ability of a 5-HT1b agonist
(CGS-12066A) to increase stimulation-evoked [3H]dopamine release from
both rat and mouse striatal slices. Additionally, ibogaine increased the ability
of a 5-HT3 agonist (phenylbiguanide) to enhance stimulation-evoked
[3H]dopamine release from the mouse striatal slice (174). In
these studies, ibogaine (40 mg/kg, i.p.) was administered 2 hours prior to slice
preparation. In other studies, ibogaine (20 mg/kg) enhanced cocaine-induced
reductions in serotonin concentration in the nucleus accumbens (rat), an action
attributed to a presynaptic release mechanism (85,86). However, Sershen
et al., (175) reported that cocaine increased
[3H]serotonin efflux in striatal slices and this efflux was absent in
mice pretreated with either ibogaine or a 5-HT1b agonist. These later
findings led Sershen to suggest an action of ibogaine at the HT1b
receptor that is likely unrelated to the ability of cocaine to inhibit serotonin
reuptake blockade (188). The inhibitory effect of the kappa-opioid
agonist U-62066 (1µM) on [3H]serotonin release in striatal slices
could be blocked by in vivo ibogaine administration (175).
TOP
D.
Calcium Regulation.
Ibogaine (80 µM)
non-competitively antagonized calcium-induced contraction of rat aorta and
mesenteric artery (138), which was interpreted as an action on
intracellular calcium metabolism. Tabernanthine, an alkaloid related to
ibogaine, inhibited depolarization-stimulated 45Ca influx and
contractions in the rat aorta (189). Ibogaine inhibited the binding of
[3H]isradipine (an L-type calcium channel blocker) in the mouse
cerebral cortex with an IC50 of ~28 µM (11).
TOP
E.
Cholinergic Systems.
Ibogaine (at concentrations
of up to 100 µM) was reported not to inhibit the binding of ligands acting at
nicotinic or muscarinic receptors (165). However, subsequent studies
demonstrated that ibogaine inhibited the binding of muscarinic M1,
M2 and M3 ligands at concentrations of ~ 31, 50 and 12.5
µM, respectively (56). Sweetnam et al., (166) showed that
ibogaine inhibited radioligand binding to M1, and M2
receptors with IC50 values of 5-7 µM. These authors also
reported that ibogaine did not inhibit the binding of [3H]NMCI, a
nonselective ligand at nicotinic receptors. Ex vivo studies have shown
that neither ibogaine nor O-desmethylibogaine affect the inhibitory
action of the muscarinic acetylcholine agonist, carbachol on adenylyl cyclase
activity in the rat (182).
In a recent study, Badio et
al., (125) demonstrated that ibogaine potently (IC50 ~ 20
nM) blocked 22NaCl influx through nicotinic receptor channels in rat
pheochromocytoma cells. This effect was seen in the cells expressing ganglionic,
but not neuromuscular, nicotinic receptor subtypes. This inhibition was
noncompetitive because it was not overcome by increasing concentrations of
agonist. Moreover, the blockade was not completely reversible, suggesting that
ibogaine may have a long-lasting effect. O-Desmethylibogaine and
O-t-butyl-O-desmethylibogaine were 75- and 20-fold less
potent, respectively, than ibogaine in blocking nicotinic receptor-mediated
responses. The same study demonstrated that ibogaine, as expected for a
noncompetitive blocker, had a relatively low affinity (Ki ~ 4 µM) as
an inhibitor of the binding of an agonist [3H]nicotine. In support to
these findings, Schneider et al., (190) reported recently that
ibogaine (£ 10 µ M) had an inhibitory action on
nicotinic receptor-mediated catecholamine release in bovine adrenal chromaffin
cells. Consistent with the Badio et al., (125) study, these
inhibitory effects appeared to be long-lasting.
TOP
F.
Gamma-Aminobutyric Acidergic [GABAergic] Systems.
Two independent studies (165,166) did not find any effect of ibogaine (at
concentrations of up to 100 µM) on radioreceptor binding to GABAA
receptors. In addition, ibogaine did not influence 36Cl-
uptake through GABA-gated channels (165) or GABA-evoked currents in rat
cultured hippocampal neurons (162).
TOP
G.
Voltage-Dependent Sodium Channels.
Ibogaine
inhibited (Ki ~ 8.1 µM) [3H]batrachotoxin A 20-a-benzoate
binding to voltage-dependent sodium channels in depolarized mouse neuronal
preparations (165). Ibogaine analogs, including ibogamine, tabernanthine
and coronaridine, exhibited potencies similar to ibogaine in this assay.
TOP
H.
Glutamatergic Systems.
Our studies (159)
indicate that ibogaine is a competitive inhibitor of [3H]MK-801
binding (Ki ~1 µM) to NMDA receptor-coupled ion channels. In
contrast, ibogaine did not affect [3H](± )-
a -amino-3-hydroxy-5-methylisoxazole-4-propionic acid
([3H]AMPA), [3H]kainate or [3H]glutamate to
either the NMDA or metabotropic receptor sites, binding. These findings are
consistent with a specificity of ibogaine for NMDA receptor-coupled cation
channels (159,162,166). The potency of ibogaine to inhibit
[3H]MK-801 binding was also examined in 8 distinct brain regions of
Sprague-Dawley male rats and compared with the dissociation constants for
[3H]MK-801 estimated using saturation analyses. A high correlation
(r=0.976, p=0.0004) was obtained between the Ki of ibogaine and
Kd of [3H]MK-801 in these brain regions (119),
consistent with the notion that these compounds share a common binding site. The
ability of ibogaine to act as a non-competitive NMDA antagonist can also be
demonstrated using [3H]1-[1-(2-thienyl)cyclohexyl]piperidine
([3H]TCP), a thienyl derivative of phencyclidine, resulting in a
Ki ~1.5 µM in rat forebrain (119).
Structure-activity
studies were performed using a series of ibogaine analogs, including the
putative ibogaine metabolite O-desmethylibogaine, its metabolism
resistant analog O-t-butyl-O-desmethylibogaine, the iboga
alkaloids [(± )-ibogamine, (±
)-coronaridine, tabernanthine], harmaline, and indolotropanes. Ibogaine was the
most potent inhibitor of [3H]MK-801 binding (Ki ~ 1.2 µM);
the compounds with the greatest structural similarity to ibogaine,
O-desmethylibogaine and
O-t-butyl-O-desmethylibogaine were much less potent
(Ki ~ 5.5 and 179.0 µ M respectively) (72). A ~ 5 fold lower
affinity of O-desmethylibogaine compared to ibogaine at
[3H]MK-801 binding sites was also reported by Mash et al.,
(191).
Consistent with these neurochemical studies, ibogaine
produced a voltage-dependent block of NMDA-evoked currents in hippocampal
cultures (119,162). In addition, ibogaine (100 µ M) and
O-desmethylibogaine (1 mM) blocked the ability of NMDA (100 µ M, 5 sec)
to depolarize frog motoneurons in a non-competitive and use-dependent manner
(192).
TOP
I. Sigma
Receptors.
In our studies (11), ibogaine inhibited
[3H]pentazocine (a sigma1 receptor ligand) binding, to
high (IC50 ~86 nM) and low (IC50 ~5.6 µM) affinity sites
in mouse cerebellum. Bowen et al., (193) demonstrated that
ibogaine had high affinity for sigma2 sites (Ki ~ 200 nM)
and low affinity for sigma1 sites (Ki ~ 8.5 µM), a ~ 43-
fold selectivity for sigma2 sites. The affinities of tabernanthine
(13-methoxyibogamine) and (± )-ibogamine for
sigma2 sites were similar to that of ibogaine.
O-Desmethylibogaine, had a markedly reduced affinity for
sigma2 sites (Ki ~ 5 µM) and also lacked affinity for
sigma1 sites. The related alkaloids, (±
)-coronaridine [(± )-18-carbomethoxyibogamine] and
harmaline lacked affinity for both sigma receptor subtypes.
O-t-Butyl-O-desmethylibogaine inhibited radioligand binding to
sigma1 sites with a Ki ~ 3.5 µM and sigma2
sites with a Ki ~ 346 nM [c.f. Bowen et al, (72)]. The
much higher affinity of ibogaine for sigma2 sites compared to
sigma1 sites was also reported by Mach et al., (194).
Bowen et al., (195) examined the ability of ibogaine and related
compounds to modulate calcium release from intracellular stores in indo-1 loaded
human SK-N-SH neuroblastoma cells. Consistent with its affinity at
sigma2 sites, ibogaine produced a concentration-dependent increase
(13-45%) in intracellular calcium levels. O-Desmethylibogaine, was
ineffective in this measure at concentrations up to 100 µ M. These data suggest
that the shared in vivo effects of ibogaine and
O-desmethylibogaine are probably not mediated by sigma sites.
TOP
J.
Miscellaneous Actions of Ibogaine.
Deecher et
al., (165) reported that ibogaine (up to 100 µM) did not inhibit
radioligand binding to cannabinoid receptors. Ibogaine and
O-desmethylibogaine had no influence on basal or forskolin-stimulated
adenylyl cyclase in the rat frontal cortex, midbrain or striatum (182).
O-Desmethylibogaine, but not ibogaine, produced concentration - dependent
increases in the generation of [3H]inositol phosphates that were not
altered by inclusion of tetrodotoxin, cadmium or omega-conotoxin (196).
These results suggest that the effect of O-desmethylibogaine on
phosphoinositide hydrolysis was not secondary to the release of one or more
neurotransmitters. Ali et al., (45) reported that ibogaine
(0.5-250 µ M) reduced nitric oxide synthase activity in mouse brain; similar
effects were noted in the striatum, hippocampus and cerebellum of mice treated
parenterally with ibogaine (50 mg/kg). In radioligand binding studies, no effect
of ibogaine has been found on alpha1, alpha2 or
beta1 adrenergic receptors (165). Moreover, ibogaine (20
mg/kg) did not modify cerebral noradrenaline levels in rats (197).
Binienda et al., (140,198) reported that although ibogaine (50
mg/kg) challenge in rats was associated with a decrease in delta, theta, alpha
and beta power spectra of cortical EEG during the first 30 min, and subsequent
recovery of all except delta bands in the next 15 min, MK-801 (1 mg/kg)
treatment was followed by a decrease in power of all four frequency bands for
the entire time of recording. The selective power decrease in delta EEG
frequency band of the cortical EEG may suggest the activation of dopamine
receptors.
In the anesthetized rat, ibogaine produced a slight
hypoglycemia (60). After administration of 50 mg/kg of ibogaine,
elevations of corticosterone levels were noted 15 - 120 min, but not 24 hours
later (170,171,173). The same dose of ibogaine rapidly and transiently
increased plasma prolactin levels (171,173). Bunag and Walaszek (199)
reported that ibogaine antagonized the contractile responses produced in guinea
pig ileum by substance P and angiotensin. Alburges and Hanson (200)
reported that ibogaine administration produced increases of neurotensin-like
immunoreactivity in striatum, nucleus accumbens and substantia nigra and
substance P -like immunoreactivity in striatum and substantia nigra. Ibogaine or
harmaline suppressed several (T-cell regulatory and effector, B-cell, and
natural killer cell) immune functions in vitro (201). Van Beek
et al., (17) reported that ibogaine showed activity against the
gram-positive Bacillus subtilis. Ibogaine did not alter colonic
temperature in mice, nor did it affect morphine- or kappa [U-50,488H]–opioid induced hypothermia (121).
TOP
VIII. CONCLUSIONS.
The renewed interest
in ibogaine during the past decade stems from anecdotal clinical observations
that ibogaine offers a novel means of treating drug addictions. Preclinical
studies are, in general, consistent with these claims. Thus, ibogaine reduces
self-administration of cocaine and morphine, attenuates morphine withdrawal, and
blocks conditioned place preference produced by morphine and amphetamine.
Preclinical studies also suggest there is no abuse liability associated with
ibogaine. At doses that interfere with tolerance and dependence phenomena, brain
concentrations of ibogaine are at levels that can affect a variety of
neurotransmitter systems. Many of these effects (e.g., use dependent block of
NMDA receptor-coupled cation channels, interactions with dopamine transporters
and kappa opioid receptors) have previously been implicated in drug seeking
phenomena. However, at the present time, the only mechanism that can be invoked
to explain ibogaine's effects on drug seeking phenomena with some certainty is
its ability to inhibit naloxone-precipitated jumping through blockade of NMDA
receptors. Nonetheless, it is still uncertain whether the anti-addictive
properties of ibogaine result from a single mechanism or are produced at
multiple loci.
The involvement of dopaminergic pathways in drug seeking
phenomena can be considered dogma, and ibogaine undoubtedly affects these
pathways. Nonetheless, based on available data no clear picture has emerged
about how this interaction contributes to the anti-addictive properties of
ibogaine, or any other anti-addictive medications. Additional systematic studies
are obviously needed. Anecdotal reports claim long term effects of ibogaine on
drug seeking following a single administration or short course of therapy. This
claim has been borne out, at least in part, by preclinical studies. Based on
these observations, it is unlikely that ibogaine serves simply as substitution
therapy. It has been hypothesized that a long-lived metabolite is responsible
for ibogaine's putative anti-addictive properties, but additional studies are
required in this area.
One of the central issues regarding the molecular
mechanisms responsible for the anti-addictive actions of ibogaine is whether its
NMDA antagonist action is sufficient to explain these effects. Thus, there is an
established body of preclinical data (and an emerging body of clinical data)
demonstrating that NMDA antagonists interrupt drug seeking phenomena to a
variety of addictive substances. Although it is now well established that
ibogaine is a noncompetitive NMDA antagonist (albeit 1000-fold less potent than
the prototype compound, dizocilpine), with the exception of its ability to block
naloxone precipitated jumping in morphine-dependent mice, it is uncertain if
these effects can be attributed to other mechanisms.
Recent structure
activity studies demonstrate that O-desmethylibogaine, which is less
potent than ibogaine at NMDA receptors, appears as active as ibogaine in acutely
blocking morphine and cocaine self-administration. This observation strongly
suggests that other mechanisms may be operative. A similar argument can be made
for harmaline, which is somewhat structurally related to ibogaine and shares
some of its pharmacological actions (e.g., tremor and neurotoxic effects,
reductions in cocaine and morphine self-administration), but is not an NMDA
antagonist. Although inhibition of drug self-administration by harmaline may be
due to unspecific effects (e.g., general malaise), these findings nonetheless
raise the possibility that ibogaine's anti-addictive properties may be produced
through multiple mechanisms. The involvement of sigma sites in these phenomena
appears to be even more obscure because in contrast to ibogaine, harmaline has
no appreciable affinity at sigma sites whereas O-desmethylibogaine lacks
affinity at a sigma2 site, yet all three block cocaine and morphine
self-administration.
Ibogaine can affect several aspects of serotonergic
transmission at concentrations that are readily achieved in the brain following
pharmacologically relevant doses [reviewed by Sershen et al.,
(188)]. Because multiple serotonin receptor subtypes, as well as
serotonin reuptake, are modulated by ibogaine, it is not surprising that the
effects of this alkaloid on steady state levels of serotonin and its metabolites
(whether measured in situ or ex vivo) are complex. Clearly,
additional clinical studies are necessary to examine the efficacy of ibogaine as
an anti-addictive agent. Similarly, additional preclinical studies will be
required to elucidate the molecular mechanism(s) responsible for these
pharmacological actions.
TOP
IX. Acknowledgments
The authors thank
Dr. H. Sershen for helpful discussions on the effects of ibogaine on
dopaminergic and serotonergic transmission.
TOP
1. A. Lecomte, Arch. Med. Navale 2, 264 (1864).
2. R. Goutarel, O.
Gollnhofer, and R. Sillans, Psychedc Mono. Essays 6, 71 (1993).
3.
H.S. Lotsof, U S Patent 4,499,096, (1985).
4. H.S. Lotsof, U S
Patent 4,587,243, (1986).
5. H.S. Lotsof, U S Patent 4,857,523,
(1989).
6. H.S. Lotsof, U S Patent 5,026,697, (1991).
7. H.S.
Lotsof, Bull. MAPS 5, 16 (1995).
8. C.D. Kaplan, E. Ketzer, J. de
Jong, and M. de Vries, Soc. Neurosc. Bull.n 6, 6 (1993).
9. B. Sisko,
Bull. MAPS IV, 15 (1993).
10. P. Popik and S.D. Glick, Drugs
Future 21, 1109 (1996).
11. P. Popik, R.T. Layer, and P. Skolnick,
Pharmaco. Rev. 47, 235 (1995).
12. W.I. Taylor, in "The
Alkaloids. Volume VIII. Chemistry and Physiology" (R.H.F. Manske, ed.), p. 203,
Academic Press, New York, London. 1965.
13. W.I. Taylor, in "The
Alkaloids. Volume XI. Chemistry and Physiology" (R.H.F. Manske, ed.), p. 79,
Academic Press, New York, London. 1968.
14. R.E. Schultes and A. Hofmann,
in "The Botany and Chemistry of Hallucinogens." (R.E. Schultes and A.
Hofmann, eds.), p. 235 Charles C. Thomas Publisher, Sprinfield. 1980.
15.
J.W. Fernandez, "Bwiti - an ethnography of religious imagination in Africa.".
Princeton Press., Princeton, New Jersey, 1982.
16. H.G. Pope, Jr., Econ.
Bot. 23, 174 (1969).
17. T.A. Van Beek, C. de Smidt, and R. Verpoorte,
J. Ethnopharmacol. 14, 315 (1985).
18. H. Baillon, Bull. Mens.
Soc. Lin. de Paris 1, 782 (1889).
19. J. Dybovsky and E. Landrin,
Acad. Sci. (Paris) 133, 748 (1901).
20. A. Haller and E. Heckel
Compt. Rend. Soc Biol 133, 850 (1901).
21. M. Lambert and E. Heckel,
Compt. Rend. Acad. Sci. 133, 1236 (1901).
22. M. Lambert, Arch.
Int. Pharmacodyn. 10, 101 (1902).
23. M.C. Phisalix, Compt. Rend.
Soc. Biol. 53, 1077 (1901).
24. G. Pouchet and J. Chevalier, Bull.
Gen. Ther. 149, 211 (1905).
25. E. Rothlin and M. Raymond-Hamet,
Compt. Rend. Soc. Biol. 127, 592 (1938).
26. M. Raymond-Hamet and E.
Rothlin, Arch. Int. Pharmacodyn. Ther. 63, 27 (1939).
27. M.
Raymond-Hamet, Compt. Rend. Soc. Biol. 134, 541 (1940).
28. M.
Raymond-Hamet, Compt. Rend. Soc. Biol. 133, 426 (1940).
29. M.
Raymond-Hamet, Compt. Rend. Soc. Biol. 211, 285 (1940).
30. M.
Raymond-Hamet, Compt. Rend. Soc. Biol. 135, 176 (1941).
31. M.
Raymond-Hamet, Compt. Rend. Soc. Biol. 212, 768 (1941).
32. M.
Raymond-Hamet and D. Vincent, Compt. Rend. Soc. Biol. 154, 2223 (1960).
33. C. Naranjo, Clin. Toxicol. 2, 209 (1969).
34. F. De Sio,
Medicina Dello Sport 23, 362 (1970).
35. H.S. Lotsof, U S
Patent 5,152,994, (1992).
36. L.R. Regan, Justicia September, 1
(1992).
37. N. Touchette, Nature Med. 1, 288 (1995).
38. FDA
Advisory CMTE in "The NDA Pipeline." (E. Clarke, C. Frederick, and K.
Balog, eds.), p. V-76 F-D-C Reports, Inc. Chevy Chase, MD, USA. 1993.
39.
L.G. Sharpe and J.H. Jaffe, NeuroReport 1, 17 (1990).
40. N.
Touchette, J. NIH Res. 5 (November), 50 (1993).
41. J. Buie,
Psych. Times XI (7), 44 (1994).
42. J. Sanchez-Ramos and D. Mash,
Bull. MAPS 4, 11 (1994).
43. S.G. Sheppard, J. Subst. Abuse
Treat.11, 379 (1994).
44. B.E. Judd, Ibogaine, psychotherapy, and the
treatment of substance-related disorders. The Eighth International Conference on
Drug-related Harm. (1994).
45. S.F. Ali, S.C. Chetty, X.M. Meng, G.D.
Newport, and W. Slikker, J. Neurochem. 65, S172 (1995).
46. A.
Landrin, Bull. Sci. Pharmacol. 11, 319 (1905).
47. W.I. Taylor, J.
Am. Chem. Soc. 79, 3298 (1957).
48. G. Büchi, D.L. Coffen, K. Kocsis,
P.E. Sonnet, and F.E. Ziegler, J. Am. Chem. Soc. 88, 3099 (1966).
49.
P. Rosenmund, W.H. Haase, J. Bauer, and R. Frische, Chem. Ber. 180, 1871
(1975).
50. E. Wenkert, D.W. Cochran, H.E. Gottlieb, and E.W. Hagaman,
Helv. Chim. Acta 59, 2437 (1976).
51. H.H. Seltzman, D.F. Odear, F.
Ivy Carroll, and D. Wyrick, J. Chem. Soc. Chem. Commun. 1757 (1992).
52. H.H. Seltzman, D.F. Odear, and C.P. Laudeman, J. Labled. Compds.
Radiopharm. 34(4), 367 (1994).
53. S. Budavari, M. O'Neil, A. Smith,
P.E. Heckelman, and J.F. Kinneary, "The Merck Index. An Encyclopedia of
Chemicals, Drugs and Biologicals.". 12th Ed. Merck & Co., Inc., Whitehouse
Station, N.J., USA, 1996.
54. G.P. Cartoni and A. Giarusso, J.
Chromatogr. 71, 154 (1972).
55. J.M. Kelley and R.H. Adamson,
Pharmacol. 10, 28 (1973).
56. D.B. Repke, D.R. Artis, J.T. Nelson,
and E.H. Wong, J. Org. Chem. 59, 2164 (1994).
57. H.I. Dhahir, N.C.
Jain, and R.B. Forney, J. Foren. Sci. 16, 103 (1971).
58. H.I.
Dhahir, N.C. Jain, and J.I. Thornton, J. Foren. Sci. 12, 309 (1972).
59. E. Bertol, F. Mari, and R. Froldi, J. Chromatogr. 117, 239
(1976).
60. H.I. Dhahir, Diss. Abstr. Int. 32/04-B, 2311 (1971).
61. G. Zetler, G. Singbarth, and L. Schlosser, Pharmacol. 7, 237
(1972).
62. C.A. Gallagher, L.B. Hough, S.M. Keefner, A. Seyed Mozaffari, S.
Archer, and S.D. Glick, Biochem. Pharmacol. 49, 73 (1995).
63. W.L.
Hearn, J. Pablo, G.W. Hime, and D.C. Mash, J. Anal. Toxicol. 19, 427
(1995).
64. M.E. Alburges, R.L. Foltz, and D.E. Moody, J. Anal.
Toxicol. 19, 381 (1995).
65. F.R. Ley, A.R. Jeffcoat, and B. Thomas,
J. Chromatogr. A 723, 101 (1996).
66. S.M. Pearl, L.B. Hough, D.L.
Boyd, and S.D. Glick, Pharmacol. Biochem. Behav. 57, 809 (1997).
67.
L.B. Hough, S.M. Pearl, and S.D. Glick, Life Sci. 58, PL119 (1996).
68. S.D. Glick, K. Rossman, S. Steindorf, I.M. Maisonneuve, and J.N.
Carlson, Eur. J. Pharmacol. 195, 341 (1991).
69. I.M. Maisonneuve,
K.L. Rossman, R.W. Keller, Jr., and S.D. Glick, Brain Res. 575, 69
(1992).
70. H. Sershen, A. Hashim, and A. Lajtha, Pharmacol. Biochem.
Behav. 47, 13 (1994).
71. I.M. Maisonneuve, R.W. Keller, and S.D. Glick,
Eur. J. Pharmacol. 199, 35 (1991).
72. R.T. Layer, P. Skolnick, C.M.
Bertha, M.E. Kuehne, and P. Popik, Eur. J. Pharmacol. 309, 159 (1996).
73. D. Mash, J.K. Staley, M.H. Baumann, R.B. Rothman, and W.L. Hearn,
Life Sci. 57, PL45 (1995).
74. S.D. Glick, K. Rossman, N.C. Rao, I.M.
Maisonneuve, and J.N. Carlson, Neuropharmacology 31, 497 (1992).
75.
G. Chen and B. Bohner, J. Pharmacol. Exp. Ther. 123, 212 (1958).
76.
H. Sershen, A. Hashim, L. Harsing, and A. Lajtha, Life Sci. 50, 1079
(1992).
77. T. Luxton, L.A. Parker, and S. Siegel, Prog. Neuro-Psych.
Biol. Psych. 20, 857 (1996).
78. R.P. Kesner, P. Jackson-Smith, C.
Henry, and K. Amann, Pharmacol. Biochem. Behav. 51, 103 (1995).
79.
J.G. Page, L.E. Rodan, D.R. Franell, and J.F. Martin, NIDA Contract
Report SRI-CBE-94-002-7486, (1994).
80. I.M. Maisonneuve, K.E. Visker,
G.L. Mann, U.K. Bandarage, M.E. Kuehne, and S.D. Glick, Eur. J.
Pharmacol. 336, 123 (1997).
81. H. Sershen, L.G. Harsing, Jr., A.
Hashim, and A. Lajtha, Life Sci. 51, 1003 (1992).
82. I.M.
Maisonneuve, R.W. Keller, Jr., and S.D. Glick, Brain Res. 579, 87 (1992).
83. I.M. Maisonneuve, Diss. Abst. Int. 1 (1992).
84. I.M.
Maisonneuve and S.D. Glick, Eur. .J Pharmacol. 212, 263 (1992).
85.
P.A. Broderick, F.T. Phelan, and S.P. Berger, in "NIDA Research Monograph
No. 119. Problems of Drug Dependence" (L. Harris, ed.), p. 285, U.S. Government
Printing Office, Washington, D.C., 1992.
86. P.A. Broderick, F.T. Phelan, F.
Eng, and R.T. Wechsler, Pharmacol. Biochem. Behav. 49, 711 (1994).
87. S.M. Pearl, D.W. Johnson, and S.D. Glick, Psychopharmacology 121,
470 (1995).
88. S.D. Glick, I.M. Maisonneuve, and S.M. Pearl, Brain
Res. 749, 340 (1997).
89. S.D. Glick, S.M. Pearl, J. Cai, and I.M.
Maisonneuve, Brain Res. 713, 294 (1996).
90. G. Singbarth, G. Zetler,
and L. Schlosser, Neuropharmacology 12, 239 (1973).
91. E.D. French,
K. Dillon, and S.F. Ali, Life Sci. 59, PL199 (1996).
92. S. Helsley,
D. Fiorella, R.A. Rabin, and J. C. Winter, Pharmacol. Biochem. Behav. 58,
37 (1997).
93. E. O'Hearn and M.E. Molliver, Neuroscience 55, 303
(1993).
94. S.L. Costache "Pharmacological attenuation of the tremorigenic
effects of ibogaine." Unpublished M.S. thesis. Albany Medical College, Albany,
NY, USA, 1995.
95. G. Zetler, Neuropharmacology 22, 757 (1983).
96. S.D. Glick, M.E. Kuehne, J. Raucci, T.E. Wilson, D. Larson, R.W. Keller,
and J.N. Carlson, Brain Res. 657, 14 (1994).
97. S.D. Glick, M.E.
Kuehne, I.M. Maisonneuve, U.K. Bandarage, and H.H. Molinari, Brain Res.
719, 29 (1996).
98. S.M. King and G. Tunnicliff, Biochem. Int. 20,
821 (1990).
99. E. Roberts, E. Wong, G. Svenneby, and P. Degener, Brain
Res. 152, 614 (1978).
100. J.H. Trouvin, P. Jacqmin, C. Rouch, M. Lesne,
and C. Jacquot, Eur. J. Pharmacol. 140, 303 (1987).
101. J.A.
Schneider and E.B. Sigg, Ann. NY Acad. Sci. 66, 765 (1957).
102. S.
Gershon and W.J. Lang, Arch. Int. Pharmacodyn. Ther. 135, 31 (1962).
103. M.E.M. Benwell, P.E. Holtom, R.J. Moran, and D.J.K. Balfour, Br. J.
Pharmacol. 117, 743 (1996).
104. E.S. Onaivi, S.F. Ali, and A.
Chakrabarti, Ann. N. Y. Acad. Sci. in press, (1998).
105. S.L.T.
Cappendijk and M.R. Dzoljic, Eur. J. Pharmacol. 241, 261 (1993).
106.
F.J. Vocci and E.D. London, Ann. N. Y. Acad. Sci. 820, 29 (1996).
107. Anonymous, Presented to the Food and Drug Administration's Drug
Advisory Committee #26, (1993).
108. R.S. Mansbach, R.L. Balster, M.
Gregory, and E. Soenghen, NIDA Contract Report SA92.16, (1992).
109.
S.I. Dworkin, S. Gleeson, D. Meloni, T.R. Koves, and T.J. Martin,
Psychopharmacology 117, 257 (1995).
110. Y.W. Lee, A.H. Rezvani, and
D.H. Overstreet, Soc. Neurosci. Abstr. 20, 1608 (1994).
111. A.H.
Rezvani, D.H. Overstreet, and Y.W. Leef, Pharmacol. Biochem. Behav. 52,
615 (1995).
112. A.H. Rezvani, D. Mash, D.H. Overstreet, W.L. Hearn, and
Y.W. Lee, Alcoholism - Clin. Exp. Res, 19, 15A (1995).
113. A.H.
Rezvani, D.H. Overstreet, Y. Yang, I.M. Maisonneuve, U.K. Bandarage, M.E.
Kuehne, and S.D. Glick, Pharmacol. Biochem. Behav. 58, 615 (1997).
114. M.D. Aceto, E.R. Bowman, and L.S. Harris, NIDA. Res. Monogr. 95,
578 (1990).
115. E.D. Dzoljic, C.D. Kaplan, and M.R. Dzoljic Arch Int
Pharmacodyn 294, 64 (1988).
116. S.L.T. Cappendijk, D. Fekkes, and M.R.
Dzoljic, Behav. Brain Res. 65, 117 (1994).
117. L.G. Sharpe and J.H.
Jaffe, NIDA Res. Monogr. 105, 477 (1991).
118. B. Frances, R. Gout,
J. Cros, and J.M. Zajac, Fundam. Clin. Pharmacol. 6, 327 (1992).
119.
P. Popik, R.T. Layer, L. Fossom, M. Benveniste, B. Getter-Douglas, J.M. Witkin,
and P. Skolnick, J. Pharmacol. Exp. Ther. 275, 753 (1995).
120. J.A.
Schneider and M. McArthur, Experientia 12, 323 (1956).
121. H.N.
Bhargava, Y.J. Cao, and G.M. Zhao, Brain. Res. 752, 234 (1997).
122.
Y.J. Cao and H.N. Bhargava, Brain Res. 752, 250 (1997).
123. A.A.
Bagal, L.B. Hough, J.W. Nalwalk, and S.D. Glick, Brain Res. 741, 258
(1996).
124. S.M. Pearl, K. Herrickdavis, M. Teitler, and S.D. Glick,
Brain Res. 675, 342 (1995).
125. B. Badio, W.L. Padgett, and J.W.
Daly, Mol. Pharmacol. 51, 1 (1997).
126. W. Kostowski, W. Rewerski,
and T. Piechocki, Pharmacology 7, 259 (1972).
127. M.D. Schechter and
T.L. Gordon, Eur. J. Pharmacol. 249, 79 (1993).
128. M.D. Schechter,
Life Sci. 60, PL83 (1997).
129. P.A. Palumbo and J.C. Winter,
Pharmacol. Biochem. Behav. 43, 1221 (1992).
130. J.M. Witkin, S.
Brave, D. French, and B. Geterdouglass, .J Pharmacol. Exp. Ther. 275,
1267 (1995).
131. S. Helsley, R.A. Rabin, and J.C. Winter, Life Sci.
60, PL147 (1997).
132. L.A. Parker, S. Siegel, and T. Luxton, Exp. Clin,
Psychopharm. 3, 344 (1995).
133. I. Moroz, L.A. Parker, and S. Siegel,
Exp. Clin. Psychopharm. 5, 119 (1997).
134. L.A. Parker and S.
Siegel, Learn. Motiv. 27, 170 (1996).
135. J.R. Blackburn and K.K.
Szumlinski, Soc. Neurosci. Abstr. 21, 1467 (1995).
136. P. Popik,
Life Sci. 59, PL379 (1996).
137. J.A. Schneider and R.K. Rinehart,
Arch. Int. Pharmacodyn. Ther. CX, 92 (1957).
138. N. Hajo-Tello, C.
Dupont, J. Wepierre, Y. Cohen, R. Miller, and T. Godfraind, Arch. Int.
Pharmacodyn. Ther. 276, 35 (1985).
139. N. Hajo, C. Dupont, and J.
Wepierre, J. Pharmacol. 12, 441 (1981).
140. Z. Binienda, M.A.
Beaudoin, B.T. Thorn, D.R. Prapurna, J.R. Johnson, C.M. Fogle, W. Slikker, and
S.F. Ali, Ann. NY Acad. Sci. in press, (1998).
141. E.L. Mandrile and
G.M. Bongiorno de Pfirter, Acta. Farm. Bonaerense 4, 49 (1985).
142.
C. Naranjo, "The healing journey. New approaches to consciousness". N.Y.
Pantheon.New York, 1973.
143. P.B. Von Schmid, Arzneim.-Forsch. 17,
485 (1967).
144. R.S. Sloviter, E.G. Drust, B.P. Damiano, and J.D. Connor,
J. Pharmacol. Exp. Ther. 214, 231 (1980).
145. N.R. Farnsworth,
Science 162, 1086 (1968).
146. J. Delourme-Houde, Ann. Pharm.
Fr. 4, 30 (1946).
147. E. O'Hearn, D.B. Long, and M.E. Molliver,
NeuroReport 4, 299 (1993).
148. E. O'Hearn, P. Zhang, and M.E.
Molliver, NeuroReport 6, 1611 (1995).
149. E. O'Hearn and M.E.
Molliver, J. Neurosci. 17, 8828 (1997).
150. E. O'Hearn and M.E.
Molliver, Soc. Neurosci. Abstr. 23, 2308 (1997).
151. A.C. Scallet,
X. Ye, R. Rountree, P. Nony, and S.F. Ali, Ann. NY Acad. Sci. 801, 217
(1996).
152. A.C. Scallet, X. Ye, and S.F. Ali, Ann. NY Acad. Sci.
801, 227 (1996).
153. H.H. Molinari, I.M. Maisonneuve, and S.D. Glick,
Brain Res. 737, 255 (1996).
154. S. Helsley, C.A. Dlugos, R.J.
Pentney, R.A. Rabin, and J.C. Winter, Brain Res. 759, 306 (1997).
155. J.P. O'Callaghan, L.E. Rodman, T.S. Roggers, J.B. Terril, and J.G.
Page, Soc. Neurosci. Abstr. 20, 1650 (1994).
156. J.P. O'Callaghan,
T.S. Rogers, L.E. Rodman, and J.G. Page, Ann. NY Acad. Sci. 801, 205
(1996).
157. B.J. Vilner, U.K. Bandarage, M.E. Kuehne, C.M. Bertha, and W.D.
Bowen, in "Problems of Drug Dependence. Proceedings of the 59th Annual
Scientific Meeting, NIDA Res. Monograph." (L.S. Harris, ed.), U.S. Government
Printing Office, Washington, D.C. 1997.
158. E. O'Hearn and M.E. Molliver,
Soc. Neurosci. Abstr. 21, 1340 (1995).
159. P. Popik, R.T. Layer, and
P. Skolnick, Psychopharmacology 114, 672 (1994).
160. J.W. Olney,
U S Patent 5,629,307, (1997).
161. K. Chen, T.G. Kokate, S.
Yamagishi, F.I. Carroll, and M.A. Rogawski, Soc. Neurosci. Abstr. 21,
1105 (1995).
162. K. Chen, T.G. Kokate, S.D. Donevan, F.I. Carroll, and M.A.
Rogawski, Neuropharmacology 35, 423 (1996).
163. D.C. Mash, R.
Douyon, W.L. Hearn, N.C. Sambol, and J. Sanchezramos, Biol. Psychiat. 37,
652 (1995).
164. P.M. Whitaker and P. Seeman, J. Pharm. Pharmacol.
29, 506 (1977).
165. D.C. Deecher, M. Teitler, D.M. Soderlund, W.G.
Bornmann, M.E. Kuehne, and S.D. Glick, Brain Res. 571, 242 (1992).
166. P.M. Sweetnam, J. Lancaster, A. Snowman, J. Collins, S. Perschke, C.
Bauer, and J. Ferkany, Psychopharmacology 118, 369 (1995).
167. J.K.
Staley, Q. Ouyang, J. Pablo, W.L. Hearn, D.D. Flynn, R.B. Rothman, K.C. Rice,
and D.C. Mash, Psychopharmacology 127, 10 (1996).
168. C. Messer and
G. Rudnick, Soc. Neurosci. Abstr. 21, 1383 (1995).
169. S.D. Glick,
K. Rossman, S. Wang, N. Dong, and R.W. Keller, Jr., Brain Res. 628, 201
(1993).
170. S.F. Ali, G.D. Newport, W. Slikker, R.B. Rothman, and M.H.
Baumann, Soc. Neurosci. Abstr. 21, 2107 (1995).
171. S.F. Ali, G.D.
Newport, W. Slikker, Jr., R.B. Rothman, and M.H. Baumann, Brain Res. 737,
215 (1996).
172. M.S. Reid, K. Hsu, K.H. Souza, P.A. Broderick, and S.P.
Berger, J. Neural. Transm. 103, 967 (1996).
173. M.H. Baumann, R.B.
Rothman, and S.F. Ali, Ann. NY Acad. Sci. in press, (1998).
174. H.
Sershen, A. Hashim, and A. Lajtha, Brain Res. Bull. 36, 587 (1995).
175. H. Sershen, A. Hashim, and A. Lajtha, Pharmacol. Biochem. Behav.
53, 863 (1996).
176. L.G. Harsing, H. Sershen, and A. Lajtha, J. Neur.
Trans. 96(3), 215 (1994).
177. H. Sershen, A. Hashim, and A. Lajtha,
Neurochem. Res. 19, 1463 (1994).
178. H. Sershen, A. Hashim, and A.
Lajtha, Brain Res. Bull. 40, 63 (1996).
179. S.D. Glick, C.A.
Gallagher, L.B. Hough, K.L. Rossman, and I.M. Maisonneuve, Brain Res.
588, 173 (1992).
180. S.M. Pearl, I.M. Maisonneuve, and S.D. Glick,
Neuropharmacology 35, 1779 (1996).
181. I.M. Maisonneuve, G.L. Mann,
C.R. Deibel, and S.D. Glick, Psychopharmacology (Berlin) 129, 249 (1997).
182. R.A. Rabin and J. C. Winter, Eur. J. Pharmacol. 316, 343 (1996).
183. E.E. Codd, Life Sci. 57, PL315 (1995).
184. J.P. Pablo and
D.C. Mash, NeuroReport, in press, (1998).
185. P.M. Whitaker and P.
Seeman, Psychopharmacology 59, 1 (1978).
186. P.M. Whitaker and P.
Seeman, Proc. Nat. Acad. Sci. USA 75, 5783 (1978).
187. R.F. Long and
A.W. Lessin, Biochem. J. 82, 4P (1962).
188. H. Sershen, A. Hashim,
and A. Lajtha, Brain Res. Bull. 42, 161 (1997).
189. R.C. Miller and
T. Godfraind, Eur. J. Pharmacol. 96, 251 (1983).
190. A.S. Schneider,
J.E. Nagel, and S.J. Mah, Eur. J. Pharmacol. 317, R1 (1996).
191. D.
Mash, J.K. Staley, J.P. Pablo, A.M. Holohean, J.C. Hackman, and R.A. Davidoff,
Neurosc. Lett. 192, 53 (1995).
192. J. Pablo, J.K. Staley, A.M.
Holohean, J.C. Hackman, R.A. Davidoff, and D.C. Mash, Soc. Neurosci.
Abstr. 21, 1264 (1995).
193. W.D. Bowen, B.J. Vilner, W. Williams, C.M.
Bertha, M.E. Kuehne, and A.E. Jacobson, Eur. J. Pharmacol. 279, R1
(1995).
194. R.H. Mach, C.R. Smith, and S.R. Childers, Life Sci. 57,
PL57 (1995).
195. W.D. Bowen, B.J. Vilner, U.K. Bandarage, and M.E. Kuehne,
Soc. Neurosci. Abstr. 22, 2006 (1996).
196. R.A. Rabin and J.C.
Winter, Brain Res. 731, 226 (1996).
197. E. Cretet, M.
Prioux-Guyonneau, C. Jacquot, H. Sentenac, and J. Wepierre, Arch.
Pharmacol. 313, 119 (1980).
198. Z. Binienda, J. Johnson, B. Thorn, and
S.F. Ali, Soc. Neurosci. Abstr. 23, 1227 (1997).
199. R.D. Bunag and
E.J. Walaszek, Ann. NY Acad. Sci. 104, 437 (1968).
200. M.E. Alburges
and G.R. Hanson, Soc. Neurosci. Abstr. 23, 2408 (1997).
201. R.V.
House, P.T. Thomas, and H.N. Bhargava, Pharmacology 51, 56 (1995).
202. Y. Itzhak and S.F. Ali, Soc. Neurosci. Abstr. 21, 2108 (1995).
TOP
XI. Table 1.
Interactions of ibogaine with neurotransmitter systems: radioligand binding
studies.
Receptor system | Ligand | Ki or IC50† [µ M] | Reference |
Alpha-adrenergic1 | prazosin | 7.2 ± 3.0† | 166 |
Dopamine transporter | WIN 35,248 | 1.5† | 76 |
Dopamine transporter | WIN 35,248 | 3.5 ± 0.6† | 166 |
Dopamine transporter | RTI-121 | 2.0 | 73 |
Dopamine transporter | RTI-55 | 4.11 ± 0.45† | 167 |
Monoamine transporter (vesicular) | tetrabenazine | 2.23 ± 0.22† | 167 |
Muscarinic M1 | pirenzepine | 7.6 ± 0.7† | 166 |
Muscarinic M2 | AF-DX384 | 5.9 ± 1.4† | 166 |
Nicotinic | nicotine | 4.0 ± 0.6 | 125 |
Nicotinic noncompetitive | carbamylcholine-induced 22NaCl influx | 0.02 ± 0.007† | 125 |
NMDA ion channel | MK-801 | 1.0 ± 0.1 | 159 |
NMDA ion channel | MK-801 | 1.1 ± 0.03 | 72 |
NMDA ion channel | MK-801 | 5.6 ± 0.8† | 166 |
NMDA ion channel | MK-801 | 4-10 | 191 |
NMDA ion channel | MK-801 or TCP | 0.01-0.05 and 2-4 | 202 |
NMDA ion channel | TCP | 1.5 ± 0.3 | 119 |
Opioid | naloxone | 0.13 ± 0.03 | 183 |
Opioid (kappa) | U69,593 | 2.1 ± 0.2 | 165 |
Opioid (kappa) | U69,593 | 29.8 ± 8.3† (rat)
13.8 ± 0.6† (mouse) 21.0 ± 1.1† (giunea-pig) |
72 |
Opioid (kappa) | U69,593 | 5.5 | 56 |
Opioid (kappa) | U69,593 | 3.77 ± 0.81 | 124 |
Serotonin2 | ketanserin | 4.8 ± 1.4† | 166 |
Serotonin3 | GR-75558 | 3.9 ± 1.1† | 166 |
Serotonin transporter | RTI-55 | 0.55 ± 0.03 | 73 |
Serotonin transporter | RTI-55 | 10 | 168 |
Serotonin transporter | RTI-55 | 0.59 ± 0.09† | 167 |
Serotonin transporter | paroxetine | 9.30 ± 1.70† | 167 |
Sigma | haloperidol | 0.003† | 164 |
Sigma | pentazocine | 0.086† | 11 |
Sigma1 | pentazocine | 9.3 ± 0.63 | 194 |
Sigma1 | pentazocine | 8.6 ± 1.1 | 193 |
Sigma1 | pentazocine | 1.5-3 | 202 |
Sigma2 | DTG | 0.0904 ± 0.0101 | 194 |
Sigma2 | DTG | 0.201 ± 0.023 | 193 |
Sigma2 | DTG | 1.5-3 | 202 |
Voltage-dependent sodium channels | batrachotoxin A 20-a- benzoate | 8.1 ± 1.3 | 165 |
LEGEND TO TABLE 1. Presented are Ki or IC50 (†) values for various neurotransmitter systems affected by ibogaine with affinities higher than 10 µ M. The affinities of O-desmethylibogaine for the corresponding receptors are presented in footnotes.