GNU Emacs Lisp Bytecode Reference
Manual

Collated and edited by Rocky Bernstein with contibutions from Pipcet, Chris Wellons,
Stefan Monnier, Hallvard Breien Furuseth, and the Emacs community.

Short Contents

1 Introduction to Emacs Lisp Byte Code and LAP 1
2 Emacs Lisp Bytecode Environment 6
3 Emacs Lisp Bytecode Instructions 30
4 Instruction Changes Between Emacs Releases............. 153
5 Opcode Table. 161
6 References i 170
Instruction Index.o 171
Bytecode Function Index i i 173

Concept Index . .. oo e 174

Table of Contents

1

Introduction to Emacs Lisp Byte
Code and LAP 1
1.1 Why is Emacs Lisp Bytecode Important and How is
Emacs as a Program Different? 2
1.2 Emacs Lisp Bytecode and LAP 3
Example showing use of byte-compile-lapcode.................. 3
1.3 Emacs Lisp Virtual Machine............. ... o i ... 4
1.4 Wither Bytecode - Its Future 5
Emacs Lisp Bytecode Environment 6
2.1 Emacs Lisp Bytecode Objects. 7
2.1.1 Function Parameter (lambda) List 7
2.1.2 Bytecode Unibyte String........... ..., 9
2.1.3 Constants Vector ... 10
2.1.4 Maximum Stack Usage ..., 11
2.1.5 DoCString. .. ovvvt et e 11
2.1.6 “Interactive” Specification, 11
Examples showing the “interactive” specification................. 12
2.2 Emacs Lisp Bytecode Compiler.............. ...t 13
2.3 Emacs Lisp Bytecode Interpreter 14
2.4 Emacs Lisp Bytecode Bytes i 15
2.5 Emacs Lisp Bytecode Files i 16
2.6 Functions and Commands for working with LAP and Bytecode.. 18
2.6.1 aref ... 18
2.6.2 batch-byte-compile........... .. 19
2.6.3 batch-byte-recompile-directory....................... 19
2.6.4 byte-code 19
2.6.5 byte-compile......... 19
2.6.6 byte-compile-file............oiiiiiiiiiiiiiiiiii 20
2.6.7 byte—compile=SeXPoiuuiiiiiiiiiiii 20
2.6.8 byte-recalc-examplesc.oiiiiiiiiiiiiiia.. 21
2.6.9 byte-recompile-directory................ooiiiiiii... 21
2.6.10 byte-recompile-file...........ciiiiiiiiiiiiii... 22
2.6.11 compile-defun.............oiiiiiiiiiiiiii 22
2.6.12 disassemble ...t 22
2.6.13 disassemble-file.........coviiiiiiiiiiiiiiiiinnnnnn... 23
2.6.14 disassemble-full..............ciiiiiiiiiiiiiinnnnnn... 23
2.6.15 display-call-tree..........c.ccviiiiiiiiiiiiiiinnnnnn... 23
2.6.16 functionpoiiiiii 23
2.6.17 make-byte-code i 24
2.6.18 symbol-function.............. il 25

2.7 Bytecode Optimization, 26

ii

2.7.1 Constant Propagationl 26
2.7.2 Unreachable Code, 27
2.7.3 Strength Reduction...............ccoiiiiiiiii ... 27
2.8 Bytecode Disassembly i 29
Emacs Lisp Bytecode Instructions............ 30
3.1 Instruction-Description Format 30
3.1.1 Inmstruction Jargon.......... ... i i 30
3.1.2 Instruction Description Fields............ 31
3.2 Argument-Packing Instructions............. 33
stack-ref (1-7) ... i 33
varref (8-15)t 34
varset (16-23) i 35
varbind (24-31)o 36
Call (32-39) ottt 37
unbind (40-47) 38
3.3 Constants-Vector Retrieval Instructions........................ 39
constant (192-255)t 39
constant2 (129) 40
3.4 Exception-Handling Instructions............... 41
pophandler (48)ot 41
pushconditioncase (49)oviiiiiiiiiiiiiiii 42
pushcatch (50).ot 43
3.5 Control-Flow Instructions............. oo i, 44
goto (130) . oue 44
goto—1if-nil (131) .. .oeniii 45
goto—if-not-nil (132)t 46
goto-if-nil-else-pop (133) ..ot 47
goto-if-not-nil-else-pop (134)........c.ciiiiiiiiiiin... 48
return (135) .. o 49
switch (183)o 50
3.6 Function-Call Instructions...............oooiiiiiiiiii ., 51
3.6.1 Lisp Function Instructions.......................... ... 51
SYMDOLD (B7) oot 51
comsp (B8) oot 52
Stringp (59) .ot 53
1Astp (60) oot 54

€ (B1) ..t 55

memqg (62)o 56

DOt (63) - oo e 57
symbol-value (74)uuiuiiiiii e 58
symbol-function (75)o.oiiiiiiiii i 59

SEL (76) ..ot 60

Eset (T7) oo 61

get (T8) i 62
equal (154) .. 63

member (157)o 64

iii

assq (158) ..ot 65

numberp (167) 66
integerp (168).oouuiii 67
3.6.2 List Function Instructionso L 68
DR (56) . - e v et 68
car (B4). ... 69
CAT (B5) v ettt e 70
COMS (66) « .ottt et 71
TESEL (67) « e vnereee e e 72
TESE2 (68) <. v ev e 73
1ist3 (69) « oo 74
LS4 (T0) . oot 75
TESEN (175) et 76
length (T1) .. oo 7
aref (72) ... 78
aset (73) ..o 79
Dthedr (155) .ot 80
11 (156) oot 81
nreverse (159). 82
setcar (160)o 83
setedr (161) 84
car—safe (162).o 85
cdr=safe (163).......ooiuiiiiiii i 86
nconc (164) ... oo 87
3.6.3 Arithmetic Function Instructions.......................... 38
SUDL (83) .+t 88
QAL (84) .\t 89
eqlSign (85) ..ttt 90
BT (86) . oot 91
188 (87 it 92
1eq (B8 ittt 93
8eq (89) . 94
ALEE (90) e e 95
negate (91) i 96
PLUS (92) oot 97
UL (95) et 98
MAX (93) .ottt 99
min (94) ... 100
quo (165) ..o 101
et (166) ..o 102
3.6.4 String Function Instructions 103
Substring (79) ...ovirii 103
concat2 (80)uuirieit e 104
concat3 (81)t 105
concatd (82) 106
concatN (174) ... i 107
upcase (150) ... e 108

downcase (151) ... 109

stringeqlsign (152).. .. .ottt 110

Stringlss (153) oot 111
3.6.5 Emacs Buffer Instructions oL 112
current-buffer (112), 112
set-buffer (113) i 113
save-current-buffer-1 (114).............................. 114
buffer-substring (123)..........oiiiiiiiiiiiiiiit 115
3.6.6 Emacs Position Instructions 116
Point (96) . ..o 116
goto—char (98)o i 117
point-max (100)ot 118
point-min (101)ooiuiei e 119
forward-char (117)......... .o, 120
forward-word (118)....... i 121
forward-line (121).......c.iuiiuiiiii i 122
skip-chars-forward (119)........ ..., 123
skip-chars-backward (120)cooiiiiiiiiiiiin... 124
narrow-to-region (125)....... ... 125
widen (126)o 126
3.6.7 Emacs Text Instructions..................... 127
insert (99) 127
insertN (99) . ..o 128
char-after (102)ttt 129
following-char (103)ttt . 130
preceding-char (104)oiiiiiiiiiiiien., 131
current-column (105) 132
€01D (L108) ottt 133
€obp (109) ...t 134
BOLP (110) -+ v et 135
bobp (111) .. 136
delete-region (124).ottt 137
end-of-line (127)ottt 138
3.6.8 Emacs Misc Function Instructions 139
char-syntax (122)......... ... i 139
save-excursion (138) i 140
set-marker (147)....... i 141
match-beginning (148)o 142
match-end (149) i 143
3.7 Stack-Manipulation Instructions.............................. 144
discard (136).ot 144
discardN (180).iuiuiuiti i 145
Aup (137) o 146
stack-set (178) . ..o 147
stack-set2 (179)o 148
3.8 Obsolete or Unused Instructions.............................. 149
save-current-buffer (97)........o, 149
mark (97) ..o 149

scan-buffer (107)....... ..ot 149

read-char (114) i 149

set-mark (115)... ... i 149
interactive-p (116)........o.ouiiiiiii i 149
save-window-excursion (139) 149
condition-case (143) i 150
temp-output-buffer-setup (144)............. 150
temp-output-buffer-show (145).......... ...t 151
unbind-all (146)ooieieiii e 151
3.8.12 Relative Goto Instructions.............................. 152
REOEO (170) et eee e e 152
Rgotoifnil (171) . .o.iuiuininii e 152
Rgotoifnonnil (172).........ooiiiiiiiiiiiiiiiiiiiann 152
Rgotoifnilelsepop (173) . .cuirieiniiiiiii i 152
Rgotoifnonnilelsepop (174)c.coviiriiiiiiiiiion.. 152

4 Instruction Changes Between Emacs Releases .. 153

4.1 After 16 and Starting in 18.31.......... 153
Version 18 Release History ..., 153
4.2 After 18.59 and Starting 19.34........ i 154
Version 19 Release History. ..., 155
4.3 After 19.34 and Starting in 20.1 156
Version 20 Release History............cooooiiiiiiiiiiiii, 157
4.4 After 20.1 and Starting in 21.1 i 158
Version 21 Release History.............ooooiiiiii i, 158
4.5 After 21.4 and Starting in 22.1 L. 158
Version 22 Release History ..., 158
4.6 After 22.3 and Starting in 23.1 L. 158
Version 23 Release History............coooii i 159
4.7 After 23.4 and Starting in 24.1 i 159
Version 24 Release History. ..., 159
4.8 After 24.5 and Starting in 25.1 L. 160
Version 25 Release History........... ... o ... 160
4.9 After 25.3 and Starting in 26.1 il 160
4.10 After 26.1 and Starting in 27.1 o i 160
5 Opcode Table................................. 161
5.1 Opcodes (0000-0077) ..ot 161
5.2 Opcodes (0100-0177) « .o 163
5.3 Opcodes (0200-0277) ..o v 165
5.4 Opcodes (0300-3277) Constants..............coeveiiiiiiinen.. 168
6 References.................. ... 170

Instruction Index 171

vii
Bytecode Function Index 173

Concept Index 174

1 Introduction to Emacs Lisp Byte Code and
LAP

Chapter 1: Introduction to Emacs Lisp Byte Code and LAP 2

1.1 Why is Emacs Lisp Bytecode Important and How is
Emacs as a Program Different?
If we were to compare two similar complex programs in around 2018, Firefox 53.0.3 and

Emacs 25.3, we would see that the Firefox tarball is 5 times bigger than the Emacs tarball.
How are these made up, and what languages are they comprised of?

For Firefox whose core is written in C++ we have:

$ cloc --match-f="\.(jslcl|cpplhtml|pylcss)$’ firefox-53.0.3
89156 text files.
86240 unique files.
1512 files ignored.

cloc v 1.60 T=244.20 s (353.2 files/s, 56012.8 lines/s)

Language files comment code
C++ 7267 418019 3057110
Javascript 25855 532629 2859451
HTML 45311 120520 2209067
C 3482 400594 1664666

And for Emacs whose core is written in C we have:

$ cloc emacs-25.3.tar.xz
3346 text files.
3251 unique files.
1130 files ignored.

cloc 1.60 T=13.85 s (160.1 files/s, 154670.7 lines/s)

Language files comment code
Lisp 1616 200820 1270511
C 255 66169 256314
C/C++ Header 176 11505 34891

If we look at the relative ratio of C++ to Javascript code in Firefox, and the ratio of C
versus Lisp code in Emacs, we see that much more of Emacs written in Lisp than Firefox
is written in Javascript. (And a lot of C code for Emacs looks like Lisp written using C
syntax).

My take is that Emacs a lot more orthogonal in its basic concepts and construction.
Just as Leibniz was amazed that such diversity could come out of such simple rules of
mathematics and physics, so it is remarkable that something as complex as Emacs can
come out of the relatively simple language, Lisp.

Chapter 1: Introduction to Emacs Lisp Byte Code and LAP 3

1.2 Emacs Lisp Bytecode and LAP

However pervasive Emacs Lisp is in the Emacs ecosystem, Emacs Lisp is not and never has
been a speedy language compared to say, C, C++, Go, Rust or Java. And that’s where LAP
and bytecode come in.

As stated in a commment in byte-opt.el added circa 1996:
No matter how hard you try, you can’t make a racehorse out of a pig.

You can, however, make a faster pig.
—FEric Naggum

Emacs Lisp bytecode is the custom lower-level language used by the Emacs bytecode
interpreter. As with all bytecode, its instructions are compact. For display purposes, there
is a disassemble command that unpacks the fields of the instruction. With this and the
constants vector, bytecode can be printed in an assembly language-like format.

I'll often use an Emacs Lisp bytecode instruction to refer to an assembly representation
of the instruction.

LAP stands for Lisp Assembly Program. It is an internal representation of the bytecode
instructions in a more symbolic form. It is used behind the scenes to make bytecode more
amenable to optimization, since the instructions are in a structure which is easier to operate
on.

If we want to write the instruction sequence in this symbolic form rather than give a
byte-encoded form, we can do that using the function byte-compile-lapcode.

Example showing use of byte-compile-lapcode

(defalias ’get-foo
(make-byte code
#x000 ;3 lexical parameter counts
(byte-compile-lapcode
> ((byte-varref . 0)

(byte-return))) ;; instruction sequence
[fool ;; constants vector
1)) ;5 max stack usage

Silly Loop Example (https://www.gnu.org/software/emacs/manual/html_node/elisp/
Speed-of-Byte_002dCode.html) in the Emacs Lisp Manual gives a program to time run-
ning in some code in the bytecode interpreter versus running the code in the Lisp interpreter.
When I ran this program, bytecode ran 2.5 times faster!. The Emacs Lisp manual gets a
speed improvement of about 3 times.

1 Code was compiled to use dynamic binding for variable access, as was probably the case in the Emacs
Lisp manual. We should note that byte-compiling with lexical binding for variable access gives code that
runs a bit faster than when dynamic binding is used.

https://www.gnu.org/software/emacs/manual/html_node/elisp/Speed-of-Byte_002dCode.html
https://www.gnu.org/software/emacs/manual/html_node/elisp/Speed-of-Byte_002dCode.html

Chapter 1: Introduction to Emacs Lisp Byte Code and LAP 4

1.3 Emacs Lisp Virtual Machine

The Emacs Lisp bytecode interpreter, like many bytecode interpreters such as Smalltalk,
CPython, Forth, or PostScript, has an evaluation stack and a code stack. Emacs Lisp
bytecode instructions use reverse Polish notation: operands appear prior to the operator.
This is how many other bytecode interpreters work. It is the opposite of the way Lisp works.
To add the values of two variables we might write (+ a b). However in bytecode it is the
other way around: the operator or function comes last. So the corresponding bytecode is:

0 varref a
1 varref b
2 plus

As in most language-specific virtual machines, but in contrast to a typical general-
purpose virtual machine, the things that are on the evaluation stack are the same objects
that are found in the system that they model. Here, these objects can include Emacs
buffers, or font faces, Lisp objects like hashes or vectors, or simply (30-bit) Lisp integers.
Compare this with, say, LLVM IR, or JVM instructions where the underlying objects on
the stack are registers which can act as pointers, and the internal memory layout of objects
is exposed.

Control flow in Lisp bytecode is similar to a conventional assembly language: there are
unconditional and conditional jumps. More complex control structures are simply built out
of these.

Although it may be obvious, one last thing to point out is that the Emacs Lisp bytecode
instruction set is custom to Emacs. In addition to primitives that we would expect for Lisp
such car and cdr, there are primitive bytecodes for more-complex Emacs editor-specific
concepts such as “save-excursion”®.

The interpreter is largely backward compatible, but not forward compatible (although
eventually old Emacs Lisp bytecode instructions do die). So old versions of Emacs cannot
necessarily run new bytecode. Each instruction is between 1 and 3 bytes. The first byte is
the opcode and the second and third bytes are either a single operand or a single immediate
value. Some operands are packed into the opcode byte.

1 The semantic level difference between Emacs Lisp and its bytecode is not great, so writing a decompiler
for it more feasible than if the bytecode language were of a general nature such as, say, LLVM IR.

Chapter 1: Introduction to Emacs Lisp Byte Code and LAP 5

1.4 Wither Bytecode - Its Future

Emacs’s bytecode is pretty old—about as old as Emacs itself. And although there have
been some changes to it, there has always been lurking in the background the question of
whether it might be totally ditched, either as a by-product of switching out the underlying
Lisp implementation for something else, or as a result of using JIT technology.

Let’s take these two situations where Emacs Lisp Bytecode might become obsolete sep-
arately. Both ideas have been floating around for a long time.

With respect to alternate programming-language implementations, there have been
many languages that been proposed and experimented with. The big obstacle in totally
replacing Emacs Lisp is in rewriting the huge current Emacs Lisp code base. (The counts
given in the last section for Emacs 25.3 are 1.5K files and 100K lines of code.)

I think that if such an approach were to work, the language would have to be available
as an additional language until the current code base was replaced. At present (circa 2018),
alternate programming languages haven’t gained much of a foothold; they are not in the
current Emacs distribution or in any of its branches.

An obvious alternative language proposed is Common Lisp. Over time, an Emacs Lisp
package implementing Common Lisp has been providing more and more Common Lisp
functionality; names, however, are prefaced with c1-.

The addition of features in Common Lisp has been somewhat reflected in changes in
the run-time systems, such as the addition of lexical scoping. And this approach partially
solves the large code-base migration problem. But it also reduces the need to jump cold
turkey from Emacs Lisp Bytecode to something else.

And what about the other possibility where Emacs incorporates JIT technology? The
motivation for this is to speed up Emacs. There is widespread belief among the development
community that there could be big performance wins if this were done right. After all, it is
not uncommon for some people to live inside a single GNU Emacs session.

This idea of using a JIT to speed performance goes back over a decade, at least back to
2006. Of the JITs that have been proposed, at least four of them use Emacs Lisp Bytecode
as the basis from which to JIT from. I think that is because Emacs Lisp Bytecode is a
reasonable target to JIT: it is sufficiently low level, while also easy to hook a JIT into.

Two alternatives to Emacs Lisp Bytecode which have sophisticated JIT technology are
LLVM IR and JVM IR. For each, the surrounding run-time environment would have to be
replicated. Another IR possibility might be JavaScript IRs: specifically, the ones for V8
and Spidermonkey.

Pipcet’s work that allows SpiderMonkey’s garbage collector to be used in Emacs, al-
lows for a real possibility of using SpiderMonkey’s JIT with either JavaScript, Emacs Lisp
bytecode, or Emacs Lisp bypassing Emacs Lisp bytecode. That last route I think might be
harder. JIT’ing from Emacs Lisp bytecode to via SpiderMonkey (if it is possible) would
allow for dual Emacs Lisp and JavaScript scripting while the other options don’t.

Needless to say, such a lot of work remains in adding any sort of JIT technology that I
don’t think Emacs Lisp Bytecode will be obsolete anytime soon, should that JIT not work
off of Emacs Lisp bytecode.

2 Emacs Lisp Bytecode Environment

In this chapter we discuss the ways Emacs creates, modifies and uses bytecode in order to
run code. We describe a little of the two kinds of interpreters Emacs has, what goes into a
bytecode file, and the interoperability of bytecode between versions.

Chapter 2: Emacs Lisp Bytecode Environment 7

2.1 Emacs Lisp Bytecode Objects

This section is expanded and edited from Chris Wellons’ blog on “Emacs byte code Internals”
and from the Emacs Lisp Reference manual. See references at the end of this doc.

Emacs Lisp bytecode is an encoded form of a low-level assembly format that is suited to
running Emacs Lisp primitives and functions.

Emacs Lisp bytecode is not a low-level sequence of octets (bytes) that requires a lot
of additional special-purpose machinery to run. There is a custom C code interpreter to
handle each of the instruction primitives, and that is basically it. And even here, many of
the instructions are simply a bytecode form of some existing Emacs primitive function like
“car” or “point”.

Emacs Lisp bytecode is a built-in Emacs Lisp type (the same as a Lisp “cons” node, or
a Lisp symbol).

Functions aref and mapcar can be used to extract the components of bytecode once it is
built, The bytecode object is made up of other normal Emacs Lisp objects described next.
Bytecode is created using the make-byte-code function.

One important component of the bytecode object is the “constants vector.” It is a Emacs
Lisp vector. The constant instruction refers to one of these objects.

An Emacs Lisp object of a bytecode type is analogous to an Emacs Lisp vector. As with
a vector, elements are accessed in constant time.

The print syntax of this type is similar to vector syntax, except #[...] is displayed to
display a bytecode literal instead of [...] as in a vector.

A bytecode object is one of the several kinds of functions that Emacs understands. See
see [symbol-function], page 59, for other objects that act like a function.

Valid bytecode objects have 4 to 6 elements and each element has a particular structure
elaborated on below.

There are two ways to create a bytecode object: using a bytecode object literal or
with make-byte-code (see Section 2.6.17 [make-byte-code], page 24). Like vector literals,
bytecode functions don’t need to be quoted.

The elements of a bytecode function literal are:
Function Parameter (lambda) List
Bytecode Unibyte String
Constants Vector
Maximum Stack Usage

Docstring

AN

“Interactive” Specification

2.1.1 Function Parameter (lambda) List

The first element of a bytecode-function literal is the parameter list for the lambda. The
object takes on two different forms depending on whether the function is lexically or dy-
namically scoped. If the function is dynamically scoped, the argument list is a list and is
exactly what appears in Lisp code. In this case, the arguments will be dynamically bound
before executing the bytecode.

Chapter 2: Emacs Lisp Bytecode Environment 8

Example showing how a parameter list is transformed:

ELISP> (setq lexical-binding nil) ; force lexical binding
ELISP> (byte-compile
(lambda (a b &optional c) 5))

#[(a b &optional c) "\300\207" [5] 1]

Above we show raw bytecode data. Emacs after version 25 makes an effort to hide the
data.

There is really no shorter way to represent the parameter list because preserving the ar-
gument names is critical. With dynamic scoping, while the function body is being evaluated
these variables are globally bound (eww!) to the function’s arguments.

On the other hand, when the function is lexically scoped, the parameter list is packed into
an Emacs Lisp integer, indicating the counts of the different kinds of parameters: required,
&optional, and &rest. No variable names are needed. In contrast to dynamically-bound
variables, the arguments are on the stack of the byte-code interpreter before executing the
code

The following shows how parameter counts and flags are encoded:

e oo |150114113112111110)9 187|654 3|2]1]0

required + &optional required
&rest

The least significant 7 bits indicate the number of required arguments. This limits
compiled, lexically-scoped functions to 127 required arguments. The 8th bit is the number
of &rest arguments (up to 1). The remaining bits indicate the total number of optional and
required arguments (not counting &rest). It’s really easy to parse these in your head when
viewed as hexadecimal because each portion almost always fits inside its own “digit.”

Examples showing how lexical parameters are encoded:

ELISP> (byte-compile-make-args-desc ’())

#x000 ;; (0 args, O rest, O required)

ELISP> (byte-compile-make-args-desc ’(a b))

#x202 ;; (2 args, O rest, 2 required)

ELISP> (byte-compile-make-args-desc ’(a b &optional c))
#x302 ;; (3 args, O rest, 2 required)

ELISP> (byte-compile-make-args-desc ’(a b &optional c &rest d))

Chapter 2: Emacs Lisp Bytecode Environment 9

#x382 ;; (3 args, 1 rest, 2 required)

The names of the arguments do not matter in lexical scope; they’re purely positional.
This tighter argument specification is one of the reasons lexical scope is sometimes faster:
the byte-code interpreter doesn’t need to parse the entire lambda list and assign all of the
variables on each function invocation; furthermore, variable access is via a compact index
located usually in the operand value rather than an index into the constants vector followed
by a lookup of the variable.

2.1.2 Bytecode Unibyte String

The second element of a bytecode-function literal is either

e a unibyte string, or

e a pointer to a unibyte string,

e An autoload function

A unibyte string is a sequence of bytes or octets. Despite the type name, it is not

interpreted with any sort of Unicode encoding. These sequences should be created with
unibyte-string() because strings can get transformed into longer sequences of bytes when
encoded. To disambiguate the string type to the Lisp reader when higher values are present

(> 127), the strings are printed in an escaped octal notation, keeping the string literal inside
the ASCII character set.

Examples unibyte strings:
Bytecode for (defun double-eg(n) (+ nn)) is:

PC Byte Instruction
0 8 varref[0] n
1 137 dup
2 92 plus
3 135 return

Constants Vector: [n]
To encode the byte sequence then for this we could use:
ELISP> (unibyte-string 8 127 92 135)

"~H~?\\\207"
It is unusual to see a bytecode string that doesn’t end with 135 (#0207, return).

We describe how to decode the bytecode string in Section 3.1 [Instruction-Description
Format|, page 30.

However when a function has been defined as a result of reading a bytecode file, the
unibyte string is a pointer into that file. This pointer is represented by a cons node where
the car is the filename and the cdr is the bytecode offset from the beginning of the file

ELISP> (aref

(symbol-function ’cl-gcd)
1) ;; 1 is the bytecode string field

Chapter 2: Emacs Lisp Bytecode Environment 10

"("/tmp/emacs/lisp/emacs-lisp/cl-extra.elc" . 7352)

ELISP> (aref
(symbol-function ’ediff-buffers)
1)

(autoload "ediff" 975154 t nil)

2.1.3 Constants Vector

The third object in a bytecode-function literal is the “constants vector”. It is a normal
Emacs Lisp vector and can be created with (vector ...) or using a vector literal.

There is a possiblity for confusion by the name “constants vector”. The vector size and its
values are indeed constant. Also, only the constant bytecode instructions (see Section 3.3
[Constants-Vector Retrieval Instructions], page 39) refers to one of these objects. However,
in addition to values string and integer values that do not change, values in this vector also
can be function and variable names. So although a variable or function mame stored in
the constants vector doesn’t change, the binding of that particular variable or function can
change, even in the course of running the bytecode.

By using a constants vector, operand sizes in the bytecode instructions are fixed and
small. Also, operand values can be shared, reducing the size of the constant vector.

Since the constants vector is a true Emacs Lisp vector, the overall bytecode interpreter
is simpler: all Lisp objects are handled in a unified way: the representation of a integers,
vectors, lists, strings, and other Lisp objects is no different from the representation in the
Emacs Lisp interpreter.

Example Showing a Constants Vector:

ELISP> (aref
(byte-compile
(lambda (a b)
(my-func ’>("hi" "there") a nil 5)))
2) ;; 2 is the bytecode constants field

[a my-func
("hill lltherell)
nil 5]

The above assumes that dynamic binding is in effect.
The constants vector in the above example contains 5 elements:
e a — the symbol a which refers to a variable
e myfunc —the symbol myfunc which likely refers to an external function
e ("hi" "there") — a list constant containing two strings
e nil — the nil constant

e 5 — the integer constant 5

Chapter 2: Emacs Lisp Bytecode Environment 11

The properties of symbol a and symbol myfunc are consulted at run time, so there is no
knowledge in the bytecode representing the fact that a is a dynamically-bound parmeter
while my-func is probably an external function.

If the lambda were lexically scoped, the constants vector would not have the variable
symbol a listed, but instead there would be a stack entry.

Note that although the symbol b is a parameter of the lambda, it does not appear in
the constants vector, since it is not used in the body of the function.

2.1.4 Maximum Stack Usage

The fourth object in a bytecode-function literal is an integer which gives the maximum
stack space used by this bytecode. This value can be derived from the bytecode itself, but
it is pre-computed so that the byte-code interpreter can quickly check for stack overflow.
Under-reporting this value is probably another way to crash Emacs.

In our example above, the maximum-stack value is five since function myfunc is called
with four parameters which are pushed onto the stack, and there is an additional stack
entry pushed, the myfunc symbol itself. All of this needs to be in place on the stack just
before a call instruction runs to perform the myfunc call.

2.1.5 Docstring

The fifth object in a bytecode-function literal. It is optional. As with the bytecode unibyte
string, this value is either a string literal or a pointer to a string in a bytecode file.

Examples showing DocStrings:
ELISP> (aref
(byte-compile
(defun double(a)
"double parameter A"

(+ a a)))
4) ;; 4 is the bytecode docstring field

"double parameter A"

ELISP> (aref
(symbol-function ’cl-gcd)
4)

("/tmp/emacs/lisp/emacs-lisp/cl-extra.elc" . 7251)

2.1.6 “Interactive” Specification

When there is a sixth field in the bytecode function, the function is a command, i.e., an
“interactive” function. Otherwise the function is not a command. This parameter holds
the exact contents of the argument to interactive in the uncompiled function definition.
Note that (interactive) causes the sixth field to be nil, which is distinct from there not
being a sixth field.

Chapter 2: Emacs Lisp Bytecode Environment 12

Examples showing the “interactive” specification

ELISP> (aref
(byte-compile

(lambda (n)
(interactive "nNumber: ") n)
)
5) ;; 5 is the bytcode interactive specification field

"nNumber: "

ELISP> (aref
(byte-compile
(lambda (n)
(interactive (list (read))) n))
5)

(list
(read))

The interactive expression is usually interpreted, which is fine because, by definition, this
code is going to be waiting on user input, but it slows down keyboard macro playback.

Chapter 2: Emacs Lisp Bytecode Environment 13

2.2 Emacs Lisp Bytecode Compiler

The bytecode compiler is an ahead-of-time compiler that accepts Emacs Lisp input and
produces bytecode that can be run by Emacs. The compiler itself is written in Emacs
Lisp!, and is a comparatively compact program contained in the files bytecomp.el and
byte-opt.el.

Internally, the compiler first produces an intermediate Lisp structure in LAP code, then
performs various optimizations on that, and finally translates the LAP code into bytecode.
LAP code is used during compilation, but not kept in memory or used when running
bytecode.

It is possible to go back to LAP code from bytecode. This is done in order to inline
functions and when bytecode disassembly is requested.

1 Usually the compiler itself is compiled into bytecode, which avoids overflow problems

Chapter 2: Emacs Lisp Bytecode Environment 14

2.3 Emacs Lisp Bytecode Interpreter

Note: the bytecode interpreter that is described here should not be confused with the Emacs
Lisp Interpreter.

When a function is called and the function is represented as bytecode, control passes to
the bytecode interpreter. The interpreter is written in C and is written more for speed than
readability.

The bytecode interpreter operates on a single function at a time. For a function call, the
bytecode interpreter calls other parts of Emacs, which might call the bytecode interpreter
again, recursively. Thus, in contrast to languages like FORTH, there is no code stack per
se, just the C stack.

The bytecode interpreter implements a stack machine utilizing a fixed-size evaluation
stack, which is usually allocated as a block on the C stack. Instructions can access either
this stack or a constants vector, which is produced at compile time and made part of the
bytecode object.

The evaluation stack, as well as the constants vector, contains Lisp values, usually 64-
bit words containing an integer (Emacs integers are limited to 62 bits on 64-bit machines),
symbol index, or a tagged pointer to one of various Emacs structures such as markers,
buffers, floating-point numbers, vectors, or cons cells.

Values on the evaluation stack are created at run time. Values in the constants vector
are created when the byte-compiled file is read and converted into bytecode objects. The
underlying bit representation of values in the constants vector can vary between Emacs
instance; they are constants in the sense that they do not vary within a single Emacs
instance.

Bytecode objects contain a number safely estimating the maximum stack size the eval-
uation stack can grow to.

Chapter 2: Emacs Lisp Bytecode Environment 15

2.4 Emacs Lisp Bytecode Bytes

The bytecode interpreter, once it has set up the evaluation stack and constants vector,
executes the instructions that make up the bytecode byte sequence. Each instruction is
between one and three bytes long, containing an opcode in the first byte and sometimes an
eight- or 16-bit integer in the following bytes. Those integers are usually unsigned, and 16-
bit integers are stored in little-endian byte order, regardless of whether that is the natural
byte order for the machine Emacs runs on.

Some opcodes, allocated in blocks, encode an integer as part of the opcode byte.

Bytecode instructions operate on the evaluation stack. For example, plus, the addition
function, removes two values from the top of the stack and pushes a single value, the sum
of the first two values, back onto the stack.

Since the arguments for a function call need to be on the stack before the function can
operate on them, bytecode instructions use reverse Polish notation: first the arguments
are pushed onto the stack, then the function or operation is called. For example, the Lisp
expression (+ a b) turns into this bytecode:

PC Byte Instruction
0 8 varref a
1 9 varref b
2 92 plus

First a and b are dereferenced and their values pushed onto the evaluation stack; then
plus is executed, leaving only a single value, the sum of a and b, on the stack.

Chapter 2: Emacs Lisp Bytecode Environment 16

2.5 Emacs Lisp Bytecode Files

When Emacs is build from source code, there is C code for some primitive or built-in
functions. These include Lisp functions like car, or primitive Emacs functions like point.
Other equally important functions are implemented in Emacs Lisp. These are byte compiled
and then loaded into Emacs. On many systems there is the ability to dump Emacs in some
kind of image format after these basic functions have been loaded, but even if that does not
happen, a file called loaddefs.el is created which contains many of the important basic
primitive functions as bytecode.

When we invoke Emacs then, it has a number of functions already loaded and these
are either coded in C or have been byte compiled and loaded. Before running a function,
Emacs queries the type of code that is associated with the function symbol and calls either
its lambda S-expression interpreter or its bytecode interpreter.

When we run load, which reads and evaluates Lisp code from a file, at the top-level it
does not matter whether the file contains bytecode or Emacs Lisp source code. Either way
the only thing done is to open the file and read its contents using the normal Lisp reader.

The difference between the two kinds of files is more about convention than about their
contents, and specifically two things: First the bytecode file will have a comment header
in it that starts ;ELC"W~@~@"@ while the source code probably does not (although nothing
to stop us from adding in that line if we feel like it). And, in addition to this comment
header, a bytecode file will have other meta-comments such as which version of Emacs was
used to compile the file and whether optimization was used. In earlier versions, there was
information about the program that was used to compile the program, such its version
number, and the source code path used to be in there as well. (I think these things should
still be in there but that’s a different story.) See Chapter 4 [Instruction Changes Between
Emacs Releases|, page 153, where we give examples of the headers to show how they have
changed.

The second thing that is typically different between source code files and bytecode files
is that bytecode files contain the bytecode calls used in the file and lack of any defun,
defmacro, or lambda calls. But again there is presumably nothing stopping anyone from
using these in their source code.

In fact, we can take a file with the .elc extension, rename it with an .el extension and
load that, and it will run exactly the same if it had been loaded as a bytecode file!.

Similarly, just as we can concatenate any number of independent Emacs Lisp source
code files into one file, and this is sometimes done as a poor-man’s way to create a package,
we can also concantenate any numbers of Emacs Lisp bytecode files.

Of course, there are probably certain programs that are fooled when the extension is
changed. In particular, the byte-recompile-directory function will think that the byte-
code file does not exist because it has the wrong extension. So even though Emacs is
permissive about such matters, it is best to stick with the normal Emacs conventions.

The final thing that should be mentioned when talking about bytecode files is interop-
erability between Emacs versions.

LIf we go the other way and rename a Lisp file as a bytecode file, Emacs will notice the discrepency
because at the top of the file is a header that Emacs checks. But if we add a reasonable-looking header
we can go that direction as well.

Chapter 2: Emacs Lisp Bytecode Environment 17

Even though a bytecode header has a meta comment indicating the version of Emacs that
was used to compile it, that information is not used in determining whether the bytecode file
can be run or not. This has the benefit of being able to run bytecode compiled in a different
Emacs version than the version currently running. Since Emacs bytecode instructions do
not change often, this largely works. The scary part, though, is that opcode meanings have
changed over the 30 years, and the interpreter sometimes lacks checks. (In the past the
interpreter aborted when running an invalid bytecode.) So Emacs does not even know when
we are running bytecode from a different interpreter, and we might run off a cliff running
older or newer bytecode without a check.

Emacs developers maintain that, in practice, problems have not been reported very
much. Also, they try to keep backward compatability between versions so that bytecode
generated in an older version of Emacs will often still be interpreted in a recent newer
version. While this is a worthwhile intention, my experience is that this does not always
work, especially going back more than one version, and it is unrealistic to expect for a
program that is 30 years old.

Because there is no up-front checking, bytecode generated from a newer version of Emacs
will run silently on an older version until there is opcode that the older version cannot
handle. In some cases it will complete. See Chapter 4 [Instruction Changes Between Emacs
Releases], page 153, for when this is likely to work and when it won’t. Although running
newer bytecode in an older version of Emacs is not explicitly considered, since bytecode
does not change very often, this can sometimes work out.

Note the sharp contrast with other bytecode interpreters, such as Python, where the
magic used in compiling has to be the same as the value of the running interpreter or it will
refuse to run.

It would be nice to have an Emacs Lisp bytecode checker, perhaps a safer-1load function
that looks at the bytecode. Its meta-comments would glean when there is something that
is known to cause problems. Any volunteers?

Chapter 2: Emacs Lisp Bytecode Environment 18

2.6 Functions and Commands for working with LAP and
Bytecode

You can byte-compile an individual function or macro definition with the byte-compile
function. To extract individual components of that array use aref. To recover human-
readable LAP code from a byte-compiled file use dissasemble. Perhaps in the future there
will be a decompiler which reconstructs higher-level Lisp from LAP.

You can see if a symbol’s value holds one of the function types or an alias to a function
with functionp. To retrieve the definition of the function use symbol-function.

You can compile a whole file with byte-compile-file, or several files with
byte-recompile-directory or batch-byte-compile.

Sometimes, the byte compiler produces warning and/or error messages (see Section
“Compiler Errors” in GNU Emacs Lisp Reference Manual, for details). These messages
are normally recorded in a buffer called *Compile-Log*, which uses compilation mode.
See Section “Compilation Mode” in The GNU Emacs Manual. However, if the variable
byte-compile-debug is non-nil, error message will be signaled as Lisp errors instead (see
Section “Errors” in GNU Emacs Lisp Reference Manual).

Be careful when writing macro calls in files that you intend to byte-compile. Since macro
calls are expanded when they are compiled, the macros need to be loaded into Emacs or
the byte compiler will not do the right thing. The usual way to handle this is with require
forms which specify the files containing the needed macro definitions (see Section “Named
Features” in GNU Emacs Lisp Reference Manual). Normally, the byte compiler does not
evaluate the code that it is compiling, but it handles require forms specially, by loading
the specified libraries. To avoid loading the macro definition files when someone runs the
compiled program, write eval-when-compile around the require calls (see Section “Eval
During Compile” in GNU Emacs Lisp Reference Manual). See Section “Compiling Macros”
in The GNU Emacs Lisp Reference Manual for more details.

Inline (defsubst) functions are less troublesome. If you compile a call to such a function
before its definition is known, the call will still work right; it will just run slower.

In the list below, some of the functions are somewhat general and are not specific to
bytecode. however they are mentioned because they are specifically have an interesting use
in bytecode and their connection might be readily appearent.

2.6.1 aref
aref arry idx [Function]

Return the element of array at index idx.

Use this to extract the individual components of a byte-code object. See Section 2.1
[Emacs Lisp Bytecode Objects], page 7, for numerous examples using aref.

ELISP> (aref
(symbol-function ’cl-gcd)
1) ;; 1 is the bytecode string field

"("/tmp/emacs/lisp/emacs-lisp/cl-extra.elc" . 7352)

Chapter 2: Emacs Lisp Bytecode Environment 19

2.6.2 batch-byte-compile

batch-byte-compile &optional noforce [Function]
This function runs byte-compile-file on files specified on the command line. This
function must be used only in a batch execution of Emacs, as it kills Emacs on
completion. An error in one file does not prevent processing of subsequent files, but
no output file will be generated for it, and the Emacs process will terminate with a
nonzero status code.

If noforce is non-nil, this function does not recompile files that have an up-to-date
‘.elc’ file.

$ emacs -batch -f batch-byte-compile *.el
2.6.3 batch-byte-recompile-directory

batch-byte-recompile-directory directory &optional arg [Function]
Run byte-recompile-directory on the dirs remaining on the command line. Must
be used only with -batch, and kills Emacs on completion. For example, invoke emacs
-batch -f batch-byte-recompile-directory ..

Optional argument arg is passed as second argument arg to byte-recompile-
directory; see there for its possible values and corresponding effects.

2.6.4 byte-code

byte-code bytestr vector maxdepth [Function]
This function is executes byte code and is used internally in byte-compiled code.
The first argument, bytestr, is a string of byte code; the second, vector, a vector of
constants; the third, maxdepth, the maximum stack depth used in this function. If
the third argument is incorrect, Emacs may crash.

ELISP> (setq msg-string "hi")

llhi"

ELISP> (byte-code "\301&!\207" [msg-string message] 2)
llhi"

2.6.5 byte-compile

byte-compile form [Command]|
If form is a symbol, byte-compile its function definition.

(defun factorial (integer)
"Compute factorial of INTEGER."
(if (= 1 integer) 1
(x integer (factorial (1- integer)))))
= factorial

Chapter 2: Emacs Lisp Bytecode Environment 20

(byte-compile ’factorial)

=

#[(integer)
"~H\301U\203"H~@\301\207\302"H\303"HS!\"\207"
[integer 1 * factoriall
4 "Compute factorial of INTEGER."]

If form is a lambda or a macro, byte-compile it as a function.
(byte-compile
(lambda (a) (* a a)))
=
#[(a) ""H\211\207" [a] 2]

If symbol’s definition is a bytecode function object, byte-compile does nothing and
returns nil. It does not compile the symbol’s definition again, since the original
(non-compiled) code has already been replaced in the symbol’s function cell by the
byte-compiled code.

2.6.6 byte-compile-file

byte-compile-file filename &optional load [Command]|
This function compiles a file of Lisp code named filename into a file of bytecode. The
output file’s name is made by changing the ‘.el’ suffix into ‘.elc’. If filename does
not end in ‘.el’, it adds ‘.elc’ to the end of filename.

Compilation works by reading the input file one form at a time. If it is a definition of
a function or macro, the compiled function or macro definition is written out. Other
forms are batched, then each batch is compiled, and written so that its compiled code
will be executed when the file is read. All comments are discarded when the input
file is read.

This command returns t if there are no errors and nil otherwise. When called
interactively, it prompts for the file name.
If load is non-nil, this command loads the compiled file after compiling it. Interac-
tively, load is the prefix argument.

$ 1s -1 pushx*

-rw-r--r—— 1 lewis lewis 791 Oct 5 20:31 push.el

(byte-compile-file "~/emacs/push.el")
=t

$ 1s -1 push*
-rw-r--r—— 1 lewis lewis 791 Oct 5 20:31 push.el
-rw-rw-rw- 1 lewis lewis 638 Oct 8 20:25 push.elc

2.6.7 byte-compile-sexp

byte-compile-sexp sexp [Function]
Bytecode compile and return sexp.

Chapter 2: Emacs Lisp Bytecode Environment 21

This can be useful for seeing what the byte compile does, especially when combined
with disassemble.

ELISP> (disassemble
(byte-compile-sexp ’(1+ fill-column)))
byte code:
args: nil
0 varref fill-column
1 addi
2 return

ELISP> (disassemble
(byte-compile-sexp
’ (unwind-protect (1+ fill-column) (ding))))

byte code:
args: nil
0 constant <compiled-function>

args: nil
0 constant ding
1 call 0
2 return

1 unwind-protect

2 varref fill-column
3 addl

4 unbind 1

5 return

2.6.8 byte-recalc-examples

byte-recalc-examples begin end [Command]|
This command is what we use in this document to format our examples. It is not
part of Emacs lisp but in byte-pretty.el inside the repository where this document
lives.

Since we want to show values of various kinds — offsets, opcodes, operand, and
constant-vector values — this output is a more verbose than the format you get from
the disassemble command.

2.6.9 byte-recompile-directory

byte-recompile-directory directory &optional flag force [Command]|
This command recompiles every ‘.el’ file in directory (or its subdirectories) that
needs recompilation. A file needs recompilation if an ‘.elc’ file exists but is older
than the ‘.el’ file.

When a ‘.el’ file has no corresponding ‘.elc’ file, flag says what to do. If it is nil,
this command ignores these files. If flag is 0, it compiles them. If it is neither nil

Chapter 2: Emacs Lisp Bytecode Environment 22

nor 0, it asks the user whether to compile each file, and asks about each subdirectory
as well.

Interactively, byte-recompile-directory prompts for directory and flag is the prefix
argument.

If force is non-nil, this command recompiles every ‘.el’ file that has a ‘.elc’ file.

The returned value is unpredictable.
2.6.10 byte-recompile-file

byte-recompile-file filename &optional force arg load [Command|
Recompile filename file if it needs recompilation. This happens when its ‘.elc’ file is
older than itself.

If the ‘.elc’ file exists and is up-to-date, normally this function does not compile
filename. If the prefix argument force is non-nil, however, it compiles filename even
if the destination already exists and is up-to-date.

If the ‘.elc’ file does not exist, normally this function *does not* compile filename.
If optional argument ARG is 0, it compiles the input file even if the ‘.elc’ file does
not exist. Any other non-nil value of arg means to ask the user.

If optional argument load is non-nil, loads the file after compiling.

If compilation is needed, this functions returns the result of byte-compile-file;
otherwise it returns no-byte-compile.

2.6.11 compile-defun

compile-defun &optional arg [Command]
This command reads the defun containing point, compiles it, and evaluates the result.
If you use this on a defun that is actually a function definition, the effect is to install
a compiled version of that function.

compile-defun normally displays the result of evaluation in the echo area, but if arg
is non-nil, it inserts the result in the current buffer after the form it compiled.

2.6.12 disassemble

disassemble object &optional buffer-or-name [Command]|
This command displays the disassembled code for object. In interactive use, or if
buffer-or-name is nil or omitted, the output goes in a buffer named *Disassemblex.
If buffer-or-name is non-nil, it must be a buffer or the name of an existing buffer.
Then the output goes there, at point, and point is left before the output.

The argument object can be a function name, a lambda expression, or a byte-code
object (see Section 2.1 [Emacs Lisp Bytecode Objects], page 7). If it is a lambda
expression, disassemble compiles it and disassembles the resulting compiled code.

There are a couple of variables that control how disassembly is displayed:

Chapter 2: Emacs Lisp Bytecode Environment 23

Variable Name Default Value
disassemble-column-1-indent 8
disassemble-column-2-indent 10
disassemble-recursive—-indent 3

2.6.13 disassemble-file

disassemble-file filename [Command]|
The command is not part of GNU Emacs, but is included in an experimental
decompiler. It disassembles the entire contents of a bytecode file using the
disassemble-full for each function.

2.6.14 disassemble-full

disassemble object &optional buffer-or-name indent [Command|
The command is not part of GNU Emacs, but is included in an experimental de-
compiler. In contrast to the standard disassemble, the format is slightly modified
to make it easier to decompile the code. For example, the full text of docstring is
preserved and is preceded by a length code of the string.

This functions prints disassembled code for object in buffer-or-name. object can be a
symbol defined as a function, or a function itself (a lambda expression or a compiled-
function object). If object is not already compiled, we compile it, but do not redefine
object if it is a symbol."

2.6.15 display-call-tree

Even though this is a command, it only has an effect when byte-compile-generate-call-tree
is set to non-nil; it is nil by default. In this case, it is called when a file is byte compiled,
such as from byte-compile-file.

display-call-tree &optional filename [Command]|
Display a call graph of a specified file. This lists which functions have been called,
what functions called them, and what functions they call. The list includes all func-
tions whose definitions have been compiled in this Emacs session, as well as all func-
tions called by those functions.

The call graph does not include macros, inline functions, or primitives that the byte-
code interpreter knows about directly, e.g. eq, cons.

The call tree also lists those functions which are not known to be called (that is, to
which no calls have been compiled), and which cannot be invoked interactively.

2.6.16 functionp

This is a general function, regarding functions in general.

functionp object [Function]
Non-nil if object is a function.

Use this to see if a symbol is a function, that is something that can be called. In most
cases though symbol-function is more useful as it not only distinguishes functions

Chapter 2: Emacs Lisp Bytecode Environment 24

from non-functions, but can it returns more information in those situations where
object is a function.

2.6.17 make-byte-code

make-byte-code arglist byte-code constants depth &optional [Function]
docstring interactive-spec &rest elements
Create a byte-code object with specified arguments as elements. The arguments
should be the arglist, bytecode-string byte-code, constant vector constants, maximum
stack size depth, (optional) docstring, and (optional) interactive-spec.

We briefly describe parameters below. For a more detailed discussion of the parame-
ters, see Section 2.1 [Emacs Lisp Bytecode Objects], page 7.

The first four arguments are required; at most six have any significance. The ar-
glist can be either like the one of ‘lambda’, in which case the arguments will be
dynamically bound before executing the bytecode, or it can be an integer of the
form NNNNNNNRMMMMMMM where the 7Tbit MMMMMMM specifies the mini-
mum number of arguments, the 7-bit NNNNNNN specifies the maximum number of
arguments (ignoring &rest) and the R bit specifies whether there is a &rest argument
to catch the left-over arguments. If such an integer is used, the arguments will not
be dynamically bound but will be instead pushed on the stack before executing the
byte-code.

There very little checking of the validity of the elements either at creation time or at
run time. If a parameter is are invalid or inconsistent, Emacs may crash when you
call the function.

Examples of calling make-byte-code:

;5 Null bytecode: no args, no bytecode, no stack needed
ELISP> (make-byte-code nil "" []1 0)

[Illl nn
(]
0]

;; This byte-code for: ’(lambda(a) (x a a))
ELISP> (make-byte-code ’(a) ""H211_\207" [a] 2)

#[(a)
"~H211_\207"
[a]
2]
ELISP> (make-byte-code 1 2 3 4)

#[1 2 3 4] ;; Doesn’t even do type checking!

Chapter 2: Emacs Lisp Bytecode Environment 25

2.6.18 symbol-function

This is a general function, but it has an interesting use in conjunction with bytecode.

symbol-function symbol [Function]
Return symbol’s function definition, or nil if that is void.

The value returned from symbol-function for a function will when non-nil can be a
number of things including:

e its Lisp expression value (type cons node)
e its bytecode value (type compiled-function)
e its C function value (type subr)

e its Rust function value, if remacs

e an autoload function call.

For example if we take a function that is autoloaded when Emacs starts up:
ELISP> (symbol-function ’insert-file)

#[257 "\300"A301\"\207"
[insert-file-1 insert-file-contents]
4 2029839 "xfInsert file: "]

However if you load a file redefining the function, by loading in emacs source, you get
the last definition:

ELISP> (load-file "/usr/share/emacs/25.2/lisp/files.el.gz")

t
ELISP> (symbol-function ’insert-file)

(closure
(backup-extract-version-start t)
(filename)
"Insert contents of file FILENAME into buffer after point.\nSet mark after the
(interactive "*fInsert file: ")
(insert-file-1 filename #’insert-file-contents))

Consider a function that hasn’t been is set to be autoloaded:
ELISP> (symbol-function ’ediff-buffers)

(autoload "ediff" 975154 t nil)
Finally, consider an interal function like eolp

ELISP> (type-of (symbol-function ’eolp))
subr

Chapter 2: Emacs Lisp Bytecode Environment 26

2.7 Bytecode Optimization

This section needs to be gone over.

The bytecode optimizer takes bytecode, turns it into a more symbolic form, LAP in-
structions, and then looks for ways to speed up the code.

In Floating-point constant folding in Emacs byte compile (https://lists.gnu.org/
archive/html /emacs-devel/2018-04/msg00018 . html) the notion was put forth that
optimization has to be portable over improving code. (The issue here was compiling Emacs
with larger integers allowed for larger possibiles of constant folding).

Much of this is taken from bytecomp.el.
e constant propagation
e removal of unreachable code;
e detecting and replacing sequences of operations with an equivalent primative
e removal of calls to side-effectless functions whose return-value is unused;

e compile-time evaluation of safe constant forms, such as (consp, nil, and (ash 1
6)

e open-coding of literal lambdas;
e peephole optimization of emitted code;
e trivial functions are left uncompiled for speed.
e support for inline functions;
e compile-time evaluation of arbitrary expressions;
e compile-time warning messages for:
e functions being redefined with incompatible arglists;
e functions being redefined as macros, or vice-versa,
e functions or macros defined multiple times in the same file;
e functions being called with the incorrect number of arguments;
e functions being called which are not defined globally, in the file, or as autoloads;
e assignment and reference of undeclared free variables;
e various syntax errors;
e correct compilation of nested defuns, defmacros, defvars and defsubsts;
e correct compilation of top-level uses of macros;

e the ability to generate a histogram of functions called.

2.7.1 Constant Propagation

In cases were constants can be evaluated at compile time to come up with simpler results,
that is done.
(defun constant-prop-eg() (+ 1 2)) generates:
PC Byte Instruction
0 192 constant[0] 1
1 193 constant[1] 2
2 92 plus

https://lists.gnu.org/archive/html/emacs-devel/2018-04/msg00018.html
https://lists.gnu.org/archive/html/emacs-devel/2018-04/msg00018.html

Chapter 2: Emacs Lisp Bytecode Environment 27

3 135 return

Constants Vector: [1 2]
while with optimization we get:

PC Byte Instruction
0 192 constant[0] 3
1 135 return

Constants Vector: [3]

Although Emacs can be compiled with different for integers and floats depending the
setting of —-with-wide-int, for portability, Emacs will assume in bytecode the smaller
value of integers and will skip opportunities that would assume larger integers.

2.7.2 Unreachable Code

If there is no way code can be reached, it is removed. This optimization interacts with the
previous optimization: constant propagation.

With bytecode optimization and lexicals scoping off:

(defun dead-code-eg(a)
(or t a))

generates:

PC Byte Instruction
0 193 constant[1] t
1 134 goto-if-not-nil-else-pop [5]
5
0
4 8 varref[0] a
5 135 return

Constants Vector: [a t]
On the other hand, with bytecode-optimization we get:

PC Byte Instruction
0 192 constant[0] t
1 135 return

Constants Vector: [t]

2.7.3 Strength Reduction

The optimizer can recognize when there is primative instructions that implements an equiv-
alent longer set of instructions.

For example without optimization:

(defun strength-reduce-eg(a) (+ a 1)) generates:

Chapter 2: Emacs Lisp Bytecode Environment 28

PC Byte Instruction

0 8 varref[0] a

1 193 constant[1] 1
2 92 plus

3 135 return

Constants Vector: [a 1]
However with optimizaion (defun strength-reduce-opt-eg(a) (+ a 1)) generates:

PC Byte Instruction
0 8 varref[0] a
1 84 addl
2 135 return

Constants Vector: [a]

Notice that the optimizer took advantage of the commutative property of addition and
treated (+ a 1) as the same thing as (+ 1 a).

Chapter 2: Emacs Lisp Bytecode Environment 29

2.8 Bytecode Disassembly

Let’s face it — most of us would rather work with Emacs Lisp, a higher-level language than
bytecode or its more human-friendly LAP disassembly. There is a project in its early stages
that can often reconstruct Emacs Lisp from bytecode generated from Emacs Lisp.

See the Github Elisp Decompiler Project (https: / / github . com / rocky /
elisp-decompile) for more details.

https://github.com/rocky/elisp-decompile
https://github.com/rocky/elisp-decompile

30

3 Emacs Lisp Bytecode Instructions

Although we document bytecode instructions here, the implementation of the bytecode
interpreter and its instructions appear in src/bytecode.c. If there is any question, that
should be consulted as the primary reference.

3.1 Instruction-Description Format

In this chapter we’ll document instructions over the course of the entire history of Emacs.
Or at least we aim to.

For the opcode names, we will prefer canonicalized names from the Emacs C source
bytecode.c (under directory src/) when those differ from the names in bytecomp.el
(under directory lisp/emacs-1lisp). Most of the time they are the same under the trans-
formation described below.

We use names from bytecode. c because that is a larger set of instruction names. Specif-
ically, obsolete instructions names (both those that can be interpreted even though they
are no longer generated, and some that are no longer interpreted) are defined in that file,
whereas that is not the case in bytecomp.el.

Names in bytecode.c must follow C conventions and must be adjusted to harmonize
with other C names used. But this aspect isn’t of use here, so we canonicalize those aspects
away.

For example, in bytecode.c there is an opcode whose name is Bbuffer_substring. We
will drop the initial B and replace all underscores (_) with dashes (-). Therefore we use
buffer-substring.

The corresponding name for that opcode in bytecomp.el is byte-buffer-substring.
For the most part, if you drop the initial byte- prefix in the bytecomp.el name you will
often get the canonic name from bytecode.c.

However this isn’t always true. The instruction that the Emacs Lisp save-current-
buffer function generates nowadays has opcode value 114. In the C code, this value is
listed as B_save_current_buffer_1; bytecomp.el uses the name byte-save-current-
buffer. We report the instruction name for opcode 114 as save-current-buffer-1.

To shorten and regularize instruction descriptions, each instruction is described a stan-
dard format. We will also require a small amount of jargon. This jargon are explained
below.

3.1.1 Instruction Jargon

e TOS The value of top of the evaluation stack. Many instructions either read or push
onto this.
e S This is an array of evaluation stack items. S[0] is the top of the stack, or TOS.

e top A pointer to the the top of the evaluation stack. In C this would be &T0S. When
we want the stack to increase in size, we add to top. For example, to makes space to
store a new single new value, we can use top++ and then assign to TOS.

Note that in changing top, the value accessed by TOS or S values all change.

Chapter 3: Emacs Lisp Bytecode Instructions 31

e ¢ This is used in describing stack effects for branching instructions where the stack
effect is different on one branch versus the other. This is a function of two arguments.
The first argument gives the stack effect on the non-nil branch and the second argument
gives the stack effect for the nil branch. So ¢(0,—1) which is seen in goto-if-not-
nil-else-pop means that if the jump is taken, the stack effect is 0, otherwise the effect
removes or pops an evaluation-stack entry.

e instruction-name subscripting ([]) In many instructions such as constant, varref,
you will find an index after the instruction name. What’s going on is that instruction
name is one of a number of opcodes in a class encodes an index into the instruction. We
generally call this an “Argument-encoding” instruction. In the display of the opcode
in assembly listings and in the opcode table chapter where we list each opcode, we will
include that particular instruction variant in subscripts.

For example consider constant [0] versus constant[1]. The former has opcode 192
while the latter has opcode 193. In terms of semantics, the former is the first or zeroth-
index entry in a function’s constant vector while the latter is the second or 1-index
entry.

3.1.2 Instruction Description Fields
The description of fields use for describing each instruction is as follows

Implements:
A description of what the instruction does.

Generated via:
These give some Emacs Lisp constructs that may generate the instruction. Of
course there may be many constructs and there may be limiting situations
within that construct. We’ll only give one or a few of the constructs, and we’ll
try to indicate a limiting condition where possible.

Operand: When an instruction has an operand, this descripts the type of the operand.
Note that the size of the operand (or in some cases the operand value) will
determine the instruction size.

Instruction size:
The number of bytes in the instruction. This is 1 to 3 bytes.

Stack effect:
This describes how many stack entries are read and popped and how many
entries stack entries are pushed. Although this is logically a tuple, we’ll list this
a tuple like (—3,2) as a single scalar —3 + 2. In this example, we read/remove
three stack entries and add two. The reason we give this as —3 + 2 rather than
the tuple format is so that the overall effect (removing a stack entry) can be
seen by evaluating the expression.

Added in: This is optional. When it is given this gives which version of Emacs the opcode
was added. It may also give when the opcode became obsolete or was no longer
implemented.

Example: Some Emacs Lisp code to show how the instruction is used. For example the
for the goto instruction we give:

Chapter 3: Emacs Lisp Bytecode Instructions 32

(defun goto-eg(n)
(while (n) 1300))

generates:

PC Byte Instruction

0 192 constant[0] n
1 32 calllo]
2 133 goto-if-nil-else-pop [8]
8
0
5 130 goto [0]
0
0

8 135 return

Constants Vector: [n]

From the above we see that the goto instruction at program counter (PC) 5,
has decimal opcode 130. The instruction is three bytes long: a one-byte opcode
followed by a two-byte operand.

The instruction name at PC 0 with opcode 192, constant [0], looks like it is
indexing, but it is a just name, where the brackets and number are part of the
name. We use this kind of name because it is suggestive of how it works: it
indexes the first element into the constants vector and pushes that value onto
the evaluation stack. constant[1] with opcode 193 pushes the second element
of the constants vector onto the stack. We could have also used instruction
names like constantO and constant1 for opcodes 192 and 193 instead.

Unless otherwise stated, all code examples were compiled in Emacs 25 with
optimization turned off.

Chapter 3: Emacs Lisp Bytecode Instructions 33

3.2 Argument-Packing Instructions

These instructions from opcode 1 to 47 encode an operand value from 0 to 7 encoded into
the first byte. If the encoded value is 6, the actual operand value is the byte following the
opcode. If the encoded value is 7, the actual operand value is the two-byte number following
the opcode, in Little-Endian byte order.

stack-ref (1-7)
Reference a value from the evaluation stack.

Implements:
top++; TOS <- S[i+1] where i is the value of the instruction operand.

Generated via:
let, let* and lambda arguments.

Operand: A stack index

Instruction size:
1 byte for stack-ref[0] .. stack-ref[4]; 2 bytes for stack-ref[5], 8-bit
operand; 3 bytes for stack-ref [6], 16-bit operand.

Stack effect:
-0+ 1.
Added in: Emacs 24.1. See Section 4.7 [Emacs 24], page 159.

Example: When lexical binding and optimization are in effect,

(defun stack-ref-eg()
(let ((a 5) (Lb 6) (c 7))
(+ a c)))}

generates:
PC Byte Instruction

0 192 constant[0] 5 ;; top++; TOS <- 5

1 193 constant[1] 6 ;; top++; TOS <- 6

2 194 comstant[2] 7 ;; top++; TOS <- 7

3 2 stack-ref[2] ;; top++; TOS <- S[3] (5)
4 1 stack-ref[1] ;; top++; TOS <- S[2] (7)
5 92 plus

6

135 return

Constants Vector: [5 6 7]

Warning Running an instruction with opcode 0 (logically this would be called
stack-ref [0]), will cause an immediate abort of Emacs in versions after version 20 and
before version 25! The abort of the opcode was in place before this instruction was added.

Zero is typically an invalid in bytecode and in machine code, since zero values are com-
monly found data, e.g. the end of C strings, or data that has been initialized to value but
represents data that hasn’t been written to yet. By having it be an invalid instruction, it is
more likely to catch situations where random sections of memory are run such as by setting
the PC incorrectly.

Chapter 3: Emacs Lisp Bytecode Instructions 34

varref (8—-15)

varref (8-15)

Pushes the value of the symbol in the constants vector onto the evaluation stack.

Implements:
top++; TOS <- (eval constants_vector[i]) where i is the value of instruc-
tion operand

Generated via:
dynamic variable access

Operand: A constants vector index. The constants vector item should be a variable
symbol.

Instruction size:
1 byte for varref [0] .. varref[4]; 2 bytes for varref [5], 8-bit operand; 3
bytes for varref [6], 16-bit operand.

Stack effect:
-0+ 1.
Example: When dynamic binding is in effect,

(defun varref-eg(n)
n)

generates:

PC Byte Instruction
0 8 varref[0] n
1 135 return

Constants Vector: [n]

Chapter 3: Emacs Lisp Bytecode Instructions 35

varset (16—23)

varset (16-23)

Sets a variable listed in the constants vector to the TOS value of the stack.

Implements:
constants_vector[i] <- TOS; top-- where i is the value of the instruction

operand.

Operand: A constants vector index. The constants vector item should be a variable
symbol.

Instruction size:
1 byte for varset[0] .. varset[4]; 2 bytes for varset[5], 8-bit operand; 3
bytes for varset [6], 16-bit operand.

Stack effect:
-0+ 1.

Example: When dynamic binding is in effect,

defun varset-eg(n)
(setq n 5))
generates:
PC Byte Instruction
0 193 constant[1] 5
1 137 dup
2 16 varset[0] n ;; sets variable n
3 135 return

Constants Vector: [n 5]

Chapter 3: Emacs Lisp Bytecode Instructions 36

varbind (24-31)

varbind (24-31)
Binds a variable to a symbol in the constants vector, and adds the symbol to a special-

bindings stack.

Implements:
(set_internal(constants_vector[i]) where i is the value of the instruction
operand.

Instruction size:

1 byte for varbind [0] .. varbind[4]; 2 bytes for varbind [5], 8-bit operand;
3 bytes for varbind [6], 16-bit operand.

Stack effect:
-0+ 1.
Example: When dynamic binding is in effect,

defun varbind-eg()
(let ((c 1))
(1+)

generates:

PC Byte Instruction

0 193 constant[1] 1

1 137 dup

2 24 varbind[0] c ;; creates variable c
3 84 addi

4 41 unbind[1] ;; removes variable c
5 135 return

Constants Vector: [c 1]

Chapter 3: Emacs Lisp Bytecode Instructions 37

call (32—-39)

call (32-39)

Calls a function. The instruction argument specifies the number of arguments to pass to
the function from the stack, excluding the function itself.

Implements:
(set_internal (constants_vector[i]) where i is the value of the instruction
operand.

Instruction size:
1 byte for call[0] .. call[4]; 2 bytes for call[5], 8-bit operand; 3 bytes for
call[6], 16-bit operand.

Stack effect:
-0+ 1.

Example:

(defun call-eg()
(exchange-point-and-mark)
(next-line 2))

generates:

PC Byte Instruction

192 constant[0] exchange-point-and-mark
32 calll0]

136 discard

193 constant[1] next-line

194 constant[2] 2

33 calll1]

135 return

O W N~ O

Constants Vector: [exchange-point-and-mark next-line 2]

Chapter 3: Emacs Lisp Bytecode Instructions 38

unbind (40-47)

unbind (40-47)
Remove the binding of a variable to symbol and from the special stack. This is done when

the variable is no longer needed.

Implements:
undo’s a let, unwind-protects, and save-excursions

Generated via:
let in dynamic binding. Balancing the end of save-excursion.

Instruction size:
1 byte for unbind[0] .. unbind[4]; 2 bytes for unbind[5], 8-bit operand; 3
bytes for unbind [6], 16-bit operand.

Stack effect:
—0+0.
Example: When dynamic binding is in effect,

defun varbind-eg()
(let ((c 1))
(1+ ¢)))

generates:

PC Byte Instruction

0 193 constant[1] 1

1 137 dup

2 24 varbind[0] c ;; creates variable c
3 84 add1

4 41 unbind[1] ;; removes variable c
5 135 return

Constants Vector: [c 1]

Chapter 3: Emacs Lisp Bytecode Instructions 39

3.3 Constants-Vector Retrieval Instructions

The instructions from opcode 192 to 255 push a value from the Constants Vector. See
Section 2.1.3 [Constants Vector], page 10. Opcode 192 pushes the first entry, opcode 193,
the second and so on. If there are more than 64 constants, opcode constant2 (opcode 129)
is used instead.

constant (192—-255)

Pushes a value from the constants vector on the evaluation stack. There are special instruc-
tions to push any one of the first 64 entries in the constants stack.

Implements:
top++; TOS <- constants_vector[i] where i is the value of the instruction
operand.

Instruction size:
1 byte

Stack effect:
-0+ 1.

Example:

defun n3(n)
(+ n 10 11 12))

generates:

PC Byte Instruction
193 constant[1] +
8 varref[0] n
194 comstant[2] 10
195 constant[3] 11
196 constant[4] 12
36 call[4]
135 return

DO WN - O

Constants Vector: [n + 10 11 12]

Chapter 3: Emacs Lisp Bytecode Instructions 40

constant2 (129)

constant2 (129)

Pushes a value from the constants vector on the evaluation stack. Although there are special
instructions to push any one of the first 64 entries in the constants stack, this instruction
is needed to push a value beyond one the first 64 entries.

Implements:
topt++; TOS <- constants_vector[i] where i is the value of the instruction
operand.

Operand: a 16-bit index into the constants vector.

Instruction size:
3 bytes

Stack effect:
-0+ 1.

Example:

(defun n64(n)
(+n0123..64)

generates:

PC Byte Instruction
193 constant[1] +
8 varref[0] n

194 comstant[2] O

195 comstant[3] 1

196 constant[4] 2

[...]

63 255 constant[63] 61

64 129 constant2 [64] 62
64
0

67 129 constant2 [65] 63
65
0

70 129 constant2 [66] 64
66
0

73 38 call [66]
66

75 135 return

S W NN - O

Constants Vector: [n+ 0 1 2 .. 61 62 63 64]

Chapter 3: Emacs Lisp Bytecode Instructions

3.4 Exception-Handling Instructions

pophandler (48)

Implements:
Removes last condition pushed by pushconditioncase

Generated via:
condition—-case

Instruction size:
1 byte

Stack effect:
-0+ 0.

Added in: Emacs 24.4. See Section 4.7 [Emacs 24|, page 159.

Example:

(defun pushconditioncase-eg()
(condition-case nil
5
(one-error 6)
(another-error 7)))

generates:

PC Byte Instruction
192 constant[0] (another-error)

1 49 pushconditioncase [16]
16
0

4 193 constant[1] (one-error)

5 49 pushconditioncase [12]
12
0

8 194 constant[2] 5

9 48 pophandler

10 48 pophandler

11 135 return

12 48 pophandler

13 136 discard

14 195 constant[3] 6

15 135 return

16 136 discard

17 196 constant[4] 7

18 135 return

Constants Vector: [(another-error) (one-error) 5 6 7]

41

Chapter 3: Emacs Lisp Bytecode Instructions 42

pushconditioncase (49)

pushconditioncase (49)

Implements:
Pops the TOS which is some sort of condition to test on and registers that.
If any of the instructions errors with that condition, a jump to the operand
occurs.

Operand: 16-bit PC address

Instruction size:
3 bytes

Stack effect:
—140.

Added in: Emacs 24.4. See Section 4.7 [Emacs 24|, page 159.

Example:

(defun pushconditioncase-eg()
(condition-case nil
5
(one-error 6)
(another-error 7)))

generates:

PC Byte Instruction
0 192 constant[0] (another-error)
1 49 pushconditioncase [16]
16
0
4 193 constant[1] (one-error)
5 49 pushconditioncase [12]
12
0
8 194 constant[2] 5
9 48 pophandler
10 48 pophandler
11 135 return
12 48 pophandler
13 136 discard
14 195 constant[3] 6
15 135 return
16 136 discard
17 196 constant[4] 7
18 135 return

Constants Vector: [(another-error) (one-error) 5 6 7]

Chapter 3: Emacs Lisp Bytecode Instructions

pushcatch (50)

pushcatch (50)
?

43

Chapter 3: Emacs Lisp Bytecode Instructions

3.5 Control-Flow Instructions

goto (130)

Implements:
Jump to label given in the 16-bit operand

Generated via:
while and various control-flow constructs

Operand: 16-bit PC address

Instruction size:
3 bytes

Stack effect:
—04+0

Example: (defun goto-eg(n) (while (n) 1300)) generates:

PC Byte Instruction

0 192 comnstant[0] n

1 32 calllo]

2 133 goto-if-nil-else-pop [8]
8
0

5 130 goto [0]
0
0

8 135 return

Constants Vector: [n]

44

Chapter 3: Emacs Lisp Bytecode Instructions

goto-if-nil (131)

goto-if-nil (131)

Implements:

45

Jump to label given in the 16-bit operand if TOS is nil. In contrast to goto-if-
nil-else-pop, the test expression, TOS, is always popped.

Generated via:

if with “else” clause and various control-flow constructs

Operand: 16-bit PC address

Instruction size:

Example: (defun goto-if-nil-eg(n) (if (n) 1310 1311)) generates:

3 bytes
Stack effect:

—-140
PC Byte
0 192
1 32
2 131
5 193
6 130
9 194
10 135

Instruction
constant[0] n
call[o0]
goto-if-nil [9]
9
0
constant[1] 1310
goto [10]
10
0
constant [2] 1311
return

Constants Vector: [n 1310 1311]

Chapter 3: Emacs Lisp Bytecode Instructions 46

goto-if-not-nil (132)

goto-if-not-nil (132)

Implements:
Jump to label given in the 16-bit operand if TOS is not nil. In contrast to
goto-if-not-nil-else-pop, the test expression, TOS, is always popped.

Generated via:
or inside an if with optimization and various control-flow constructs

Operand: 16-bit PC address

Instruction size:
3 bytes

Stack effect:
—1+0

Example: With bytecode optimization, (defun goto-if-not-nil-eg(n) (if (or (n)
(n)) 1320)) generates:

PC Byte Instruction
0 192 constant[0] n
1 32 call[o]
2 132 goto-if-not-nil [10]
10
0
192 comnstant[0] n
32 calll0]
7 133 goto-if-nil-else-pop [11]
11
0
10 193 comnstant[1] 1320
11 135 return

» ;O

Constants Vector: [n 1320]

Note the change in opcode when bytecode optimization is not performed.

Chapter 3: Emacs Lisp Bytecode Instructions 47

goto-if-nil-else-pop (133)

goto-if-nil-else-pop (133)

Implements:
Jump to label given in the 16-bit operand if TOS is nil; otherwise pop the TOS,
the tested condition. This allows the test expression, nil, to be used again on
the branch as the TOS.

Generated via:
cond, if and various control-flow constructs

Operand: 16-bit PC address

Instruction size:
3 bytes

Stack effect:
»(0,—1)+0

Example: (defun goto-if-nil-else-pop-eg(n) (cond ((n) 1330))) generates:
PC Byte Instruction

0 192 constant[0] n

1 32 call[o]

2 133 goto-if-nil-else-pop [6]
6
0

5 193 constant[1] 1330

6 135 return

Constants Vector: [n 1330]

Chapter 3: Emacs Lisp Bytecode Instructions 48

goto-if-not-nil-else-pop (134)

goto-if-not-nil-else-pop (134)

Implements:
Jump to label given in the 16-bit operand if TOS is not nil; otherwise pop TOS,
the tested condition. This allows the tested expression on TOS to be used again
when the jump is taken.

Generated via:
cond, if and various control-flow constructs

Operand: 16-bit PC address

Instruction size:
3 bytes

Stack effect:
»(0,-1)+0
Example:
(defun goto-if-not-nil-else-pop-eg(n)
(if (or () (m))
1340))

generates:

PC Byte Instruction

0 192 constant[0] n

1 32 calllo]

2 134 goto-if-not-nil-else-pop [7]
7
0

5 192 constant[0] n

6 32 calll0]

7 133 goto-if-nil-else-pop [11]
11
0

10 193 constant[1] 1340
11 135 return

Constants Vector: [n 1340]

Note the change in opcode when bytecode optimization is performed.

Chapter 3: Emacs Lisp Bytecode Instructions 49

return (135)

return (135)

Implements:
Return from function. This is the last instruction in a function’s bytecode
sequence. The top value on the evaluation stack is the return value.

Generated via:
lambda

Instruction size:
1 byte

Stack effect:
—-1+0
Example: (defun return-eg(n) 1350) generates:

PC Byte Instruction
0 192 comnstant[0] 1350
1 135 return

Constants Vector: [1350]

Chapter 3: Emacs Lisp Bytecode Instructions 50

switch (183)

switch (183)

Jumps to entry in a jumptable.

Implements:
switch-like jumptable. Top of stack is a variable reference. Below that is a hash
table mapping compared values to instructions offsets.

Generated via:
cond with several clauses that use the same test function and variable.

Instruction size:
1 byte

Stack effect:
—24+0

Added in: Emacs 26.1

Example:

(defun switch-eg(n)
(cond ((equal n 1) 1)
((equal n 2) 2)
((equal n 3) 3)))

generates:

PC Byte Instruction

0 8 varref[0] n
1 193 constant [1] #s(hash-table size 3 test equal rehash-size 1.5 rehash-thre
2 183 switch
3 130 goto [12]
12
0
6 194 constant[2] 1
7 135 return
8 195 constant[3] 2
9 135 return

10 196 constant[4] 3
11 135 return

12 197 constant[5] nil
13 135 return

Constants Vector: [n #s(hash-table size 2 test equal rehash-size 1.5 rehash-thres

Chapter 3: Emacs Lisp Bytecode Instructions 51

3.6 Function-Call Instructions

These instructions use up one byte, and are followed by the next instruction directly. They
are equivalent to calling an Emacs Lisp function with a fixed number of arguments: the
arguments are popped from the stack, and a single return value is pushed back onto the
stack.

3.6.1 Lisp Function Instructions

These instructions correspond to general functions which are not specific to Emacs; common
cases are usually inlined for speed by the bytecode interpreter.

symbolp (57)

Call symbolp. See Section “Symbols” in The GNU Emacs Lisp Reference Manual, for a
description of this Emacs Lisp function.

Implements:
TOS <- (symbolp TOS).

Generated via:
symbolp.

Instruction size:
1 byte

Stack effect:
—141.

Example: When lexical binding is in effect, (defun symbolp-eg(n) (symbolp n)) gener-
ates:

PC Byte Instruction
0 137 dup
1 57 symbolp
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 52

consp (58)

consp (58)

Call consp. See Section “Predicates on Lists” in The GNU Emacs Lisp Reference Manual,
for a description of this Emacs Lisp function.

Implements:
TOS <- (consp TOS).

Generated via:
consp.

Instruction size:
1 byte

Stack effect:
—1+1.

Example: When lexical binding is in effect, (defun consp-eg(n) (consp n)) generates:

PC Byte Instruction
0 137 dup
1 58 consp
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 53

stringp (59)

stringp (59)

Call stringp. See Section “Predicates for Strings” in The GNU Emacs Lisp Reference
Manual, for a description of this Emacs Lisp function.

Implements:
TOS <- (stringp TOS).

Generated via:
unary stringp.

Instruction size:
1 byte

Stack effect:
-1+1.
Example: When lexical binding is in effect, (defun stringp-eg(n) (stringp n)) gener-
ates:
PC Byte Instruction
0 137 dup

1 59 stringp
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 54

listp (60)

listp (60)
Call 1listp. See Section “Predicates on Lists” in The GNU Emacs Lisp Reference Manual,
for a description of this Emacs Lisp function.

Implements:
TOS <- (listp TOS).

Generated via:
unary listp.

Instruction size:
1 byte

Stack effect:
—1+1.

Example: When lexical binding is in effect, (defun listp-eg(n) (listp n)) generates:

PC Byte Instruction
0 137 dup
1 60 1listp
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 55

eq (61)

eq (61)
Call eq. See Section “Equality Predicates” in The GNU Emacs Lisp Reference Manual, for
a description of this Emacs Lisp function.

Implements:
S[1] <- (eq S[1] TOS); top—-.

Generated via:
binary eq.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: When lexical binding is in effect, (defun eq-eg(a b) (eq a b)) generates:

PC Byte Instruction
1 stack-ref[1]
1 stack-ref[1]

61 eq

135 return

w N = O

Chapter 3: Emacs Lisp Bytecode Instructions 56

memgq (62)

memq (62)

Call memq. See Section “Using Lists as Sets” in The GNU Emacs Lisp Reference Manual,
for a description of this Emacs Lisp function.

Implements:
S[1] <- (memq S[1] TOS); top--.

Generated via:
binary memgq.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: When lexical binding is in effect, (defun memg-eg(a b) (memq a b)) generates:

PC Byte Instruction
0 1 stack-ref[1]
1 1 stack-ref[1]
2 62 memq
3 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 57

not (63)

not (63)
Call not. See Section “Constructs for Combining Conditions” in The GNU Emacs Lisp
Reference Manual, for a description of this Emacs Lisp function.

Combining Conditions

Implements:
TOS <- (not TO0S).

Generated via:
unary not.

Instruction size:
1 byte

Stack effect:
—141.

Example: When lexical binding is in effect, (defun not-eg(a) (not a)) generates:

PC Byte Instruction
0 137 dup
1 63 not
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 58

symbol-value (74)

symbol-value (74)

Call symbol-value. See Section “Accessing Variable Values” in The GNU Emacs Lisp
Reference Manual, for a description of this Emacs Lisp function.

Implements:
TOS <- (symbol-value TOS).

Generated via:
symbol-value.

Instruction size:
1 byte

Stack effect:
—1+1.

Example: When lexical binding is in effect, (defun symbol-value-eg(a) (symbol-value
a)) generates:

PC Byte Instruction
0 137 dup
1 74 symbol-value
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 59

symbol-function (75)

symbol-function (75)

Call symbol-function. See Section “Accessing Function Cell Contents” in The GNU Emacs
Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
TOS <- (symbol-function TOS).

Generated via:
symbol-function.

Instruction size:
1 byte

Stack effect:
—1+1.

Example: When lexical binding is in effect, (defun symbol-function-eg(a) (symbol-
function a)) generates:

PC Byte Instruction

0 137 dup

1 75 symbol-function
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 60

set (76)

set (76)

Call set. See Section “Setting Variable Values” in The GNU Emacs Lisp Reference Manual,
for a description of this Emacs Lisp function.

Implements:
S[1] <- (set S[1] TOS); top--.

Generated via:
set.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: When lexical binding is in effect, (defun set-eg(a b) (set a b)) generates:

PC Byte Instruction
0 1 stack-ref[1]
1 1 stack-ref[1]
2 76 set
3 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 61

fset (77)

fset (77)

Call fset. See Section “Accessing Function Cell Contents” in The GNU Emacs Lisp Ref-
erence Manual, for a description of this Emacs Lisp function.

Implements:
S[1] <- (fset S[1] TOS); top--.

Generated via:
binary fset.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: When lexical binding is in effect, (defun fset-eg(a b) (fset a b)) generates:

PC Byte Instruction
0 1 stack-ref[1]
1 1 stack-ref[1]
2 77 fset
3 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 62

get (78)

get (78)
Call get. See Section “Accessing Symbol Properties” in The GNU Emacs Lisp Reference
Manual, for a description of this Emacs Lisp function.

Implements:
S[1] <- (get S[1] TOS); top--.

Generated via:
binary get.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: When lexical binding is in effect, (defun get-eg(a b) (get a b)) generates:

PC Byte Instruction
0 1 stack-ref[1]
1 1 stack-ref[1]
2 78 get
3 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 63

equal (154)

equal (154)
Call equal. See Section “Equality Predicates” in The GNU Emacs Lisp Reference Manual,
for a description of this Emacs Lisp function.

Implements:
S[1] <- (equal S[1] TOS); top--.

Generated via:
binary equal.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19|, page 154.

Example: When lexical binding is in effect, (defun equal-eg(a b) (equal a b)) gener-
ates:

PC Byte Instruction
0 1 stack-ref [1]
1 1 stack-ref [1]
2 154 equal
3 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 64

member (157)

member (157)

Call member. See Section “Using Lists as Sets” in The GNU Emacs Lisp Reference Manual,
for a description of this Emacs Lisp function.

Implements:
S[1] <- (member S[1] TOS); top--.

Generated via:
member.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: When lexical binding is in effect, (defun member-eg(a b) (member a b)) gen-
erates:

PC Byte Instruction
0 1 stack-ref[1]
1 1 stack-ref[1]
2 157 member
3 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 65

assq (158)

assq (158)

Call assq. See Section “Association Lits” in The GNU Emacs Lisp Reference Manual, for
a description of this Emacs Lisp function.

Implements:
S[1] <- (assq S[1] TOS); top--.

Generated via:
binary assq.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: When lexical binding is in effect, (defun assq-eg(a b) (assq a b)) generates:

PC Byte Instruction
1 stack-ref[1]
1 stack-ref[1]

168 assq

135 return

w N = O

Chapter 3: Emacs Lisp Bytecode Instructions 66

numberp (167)

numberp (167)

Call numberp. See Section “Type Predicates for Numbers” in The GNU Emacs Lisp Refer-
ence Manual, for a description of this Emacs Lisp function.

Implements:
TOS <- (numberp TOS).

Generated via:
numberp.

Instruction size:
1 byte

Stack effect:
—1+1.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19|, page 154.

Example: When lexical binding is in effect, (defun numberp-eg(a) (numberp a)) gener-
ates:
PC Byte Instruction

137 dup

167 numberp

135 return

N — O

Chapter 3: Emacs Lisp Bytecode Instructions 67

integerp (168)

integerp (168)
Call integerp. See Section “Type Predicates for Numbers” in The GNU Emacs Lisp
Reference Manual, for a description of this Emacs Lisp function.

Implements:
TOS <- (integerp TOS).

Generated via:
integerp.

Instruction size:
1 byte

Stack effect:
—1+1.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19|, page 154.

Example: When lexical binding is in effect, (defun integerp-eg(a) (integerp a)) gen-
erates:
PC Byte Instruction

137 dup

168 integerp

135 return

N — O

Chapter 3: Emacs Lisp Bytecode Instructions 68

3.6.2 List Function Instructions

These instructions correspond to general functions which are not specific to Emacs; common
cases are usually inlined for speed by the bytecode interpreter.

nth (56)

Call nth with two stack arguments. See Section “Accessing Elements of Lists” in The GNU
Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
S[1] <~ (nth S[1] TOS); top--.

Generated via:
nth.

Instruction size:
1 byte

Stack effect:
24 1.

Example: When lexical binding is in effect, (defun nth-eg(1) (nth 560 1)) generates:

PC Byte Instruction
0 192 constant[0] 560
1 1 stack-ref [1]
2 56 nth
3 135 return

Constants Vector: [560]

Chapter 3: Emacs Lisp Bytecode Instructions 69

car (64)

car (64)

Call car with one stack argument. See Section “Accessing Elements of Lists” in The GNU
Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
TOS <~ (car T0S).

Generated via:
car.

Instruction size:
1 byte

Stack effect:
—1+1.

Example: When lexical binding is in effect, (defun car-eg(1) (car 1)) generates:

PC Byte Instruction
0 137 dup
1 64 car
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 70

cdr (65)

cdr (65)

Call cdr with one stack argument. See Section “Accessing Elements of Lists” in The GNU
Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
TOS <- (cdr TOS).

Generated via:
cdr.

Instruction size:
1 byte

Stack effect:
—1+1.

Example: When lexical binding is in effect, (defun cdr-eg(1) (cdr 1)) generates:

PC Byte Instruction
0 137 dup
1 65 cdr
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 71

cons (66)

cons (66)

Call cons with two stack arguments. See Section “Building Cons Cells and Lists” in The
GNU Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
S[1] <- (cons S[1] TOS); top--.

Generated via:
cons.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: (defun cons-eg() (cons ’a ’b)) generates:
P

Q

Byte Instruction

0 192 constant[0] a
1 193 comstant[1] b
2 66 cons

3 135 return

Constants Vector: [a b]

Chapter 3: Emacs Lisp Bytecode Instructions 72

listl (67)

listl (67)
Call 1ist with TOS. See Section “Building Cons Cells and Lists” in The GNU Emacs Lisp
Reference Manual, for a description of this Emacs Lisp function.

Implements:
TOS <- (list TOS).

Generated via:
list.

Instruction size:
1 byte

Stack effect:
-1+ 1.
Example: (defun listl-eg() (list ’a)) generates:

PC Byte Instruction
0 192 constant[0] a
1 67 listil
2 135 return

Constants Vector: [a]

Call 1ist with TOS.

Chapter 3: Emacs Lisp Bytecode Instructions 73

list2 (68)

list2 (68)
Call 1ist with two stack items. See Section “Building Cons Cells and Lists” in The GNU
Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
S[1] <- (1ist S[1] TOS); top--.

Generated via:
list.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: (defun list2-eg() (list ’a ’b)) generates:
P

Q

Byte Instruction

0 192 constant[0] a
1 193 comstant[1] b
2 68 list2

3 135 return

Constants Vector: [a b]

Chapter 3: Emacs Lisp Bytecode Instructions 74

list3 (69)

list3 (69)
Call 1ist with three stack items. See Section “Building Cons Cells and Lists” in The GNU
Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
S[2] <- (1ist S[2] S[1] TOS); top -= 2.

Generated via:
list

Instruction size:
1 byte

Stack effect:
-3+ 1.

Example: (defun list3-eg() (list ’a ’b ’c)) generates:

PC Byte Instruction
0 192 constant[0] a
1 193 comstant[1] b
2 194 comnstant[2] ¢
3 69 list3
4 135 return

Constants Vector: [a b c]

Chapter 3: Emacs Lisp Bytecode Instructions 75

list4 (70)

list4 (70)
Call 1ist with four stack items. See Section “Building Cons Cells and Lists” in The GNU
Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
S[3] <- (1ist S[3] S[2] S[1] TOS); top -= 2.

Generated via:
list.

Instruction size:
1 byte

Stack effect:
—4 4+ 1.

Example: (defun list4-eg() (list ’a ’b ’c ’d)) generates:

PC Byte Instruction
192 constant[0] a
193 constant[1] b
194 comstant[2] ¢
195 comstant[3] d
70 list4

135 return

oad W= O

Constants Vector: [a b c d]

Chapter 3: Emacs Lisp Bytecode Instructions

listN (175)

listN (175)
Call 1ist on up to 255 items. See Section “Building Cons Cells and Lists” in The GNU
Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Note that there are special instruction for the case where there are 1 to 4 items in the

list.

Implements:

S[n-1] <- (list S[n-1] S[n-2] ... TOS); top —= (n-1) where n is the value

of the operand.

Generated via:

list.

Operand: 8-bit number of items in list

Instruction size:

2 bytes

Stack effect:

—n + 1 where n is the value of the instruction operand.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun listN-eg() (list ’a ’b ’c ’d ’e)) generates:

PC

add WD~ O

Byte
192
193
194
195
196
175

135

Instruction
constant[0] a
constant[1] b
constant[2] ¢
constant[3] d
constant[4] e
listN [5]

5
return

Constants Vector: [a b c d el

Chapter 3: Emacs Lisp Bytecode Instructions 77

length (71)

length (71)
Call length with one stack argument. See Section “Sequences” in The GNU Emacs Lisp
Reference Manual, for a description of this Emacs Lisp function.

Implements:
TOS <- (length TOS).

Generated via:
length.

Instruction size:
1 byte

Stack effect:
—1+1.

Example: (defun length-eg() (length ’(a b))) generates:

PC Byte Instruction
0 192 comnstant[0] (a b)
1 71 length
2 135 return

Constants Vector: [(a b)]

Chapter 3: Emacs Lisp Bytecode Instructions 78

aref (72)

aref (72)

Call aref with two stack arguments. See Section “Functions that Operate on Arrays” in
The GNU Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
S[1] <- (aref S[1] TOS); top--.

Generated via:
aref.

Instruction size:

1 byte

Stack effect:
—2+1.

Example: (defun aref-eg() (aref ’[720 721 722] 0)) generates:
PC Byte Instruction

0 192 constant[0] [720 721 722]
1 193 constant[1] O

2 72 aref

3 135 return

Constants Vector: [[720 721 722] 0]

Chapter 3: Emacs Lisp Bytecode Instructions 79

aset (73)

aset (73)

Call aset with three stack arguments. See Section “Functions that Operate on Arrays” in
The GNU Emacs Lisp Reference Manual, for a description of this Emacs Lisp function.

Implements:
S[2] <- (aset S[2] S[1] TOS); top-=2.

Generated via:
aset.

Instruction size:
1 byte

Stack effect:
-2+ 1.

Example: (defun aset-eg() (aset array-var O 730)) generates:

PC Byte Instruction
8 varref[0] array-var
193 constant[1] O
194 comstant[2] 730
73 aset
135 return

S W NN - O

Constants Vector: [array-var O 730]

Chapter 3: Emacs Lisp Bytecode Instructions

nthcedr (155)

nthedr (155)

Call nthedr with two stack arguments.

Implements:
S[1] <- (nthcdr S[1] TOS); top —-.

Generated via:
nthcdr.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun nthcdr-eg() (nthcdr ’ (1550 1551 1552) 2)) generates:

PC Byte Instruction

192 comnstant[0] (1550 1551 1552)
193 constant[1] 2

155 nthcdr

135 return

W N = O

Constants Vector: [(1550 1551 1552) 2]

80

Chapter 3: Emacs Lisp Bytecode Instructions

elt (156)

elt (156)

Call elt with two stack arguments.

Implements:
S[1] <- (elt S[1] TOS); top —-.

Generated via:
elt.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun elt-eg() (elt ’ (1560 1561 1562) 2)) generates:

PC Byte Instruction

192 constant[0] (1560 1561 1562)
193 constant[1] 2

156 elt

135 return

W N = O

Constants Vector: [(1560 1561 1562) 2]

81

Chapter 3: Emacs Lisp Bytecode Instructions

nreverse (159)

nreverse (159)

Call nreverse with one stack argument.

Implements:
TOS <- (elt TO0S).

Generated via:
nreverse.

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun nreverse-eg() (nreverse ’(1590 1591))) generates:

PC Byte Instruction

192 comnstant[0] (1590 1591)
159 nreverse

135 return

N = O

Constants Vector: [(1590 1591)]

82

Chapter 3: Emacs Lisp Bytecode Instructions 83

setcar (160)

setcar (160)

Call setcar with two stack arguments.

Implements:
S[1] <- (setcar S[1] TOS); top--.

Generated via:
setcar.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: With lexical binding in effect, (defun setcar-eg(1l) (setcar 1 1600))) gen-
erates:

PC Byte Instruction

137 dup

192 comstant[0] 1600
160 setcar

135 return

w N+~ O

Constants Vector: [1600]

Chapter 3: Emacs Lisp Bytecode Instructions 84

setcdr (161)

setcdr (161)

Call setcdr with two stack arguments.

Implements:
S[1] <- (setcdr S[1] TOS); top--.

Generated via:
setcdr.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: With lexical binding in effect, (defun setcdr-eg(1l) (setcdr 1 1610))) gen-
erates:

PC Byte Instruction

137 dup

192 comnstant[0] 1610
161 setcdr

135 return

w N+~ O

Constants Vector: [1610]

Chapter 3: Emacs Lisp Bytecode Instructions 85

car-safe (162)

car-safe (162)

Call car-safe with one argument.

Implements:
TOS <- (car-safe T0S).

Generated via:
car-safe.

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: With lexical binding in effect, (defun car-safe-eg(l) (car-safe 1)) gener-
ates:

PC Byte Instruction
137 dup

162 car-safe
135 return

N = O

Chapter 3: Emacs Lisp Bytecode Instructions 86

cdr-safe (163)

cdr-safe (163)

Call cdr-safe with one stack argument.

Implements:
TOS <- (cdr-safe T0S).

Generated via:
cdr-safe.

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: With lexical binding in effect, (defun cdr-safe-eg(l) (cdr-safe 1)) gener-
ates:

PC Byte Instruction
137 dup

163 cdr-safe
135 return

N = O

Chapter 3: Emacs Lisp Bytecode Instructions 87

nconc (164)

nconc (164)

Call nconc with two stack arguments.

Implements:
S[1] <~ (nconc S[1] TOS); top--.

Generated via:
nconc.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: With lexical binding in effect, (defun nconc-eg(a b) (nconc a b)) generates:

PC Byte Instruction
1 stack-ref[1]
1 stack-ref[1]

164 nconc

135 return

W N = O

Chapter 3: Emacs Lisp Bytecode Instructions 88

3.6.3 Arithmetic Function Instructions

These instructions correspond to general functions which are not specific to Emacs; common
cases are usually inlined for speed by the bytecode interpreter.

subl (83)
Call 1-.

Implements:
TOS <- (1- T0S).

Generated via:
1-.

Instruction size:
1 byte

Stack effect:
—-14+1.

Example: When lexical binding is in effect, (defun subl-eg(n) (1- n)) generates:

PC Byte Instruction
0 137 dup

1 83 subl

2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions

addl (84)

add1l (84)
Call 1+.

Implements:
TOS <- (1+ T0S).

Generated via:
unary -.

Instruction size:
1 byte

Stack effect:
—141.

Example: When lexical binding is in effect, (defun addl-eg(n) (1+ n)) generates:

PC Byte Instruction
0 137 dup
1 84 addi
2 135 return

89

Chapter 3: Emacs Lisp Bytecode Instructions 90

eqlsign (85)

eqlsign (85)
Call =.

Implements:
S[1] <- (= 8[1] TOS); top--.

Generated via:
binary =.

Instruction size:
1 byte

Stack effect:
—241.

Example: When dynamic binding is in effect, (defun eqlsign-eg(a b) (= a b)) gener-
ates:
PC Byte Instruction
0 8 varref[0] a
1 9 wvarref[1] b
2 85 eqlsign
3 135 return

Constants Vector: [a b]

Chapter 3: Emacs Lisp Bytecode Instructions

gtr (86)

gtr (86)
Call >.

Implements:
S[1] <= (> s[1] TOS); top--.

Generated via:
>,

Instruction size:
1 byte

Stack effect:
—241.

Example: When lexical binding is in effect, (defun gtr-eg(a b) (> a b)) generates:

PC Byte Instruction
0 1 stack-ref[1]
1 1 stack-ref[1]
2 86 gtr
3 135 return

91

Chapter 3: Emacs Lisp Bytecode Instructions

Iss (87)

1ss (87)
Call <.

Implements:
S[1] <- (< s[1] TOS); top--.

Generated via:
<.

Instruction size:
1 byte

Stack effect:
—241.

92

Example: When dynamic binding is in effect, (defun 1ss-eg(a b) (< a b)) generates:

PC Byte Instruction
0 8 varref[0] a
1 9 varref[1] b
2 87 1ss
3 135 return

Constants Vector: [a b]

Chapter 3: Emacs Lisp Bytecode Instructions

leq (88)

leq (88)
Call <=.

Implements:
S[1] <- (<=8[1] TOS); top--.

Instruction size:
1 byte

Generated via:
<=,

Instruction size:
1 byte

Stack effect:
—241.

93

Example: When dynamic binding is in effect, (defun leq-eg(a b) (<= a b)) generates:

PC Byte Instruction
0 8 varref[0] a
1 9 varref[1] b
2 88 1leq
3 135 return

Constants Vector: [a b]

Chapter 3: Emacs Lisp Bytecode Instructions

geq (89)

geq (89)
Call >=.

Implements:
S[1] <= (>=S[1] TOS); top--.

Instruction size:
1 byte

Generated via:
>=,

Instruction size:
1 byte

Stack effect:
—241.

Example: When lexical binding is in effect, (defun geq-eg(a b) (>= a b)) generates:

PC Byte Instruction
1 stack-ref[1]
1 stack-ref [1]

89 geq

135 return

w NN+~ O

94

Chapter 3: Emacs Lisp Bytecode Instructions

diff (90)

diff (90)
Call binary -.

Implements:
S[1] <- (- s[1] TOS); top--.

Generated via:
binary -.
Instruction size:
1 byte

Instruction size:
1 byte

Stack effect:
—241.

Example: When lexical binding is in effect, (defun diff-eg(a b) (- a b)) generates:

PC Byte Instruction
0 1 stack-ref[1]
1 1 stack-ref[1]
2 90 diff
3 135 return

95

Chapter 3: Emacs Lisp Bytecode Instructions

negate (91)

negate (91)
Call unary -.

Implements:
TOS <- (- T0S).

Generated via:
unary -.

Instruction size:
1 byte

Instruction size:
1 byte

Stack effect:
—14+1.

Example: When lexical binding is in effect, (defun negate-eg(a) (- a)) generates:

PC Byte Instruction
0 8 varref[0] a
1 91 negate
2 135 return

Constants Vector: [a]

96

Chapter 3: Emacs Lisp Bytecode Instructions

plus (92)

plus (92)
Call unary +.

Implements:
S[1] <- (+ s[1] TOS); top--.

Generated via:
+.

Instruction size:
1 byte

Stack effect:
—241.

Example: When dynamic binding is in effect, (defun plus-eg(n) (+ n n)) generates:

PC Byte Instruction
0 8 varref[0] n
1 137 dup
2 92 plus
3 135 return

Constants Vector: [n]

97

Chapter 3: Emacs Lisp Bytecode Instructions

mult (95)

mult (95)
Call *.

Implements:
S[1] <= (x s[1] TOS); top--.

Generated via:
*,

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: When dynamic binding is in effect, (defun mult-eg(n) (* n n)) generates:

PC Byte Instruction

0 8 varref[0] n
1 137 dup

2 95 mult

3

135 return

Constants Vector: [n]

Chapter 3: Emacs Lisp Bytecode Instructions 99

max (93)

max (93)
Call max.

Implements:
S[1] <- (max S[1] TOS); top--.

Generated via:
max.

Instruction size:
1 byte

Stack effect:
—241.

Example: When dynamic binding is in effect, (defun max-eg(a b) (max a b)) generates:

PC Byte Instruction
0 8 wvarref[0] a
1 9 varref[1] b
2 93 max
3 135 return

Constants Vector: [a b]

Chapter 3: Emacs Lisp Bytecode Instructions 100

min (94)

min (94)
Call min.

Implements:
TOS <- (min(S[1] TOS).

Generated via:
binary min.

Instruction size:
1 byte

Stack effect:
—241.

Example: When dynamic binding is in effect, (defun min-eg(a b) (min a b)) generates:

PC Byte Instruction
0 8 wvarref[0] a
1 9 varref[1] b
2 94 min
3 135 return

Constants Vector: [a b]

Chapter 3: Emacs Lisp Bytecode Instructions

quo (165)

quo (165)
Call /.

Implements:
S[1] <- (/ s[1] TOS); top--.

Generated via:

/.

Instruction size:
1 byte

Stack effect:
—241.

101

Example: When dynamic binding is in effect, (defun min-quo(a b) (/ a b)) generates:

PC Byte Instruction
0 8 varref[0] a
1 9 varref[1] b
2 165 quo
3 135 return

Constants Vector: [a b]

Chapter 3: Emacs Lisp Bytecode Instructions

rem (166)

rem (166)
Call %.

implements:
S[1] <- (% s[1] TOS); top--.

generated via:

/A
Instruction size:

1 byte

Stack effect:
—-2+1

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: When lexical binding is in effect, (defun rem-eg(a b) (% a b)) generates:

PC Byte Instruction
1 stack-ref[1]
1 stack-ref[1]

166 rem

135 return

W N = O

102

Chapter 3: Emacs Lisp Bytecode Instructions 103

3.6.4 String Function Instructions

These instructions correspond to general functions which are not specific to Emacs; the
bytecode interpreter calls the corresponding C function for them.

substring (79)

Call substring with three stack arguments.

Implements:
S[2] <- (substring S[2] S[1] TOS); top-=2.

Generated via:
substring.

Instruction size:
1 byte

Stack effect:
24 1.

Example: (defun substring-eg() (substring "abc" 0 2)) generates:

PC Byte Instruction

192 comnstant[0] "abc"
193 comstant[1] O
194 constant[2] 2

79 substring

135 return

W NN - O

Constants Vector: ["abc" 0 2]

Chapter 3: Emacs Lisp Bytecode Instructions

concat2 (80)

concat2 (80)

Call concat with two stack arguments.

Implements:
S[1] <- (concat S[1] TOS); top--.

Generated via:
concat.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun concat2-eg() (concat "a" "b")) generates:

PC Byte Instruction
0 192 constant[0] "a"
1 193 constant[1] "b"
2 80 concat2
3 135 return

Constants Vector: ["a" "b"]

104

Chapter 3: Emacs Lisp Bytecode Instructions

concat3 (81)

concat3 (81)

Call concat with three stack arguments.

Implements:

Generated via:

Instruction size:

Stack effect:

Example:

S[2] <- (concat S[2] S[1] TOS); top-

concat.

(defun concat3-eg() (concat "a" "b" "c")) generates:

1 byte

—2+1.

PC Byte
0 192
1 193
2 194
3 81
4 135

Instruction
constant [0] "a"
constant[1] "b"
constant[2] "c"
concat3

return

Constants Vector: ["a" "b"

IICll]

2.

105

Chapter 3: Emacs Lisp Bytecode Instructions

concat4 (82)

concat4 (82)

Call concat with four stack stack arguments.

Implements:

Generated via:

Instruction size:

Stack effect:

Example:

S[3] <- (concat S[3] S[2] S[1] TOS); top -= 2.

concat.

(defun concat4-eg() (concat "a" "b" "c" "d")) generates:

1 byte

—4+1.

PC Byte
0 192
1 193
2 194
3 195
4 82
5 135

Constants Vector:

Instruction
constant [0] "a"
constant[1] "b"
constant[2] "c"
constant [3] "d"
concat4

return

[Ilall llbll “C" lldll]

106

Chapter 3: Emacs Lisp Bytecode Instructions 107

concatN (174)

concatN (174)

Call concat on up to 255 stack arguments. Note there are special instructions for the case
where there are 2 to 4 items to concatenate.

Implements:
S[n-1] <- (concat S[n-1] S[n-2] ... TOS); top -= (n-1).

Generated via:
concat.

Operand: 8-bit number of items in concat

Instruction size:
2 bytes

Stack effect:
—n + 1 where n is the value of the instruction operand.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19|, page 154.

Example: (defun concatN-eg() (concat "a" "b" "c" "d" "e")) generates:

PC Byte Instruction

192 comnstant[0] "a"
193 constant[1] "b"
194 comstant[2] "c"
195 constant[3] "d"
196 constant[4] "e"
176 concatN [5]

5
7 135 return

add WNDE- O

Constants Vector: ["a" "b" "c" "d" "e"]

Chapter 3: Emacs Lisp Bytecode Instructions

upcase (150)

upcase (150)
Call upcase with one stack argument.

Implements:
TOS <- (upcase T0S).

Generated via:
upcase.

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun upcase-eg() (upcase "abc")) generates:

PC Byte Instruction

192 constant[0] "abc"
150 upcase

135 return

N = O

Constants Vector: ["abc"]

108

Chapter 3: Emacs Lisp Bytecode Instructions

downcase (151)

downcase (151)

Call downcase with one argument.

Implements:
TOS <- (downcase T0S).

Generated via:
downcase.

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun downcase-eg(l) (downcase "ABC")) generates:

PC Byte Instruction

192 constant[0] "ABC"
151 downcase

135 return

N = O

Constants Vector: ["ABC"]

109

Chapter 3: Emacs Lisp Bytecode Instructions 110

stringeqlsign (152)

stringeqlsign (152)
Call string= with two stack arguments, comparing two strings for equality.

Implements:
S[1] <- (string= S[1] TOS); top—-.

Generated via:
string=.
Instruction size:

1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: With lexical binding in effect,
(defun stringeqlsign-eg(a)
(string= a "b"))
generates:
PC Byte Instruction
137 dup
192 constant[0] "b"

1562 string=
135 return

w N = O

Constants Vector: ["b"]

Chapter 3: Emacs Lisp Bytecode Instructions 111

stringlss (153)

stringlss (153)
Call string< with two stack arguments, comparing two strings.

Implements:
S[1] <- (string< S[1] TOS); top--.

Generated via:
string<.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: With lexical binding in effect,
(defun stringlss-eg(a)
(string< a "b"))
generates:
PC Byte Instruction
137 dup
192 constant[0] "b"

153 string<
135 return

w N = O

Constants Vector: ["b"]

Chapter 3: Emacs Lisp Bytecode Instructions

3.6.5 Emacs Buffer Instructions

current-buffer (112)
Call current-buffer.

Implements:
TOS <- (current-buffer)

Generated via:
current-buffer

Instruction size:
1 byte

Stack effect:
-0+ 1.

Example: (defun current-buffer-eg() (current-buffer)) generates:

PC Byte Instruction
0 112 current-buffer
1 135 return

112

Chapter 3: Emacs Lisp Bytecode Instructions

set-buffer (113)

set-buffer (113)
Call set-buffer with TOS.

Implements:
TOS <- (set-buffer TOS)

Generated via:
set-buffer

Instruction size:
1 byte

Stack effect:
—141.

Example: (defun set-buffer-eg() (set-buffer "*scratch")) generates:

PC Byte Instruction

113 set-buffer
135 return

N = O

Constants Vector: ["xscratch"]

192 constant[0] "*scratch"

113

Chapter 3: Emacs Lisp Bytecode Instructions 114

save-current-buffer-1 (114)

save-current-buffer-1 (114)

Call save-current-buffer.

Replaces older save-current-buffer. See [save-current-buffer], page 149.

Implements:
TOS <- (save-current-buffer)

Generated via:
save-current-buffer

Instruction size:
1 byte

Stack effect:
—14+1.

Added in: Emacs 22. See Section 4.5 [Emacs 22|, page 158.

Example:

(defun save-current-buffer-1-eg()
(save-current-buffer (prog 5)))}

generates:

PC Byte Instruction

114 save-current-buffer
192 constant[0] prog
193 comstant[1] 5

33 call[1]

41 unbind[1]

135 return

add WNDE- O

Constants Vector: [prog 5]

Chapter 3: Emacs Lisp Bytecode Instructions 115

buffer-substring (123)

buffer-substring (123)

Call buffer-substring with two stack arguments.

Implements:
S[1] <~ (buffer-substring S[1] TOS); top--.

Generated via:
buffer-substring.

Instruction size:
1 byte

Stack effect:
—2+ 1. Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun buffer-substring-eg() (buffer-substring 1230 1231)) generates:

PC Byte Instruction

192 constant[0] 1230
193 constant[1] 1231
123 buffer-substring
135 return

w N = O

Constants Vector: [1230 1231]

Chapter 3: Emacs Lisp Bytecode Instructions 116

3.6.6 Emacs Position Instructions

These instructions correspond to Emacs-specific position functions that are found in the
"Positions" chapter of the Emacs Lisp Reference Manual. They are not inlined by the
bytecode interpreter, but simply call the corresponding C function.

point (96)
Call point.

Implements:
T0OS <- (point)

Generated via:
point
Instruction size:
1 byte
Stack effect:
-0+ 1.
Added in: Emacs 18.31, renamed from dot. See Section 4.1 [Emacs 18], page 153.
Example: (defun point-eg() (point)) generates:

PC Byte Instruction
0 96 point
1 135 return

Chapter 3: Emacs Lisp Bytecode Instructions

goto-char (98)

goto-char (98)
Call goto-char with one stack argument.

Implements:
TOS <- (goto-char TOS)

Generated via:
goto-char

Instruction size:
1 byte

Stack effect:
—141.

117

Example: With lexical binding in effect, (defun goto-char-eg(n) (goto-char n)) gen-

erates:

PC Byte Instruction
0 137 dup
1 98 goto-char
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions

point-max (100)

point-max (100)
Call point-max.

Implements:
TOS <- (point-max)

Generated via:
point-max
Instruction size:
1 byte

Stack effect:
-0+ 1.

118

Added in: Emacs 18.31, renamed from dot-max. See Section 4.1 [Emacs 18], page 153.

Example: (defun point-max-eg() (point-max)) generates:

PC Byte Instruction
0 100 point-max
1 135 return

Chapter 3: Emacs Lisp Bytecode Instructions

point-min (101)

point-min (101)
Call point-min.

Implements:

TOS <- (point-min)
Generated via:

point-min
Instruction size:

1 byte

Stack effect:
-0+ 1.

119

Added in: Emacs 18.31, renamed from dot-min. See Section 4.1 [Emacs 18], page 153.

Example: (defun point-min-eg() (point-min)) generates:

PC Byte Instruction
0 101 point-min
1 135 return

Chapter 3: Emacs Lisp Bytecode Instructions

forward-char (117)

forward-char (117)

Call forward-char with one stack argument.

Implements:
TOS <- (forward-char TOS)

Generated via:
forward-char

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun forward-char-eg() (forward-char 1)) generates:

PC Byte Instruction
192 comstant[0] 1
117 forward-char
135 return

N = O

Constants Vector: [1]

120

Chapter 3: Emacs Lisp Bytecode Instructions

forward-word (118)

forward-word (118)

Call forward-word with one stack argument.

Implements:
TOS <- (forward-word TOS)

Generated via:
forward-word

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun forward-word-eg() (forward-word 1)) generates:

PC Byte Instruction
192 comstant[0] 1
118 forward-word
135 return

N = O

Constants Vector: [1]

121

Chapter 3: Emacs Lisp Bytecode Instructions

forward-line (121)

forward-line (121)

Call forward-line with one stack argument.

Implements:
TOS <- (forward-line TOS)

Generated via:
forward-line

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun forward-line-eg() (forward-line 1)) generates:

PC Byte Instruction
192 comstant[0] 1
121 forward-line
135 return

N = O

Constants Vector: [1]

122

Chapter 3: Emacs Lisp Bytecode Instructions 123

skip-chars-forward (119)

skip-chars-forward (119)

Call skip-chars-forward with two stack arguments.

Implements:
S[1] <- (skip-chars-forward S[1] TOS); top--.

Generated via:
skip-chars-forward.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun skip-chars-forward-eg() (skip-chars-forward "aeiou" 3))
generates:

PC Byte Instruction

192 constant[0] "aeiou"
193 comnstant[1] 3

119 skip-chars-forward
135 return

w N+~ O

Constants Vector: ["aeiou" 3]

Chapter 3: Emacs Lisp Bytecode Instructions 124

skip-chars-backward (120)

skip-chars-backward (120)

Call skip-chars-backward with two stack arguments.

Implements:
S[1] <- (skip-chars-backward S[1] TOS); top--.

Generated via:
skip-chars-backward.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun skip-chars-backward-eg() (skip-chars-backward "aeiou" 3))
generates:

PC Byte Instruction

192 constant[0] "aeiou"
193 comnstant[1] 3

120 skip-chars-backward
135 return

w N+~ O

Constants Vector: ["aeiou" 3]

Chapter 3: Emacs Lisp Bytecode Instructions 125

narrow-to-region (125)

narrow-to-region (125)
Call narrow-to-region with two stack arguments.

Implements:
S[1] <~ (narrow-to-region S[1] TOS); top--.

Generated via:
narrow-to-region.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun narrow-to-region-eg() (narrow-to-region 1250 1251)) generates:

PC Byte Instruction

192 constant[0] 1250
193 constant[1] 1251
125 narrow-to-region
135 return

W N = O

Constants Vector: [1250 1251]

Chapter 3: Emacs Lisp Bytecode Instructions

widen (126)

widen (126)
Call widen.

Implements:
TOS <- (widen)

Generated via:
widen

Instruction size:
1 byte

Stack effect:
-0+ 1.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun widen-eg() (widen)) generates:

PC Byte Instruction
0 126 widen
1 135 return

126

Chapter 3: Emacs Lisp Bytecode Instructions 127

3.6.7 Emacs Text Instructions

These instructions correspond to Emacs-specific text manipulation functions found in the
"Text" chapter of the Emacs Lisp Reference Manual. They are not inlined by the bytecode
interpreter, but simply call the corresponding C function.

insert (99)
Call insert with one stack argument.

Implements:
TOS <- (insert TOS)

Generated via:
insert

Instruction size:
1 byte

Stack effect:
—141.

Example: With lexical binding in effect, (defun insert-eg(n) (insert n)) generates:

PC Byte Instruction
0 137 dup
1 99 insert
2 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 128

insertN (99)

insertN (99)

Call insert on up to 255 stack arguments. Note there is a special instruction when there
is only one stack argument.

Implements:
S[n-1] <- (insert S[n-1] S[n-2] ... TOS); top -= (n-1).

Generated via:
insert

Operand: 8-bit number of items in concat

Instruction size:
2 bytes

Stack effect:
—n + 1 where n is the value of the instruction operand.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19|, page 154.

Example: With lexical binding in effect, (defun insertN-eg(a b c) (insert a b c))
generates:

PC Byte Instruction
0 2 stack-ref [2]
1 2 stack-ref [2]
2 2 stack-ref[2]
3 177 insertN [3]

3
5 135 return

Chapter 3: Emacs Lisp Bytecode Instructions 129

char-after (102)

char-after (102)

Call char-after with one stack argument.

Implements:
TOS <- (char-after TOS)

Generated via:
char-after

Instruction size:
1 byte

Stack effect:
—141.

Example: (defun char-after-eg() (char-after)) generates:

PC Byte Instruction

192 constant[0] nil
102 char-after

135 return

N = O

Constants Vector: [nill]

Chapter 3: Emacs Lisp Bytecode Instructions

following-char (103)

following-char (103)
Call following-char.

Implements:
TOS <- (following-char TOS)

Generated via:
following-char

Instruction size:
1 byte

Stack effect:
—141.

Example: (defun following-char-eg() (following-char)) generates:

PC Byte Instruction
0 103 following-char
1 135 return

130

Chapter 3: Emacs Lisp Bytecode Instructions

preceding-char (104)

preceding-char (104)

Call preceding-char.

Implements:
TOS <- (preceding-char T0S)

Generated via:
preceding-char

Instruction size:
1 byte

Stack effect:
—141.

Example: (defun preceding-char-eg() (preceding-char)) generates:

PC Byte Instruction
0 104 preceding-char
1 135 return

131

Chapter 3: Emacs Lisp Bytecode Instructions

current-column (105)

current-column (105)

Call current-column.

Implements:
TOS <- (current-column)

Generated via:
current-column

Instruction size:
1 byte

Stack effect:
-0+ 1.

Example: (defun current-column-eg() (current-column)) generates:

PC Byte Instruction
0 105 current-column
1 135 return

132

Chapter 3: Emacs Lisp Bytecode Instructions

eolp (108)

eolp (108)
Call eolp.

Implements:
TOS <- (eolp)

Generated via:
eolp

Instruction size:
1 byte

Stack effect:
-0+ 1.

Example: (defun eolp-eg() (eolp)) generates:

PC Byte Instruction
0 108 eolp
1 135 return

133

Chapter 3: Emacs Lisp Bytecode Instructions

eobp (109)

eobp (109)
Call eobp.

Implements:
TOS <- (eobp)

Generated via:
eobp

Instruction size:
1 byte

Stack effect:
-0+ 1.

Example: (defun eobp-eg() (eobp)) generates:

PC Byte Instruction
0 109 eobp
1 135 return

134

Chapter 3: Emacs Lisp Bytecode Instructions

bolp (110)

bolp (110)
Call bolp.

Implements:
TOS <- (bolp)

Generated via:
bolp

Instruction size:
1 byte

Stack effect:
-0+ 1.

Example: (defun bolp-eg() (bolp)) generates:

PC Byte Instruction
0 110 Dbolp
1 135 return

135

Chapter 3: Emacs Lisp Bytecode Instructions

bobp (111)

bobp (111)
Call bobp.

Implements:
TOS <- (bobp)

Generated via:
bobp

Instruction size:
1 byte

Stack effect:
-0+ 1.

Example: (defun bobp-eg() (bobp)) generates:

PC Byte Instruction
0 111 bobp
1 135 return

136

Chapter 3: Emacs Lisp Bytecode Instructions 137

delete-region (124)

delete-region (124)
Call delete-region with two stack arguments.
Call delete-region with two stack arguments.

Implements:
S[1] <- (delete-region S[1] TOS); top--.

Generated via:
delete-region.

Instruction size:
1 byte

Stack effect:
—241.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun delete-region-eg() (delete-region 1240 1241)) generates:

PC Byte Instruction

192 constant[0] 1240
193 constant[1] 1241
124 delete-region
135 return

w N = O

Constants Vector: [1240 1241]

Chapter 3: Emacs Lisp Bytecode Instructions

end-of-line (127)

end-of-line (127)
Call end-of-1ine with one stack argument.

Implements:
(end-of-line TOS; top--—

Generated via:
delete-region.

Instruction size:
1 byte

Stack effect:
—140—.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun end-of-line-eg() (end-of-line)) generates:

PC Byte Instruction

192 comnstant[0] nil
127 end-of-line

135 return

N = O

Constants Vector: [nill]

138

Chapter 3: Emacs Lisp Bytecode Instructions 139

3.6.8 Emacs Misc Function Instructions

These instructions correspond to miscellaneous Emacs-specific functions. They are not
inlined by the bytecode interpreter, but simply call the corresponding C function.

char-syntax (122)

Call char-syntax with one stack argument.

Implements:
TOS <- (char-syntax TOS)

Generated via:
char-syntax

Instruction size:
1 byte

Stack effect:
—-14+1.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun char-syntax-eg() (char-syntax 7a)) generates:
PC Byte Instruction

192 comnstant[0] 97

122 char-syntax

135 return

N = O

Constants Vector: [97]

Chapter 3: Emacs Lisp Bytecode Instructions 140

save-excursion (138)

save-excursion (138)
Make a binding recording buffer, point, and mark.

This instruction manipulates the special-bindings stack by creating a new binding when
executed. It needs to be balanced with unbind instructions.

Implements:
(save-excursion).

Generated via:
save-excursion

Instruction size:
1 byte

Stack effect:
-0+ 0.

Example: When lexical binding is in effect, (defun save-excursion-eg()
(save-excursion 1380)) generates:

PC Byte Instruction

138 save—-excursion
192 constant[0] 1380
41 unbind[1]

135 return

w N = O

Constants Vector: [1380]

Chapter 3: Emacs Lisp Bytecode Instructions 141

set-marker (147)

set-marker (147)

Call set-marker with three stack arguments.

Implements:
S[2] <- (set-marker S[2] S[1] TOS); top -= 2.

Generated via:
set-marker

Instruction size:
1 byte

Stack effect:
-3+ 1.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: When lexical binding is in effect, (defun set-marker-eg(marker position)
(set-marker marker position)) generates:

PC Byte Instruction

1 stack-ref[1]

1 stack-ref[1]
192 constant [0] nil
147 set-marker
135 return

S W NN -, O

Constants Vector: [nill]

Chapter 3: Emacs Lisp Bytecode Instructions

match-beginning (148)

match-beginning (148)
Call match-beginning with one stack argument.

Implements:
TOS <- (match-beginning TOS)

Generated via:
match-beginning

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun match-beginning-eg() (match-beginning 1)) generates:

PC Byte Instruction

192 constant[0] 1
148 match-beginning
135 return

N = O

Constants Vector: [1]

142

Chapter 3: Emacs Lisp Bytecode Instructions

match-end (149)

match-end (149)

Call match-end with one stack argument.

Implements:
TOS <- (match-end TOS)

Generated via:
match-end

Instruction size:
1 byte

Stack effect:
—141.

Added in: Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Example: (defun match-end-eg() (match-end 1)) generates:

PC Byte Instruction
192 comstant[0] 1
148 match-end

135 return

N = O

Constants Vector: [1]

143

Chapter 3: Emacs Lisp Bytecode Instructions 144

3.7 Stack-Manipulation Instructions

discard (136)

Discard one value from the stack.

Implements:
top--

Instruction size:

1 byte

Generated via:
Function calls that do not use the returned value; the end of 1et forms in lexical
binding to remove locally-bound variables.

Stack effect:
—140.

Example: (defun discard-eg() (exchange-point-and-mark) (point)) generates:

PC Byte Instruction

0 192 constant[0] exchange-point-and-mark
1 32 calllo0]

2 136 discard

3 96 point

4 135 return

Constants Vector: [exchange-point-and-mark]

Chapter 3: Emacs Lisp Bytecode Instructions 145

discardN (180)

discardN (180)

Discards up to 127 arguments from the stack. Note there is a special instruction when there
is only one argument.

Implements:
if (n & 8) S[n] <- TOS; top -—=n & 7; where n where n is the value of the
operand.

operand: 7-bit number of items to discard. The top 8th bit when set indicates to keep
the old TOS value after discarding.

Instruction size:
2 bytes

Generated via:
Function calls that do not use the returned value; the end of 1et forms in lexical
binding with optimization to remove locally-bound variables.

Stack effect:
—n—+0

Added in: Emacs 24.1. See Section 4.7 [Emacs 24], page 159.
Example: When lexical binding is in effect and optimization are in effect,
(1+ (Qet ((a 1) (Lb) (Lc)) a)))
generates:

PC Byte Instruction

0 192 constant[0] 1

1 193 constant[1] nil

2 137 dup

3 2 stack-ref[2]

4 182 discardN [131]
131

6 84 add1

7 135 return

Constants Vector: [1 nil]

Chapter 3: Emacs Lisp Bytecode Instructions 146

dup (137)

dup (137)
Make a copy of the top-of-stack value and push that onto the top of the evaluation stack.

Implements:
top++; TOS <- S[1]

Generated via:
setq in dynamic bindings to set a value and then use it. In lexical binding, to
use the first argument parameter.

Instruction size:
1 byte

Stack effect:
-0+ 1.
Example: When lexical binding is in effect,

generates:

PC Byte Instruction
0 137 dup ;; duplicates top of stack, argument n
1 135 return

Chapter 3: Emacs Lisp Bytecode Instructions

stack-set (178)

stack-set (178)

Sets a value on the evaluation stack to TOS.

Implements:

S[i] <- TOS; top-- where 1 is the value of the instruction operand.

147

Note that stack-set [0] has the same effect as discard, but does a little more
work to do this. stack-set[1] has the same effect as discardN 1 with the top
bit of discardN set to preserve TOS.

Generated via:

let, let* and lambda arguments.

Operand: A 8-bit integer stack index

Instruction size:

2 bytes

Stack effect:

—-1+0.

Added in: Emacs 24.1. See Section 4.7 [Emacs 24|, page 159.

Example: When lexical binding is in effect and optimization

defun stack-set-eg()
(let ((a 5) a)))

generates:

PC Byte
0 192
1 193
2 193
3 178
5 136
6 135

Instruction
constant[0] 5
constant[1] nil
constant[1] nil
stack-set [2]

2
discard
return

Constants Vector: [5 nil]

Chapter 3: Emacs Lisp Bytecode Instructions 148

stack-set2 (179)

stack-set2 (179)

Implements:
S[i] <- TOS; top-- where i is the value of the instruction operand.

Note that stack-set2[0] has the same effect as discard, but does a little
more work to do this. stack-set2[1] has the same effect as discardN 1 with
the top bit of discardN set to preserve TOS.

Generated via:
let, let* and lambda arguments.

Operand: A 16-bit integer stack index

Instruction size:
3 bytes

Stack effect:
—140.

Added in: Emacs 24.1. See Section 4.7 [Emacs 24|, page 159.

Example: 77

Chapter 3: Emacs Lisp Bytecode Instructions 149

3.8 Obsolete or Unused Instructions

These instructions are not generated by Emacs Lisp bytecode generation. In some cases,
they were generated in a older version of Emacs. In some cases the instructions may have
been planned to being used but never were. In some cases, the instructions are still handled
if they appear (such as from older bytecode), but in other cases they are no longer accepted
by the interperter.

It is also possible that code outside of the Emacs Lisp distribution generates these
instructions.
save-current-buffer (97)

Replaced by save-current-buffer-1. See [save-current-buffer-1], page 114.

mark (97)
Used in V 17; obsolete in Emacs 18.31. See Section 4.1 [Emacs 18], page 153.

scan-buffer (107)
Obsolete in Emacs 18.31. See Section 4.1 [Emacs 18], page 153.

read-char (114)

set-mark (115)
Obsolete in Emacs 18.31. See Section 4.1 [Emacs 18], page 153.

interactive-p (116)

save-window-excursion (139)

Call save-window-excursion.

Implements:
(save-window—-excursion BLOCK)

Generated via:
save-window—-excursion

Instruction size:
1 byte

Stack effect:
—140.

Obsolete since:
Emacs 24.1. See Section 4.7 [Emacs 24], page 159. Now generates a se-
quence of bytecode that includes calls to current-window-configuration and
set-window-configuration

Example:

(defun save-window-excursion()
(save-window-excursion 1390))

Chapter 3: Emacs Lisp Bytecode Instructions 150

generates:

PC Byte Instruction

192 constant[0] (1390)
139 save-window—-excursion
135 return

N = O

Constants Vector: [(1390)]

condition-case (143)
Replaced by pushconditioncase. See [pushconditioncase|, page 42,

Implements:
?

Generated via:
?

Instruction size:
1 byte

Stack effect:
24 1.

Obsolete since:
Emacs 24.4. See Section 4.7 [Emacs 24|, page 159.

Example: (defun condition-case-eg() (7)) generates:

temp-output-buffer-setup (144)

Implements:
Setup for with-output-to-temp-buffer.

Generated via:
with-output-to-temp-buffer

Instruction size:
1 byte

Stack effect:
—-1+0.

Obsolete since:
Emacs 24.1. See Section 4.7 [Emacs 24|, page 159.

Example: (defun wottb-eg () (with-output-to-temp-buffer "wottb" 5)) generates:

PC Byte Instruction

192 constant[0] "wottb"

144 temp-output-buffer-setup
193 constant[1] 5

145 temp-output-buffer-show
135 return

S W NN - O

Constants Vector: ["wottb" 5]

Chapter 3: Emacs Lisp Bytecode Instructions 151

temp-output-buffer-show (145)

Implements:
Finishing code of with-output-to-temp-buffer.

Generated via:
with-output-to-temp-buffer

Instruction size:
1 byte

Stack effect:
-0+ 0.

Obsolete in:
Emacs 24.1. See Section 4.7 [Emacs 24|, page 159.

Example: (defun wottb-eg () (with-output-to-temp-buffer "wottb" 5)) generates:

PC Byte Instruction

192 constant[0] "wottb"

144 temp-output-buffer-setup
193 comstant[1] 5

145 temp-output-buffer-show
135 return

S W NN - O

Constants Vector: ["wottb" 5]

unbind-all (146)

Introduced in Emacs 19.34 for tail-recursion elimination by jwz, but never used. See
Section 4.2 [Emacs 19], page 154.

Chapter 3: Emacs Lisp Bytecode Instructions 152

3.8.12 Relative Goto Instructions

In Emacs 19.34, Hallvard Furuseth introduced relative goto instructions. However, they
have rarely have been generated in bytecode, and currently are not.

From Hallvard:

Relative jump instructions: There’s an apparently unanswered mail in my mail-
box about them being buggy and asking how they worked. I expect they got
disabled for that reason rather than someone trying to debug. I don’t remeber
why I introduced them. Maybe just a space optimization and not worth the
effort. I hadn’t quite learned that there are times to not bother optimizing:-)

There have been reports however that others have used these instructions in alternate
languages that generate bytecode.

Rgoto (170)
Relative jump version of see [goto], page 44.
Introduced but unused in Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Rgotoifnil (171)
Relative jump version of see [goto-if-nil], page 45.

Introduced but unused in Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Rgotoifnonnil (172)
Relative-jump version of see [goto-if-not-nil|, page 46.
Introduced but unused in Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Rgotoifnilelsepop (173)
Relative-jump version of see [goto-if-nil-else-pop]|, page 47.

Introduced but unused in Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

Rgotoifnonnilelsepop (174)

Relative-jump version of see [goto-if-not-nil-else-pop], page 48.
Introduced but unused in Emacs 19.34. See Section 4.2 [Emacs 19], page 154.

153

4 Instruction Changes Between Emacs Releases

The infomation in this chapter may not be as precise or granular as it could be. I invite
those who want more detail to look at Lars Brinkhoff’s Emacs History (https://github.
com/larsbrinkhoff/emacs-history) project.

Feel free suggest changes, as github pull requests, to make this chapter more detailed.

4.1 After 16 and Starting in 18.31

The following instructions were renamed:
e dot becomes mark (97). See [mark], page 149.
e dot-min becomes point-min (100). See [point-min], page 119.

e dot-max becomes point-max (101). See [point-max], page 118.

The following instructions became obsolete:
e mark (97). See [mark], page 149.
e scan-buffer (107). See [scan-buffer]|, page 149.
e set-mark (115). See [set-mark], page 149.

Version 18 Release History

e Emacs 18.31 was released Nov 23, 1986
e Emacs 18.32 was released Dec 6, 1986

e Emacs 18.33 was released Dec 12, 1986
e Emacs 18.35 was released Jan 5, 1987

e Emacs 18.36 was released Jan 21, 1987
e Emacs 18.37 was released Feb 11, 1987
e Emacs 18.38 was released Mar 3, 1987

e Emacs 18.39 was released May 14, 1987
e Emacs 18.40 was released Mar 18, 1987
e Emacs 18.41 was released Mar 22, 1987
e Emacs 18.44 was released Apr 15, 1987
e Emacs 18.46 was released Jun 8, 1987

e Emacs 18.47 was released Jun 15, 1987
e Emacs 18.48 was released Aug 30, 1987
e Emacs 18.49 was released Sep 17, 1987
e Emacs 18.50 was released Feb 13, 1988
e Emacs 18.51 was released May 6, 1988

e Emacs 18.52 was released Aug 31, 1988
e Emacs 18.59 was released Oct 30, 1988

https://github.com/larsbrinkhoff/emacs-history
https://github.com/larsbrinkhoff/emacs-history

Chapter 4: Instruction Changes Between Emacs Releases 154

4.2 After 18.59 and Starting 19.34

Jamie Zawinski and Hallvard Breien Furuseth made major changes and additions to the
bytecode interpreter.

From Hallvard:

Originally I just generalized some stuff, made bytecomp output byte-code at file
level, added code to skip compiling very small code snippets when introducing
the byte-code call would be a pessimization (looks like this has been partly
reverted now that there are #[function objects]), and I made some other simple
optimizations.

Bytecomp compiled directly to bytecode. Jamie Zawinski invented the inter-
mediate stage lapcode which made more thorough optimization possible (byte-
opt), and we got together about optimizing more.

The following instructions were added:
mult (97). See [mult], page 98.
forward-char (117). See [forward-char], page 120.
forward-word (118). See [forward-word], page 121.
skip-chars-forward (119). See [skip-chars-forward], page 123.
skip-chars-backward (120). See [skip-chars-backward], page 124.
forward-line (121). See [forward-line], page 122.
char-syntax (122). See [char-syntax], page 139.
buffer-substring (123). See [buffer-substring], page 115.
delete-region (124). See [delete-region|, page 137.
narrow-to-region (125). See [narrow-to-region|, page 125.
widen (126). See [widen], page 126.
end-of-line (127). See [end-of-line|, page 138.
unbind-all (146). See [unbind-all], page 151.
set-marker (147). See [set-marker], page 141.
match-beginning (148). See [match-beginning], page 142.
match-end (149). See [match-end], page 143.
upcase (150). See [upcase], page 108.
downcase (151). See [downcase], page 109.
stringeqlsign (152). See [stringeqlsign], page 110.
stringlss (153). See [stringlss|, page 111.
equal (154). See [equal|, page 63.
nthedr (155). See [nthedr|, page 80.
elt (156). See [elt], page 81.
member (157). See [member], page 64.
assq (158). See [assq], page 65.

nreverse (159). See [nreverse|, page 82.

Chapter 4: Instruction Changes Between Emacs Releases

setcar (160). See [setcar], page 83.

setcdr (161). See [setcdr], page 84.
car-safe (162). See [car-safe], page 85.
cdr-safe (163. See [cdr-safe|, page 86.
nconc (164). See [nconc|, page 87.

quo (165). See [quo], page 101.

rem (166). See [rem]|, page 102.

numberp (167). See [numberp], page 66.
integerp (162). See [integerp]|, page 67.
Rgoto (170). See [Rgoto], page 152.
Rgotoifnil (171). See [Rgotoifnil], page 152.
Rgotoifnonnil (172). See [Rgotoifnonnil], page 152.

Rgotoifnilelsepop (173). See [Rgotoifnilelsepop], page 152.
Rgotoifnonnilelsepop (174). See [Rgotoifnonnilelsepop], page 152.

listN (175). See [listN], page 76.
concatN (176). See [concatN], page 107.
insertN (177). See [insertN], page 128.

155

Instruction unbind-all was added to support tail-recursion removal. However this was

never subsequently implemented; so this intruction was never generated.

Starting in this version, unless C prepocessor variable BYTE_CODE_SAFE (off by default)
is defined, the obsolete instructions listed in 18.59 are not implemented.

The following obsolete instructions throw an error when BYTE_CODE_SAFE is defined:

mark (97)
scan-buffer (107)
set-mark (115)

Bytecode meta-comments look like this:

;35 compiled by rms@psilocin.gnu.ai.mit.edu on Mon Jun 10 17:37:37 1996

’ ’ ,
39
39

3

;55 this file uses opcodes which do not exist in Emacs 18.

from file /home/fsf/rms/el19/1lisp/bytecomp.el
emacs version 19.31.2.

; bytecomp version FSF 2.10

optimization is on.

Version 19 Release History

Emacs 19.7 was released May 22 1993
Emacs 19.8 was released May 25 1993
Emacs 19.9 was released May 27 1993
Emacs 19.10 was released May 30 1993
Emacs 19.11 was released Jun 1, 1993

Chapter 4: Instruction Changes Between Emacs Releases 156

e Emacs 19.12 was released Jun 1, 1993
e Emacs 19.13 was released Jun 8, 1993
e Emacs 19.14 was released Jun 17, 1993
e Emacs 19.15 was released Jun 19, 1993
e Emacs 19.16 was released Jul 6, 1993

e Emacs 19.17 was released Jul 7, 1993

e Emacs 19.18 was released Aug 8, 1993
e Emacs 19.19 was released Aug 14, 1993
e Emacs 19.20 was released Nov 11, 1993
e Emacs 19.21 was released Nov 16, 1993
e Emacs 19.22 was released Nov 27, 1993
e Emacs 19.23 was released May 17, 1994
e Emacs 19.24 was released May 23, 1994
e Emacs 19.25 was released May 30, 1994
e Emacs 19.26 was released Sep 7, 1994

e Emacs 19.27 was released Sep 11, 1994
e Emacs 19.29 was released Jun 19, 1995
e Emacs 19.30 was released Nov 24, 1995
e Emacs 19.31 was released May 25, 1996
e Emacs 19.31 was released May 25, 1996
e Emacs 19.32 was released Aug 7, 1996
e Emacs 19.33 was released Sept 11, 1996

The Emacs Lisp tarball for 19.2 is Aug, 1992. (The tarball date for 19.2 is much later;
and even after the date on the 20.1 tarball.)

4.3 After 19.34 and Starting in 20.1

save-current-buffer (97). See [save-current-buffer|, page 149, and save-current-
buffer-1 (114) do the same thing, but the former is deprecated. The latter opcode
replaces read-char which was not generated since v19.

I am not sure why the change; changing this opcode number however put it next to other
buffer-related opcodes.

Bytecode meta-comments look like this:

;35 Compiled by rms@psilocin.gnu.ai.mit.edu on Sun Aug 31 13:07:37 1997
;33 from file /home/fsf/rms/el9/lisp/emacs-lisp/bytecomp.el

;35 in Emacs version 20.0.97.1

;35 with bytecomp version 2.33

;55 with all optimizations.

;55 This file uses opcodes which do not exist in Emacs 18.

Chapter 4: Instruction Changes Between Emacs Releases 157

Version 20 Release History
FEmacs 20.1 was released Sep 15, 1997
e Emacs 20.2 was released Sep 19, 1997
Emacs 20.3 was released Aug 19, 1998
Emacs 20.4 was released Jul 14, 1999

Chapter 4: Instruction Changes Between Emacs Releases 158

4.4 After 20.1 and Starting in 21.1

There were no instruction changes. However there were major changes in the bytecode
interpreter.

An instruction with opcode 0 causes an abort.
Bytecode meta-comments look like this:

;35 Compiled by pot@pot.cnuce.cnr.it on Tue Mar 18 15:36:26 2003

;55 from file /home/pot/gnu/emacs-pretest.new/lisp/emacs-lisp/bytecomp.el
;55 in Emacs version 21.3

;33 with bytecomp version 2.85.4.1

;55 with all optimizations.

Version 21 Release History

e Emacs 21.1 was released Oct 20, 2001
Emacs 21.2 was released Mar 16, 2002
Emacs 21.3 was released Mar 18, 2003
Emacs 21.4 was released Feb 6, 2005

4.5 After 21.4 and Starting in 22.1

There were no instruction changes.
The bytecode meta-comment no longer includess the bytecomp version used.
Bytecode meta-comments look like this:

;33 Compiled by cyd@localhost on Sat Jun 2 00:54:30 2007
;3; from file /home/cyd/emacs/lisp/emacs-lisp/bytecomp.el
;53 1in Emacs version 22.1

;55 with all optimizations.

;35 This file uses dynamic docstrings, first added in Emacs 19.29.

Version 22 Release History

e Emacs 22.1 was released Jun 02, 2007
e The Emacs 22.2 tarball is dated Mar 26 2008
e The Emacs 22.3 tarball is dated Sep 05 2008

4.6 After 22.3 and Starting in 23.1

There were no instruction changes.
Bytecode meta-comments look like this:

;55 Compiled by cyd@furry on Wed Jul 29 11:15:02 2009

;3; from file /home/cyd/emacs/lisp/emacs-1lisp/bytecomp.el
;33 in Emacs version 23.1

;55 with all optimizations.

;35 This file uses dynamic docstrings, first added in Emacs 19.29.

Chapter 4: Instruction Changes Between Emacs Releases 159

Version 23 Release History

Emacs 23.1 was released Jul 29, 2009
Emacs 23.2 was released May 7, 2010
Emacs 23.3 was released Mar 7, 2011
e The Emacs 23.4 tarball is dated Jan 28, 2012

4.7 After 23.4 and Starting in 24.1

An error is thrown for unknown bytecodes rather than aborting.
The following instructions were added:
e stack-set (178). See [stack-set], page 147.
e stack-set2, (179). See [stack-set2], page 148.
e discardN, (180). See [discardN], page 145.
Unless C preprocessor variable BYTE_CODE_SAFE (off by default) is defined, obsolete
instructions below and from earlier versions are not implemented.
e temp-output-buffer-setup (144). See [temp-output-buffer-setup|, page 150.
e temp-output-buffer-show (145). See [temp-output-buffer-show], page 151.

e save-window-excursion (139). See [save-window-excursion], page 149.

Instruction unbind-all, which never was generated, was marked obsolete in this version.

The bytecode meta-comment no longer who user/hostname compiled and at what time.
A message indicating whether utf-8 non-ASCII characters is used is included.

The following instructions were added in 24.4:
e pophandler (48). See [pophandler], page 41.
e pushconditioncase (49). See [pushconditioncase], page 42.
e pushcatch (50). See [pushcatch], page 43.

Bytecode meta-comments look like this:

;5; from file /misc/emacs/bzr/emacs24-merge/lisp/emacs-lisp/bytecomp.el
;35 in Emacs version 24.3
;55 with all optimizations.

;35 This file uses dynamic docstrings, first added in Emacs 19.29.

;33 This file does not contain utf-8 non-ASCII characters,
;;; and so can be loaded in Emacs versions earlier than 23.

Version 24 Release History

e The Emacs 24.1 tarball is dated Jun 10, 2012
e The Emacs 24.2 tarball is dated Aug 27, 2012
e Emacs 24.3 was released Mar 11, 2013
e Emacs 24.4 was released Oct 20, 2014
e Emacs 24.5 was released Apr 10, 2015

Chapter 4: Instruction Changes Between Emacs Releases 160

4.8 After 24.5 and Starting in 25.1

Instruction 0 becomes an error rather than aborting emacs.
A number of changes were made to bytecode.c.
The bytecode meta-comment no longer includes the source-code path.
Bytecode meta-comments look like this:

;55 Compiled

;35 in Emacs version 25.2

;55 with all optimizations.

;35 This file uses dynamic docstrings, first added in Emacs 19.29.

;33 This file does not contain utf-8 non-ASCII characters,
;;; and so can be loaded in Emacs versions earlier than 23.

Version 25 Release History

e Emacs 25.1 was released Sep 16, 2016
e The Emacs 25.2 tarball is dated Apr 21, 2017
e Emacs 25.3 was released Sep 11, 2017

4.9 After 25.3 and Starting in 26.1

The following instruction was added:
e switch (183) See commit 88549ec38¢9bb30e338a9985d0de4e6263b40fb7.

4.10 After 26.1 and Starting in 27.1
No changes yet.

161

5 Opcode Table

In the table below, a * before the intruction name indicates an obsolete instruction, or
instruction that is no longer generated by the bytecode compiler. On the other hand, ! in-
dicates not just an obsolete instruction, but one that no longer is interpreted. See Section 3.1
[Instruction-Description Format], page 30, for abbreviations used here, a description of how
to interpret an opcode when it contains an index, and for a description of how to interpret
the stack-effect field.

5.1 Opcodes (0000-0077)

Oct Dec Instruction Size Description Stack

00 0 An error. Before 25.1 it is an im-
mediate program abort! Logically
stack-ref [0] but dup should be
used instead.

01 1 stack-ref [1] 1 See [stack-ref], page 33. +1

02 2 stack-ref [2] 1 See [stack-ref], page 33. +1

03 3 stack-ref [3] 1 See [stack-ref], page 33. +1

04 4 stack-ref [4] 1 See [stack-ref], page 33. +1

05 5 stack-ref [5] 1 See [stack-ref], page 33. +1

06 6 stack-ref [6] 2 See [stack-ref], page 33. +1

07 7 stack-ref [7] 3 See [stack-ref], page 33. +1
010 8 varref [0] 1 See [varref], page 34. +1
011 9 varref [1] 1 See [varref], page 34. +1
012 10 varref [2] 1 See [varref], page 34. +1
013 11 varref [3] 1 See [varref], page 34. +1
014 12 varref [4] 1 See [varref], page 34. +1
015 13 varref [5] 1 See [varref], page 34. +1
016 14 varref [6] 2 See [varref], page 34. +1
017 15 varref [7] 3 See [varref], page 34. +1
020 16 varset [0] 1 See [varset], page 35. -1
021 17 varset [1] 1 See [varset], page 35. -1
022 18 varset [2] 1 See [varset], page 35. -1
023 19 varset [3] 1 See [varset], page 35. -1
024 20 varset [4] 1 See [varset], page 35. -1
025 21 varset [5] 1 See [varset], page 35. -1
026 22 varset [6] 2 See [varset], page 35. -1
027 23 varset [7] 3 See [varset], page 35. -1
030 24 varbind [0] 1 See [varbind], page 36. —1

Chapter 5: Opcode Table

031
032
033
034
035
036
037

040
041
042
043
044
045
046
047

050
051
052
053
054
055
056
057

060
061
062

063
064
065
066
067

070
071
072
073
074
075
076
077

25
26
27
28
29
30
31

32
33
34
35
36
37
38
39

40
41
42
43
44
45
46
47

48
49
50

51
52
53
54
55

56
57
58
59
60
61
62
63

varbind[1]
varbind [2]
varbind [3]
varbind[4]
varbind[5]
varbind [6]
varbind [7]

callol
calll
call2
call3
calléd
callb
callé
callv

unbindO
unbindl
unbind?2
unbind3
unbind4
unbindb
unbind6
unbind7

pophandler
conditioncase
pushconditioncase

nth
symbolp
consp
stringp
listp
eq
memq
not

WK == W N = = =

W N = = =

=W =

—_ o e e e e

See [varbind], page 36.
See [varbind], page 36.
See [varbind], page 36.
See [varbind], page 36.
See [varbind], page 36.
See [varbind], page 36.
See [varbind], page 36.

|, page 38.
unbind]
unbind], page 38.
unbind], page 38.
unbind], page 38.
unbind], page 38.
unbind], page 38.
unbind], page 38.

wn
@
@

Unused
Unused
Unused
Unused
Unused

See [nth], page 68.

See [symbolp], page 51.

[

[

See [consp]|, page 52.
See [stringp], page 53.
See [listp], page 54.
See [eq], page 55.

See [memgq], page 56.
See [not|, page 57.

162

141
241
—-3+1
—4+1
—-5+4+1
—6+1
—-n—14+1
—n—14+1

—1+¢(0,+1)
-0

—-24+1
-1+1
-1+1
-1+1
-1+1
—-24+1
-2+1
-1+1

Chapter 5: Opcode Table

5.2 Opcodes (0100-0177)

Oct Dec Instruction
0100 64 car
0101 65 cdr
0102 66 cons
0103 67 listl
0104 68 list2
0105 69 list3
0106 70 list4
0107 71 length
0110 72 aref
0111 73 aset
0112 74 symbol-value
0113 75 symbol-function
0114 76 set
0115 7 fset
0116 78 get
0117 79 substring
0120 80 concat?2
0121 81 concat3
0122 82 concat4
0123 83 subl

0124 84 add1

0125 85 eqlsign
0126 86 gtr

0127 87 1ss

0130 88 leq

0131 89 geq

0132 90 diff

0133 91 negate
0134 92 plus

0135 93 max

0136 94 min

0135 95 mult

0140 96 point
0141 *97 *mark

0142 98 goto-char
0143 99 insert
0145 100 point-max
0146 101 point-min
0144 102 char-after

Size

= e e e e e e e e el e e el el e e

— o e e e e e el e e e

U NG W VN SN G W WY

163

Description Stack
See [car|, page 69. —-1+1
See [cdr], page 70. -1+1
See [cons], page 71. —-2+1
See [list1], page 72. —-1+1
See [list2], page 73. —2+41
See [list3], page 74. -3+1
See [list4], page 75. —4+1
See [length], page 77. —-1+1
See [aref], page 78. —2+1
See [aset], page 79. -3+1
See [symbol-value], page 58. —-1+1
See [symbol-function], page 59. -1+1
See [set], page 60. -2+1
See [fset], page 61. —2+1
See [get], page 62. —2+1
See [substring], page 103. -3+1
See [concat2], page 104. —-2+1
See [concat3], page 105. -3+1
See [concatd], page 106. —4+1
See [subl], page 88. —-1+1
See [addl], page 89. -1+1
See [eqlsign], page 90. —-2+1
See [gtr], page 91. -2+1
See [Iss], page 92. —2+1
See [leq], page 93. —-2+1

See [g e} page 94. —-2+1
See [diff], page 95. -2+1
See [negate|, page 96. —-1+1
See [plus], page 97. —2+1
See [max], page 99. —-2+1
See [min], page 100.
See [mult], page 98. -2+1
See [point], page 116.
See [mark]|, page 149, —-0+1
See [goto-char]|, page 117. —1+1
See [insert], page 127. —-1+1
See [point-max], page 118. —-0+1
See [point-min], page 119. —0+1
See [char-after], page 129. —1+1

Chapter 5: Opcode Table

0147
0150
0151
0153
0154
0155
0156
0157
0160
0161
0162

0162
0163
0164
0165
0166
0167
0170
0171
0172
0173
0174
0175
0176
0177

103
104
105
*107
108
109
110
111
112
113
114

*114
*115
*116
117
118
119
120
121
122
123
124
125
126
127

following-char
preceding-char
current-column
*scan-buffer
eolp
eobp
bolp
bobp
current-buffer
set-buffer
save-current-
buffer-1
*read-char
*set-mark
*interactive-p
forward-char
forward-word
skip-chars-forward
skip-chars-backward
forward-line
char-syntax
buffer-substring
delete-region
narrow-to-region
widen
end-of-line

—_

— e = e e

U Gy NG VA O VTG W TGN W NG O VT WY

164

See [following-char], page 130.
See [preceding-char], page 131.
See[current«xﬂurnnL page 132.
ee [scan-buffer|, page 149.
See[eolpL page 133.
See [eobp], page 134.
See [bolp], page 135.
See [bobp], page 136.
See [current-buffer|, page 112.
See [set-buffer], page 113.
[

See [save-current-buffer-1], page 114.

See [read-char], page 149.

See [set-mark], page 149.

See [interactive-p|, page 149.
See [forward-char|, page 120.
See [forward-word], page 121.
See [skip-chars-forward], page 123.
See |

See [forward-line|, page 122.

See [char-syntax], page 139.

See [buffer-substring], page 115.
See [delete-region], page 137.
See [narrow-to-region], page 125.
See [widen], page 126.

See [end-of-line], page 138.

skip-chars-backward], page 124.

—-0+1
—-0+1
-0+1

—-0+1
—-0+1
—-0+1
-0+1
—-0+1
-1+1
-0

+1

-0

+1

-1+1
-1+1
—-24+1
-2+1
-1+1
-1+1
241
-24+1
-2+1
—-0+1
-1+1

Chapter 5: Opcode Table

5.3 Opcodes (0200-0277)

Oct

0201
0202
0203
0204
0205

0206

0207
0210
0211
0212
0213

0214

0215
0216
0217

0220

0221

0222
0223

0256

0257
0260
0261
0262
0263

0222

0223
0224
0225
0226

Dec

129
130
131
132
133

134

135
136
137
138
*139

140

141
142
*143

144

145

146
147

174

175
176
177
178
179

*146

147
148
149
150

Instruction

constant2

goto
goto-if-nil
goto-if-not-nil
goto-if-nil-
else-pop
goto-if-not-
nil-else-pop
return

discard

dup
save-excursion

*save-window-excursion

*condition—-case

Size

U UG W U W T

1
1
1
1
1

temp-output-buffer-setlup

temp-output-buffer-shdw

listN
concatN
insertN
stack-set
stack-set?2

*unbind-all

set-marker
match-beginning
match-end
upcase

— =N NN

— = =

165

Description

See [constant2], page 40.

See [goto], page 44.

See [goto-if-nil], page 45.

See [goto-if-not-nil], page 46.

See [goto-if-nil-else-pop], page 47.

See [goto-if-not-nil-else-pop],
page 48.

See [return|, page 49.

See [discard], page 144.

See [dup|, page 146.

See [save-excursion], page 140.

See [save-window-excursion],
page 149.

Unused

Unused
Unused
See [condition-case], page 150.

See [temp-output-buffer-setup],
page 150.

See [temp-output-buffer-show],
page 151.

Unused

Unused

Unused

See [listN], page 76.

See [concatN], page 107.
See [insertN], page 128.
See [stack-set], page 147.
See [stack-set2], page 148.

See [unbind-all], page 151.

set-marker], page 141.
match-beginning], page 142.
match-end], page 143.
upcase|, page 108.

See
See
See
See

Stack

+1
~140
~140
~140
$(~1,0) +0

»(—1,0)+0

-1+0
-1+0
—-0+1
—0+0
—-1+0

-1+1
—-1+0

-0+0

-n+1
—-n+1
-n—+1

—1

—3+1
141
141
141

Chapter 5: Opcode Table

0227
0230
0231
0232
0233
0234
0235
0236
0237
0240
0241
0242
0243
0244
0245
0246
0247
0250

0251

0252
0253
0254
0255
0256

0257
0260
0261

0262
0263

0264
0265

0266
0267

0270
0271
0272
0273
0274
0275

151
152
1563
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169

*170
*171
*172
*173
*174

175
176
177

178
179

180
181

182
183

184
185
186
187
188
189

downcase
stringeqlsign
stringlss
equal
nthcdr
elt
member
assq
nreverse
setcar
setcdr
car-safe
cdr-safe
nconc

quo

rem
numberp
integerp

*Rgoto

*Rgotoifnil
*Rgotoifnonnil
*Rgotoifnilelsepop
*Rgotoifnonnilelsepop

listN
concatN
insertN

stack-set
stack-set2

discardN
switch

U NG VN O G VN O G N TG T O TG VT W G U

166

See [downcase], page 109.
See [stringeqlsign], page 110.
See [stringlss], page 111.
See [equal], page 63.
See [nthedr], page 80.
See [elt], page 81.
See [member], page 64.
See [assq], page 65.
See [nreverse|, page 82.
See [setcar], page 83.
ee [setedr], page 84.
See [car-safe], page 85.
See [cdr-safe], page 86.
See [nconc], page 87.
See [quo], page 101.
See [rem], page 102.
See [numberp], page 66.
See [integerp|, page 67.

Unused

See [Rgoto], page 152.

See [Rgotoifnil], page 152.

See [Rgotoifnonnil], page 152.
See [Rgotoifnilelsepop], page 152.

See [Rgotoifnonnilelsepop]|, page 152,

See [listN], page 76.
See [concatN], page 107.
See [insertN], page 128.

See [stack-set], page 147.
See [stack-set2], page 148.

Unused
Unused

See [discardN], page 145.
See [switch], page 50.

Unused
Unused
Unused
Unused
Unused
Unused

-1+1
—-24+1
-2+1
-2+1
—241
241
-24+1
-2+1
-1+1
—241
241
-1+1
-1+1
—2+1
—241
—-24+1
-1+1
—-1+1

~140

~1+0
¢(—1,0) +
$(—1,0) +

o o

—n—+1

-n+1

-0+0
-0+0

—n—+0
—24+0

Chapter 5: Opcode Table 167

0276 190 Unused
0277 191 Unused

Chapter 5: Opcode Table

5.4 Opcodes (0300-3277) Constants

Oct

0300
0301
0302
0303
0304
0305
0306
0307
0310
0311
0312
0313
0314
0315
0316
0317
0320
0321
0322
0323
0324
0325
0326
0327
0330
0331
0332
0333
0334
0335
0336
0337
0340
0341
0342
0343
0344
0345
0346
0347
0350

Dec

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

Instruction

constant [0]
constant [1]
constant [2]
constant [3]
constant [4]
constant [5]
constant [6]
constant [7]
constant [8]
constant [9]
constant [10]
constant[11]
constant [12]
constant [13]
constant [14]
constant [15]
constant [16]
constant [17]
constant [18]
constant [19]
constant [20]
constant [21]
constant [22]
constant [23]
constant [24]
constant [25]
constant [26]
constant [27]
constant [28]
constant [29]
constant [30]
constant [31]
constant [32]
constant [33]
constant [34]
constant [35]
constant [36]
constant [37]
constant [38]
constant [39]
constant [40]

Size

= e e e e e e e el e e el el e el e e el el e el el e e el e e el e e el e e el e e el e e

Description

See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.

Stack

+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1

0351
0352
0353
0354
0355
0356
0357
0360
0361
0362
0363
0364
0365
0366
0367
0370
0371
0372
0373
0374
0375
0376
0377

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255

constant [41]
constant [42]
constant [43]
constant [44]
constant [45]
constant [46]
constant [47]
constant [48]
constant [49]
constant [50]
constant [51]
constant [52]
constant [53]
constant [54]
constant [55]
constant [56]
constant [57]
constant [58]
constant [59]
constant [60]
constant [61]
constant [62]
constant [63]

U NG VA G NG AT O GG N GG T O TG VAT UG T VAT G O

See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant|, page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.
See [constant], page 39.

169

+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1
+1

170

6 References

e Execution of byte code produced by bytecomp.el (http://git.savannah.gnu.org/
cgit/emacs.git/tree/src/bytecode.c)

e bytecomp.el — compilation of Lisp code into byte code (http://git.savannah.gnu.
org/cgit/emacs.git/tree/lisp/emacs-1lisp/bytecomp.el)

e data.c — Primitive operations on Lisp data types (http://git.savannah.gnu.org/
cgit/emacs.git/tree/src/data.c)

e Emacs Byte-code Internals (http://nullprogram.com/blog/2014/01/04/)

e Emacs Wiki ByteCodeEngineering (https: / / www . emacswiki . org / emacs /
ByteCodeEngineering)

e Assembler for Emacs’ bytecode interpreter (https://groups.google.com/forum/#
l'topic/gnu.emacs.sources/oMfZT_40xrc easm.el)

e Emacs Lisp Decompiler (https://github.com/rocky/elisp-decompile)

e GNU Emacs Lisp Reference Manual (https://ftp.gnu.org/pub/gnu/emacs)

e GNU Emacs source for version 18.59 (https://ftp.gnu.org/pub/old-gnu/emacs/
emacs-18.59.tar.gz)

e GNU Emacs source for version 19.34 (https://ftp.gnu.org/pub/old-gnu/emacs/
emacs-19.34b.tar.gz)

e GNU Emacs source for version 20.1 (https://ftp.gnu.org/pub/old-gnu/emacs/
emacs-20.1.tar.gz)

e GNU Emacs source code version 21.4 (https://ftp.gnu. org/pub/gnu/emacs/
emacs-21.4a.tar.gz)

e GNU Emacs source code for version 22.1 (https://ftp.gnu.org/pub/gnu/emacs/
emacs-22.1.tar.gz)

e GNU Emacs source code for version 22.1 (https://ftp.gnu.org/pub/gnu/emacs/
emacs-23.1.tar.gz)

e GNU Emacs source code for version 23.1 (https://ftp.gnu.org/pub/gnu/emacs/
emacs-23.2.tar.gz)

e GNU Emacs source code for version 24.1 (https://ftp.gnu.org/pub/gnu/emacs/
emacs-24.1.tar.gz)

e GNU Emacs source code for version 24.1 (https://ftp.gnu.org/pub/gnu/emacs/
emacs-24.1.tar.gz)

e GNU Emacs source code for version 25.3 (https://ftp.gnu.org/pub/gnu/emacs/
emacs-25.3.tar.gz)

e GNU Emacs source code for version 25.3 (https://ftp.gnu.org/pub/gnu/emacs/
emacs-25.3.tar.gz)

e Lars Brinkhoff’s Emacs History (https: / / github . com / larsbrinkhoff /
emacs-history)

e Github Elisp Decompiler Project (https://github.com/rocky/elisp-decompile)

e NYC Emacs Lisp Meetup talk: Bytecode and miscellaneous thoughts on the Emacs
Runtime (https://rocky.github.io/NYC-Emacs-April-2018)

http://git.savannah.gnu.org/cgit/emacs.git/tree/src/bytecode.c
http://git.savannah.gnu.org/cgit/emacs.git/tree/src/bytecode.c
http://git.savannah.gnu.org/cgit/emacs.git/tree/lisp/emacs-lisp/bytecomp.el
http://git.savannah.gnu.org/cgit/emacs.git/tree/lisp/emacs-lisp/bytecomp.el
http://git.savannah.gnu.org/cgit/emacs.git/tree/src/data.c
http://git.savannah.gnu.org/cgit/emacs.git/tree/src/data.c
http://nullprogram.com/blog/2014/01/04/
https://www.emacswiki.org/emacs/ByteCodeEngineering
https://www.emacswiki.org/emacs/ByteCodeEngineering
https://groups.google.com/forum/#!topic/gnu.emacs.sources/oMfZT_4Oxrc easm.el
https://groups.google.com/forum/#!topic/gnu.emacs.sources/oMfZT_4Oxrc easm.el
https://github.com/rocky/elisp-decompile
https://ftp.gnu.org/pub/gnu/emacs
https://ftp.gnu.org/pub/old-gnu/emacs/emacs-18.59.tar.gz
https://ftp.gnu.org/pub/old-gnu/emacs/emacs-18.59.tar.gz
https://ftp.gnu.org/pub/old-gnu/emacs/emacs-19.34b.tar.gz
https://ftp.gnu.org/pub/old-gnu/emacs/emacs-19.34b.tar.gz
https://ftp.gnu.org/pub/old-gnu/emacs/emacs-20.1.tar.gz
https://ftp.gnu.org/pub/old-gnu/emacs/emacs-20.1.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-21.4a.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-21.4a.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-22.1.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-22.1.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-23.1.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-23.1.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-23.2.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-23.2.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-24.1.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-24.1.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-24.1.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-24.1.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-25.3.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-25.3.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-25.3.tar.gz
https://ftp.gnu.org/pub/gnu/emacs/emacs-25.3.tar.gz
https://github.com/larsbrinkhoff/emacs-history
https://github.com/larsbrinkhoff/emacs-history
https://github.com/rocky/elisp-decompile
https://rocky.github.io/NYC-Emacs-April-2018
https://rocky.github.io/NYC-Emacs-April-2018

Instruction Index

addl .. e 89
aref ... 78
A8 it e 79
BSSg ettt 65
B

bobp.......... 136
DO . ettt 135
buffer-substring............. ... o 115
C

Call .. 37
o= o 69
car—safe 85
CAT ot e 70
cdr-safe ...t e 86
char-after............oiiiiiiiiiii i, 129
char-syntax.............ol 139
CONCAT 2 .ottt i e 104
CONCALS . ittt i e 105
CONCATA .ottt e e 106
concatN 107
condition-case..........c.oiiiiiiiiiii 150
o703+ = T 71
COMSD e o ettt ettt ettt 52
CONSEANT . oot 39
conStant2 . ..ot e 40
current-buffer............., 112
current-columniuiiiiinnan... 132
D

delete-regionl 137
diff .. 95
discardcoiiiiiii . 144
discardN.......coiiiiiiiiiii i 145
AOWICASE « vttt et e ettt 109
AUP .. 146
E

120 P 81
end-of-line......... ... 138
OB . 134
0D . 133
1= 55
eqlsign ... 90
equal. 63

171

F

following-char.............................. 130
forward-char, 120
forward-linecuiiiiiiinii. 122
forward-word ...t 121
= 61
G

== P 94
gt .o 62
BOtO . 44
goto-char.............. ...l 117
goto-if-nil.........ol 45
goto-if-nil-else-pop........................ 47
goto-if-nmot-nil............ oL 46
goto-if-not-nil-else-pop............cccouuun. 48
22875 91
1

ANSETt oottt 127
insertN 128
integerp ... 67
interactive-pciiiiiiiiiii 149
L

length. 7
=Y 93
dastl. e 72
1St 2. 73
1iSt3 . 74
= 75
1astN . 76
1istp . 54
S S et 92
M

MATK . .ot 149
match-beginning............... oL 142
match-end.......... ...t 143
122 99
MemMbeT e 64
11T e 56
1S P 100
MU . o 98

Instruction Index

N

narrow-to-region.............. ... oo 125
TICOTIC . oottt et 87
negate............... i 96
MOt ... 57
NE@VEISE .\t vttt 82
nth... ... 68
nthedr........... o o oo 80
NUMDEIP .. ooti ittt 66

PLUS .t 97
POInt. 116
point-max............. ...l 118
point-min........ ... i il 119
pophandler............. 41
preceding-charcoiiiiiinnnnn. 131
pushcatch.............. i 43
pushconditioncase............................ 42
Q

QUO - v e ettt ettt e 101

read-char.............. ool 149
B =) 1 P 102
B = 7 o« N 49
Rgoto..... ... i 152
Rgotoifnmil...... ... i 152
Rgotoifnilelsepop................ 152
Rgotoifnonnil 152
Rgotoifnonnilelsepop....................... 152

S

save-current-buffer 149
save-current-buffer-1...................... 114
SAVE—EXCUrSION .. .vvttti et ie i ie e 140
save-window-excursion...................... 149
scan-buffer.................. 149
S 60
set-buffer............ 113
Set—MATK ...t e, 149
Set-MarKeroviiiitiie i 141
BB CAT . ittt 83

172
setcdr.. ...l 84
skip-chars-backward 124
skip-chars-forward.......................... 123
stack-ref ...l 33
stack-set i 147
stack-set2.......... oo 148
stringeqlsign..............l 110
stringlss.l 111
stringp ... 53
SUbL .. 88
Substring....... ... 103
switch. ... o 50
symbol-function................l 59
symbol-value................. il 58
SYmbolp ... 51
T
temp-output-buffer-setup................... 150
temp-output-buffer-show.................... 151
U
unbind.......... ... oo 38
unbind-all....... ... 151
UPCASE .ottt ittt ittt 108
\%
varbind 36
varref ... 34
Varset.. ... 35

Bytecode Function Index

batch-byte-compile..................ooiit 19
batch-byte-recompile-directory............. 19
byte-code 19
byte-compile................. ...l 8, 19
byte-compile-file............................ 20
byte-compile-lapcode..........coiuuiiunnnnnnn. 3
byte-compile-make-args-desc 8
byte-compile-sexp.................. ... 20
byte-recalc-examplescoiunnnnnn.. 21
byte-recompile-directory.................... 21
byte-recompile-file.......................... 22

C

compile-defunl 22

173

D

disassemblel 22, 23
disassemble-file............, 23
display-call-tree.............coiiiiiinnnnnn. 23

F

functionp.............. 23

M

make-byte-codel 3,7, 24

S

symbol-function.............. ...l 25

174

Concept Index

B M

bytecode ... 3,7 macro compilation....... oo 18

C

constants vector 10 R

Reverse Polish Notation......................... 4

D

	Introduction to Emacs Lisp Byte Code and LAP
	Why is Emacs Lisp Bytecode Important and How is Emacs as a Program Different?
	Emacs Lisp Bytecode and LAP
	Example showing use of byte-compile-lapcode

	Emacs Lisp Virtual Machine
	Wither Bytecode - Its Future

	Emacs Lisp Bytecode Environment
	Emacs Lisp Bytecode Objects
	Function Parameter (lambda) List
	Bytecode Unibyte String
	Constants Vector
	Maximum Stack Usage
	Docstring
	``Interactive'' Specification
	Examples showing the ``interactive'' specification

	Emacs Lisp Bytecode Compiler
	Emacs Lisp Bytecode Interpreter
	Emacs Lisp Bytecode Bytes
	Emacs Lisp Bytecode Files
	Functions and Commands for working with LAP and Bytecode
	aref
	batch-byte-compile
	batch-byte-recompile-directory
	byte-code
	byte-compile
	byte-compile-file
	byte-compile-sexp
	byte-recalc-examples
	byte-recompile-directory
	byte-recompile-file
	compile-defun
	disassemble
	disassemble-file
	disassemble-full
	display-call-tree
	functionp
	make-byte-code
	symbol-function

	Bytecode Optimization
	Constant Propagation
	Unreachable Code
	Strength Reduction

	Bytecode Disassembly

	Emacs Lisp Bytecode Instructions
	Instruction-Description Format
	Instruction Jargon
	Instruction Description Fields

	Argument-Packing Instructions
	stack-ref (1--7)
	varref (8--15)
	varset (16--23)
	varbind (24--31)
	call (32--39)
	unbind (40--47)

	Constants-Vector Retrieval Instructions
	constant (192--255)
	constant2 (129)

	Exception-Handling Instructions
	pophandler (48)
	pushconditioncase (49)
	pushcatch (50)

	Control-Flow Instructions
	goto (130)
	goto-if-nil (131)
	goto-if-not-nil (132)
	goto-if-nil-else-pop (133)
	goto-if-not-nil-else-pop (134)
	return (135)
	switch (183)

	Function-Call Instructions
	Lisp Function Instructions
	symbolp (57)
	consp (58)
	stringp (59)
	listp (60)
	eq (61)
	memq (62)
	not (63)
	symbol-value (74)
	symbol-function (75)
	set (76)
	fset (77)
	get (78)
	equal (154)
	member (157)
	assq (158)
	numberp (167)
	integerp (168)

	List Function Instructions
	nth (56)
	car (64)
	cdr (65)
	cons (66)
	list1 (67)
	list2 (68)
	list3 (69)
	list4 (70)
	listN (175)
	length (71)
	aref (72)
	aset (73)
	nthcdr (155)
	elt (156)
	nreverse (159)
	setcar (160)
	setcdr (161)
	car-safe (162)
	cdr-safe (163)
	nconc (164)

	Arithmetic Function Instructions
	sub1 (83)
	add1 (84)
	eqlsign (85)
	gtr (86)
	lss (87)
	leq (88)
	geq (89)
	diff (90)
	negate (91)
	plus (92)
	mult (95)
	max (93)
	min (94)
	quo (165)
	rem (166)

	String Function Instructions
	substring (79)
	concat2 (80)
	concat3 (81)
	concat4 (82)
	concatN (174)
	upcase (150)
	downcase (151)
	stringeqlsign (152)
	stringlss (153)

	Emacs Buffer Instructions
	current-buffer (112)
	set-buffer (113)
	save-current-buffer-1 (114)
	buffer-substring (123)

	Emacs Position Instructions
	point (96)
	goto-char (98)
	point-max (100)
	point-min (101)
	forward-char (117)
	forward-word (118)
	forward-line (121)
	skip-chars-forward (119)
	skip-chars-backward (120)
	narrow-to-region (125)
	widen (126)

	Emacs Text Instructions
	insert (99)
	insertN (99)
	char-after (102)
	following-char (103)
	preceding-char (104)
	current-column (105)
	eolp (108)
	eobp (109)
	bolp (110)
	bobp (111)
	delete-region (124)
	end-of-line (127)

	Emacs Misc Function Instructions
	char-syntax (122)
	save-excursion (138)
	set-marker (147)
	match-beginning (148)
	match-end (149)

	Stack-Manipulation Instructions
	discard (136)
	discardN (180)
	dup (137)
	stack-set (178)
	stack-set2 (179)

	Obsolete or Unused Instructions
	save-current-buffer (97)
	mark (97)
	scan-buffer (107)
	read-char (114)
	set-mark (115)
	interactive-p (116)
	save-window-excursion (139)
	condition-case (143)
	temp-output-buffer-setup (144)
	temp-output-buffer-show (145)
	unbind-all (146)
	Relative Goto Instructions
	Rgoto (170)
	Rgotoifnil (171)
	Rgotoifnonnil (172)
	Rgotoifnilelsepop (173)
	Rgotoifnonnilelsepop (174)

	Instruction Changes Between Emacs Releases
	After 16 and Starting in 18.31
	Version 18 Release History

	After 18.59 and Starting 19.34
	Version 19 Release History

	After 19.34 and Starting in 20.1
	Version 20 Release History

	After 20.1 and Starting in 21.1
	Version 21 Release History

	After 21.4 and Starting in 22.1
	Version 22 Release History

	After 22.3 and Starting in 23.1
	Version 23 Release History

	After 23.4 and Starting in 24.1
	Version 24 Release History

	After 24.5 and Starting in 25.1
	Version 25 Release History

	After 25.3 and Starting in 26.1
	After 26.1 and Starting in 27.1

	Opcode Table
	Opcodes (0000-0077)
	Opcodes (0100-0177)
	Opcodes (0200-0277)
	Opcodes (0300-3277) Constants

	References
	Instruction Index
	Bytecode Function Index
	Concept Index

