a side-by-side reference sheet
sheet one: grammar and invocation | variables and expressions | arithmetic and logic | strings | arrays | sets | arithmetic sequences | dictionaries | functions | execution control | exceptions | streams | files | directories | libraries and namespaces | reflection
sheet two: symbolic expressions | calculus | equations and unknowns | optimization | vectors | matrices | combinatorics | number theory | polynomials | trigonometry | special functions | permutations | descriptive statistics | distributions | statistical tests
bar charts | scatter plots | line charts | surface charts | chart options
mathematica | sympy | sage | maxima | |
---|---|---|---|---|
version used | 10.0 | Python 2.7; SymPy 0.7 | 6.10 | 5.37 |
show version | select About Mathematica in Mathematica menu | sympy.__version__ | $ sage --version also displayed on worksheet | $ maxima --version |
implicit prologue | from sympy import * # enable LaTeX rendering in Jupyter notebook: init_printing() # unknown variables must be declared: x, y = symbols('x y') | # unknowns other than x must be declared: y = var('y') | ||
grammar and invocation | ||||
mathematica | sympy | sage | maxima | |
interpreter | $ cat > hello.m Print["Hello, World!"] $ MathKernel -script hello.m | if foo.py imports sympy: $ python foo.py | $ cat > hello.sage print("Hello, World!") $ sage hello.sage | $ cat >> hello.max print("Hello, world!"); $ maxima -b hello.maxima |
repl | $ MathKernel | $ python >>> from sympy import * | $ sage | $ maxima |
block delimiters | ( stmt; …) | : and offside rule | : and offside rule | block([x: 3, y: 4], x + y); /* Multiple stmts are separated by commas; a list of assignments can be used to set variables local to the block. */ |
statement separator | ; or sometimes newline A semicolon suppresses echoing value of previous expression. | newline or ; newlines not separators inside (), [], {}, triple quote literals, or after backslash: \ | newline or ; newlines not separators inside (), [], {}, triple quote literals, or after backslash: \ | ; or $ The dollar sign $ suppresses output. |
end-of-line comment | none | 1 + 1 # addition | 1 + 1 # addition | none |
multiple line comment | 1 + (* addition *) 1 | none | none | 1 + /* addition */ 1; |
variables and expressions | ||||
mathematica | sympy | sage | maxima | |
assignment | a = 3 Set[a, 3] (* rhs evaluated each time a is accessed: *) a := x + 3 SetDelayed[a, x + 3] | a = 3 | a = 3 | a: 3; |
parallel assignment | {a, b} = {3, 4} Set[{a, b}, {3, 4}] | a, b = 3, 4 | a, b = 3, 4 | [a, b]: [3, 4] |
compound assignment | += -= *= /= corresponding functions: AddTo SubtractFrom TimeBy DivideBy | += -= *= /= //= %= ^= **= | += -= *= /= //= %= **= | none |
increment and decrement | ++x --x PreIncrement[x] PreDecrement[x] x++ x-- Increment[x] Decrement[x] | none | none | none |
non-referential identifier | any unassigned identifier is non-referential | x, y, z, w = symbols('x y z w') | y, z, w = var('y z w') # x is non-referential unless assigned a value | any unassigned identifier is non-referential |
identifier as value | x = 3 y = HoldForm[x] | x: 3; y: 'x; | ||
global variable | variables are global by default | g1, g2 = 7, 8 def swap_globals(): global g1, g2 g1, g2 = g2, g1 | g1, g2 = 7, 8 def swap_globals(): global g1, g2 g1, g2 = g2, g1 | variables are global by default |
local variable | Module[{x = 3, y = 4}, Print[x + y]] (* makes x and y read-only: *) With[{x = 3, y = 4}, Print[x + y]] (* Block[ ] declares dynamic scope *) | assignments inside functions are to local variables by default | assignments inside functions are to local variables by default | block([x: 3, y: 4], print(x + y)); |
null | Null | None | None | no null value |
null test | x == Null | x is None | x is None | no null value |
undefined variable access | treated as an unknown number | raises NameError | raises NameError | treated as an unknown number |
remove variable binding | Clear[x] Remove[x] | del x | del x | kill(x); |
conditional expression | If[x > 0, x, -x] | x if x > 0 else -x | x if x > 0 else -x | if x < 0 then -x else x; |
arithmetic and logic | ||||
mathematica | sympy | sage | maxima | |
true and false | True False | True False | True False | true false |
falsehoods | False | False 0 0.0 | False None 0 0.0 '' [] {} | |
logical operators | ! True || (True && False) Or[Not[True], And[True, False]] | Or(Not(True), And(True, False)) # when arguments are symbols: ~ x | (y & z) | and or not | |
relational expression | 1 < 2 | is(1 < 2); | ||
relational operators | == != > < >= <= corresponding functions: Equal Unequal Greater Less GreaterEqual LessEqual | Eq Ne Gt Lt Ge Le # when arguments are symbols: == != > < >= <= | == != > < >= <= | = # > < >= <= |
arithmetic operators | + - * / Quotient Mod adjacent terms are multiplied, so * is not necessary. Quotient and Mod are functions, not binary infix operators. These functions are also available: Plus Subtract Times Divide | + - * / ?? % if an expression contains a symbol, then the above operators are rewritten using the following classes: Add Mul Pow Mod | + - * / // % | + - * / quotitent() mod() quotient and mod are functions, not binary infix operators. |
integer division | Quotient[a, b] | 7 // 3 | quotient(7, 3); | |
integer division by zero | dividend is zero: Indeterminate otherwise: ComplexInfinity | raises ZeroDivisionError | error | |
float division | exact division: a / b | a / b | ||
float division by zero | dividend is zero: Indeterminate otherwise: ComplexInfinity | error | ||
power | 2 ^ 32 Power[2, 32] | 2 ** 32 Pow(2, 32) | 2 ^ 32 2 ** 32 | 2 ^ 32; 2 ** 32; |
sqrt | returns symbolic expression: Sqrt[2] | sqrt(2) | sqrt(2) | sqrt(2); |
sqrt -1 | I | I | I | %i |
transcendental functions | Exp Log Sin Cos Tan ArcSin ArcCos ArcTan ArcTan ArcTan accepts 1 or 2 arguments | exp log sin cos tan asin acos atan atan2 | exp log sin cos tan asin acos atan atan2 | exp log sin cos tan asin acos atan atan2 |
transcendental constants π and Euler's number | Pi E EulerGamma | pi E | pi e euler_gamma | %pi %e %gamma |
float truncation round towards zero, round to nearest integer, round down, round up | IntegerPart Round Floor Ceiling | floor ceiling | int round floor ceil | truncate round floor ceiling |
absolute value and signum | Abs Sign | Abs sign | abs sign | abs sign sign returns pos, neg, or zero |
integer overflow | none, has arbitrary length integer type | none, has arbitrary length integer type | none, has arbitrary length integer type | none, has arbitrary length integer type |
float overflow | none | none | ||
rational construction | 2 / 7 | Mul(2, Pow(7, -1)) Rational(2, 7) | 2 / 7 | 2 / 7 |
rational decomposition | Numerator[2 / 7] Denominator[2 / 7] | numer, denom = fraction(Rational(2, 7)) | numerator(2 / 7) denominator(2 / 7) | num(2 / 7); denom(2 / 7); |
decimal approximation | N[2 / 7] 2 / 7 + 0. 2 / 7 // N N[2 / 7, 100] | N(Rational(2, 7)) N(Rational(2, 7), 100) | n(2 / 7) n(2 / 7, 100) # synonyms for n: N(2 / 7) numerical_approx(2 / 7) | 2 / 7, numer; |
complex construction | 1 + 3I | 1 + 3 * I | 1 + 3 * I | 1 + 3 * %i; |
complex decomposition real and imaginary part, argument and modulus, conjugate | Re Im Arg Abs Conjugate | re im Abs arg conjugate | (3 + I).real() (3 + I).imag() abs(3 + I) arg(3 + I) (3 + I).conjugate() | realpart imagpart cabs carg conjugate |
random number uniform integer, uniform float | RandomInteger[{0, 99}] RandomReal[] | random(100); random(1.0); | ||
random seed set, get | SeedRandom[17] ?? | set_random_state(make_random_state(17)); ?? | ||
bit operators | BitAnd[5, 1] BitOr[5, 1] BitXor[5, 1] BitNot[5] BitShiftLeft[5, 1] BitShiftRight[5, 1] | none | ||
binary, octal, and hex literals | 2^^101010 8^^52 16^^2a | ibase: 2; 101010; ibase: 8; 52; /* If first hex digit is a letter, prefix a zero: */ ibase: 16; 2a; | ||
radix | BaseForm[42, 7] BaseForm[7^^60, 10] | obase: 7; 42; | ||
to array of digits | (* base 10: *) IntegerDigits[1234] (* base 2: *) IntegerDigits[1234, 2] | |||
strings | ||||
mathematica | sympy | sage | maxima | |
string literal | "don't say \"no\"" | use Python strings | use Python strings | "don't say \"no\"" |
newline in literal | yes | Newlines are inserted into strings by continuing the string on the next line. However, if the last character on a line inside a string is a backslash, the backslash and the following newline are omitted. | ||
literal escapes | \\ \" \b \f \n \r \t \ooo | \" \\ | ||
concatenate | "one " <> "two " <> "three" | concat("one ", "two ", "three"); | ||
translate case | ToUpperCase["foo"] ToLowerCase["FOO"] | supcase("foo"); sdowncase("FOO"); | ||
trim | StringTrim[" foo "] | strim(" ", " foo "); | ||
number to string | "value: " <> ToString[8] | concat("value: ", 8); | ||
string to number | 7 + ToExpression["12"] 73.9 + ToExpression[".037"] | 7 + parse_string("12"); 73.9 + parse_string(".037"); /* parse_string raises error if the string does not contain valid Maxima code. Use numberp predicate to verify that the return value is numeric. */ | ||
string join | StringJoin[Riffle[{"foo", "bar", "baz"}, ","]] | simplode(["foo", "bar", "baz"], ","); | ||
split | StringSplit["foo,bar,baz", ","] | split("foo,bar,baz", ","); | ||
substitute first occurrence, all occurences | s = "do re mi mi" re = RegularExpression["mi"] StringReplace[s, re -> "ma", 1] StringReplace[s, re -> "ma"] | ssubst("mi", "ma", "do re mi mi mi"); ssubstfirst("mi", "ma", "do re mi mi mi"); | ||
length | StringLength["hello"] | slength("hello"); | ||
index of substring | StringPosition["hello", "el"][[1]][[1]] (* The index of the first character is 1.*) (* StringPosition returns an array of pairs, one for each occurrence of the substring. Each pair contains the index of the first and last character of the occurrence. *) | ssearch("el", "hello"); /* 1 is index of first character; returns false if substring not found */ _ | ||
extract substring | (* "el": *) StringTake["hello", {2, 3}] | substring("hello", 2, 4); | ||
character literal | none | none | ||
character lookup | Characters["hello"][[1]] | |||
chr and ord | FromCharacterCode[{65}] ToCharacterCode["A"][[1]] | ascii(65); cint("A"); | ||
delete characters | rules = {"a" -> "", "e" -> "", "i" -> "", "o" -> "", "u" -> ""} StringReplace["disemvowel me", rules] | |||
arrays | ||||
mathematica | sympy | sage | maxima | |
literal | {1, 2, 3} List[1, 2, 3] | use Python lists | use Python lists | [1, 2, 3]; |
size | Length[{1, 2, 3}] | length([1, 2, 3]); | ||
lookup | (* access time is O(1) *) (* indices start at one: *) {1, 2, 3}[[1]] Part[{1, 2, 3}, 1] | a: [6, 7, 8]; a[1]; | ||
update | a[[1]] = 7 | a[1]: 7; | ||
out-of-bounds behavior | left as unevaluated Part[] expression | Error for both lookup and update. | ||
element index | (* Position returns list of all positions: *) First /@ Position[{7, 8, 9, 9}, 9] | a: [7, 8, 9, 9]; first(sublist_indices(a, lambda([x], x = 9))); | ||
slice | {1, 2, 3}[[1 ;; 2]] | |||
array of integers as index | (* evaluates to {7, 9, 9} *) {7, 8, 9}[[{1, 3, 3}]] | |||
manipulate back | a = {6,7,8} AppendTo[a, 9] elem = a[[Length[a]]] a = Delete[a, Length[a]] elem | |||
manipulate front | a = {6, 7, 8} PrependTo[a, 5] elem = a[[1]] a = Delete[a, 1] elem | a: [6, 7, 8]; push(5, a); elem: pop(a); | ||
head | First[{1, 2, 3}] | first([1, 2, 3]); | ||
tail | Rest[{1, 2, 3}] | rest([1, 2, 3]); | ||
cons | (* first arg must be an array *) Prepend[{2, 3}, 1] | cons(1, [2, 3]); | ||
concatenate | Join[{1, 2, 3}, {4, 5, 6}] | append([1, 2, 3], [4, 5, 6]); | ||
replicate | tenZeros = Table[0, {i, 0, 9}] | ten_zeros: makelist(0, 10); | ||
copy | a2 = a | a2: copylist(a); | ||
iterate | Do[Print[i], {i, {1, 2, 3}}] | for i in [1, 2, 3] do print(i); | ||
reverse | Reverse[{1, 2, 3}] | reverse([1, 2, 3]); | ||
sort | (* original list not modified: *) a = Sort[{3, 1, 4, 2}] | sort([3, 1, 4, 2]); | ||
dedupe | DeleteDuplicates[{1, 2, 2, 3}] | unique([1, 2, 2, 3]); | ||
membership | MemberQ[{1, 2, 3}, 2] | member(7, {1, 2, 3}); evalb(7 in {1, 2, 3}); | ||
map | Map[Function[x, x x], {1, 2, 3}] Function[x, x x] /@ {1, 2, 3} (* if function has Listable attribute, Map is unnecessary: *) sqr[x_] := x * x SetAttributes[sqr, Listable] sqr[{1, 2, 3, 4}] | map(lambda([x], x * x), [1, 2, 3]); | ||
filter | Select[{1, 2, 3}, # > 2 &] | sublist([1, 2, 3], lambda([x], x > 2)); | ||
reduce | Fold[Plus, 0, {1, 2, 3}] | |||
universal and existential tests | none | |||
min and max element | Min[{6, 7, 8}] Max[{6, 7, 8}] | apply(min, [6, 7, 8]); apply(max, [6, 7, 8]); | ||
shuffle and sample | x = {3, 7, 5, 12, 19, 8, 4} RandomSample[x] RandomSample[x, 3] | |||
flatten one level, completely | Flatten[{1, {2, {3, 4}}}, 1] Flatten[{1, {2, {3, 4}}}] | /* completely: */ flatten([1, [2, [3, 4]]]); | ||
zip | (* list of six elements: *) Riffle[{1, 2, 3}, {"a", "b", "c"}] (* list of lists with two elements: *) Inner[List, {1, 2, 3}, {"a", "b", "c"}, List] (* same as Dot[{1, 2, 3}, {2, 3, 4}]: *) Inner[Times, {1, 2, 3}, {2, 3, 4}, Plus] | /* list of six elements: */ join([1, 2, 3], ["a", "b", "c"]); | ||
cartesian product | Outer[List, {1, 2, 3}, {"a", "b", "c"}] | |||
sets | ||||
mathematica | sympy | sage | maxima | |
literal | (* same as arrays: *) {1, 2, 3} | {1, 2, 3} | {1, 2, 3} | {1, 2, 3} |
size | Length[{1, 2, 3}] | len({1, 2, 3}) | len({1, 2, 3}) | cardinality({1, 2, 3}); |
array to set | DeleteDuplicates[{1, 2, 2, 3}] | set([1, 2, 3]) | set([1, 2, 3]) | setify([1, 2, 3]); |
set to array | none; sets are arrays | list({1, 2, 3}) | list({1, 2, 3}) | listify({1, 2, 3}); |
membership test | MemberQ[{1, 2, 3}, 7] | 7 in {1, 2, 3} | 7 in {1, 2, 3} | elementp(7, {1, 2, 3}); |
subset test | SubsetQ[{1, 2, 3}, {1, 2}] | {1, 2} <= {1, 2, 3} {1, 2}.issubset({1, 2, 3}) {1, 2, 3} >= {1, 2} {1, 2, 3}.issuperset({1, 2}) | {1, 2} <= {1, 2, 3} {1, 2}.issubset({1, 2, 3}) {1, 2, 3} >= {1, 2} {1, 2, 3}.issuperset({1, 2}) | subsetp({1, 2}, {1, 2, 3}); |
universal and existential tests | every(lambda([x], x > 2), [1, 2, 3]); some(lambda([x], x > 2), [1, 2, 3]); | |||
union | Union[{1, 2}, {2, 3, 4}] | {1, 2, 3} | {2, 3, 4} {1, 2, 3}.union({2, 3, 4}) | {1, 2, 3} | {2, 3, 4} {1, 2, 3}.union({2, 3, 4}) | union({1, 2, 3}, {2, 3, 4}); |
intersection | Intersect[{1, 2}, {2, 3, 4}] | {1, 2, 3} & {2, 3, 4} {1, 2, 3}.intersection({2, 3, 4}) | {1, 2, 3} & {2, 3, 4} {1, 2, 3}.intersection({2, 3, 4}) | intersection({1, 2, 3}, {2, 3, 4}); |
relative complement | Complement[{1, 2, 3}, {2}] | {1, 2, 3} - {2, 3, 4} {1, 2, 3}.difference({2, 3, 4}) | {1, 2, 3} - {2, 3, 4} {1, 2, 3}.difference({2, 3, 4}) | setdifference({1, 2, 3}, {2, 3, 4}); |
powerset | set(Set({1, 2, 3}).subsets()) | powerset({1, 2, 3}); | ||
cartesian product | Outer[List, {1, 2, 3}, {"a", "b", "c"}] | cartesian_product({1, 2, 3}, {"a", "b", "c"}); | ||
arithmetic sequences | ||||
mathematica | sympy | sage | maxima | |
unit difference | Range[1, 100] | range(1, 101) | range(1, 101) | makelist(i, i, 1, 100); |
difference of 10 | Range[1, 100, 10] | range(1, 100, 10) | range(1, 100, 10) | makelist(i, i, 1, 100, 10); |
difference of 1/10 | Range[1, 100, 1/10] | [1 + Rational(1,10)*i for i in range(0, 991)] | [1 + (1/10)*i for i in range(0, 991)] | makelist(i, i, 1, 100, 1/10); |
dictionaries | ||||
mathematica | sympy | sage | maxima | |
literal | d = <|"t" -> 1, "f" -> 0|> (* or convert list of rules: *) d = Association[{"t" -> 1, "f" -> 0}] (* and back to list of rules: *) Normal[d] | use Python dictionaries | use Python dictionaries | d: [["t", 1], ["f", 0]]; |
size | Length[Keys[d]] | length(d); | ||
lookup | d["t"] | assoc("t", d); | ||
update | d["f"] = -1 | d2: cons(["f", -1], sublist(d, lambda([p], p[1] # "f"))); | ||
missing key behavior | Returns a symbolic expression with head "Missing". If the lookup key was "x", the expression is: Missing["KeyAbsent", "x"] | assoc returns false | ||
is key present | KeyExistsQ[d, "t"] | |||
iterate | ||||
keys and values as arrays | Keys[d] Values[d] | map(lambda([p], p[1]), d); map(lambda([p], p[2]), d); | ||
sort by values | Sort[d] | |||
functions | ||||
mathematica | sympy | sage | maxima | |
define function | Add[a_, b_] := a + b (* alternate syntax: *) Add = Function[{a, b}, a + b] | add(a, b) := a + b; define(add(a, b), a + b); /* block body: */ add(a, b) := block(print("adding", a, "and", b), a + b); /* square bracket syntax: */ I[row, col] := if row = col then 1 else 0; I[10, 10]; | ||
invoke function | Add[3, 7] Add @@ {3, 7} (* syntax for unary functions: *) 2 // Log | add(3, 7); | ||
boolean function attributes list, set, clear | Attributes[add] SetAttributes[add, {Orderless, Flat, Listable}] ClearAtttibutes[add, Listable] | |||
undefine function | Clear[Add] | remfunction(add); | ||
redefine function | Add[a_, b_] := b + a | add(a, b) := b + a; | ||
missing function behavior | The expression is left unevaluated. The head is the function name as a symbol, and the parts are the arguments. | The expression is left unevaluated. | ||
missing argument behavior | The expression is left unevaluated. The head is the function name as a symbol, and the parts are the arguments. | Too few arguments error. | ||
extra argument behavior | The expression is left unevaluated. The head is the function name as a symbol, and the parts are the arguments. | Too many arguments error. | ||
default argument | Options[myLog] = {base -> 10} myLog[x_, OptionsPattern[]] := N[Log[x]/Log[OptionValue[base]]] (* call using default: *) myLog[100] (* override default: *) myLog[100, base -> E] | |||
return value | last expression evaluated, or argument of Return[] | last expression evaluated Inside a block(), the last expression evaluated or the argument of return() | ||
anonymous function | Function[{a, b}, a + b] (#1 + #2) & | f: lambda([x, y], x + y); f(3, 7); | ||
variable number of arguments | (* one or more arguments: *) add[a__] := Plus[a] (* zero or more arguments: *) add[a___] := Plus[a] | add([a]) := sum(a[i], i, 1, length(a)); | ||
pass array elements as separate arguments | Apply[f, {a, b, c}] f @@ {x, y, z} | a = [x, y, z] f(*a) | add(a, b) := a + b; apply(add, [3, 7]); | |
execution control | ||||
mathematica | sympy | sage | maxima | |
if | If[x > 0, Print["positive"], If[x < 0, Print["negative"], Print["zero"]]] | use Python execution control | use Python execution control | if x > 0 then print("positive") else if x < 0 then print("negative") else print("zero"); |
while | i = 0 While[i < 10, Print[i]; i++] | for i: 0 step 1 while i < 10 do print(i); | ||
for | For[i = 0, i < 10, i++, Print[i]] | for i: 1 step 1 thru 10 do print(i); | ||
break | Break[] | |||
continue | Continue[] | |||
exceptions | ||||
mathematica | sympy | sage | maxima | |
raise exception | Throw["failed"] | use Python exceptions | use Python exceptions | error("failed"); |
handle exception | Print[Catch[Throw["failed"]]] | errcatch(error("failed")); | ||
streams | ||||
mathematica | sympy | sage | maxima | |
standard file handles | Streams["stdout"] Streams["stderr"] (* all open file handles: *) Streams[] | |||
write line to stdout | Print["hello"] | |||
open file for reading | f = OpenRead["/etc/hosts"] | |||
open file for writing | f = OpenWrite["/tmp/test"] | |||
open file for appending | f = OpenAppend["/tmp/test"] | |||
close file | Close[f] | |||
read file into string | s = ReadString[f] | |||
write string | WriteString[f, "lorem ipsum"] | |||
read file into array of strings | s = Import["/etc/hosts"] a = StringSplit[s, "\n"] | |||
file handle position get, set | f = StringToStream["foo bar baz"] StreamPosition[f] (* beginning of stream: *) SetStreamPosition[f, 0] (# end of stream: *) SetStreamPosition[f, Infinity] | |||
open temporary file | f = OpenWrite[] path = Part[f, 1] | |||
files | ||||
mathematica | sympy | sage | maxima | |
file exists test, regular file test | FileExistsQ["/etc/hosts"] FileType["/etc/hosts"] == File | |||
file size | FileByteCount["/etc/hosts"] | |||
is file readable, writable, executable | ||||
last modification time | FileDate["/etc/hosts"] | |||
copy file, remove file, rename file | CopyFile["/tmp/foo", "/tmp/bar"] DeleteFile["/tmp/foo"] RenameFile["/tmp/bar", "/tmp/foo"] | |||
directories | ||||
mathematica | sympy | sage | maxima | |
working directory | dir = Directory[] SetDirectory["/tmp"] | |||
build pathname | FileNameJoin[{"/etc", "hosts"}] | |||
dirname and basename | DirectoryName["/etc/hosts"] FileBaseName["/etc/hosts"] | |||
absolute pathname | (* file must exist; symbolic links are resolved: *) AbsoluteFileName["foo"] AbsoluteFileName["/foo"] AbsoluteFileName["../foo"] AbsoluteFileName["./foo"] AbsoluteFileName["~/foo"] | |||
glob paths | Function[x, Print[x]] /@ FileNames["/tmp/*"] | |||
make directory | CreateDirectory["/tmp/foo.d"] | |||
recursive copy | CopyDirectory["/tmp/foo.d", "/tmp/baz.d"] | |||
remove empty directory | DeleteDirectory["/tmp/foo.d"] | |||
remove directory and contents | DeleteDirectory["/tmp/foo.d", DeleteContents -> True] | |||
directory test | DirectoryQ["/etc"] | |||
libraries and namespaces | ||||
mathematica | sympy | sage | maxima | |
load library | Get["foo.m"] | load(grobner); | ||
reflection | ||||
mathematica | sympy | sage | maxima | |
get function documentation | ?Tan Information[Tan] | print(solve.__doc__) # in IJupyter: solve? help(solve) | solve? | describe(solve); ? solve; |
function options | Options[Solve] Options[Plot] | |||
function source | import inspect inspect.getsourcelines(integrate) | |||
query data type | Head[x] | type(x) | symbolp(x); numberp(7); stringp("seven"); listp([1, 2, 3]); | |
list variables in scope | Names[$Context <> "*"] | /* user defined variables: */ values; /* user defined functions: */ functions; | ||
____________________________________________________ | ____________________________________________________ | ____________________________________________________ | ____________________________________________________ |
sheet two: symbolic expressions | calculus | equations and unknowns | optimization | vectors | matrices | combinatorics | number theory | polynomials | trigonometry | special functions | permutations | descriptive statistics | distributions | statistical tests
bar charts | scatter plots | line charts | surface charts | chart options
version used
The version of software used to check the examples in the reference sheet.
show version
How to determine the version of an installation.
implicit prologue
Code assumed to have been executed by the examples in the sheet.
Grammar and Invocation
interpreter
How to execute a script.
mathematica:
The full path to MathKernel on Mac OS X:
/Applications/Mathematica.app/Contents/MacOS/MathKernel
repl
How to launch a command line read-eval-print loop for the language.
block delimiters
How blocks are delimited.
statement separator
How statements are separated.
end-of-line comment
Character used to start a comment that goes to the end of the line.
multiple line comment
The syntax for a delimited comment which can span lines.
Variables and Expressions
assignment
How to perform assignment.
Mathematica, Sympy, and Pari/GP support the chaining of assignments. For example, in Mathematica one can assign the value 3 to x and y with:
x = y = 3
In Mathematica and Pari/GP, assignments are expressions. In Mathematica, the following code is legal and evaluates to 7:
(x = 3) + 4
In Mathematica, the Set function behaves identically to assignment and can be nested:
Set[a, Set[b, 3]]
delayed assignment
How to assign an expression to a variable name. The expression is re-evaluated each time the variable is used.
mathematica:
GNU make also supports assignment and delayed assignment, but = is used for delayed assignment and := is used for immediate assignment. This is the opposite of how Mathematica uses the symbols.
The POSIX standard for make only has = for delayed assignment.
parallel assignment
How to assign values in parallel.
Parallel assignment can be used to swap the values held in two variables.
compound assignment
The compound assignment operators.
increment and decrement
Increment and decrement operators which can be used in expressions.
non-referential identifier
An identifier which does not refer to a value.
A non-referential identifier will usually print as a string containing its name.
Expressions containing non-referential identifiers will not be evaluated, though they may be simplified.
Non-referential identifiers represent "unknowns" or "parameters" when performing algebraic derivations.
identifier as value
How to get a value referring to an identifier.
The identifier may be the name of a variable containing a value. But the value referring to the identifier is distinct from the value in the variable.
One may manipulate a value referring to an identifier even if it is not the name of a variable.
global variable
How to declare a global variable.
local variable
How to declare a local variable.
pari/gp:
There is my for declaring a local variable with lexical scope and local for declaring a variable with dynamic scope.
local can be used to change the value of a global as seen by any functions which are called while the local scope is in effect.
null
The null literal.
null test
How to test if a value is null.
undefined variable access
What happens when an undefined variable is used in an expression.
remove variable binding
How to remove a variable. Subsequent references to the variable will be treated as if the variable were undefined.
conditional expression
Arithmetic and Logic
true and false
The boolean literals.
falsehoods
Values which evaluate to false in a conditional test.
sympy:
Note that the logical operators Not, And and Or do not treat empty collections or None as false. This is different from the Python logical operators not, and, and or.
pari/gp:
A vector or matrix evaluates to false if all components evaluate to false.
logical operators
The Boolean operators.
sympy:
In Python, &, |, and & are bit operators. SymPy has defined __and__, __or__, and __invert__ methods to make them Boolean operators for symbols, however.
relational operators
The relational operators.
sympy:
The full SymPy names for the relational operators are:
sympy.Equality # ==
sympy.Unequality # !=
sympy.GreaterThan # >=
sympy.LessThan # <=
sympy.StrictGreaterThan # >
sympy.StrictLessThan # <
The SymPy functions are attatched to the relational operators ==, !=, for symbols … using the methods __eq__, __ne__, __ge__, __le__, __gt__, __lt__. The behavior they provide is similar to the default Python behavior, but when one of the arguments is a SymPy expression, a simplification will be attempted before the comparison is made.
arithmetic operators
The arithmetic operators.
integer division
How to compute the quotient of two integers.
integer division by zero
The result of dividing an integer by zero.
float division
How to perform float division, even if the arguments are integers.
float division by zero
The result of dividing a float by zero.
power
How to compute exponentiation.
Note that zero to a negative power is equivalent to division by zero, and negative numbers to a fractional power may have multiple complex solutions.
sqrt
The square root function.
For positive arguments the positive square root is returned.
sqrt -1
How the square root function handles negative arguments.
mathematica:
An uppercase I is used to enter the imaginary unit, but Mathematica displays it as a lowercase i.
transcendental functions
The standard transcendental functions such as one might find on a scientific calculator.
The functions are the exponential (not to be confused with exponentiation), natural logarithm, sine, cosine, tangent, arcsine, arccosine, arctangent, and the two argument arctangent.
transcendental constants
The transcendental constants pi and e.
The transcendental functions can used to computed to compute the transcendental constants:
pi = acos(-1)
pi = 4 * atan(1)
e = exp(1)
float truncation
Ways to convert a float to a nearby integer.
absolute value
How to get the absolute value and signum of a number.
integer overflow
What happens when the value of an integer expression cannot be stored in an integer.
The languages in this sheet all support arbitrary length integers so the situation does not happen.
float overflow
What happens when the value of a floating point expression cannot be stored in a float.
rational construction
How to construct a rational number.
rational decomposition
How to extract the numerator and denominator from a rational number.
decimal approximation
How to get a decimal approximation of an irrational number or repeating decimal rational.
complex construction
How to construct a complex number.
complex decomposition
How to extract the real and imaginary part from a complex number; how to extract the argument and modulus; how to get the complex conjugate.
random number
How to generate a random integer or a random float.
pari/gp:
When the argument of random() is an integer n, it generates an integer in the range
When the argument is a arbitrary precision float, it generates a value in the range [0.0, 1.0]. The precision of the argument determines the precision of the random number.
random seed
How to set or get the random seed.
mathematica:
The seed is not set to the same value at start up.
bit operators
binary, octal, and hex literals
Binary, octal, and hex integer literals.
mathematica:
The notation works for any base from 2 to 36.
radix
Convert a number to a representation using a given radix.
to array of digits
Convert a number to an array of digits representing the number.
Strings
string literal
The syntax for a string literal.
newline in literal
Are newlines permitted in string literals.
literal escapes
Escape sequences for putting unusual characters in string literals.
concatenate
How to concatenate strings.
translate case
How to convert a string to all lower case letters or all upper case letters.
trim
How to remove whitespace from the beginning or the end of string.
number to string
How to convert a number to a string.
string to number
How to parse a number from a string.
string join
How to join an array of strings into a single string, possibly separated by a delimiter.
split
How to split a string in to an array of strings. How to specify the delimiter.
substitute
How to substitute one or all occurrences of substring with another.
length
How to get the length of a string in characters.
index of substring
How to get the index of the first occurrence of a substring.
extract substring
How to get a substring from a string using character indices.
character literal
The syntax for a character literal.
character lookup
How to get a character from a string by index.
chr and ord
Convert a character code point to a character or a single character string.
Get the character code point for a character or single character string.
delete characters
Delete all occurrences of a set of characters from a string.
Arrays
section | mathematica | maple | maxima | sympy |
---|---|---|---|---|
arrays | List | list | list | list |
multidimensional arrays | List | Array | array | none |
vectors | List | Vector | list | Matrix |
matrices | List | Matrix | matrix | Matrix |
literal
The notation for an array literal.
size
The number of elements in the array.
lookup
How to access an array element by its index.
update
How to change the value stored at an array index.
out-of-bounds behavior
What happens when an attempt is made to access an element at an out-of-bounds index.
element index
How to get the index of an element in an array.
slice
How to extract a subset of the elements. The indices for the elements must be contiguous.
array of integers as index
manipulate back
manipulate front
head
tail
cons
concatenate
replicate
copy
How to copy an array. Updating the copy will not alter the original.
iterate
reverse
sort
dedupe
membership
How to test whether a value is an element of a list.
intersection
How to to find the intersection of two lists.
union
How to find the union of two lists.
relative complement, symmetric difference
How to find all elements in one list which are not in another; how to find all elements which are in one of two lists but not both.
map
filter
reduce
universal and existential tests
min and max element
shuffle and sample
How to shuffle an array. How to extract a random sample from an array without replacement.
flatten
zip
How to interleave two arrays.
cartesian product
Sets
Arithmetic Sequences
Dictionaries
record literal
record member access
Functions
definition
invocation
function value
Execution Control
if
How to write a branch statement.
mathematica:
The 3rd argument (the else clause) of an If expression is optional.
while
How to write a conditional loop.
mathematica:
Do can be used for a finite unconditional loop:
Do[Print[foo], {10}]
for
How to write a C-style for statement.
break/continue
How to break out of a loop. How to jump to the next iteration of a loop.
Exceptions
raise exception
How to raise an exception.
handle exception
How to handle an exception.
uncaught exception behavior
gap:
Calling Error() invokes the GAP debugger, which is similar to a Lisp debugger. In particular, all the commands available in the GAP REPL are still available. Variables can be inspected and modified while in the debugger but any changes will be lost when the debugger is quitted.
One uses quit; or ^D to exit the debugger. These commands also cause the top-level GAP REPL exit if used while not in a debugger.
If Error() is invoked while in the GAP debugger, the debugger will be invoked recursively. One must use quit; for each level of debugger recursion to return to the top -level GAP REPL.
Use
brk> Where(4);
to print the top four functions on the stack when the error occurred. Use DownEnv() and UpEnv() to move down the stack—i.e. from callee to caller—and UpEnv() to move up the stack. The commands take the number of levels to move down or up:
brk> DownEnv(2);
brk> UpEnv(2);
When the debugger is invoked, it will print a message. It may give the user the option of providing a value with the return statement so that a computation can be continued:
brk> return 17;
finally block
How to write code that executes even if an exception is raised.
Streams
Files
Directories
Libraries and Namespaces
Reflection
function documentation
How to get the documentation for a function.
Mathematica
Mathematica Documentation Center
WolframAlpha
Mathics
Maple
http://www.maplesoft.com/support/help/
Maxima
http://maxima.sourceforge.net/docs/manual/maxima.html
Sage
http://doc.sagemath.org/html/en/index.html