Using GraphQL with Microservices in Go
A few months ago, a really nice Go package vektah/gqlgen for GraphQL became popular. This article describes how GraphQL is implemented in "Spidey", an exemplary microservices based online store.
Some parts listed below are missing, but complete source code is available on GitHub.
Architecture
Spidey encompasses three services that are exposed to the user through a GraphQL gateway. Communication within the cluster is through gRPC.
Account service manages accounts and catalog manages products. Order service deals with creating orders. It talks to the other two services to properly validate orders.
Individual services have three layers: server, service and repository. Server is responsible for communication, in Spidey's case its gRPC. Service contains any business logic. Repository is responsible for writing and reading data from a database.
Getting started
Running Spidey requires Docker, Docker Compose, Go, Protocol Buffers compiler and its Go plugin, and the super cool vektah/gqlgen package.
You'll also need vgo tool, which is in early stages of development. The dep tool will work as well, but included go.mod
file will be ignored.
Docker setup
Each service is implemented in its own subdirectory and contains at least app.dockerfile
file. The db.dockerfile
is used to build the database image.
account
├── account.proto
├── app.dockerfile
├── cmd
│ └── account
│ └── main.go
├── db.dockerfile
└── up.sql
All services are defined inside docker-compose.yaml file.
Here's an extract for the account service:
version: "3.6"
services:
account:
build:
context: "."
dockerfile: "./account/app.dockerfile"
depends_on:
- "account_db"
environment:
DATABASE_URL: "postgres://spidey:123456@account_db/spidey?sslmode=disable"
account_db:
build:
context: "./account"
dockerfile: "./db.dockerfile"
environment:
POSTGRES_DB: "spidey"
POSTGRES_USER: "spidey"
POSTGRES_PASSWORD: "123456"
restart: "unless-stopped"
The context is specifically set to ensure that vendor
directory can be copied inside the Docker container. All services share the same dependencies and some need each other's definitions.
Account service
Account service exposes functions for creating and retrieving accounts.
Service
API of the account service is defined with the following interface:
type Service interface {
PostAccount(ctx context.Context, name string) (*Account, error)
GetAccount(ctx context.Context, id string) (*Account, error)
GetAccounts(ctx context.Context, skip uint64, take uint64) ([]Account, error)
}
type Account struct {
ID string `json:"id"`
Name string `json:"name"`
}
Implementation needs a reference to the repository.
type accountService struct {
repository Repository
}
func NewService(r Repository) Service {
return &accountService{r}
}
The service is responsible for any business logic. The PostAccount
functions is implemented like this:
func (s *accountService) PostAccount(ctx context.Context, name string) (*Account, error) {
a := &Account{
Name: name,
ID: ksuid.New().String(),
}
if err := s.repository.PutAccount(ctx, *a); err != nil {
return nil, err
}
return a, nil
}
It leaves parsing wire format to the server and dealing with a database to the repository.
Database
Data model for an account is very simple:
CREATE TABLE IF NOT EXISTS accounts (
id CHAR(27) PRIMARY KEY,
name VARCHAR(24) NOT NULL
);
The above data definition SQL file will be copied and executed inside the Docker container.
FROM postgres:10.3
COPY up.sql /docker-entrypoint-initdb.d/1.sql
CMD ["postgres"]
PostgreSQL database is accessed through a repository interface.
type Repository interface {
Close()
PutAccount(ctx context.Context, a Account) error
GetAccountByID(ctx context.Context, id string) (*Account, error)
ListAccounts(ctx context.Context, skip uint64, take uint64) ([]Account, error)
}
Repository is implemented as a wrapper over the Go's standard library SQL package.
type postgresRepository struct {
db *sql.DB
}
func NewPostgresRepository(url string) (Repository, error) {
db, err := sql.Open("postgres", url)
if err != nil {
return nil, err
}
err = db.Ping()
if err != nil {
return nil, err
}
return &postgresRepository{db}, nil
}
gRPC
The gRPC service is defined with the following Protocol Buffers file:
syntax = "proto3";
package pb;
message Account {
string id = 1;
string name = 2;
}
message PostAccountRequest {
string name = 1;
}
message PostAccountResponse {
Account account = 1;
}
message GetAccountRequest {
string id = 1;
}
message GetAccountResponse {
Account account = 1;
}
message GetAccountsRequest {
uint64 skip = 1;
uint64 take = 2;
}
message GetAccountsResponse {
repeated Account accounts = 1;
}
service AccountService {
rpc PostAccount (PostAccountRequest) returns (PostAccountResponse) {}
rpc GetAccount (GetAccountRequest) returns (GetAccountResponse) {}
rpc GetAccounts (GetAccountsRequest) returns (GetAccountsResponse) {}
}
Because the package
is set to pb
, the generated code will be available from the pb
subpackage.
gRPC code is generated with the command specified at the top of account/server.go file and by using Go's generate command.
//go:generate protoc ./account.proto --go_out=plugins=grpc:./pb
package account
Running the following command will generate code inside pb
subdirectory.
$ go generate account/server.go
Server works as an adapter over the Service
interface, and transforming request and response types accordingly.
type grpcServer struct {
service Service
}
func ListenGRPC(s Service, port int) error {
lis, err := net.Listen("tcp", fmt.Sprintf(":%d", port))
if err != nil {
return err
}
serv := grpc.NewServer()
pb.RegisterAccountServiceServer(serv, &grpcServer{s})
reflection.Register(serv)
return serv.Serve(lis)
}
Here's how the PostAccount
functions looks like:
func (s *grpcServer) PostAccount(ctx context.Context, r *pb.PostAccountRequest) (*pb.PostAccountResponse, error) {
a, err := s.service.PostAccount(ctx, r.Name)
if err != nil {
return nil, err
}
return &pb.PostAccountResponse{Account: &pb.Account{
Id: a.ID,
Name: a.Name,
}}, nil
}
Usage
gRPC server is initialized inside account/cmd/account/main.go file.
type Config struct {
DatabaseURL string `envconfig:"DATABASE_URL"`
}
func main() {
var cfg Config
err := envconfig.Process("", &cfg)
if err != nil {
log.Fatal(err)
}
var r account.Repository
retry.ForeverSleep(2*time.Second, func(_ int) (err error) {
r, err = account.NewPostgresRepository(cfg.DatabaseURL)
if err != nil {
log.Println(err)
}
return
})
defer r.Close()
log.Println("Listening on port 8080...")
s := account.NewService(r)
log.Fatal(account.ListenGRPC(s, 8080))
}
A client struct is implemented inside account/client.go file for convenience. With it, account service can be used without worrying about the underlying RPC implementation, as seen later on.
account, err := accountClient.GetAccount(ctx, accountId)
if err != nil {
log.Fatal(err)
}
Catalog service
Catalog service deals with products in the Spidey store. It's implemented similarly as the account service, but uses Elasticsearch to persist products.
Service
Account service conforms to the following interface:
type Service interface {
PostProduct(ctx context.Context, name, description string, price float64) (*Product, error)
GetProduct(ctx context.Context, id string) (*Product, error)
GetProducts(ctx context.Context, skip uint64, take uint64) ([]Product, error)
GetProductsByIDs(ctx context.Context, ids []string) ([]Product, error)
SearchProducts(ctx context.Context, query string, skip uint64, take uint64) ([]Product, error)
}
type Product struct {
ID string `json:"id"`
Name string `json:"name"`
Description string `json:"description"`
Price float64 `json:"price"`
}
Database
The repository implements abstractions over Elasticsearch by using olivere/elastic package underneath.
type Repository interface {
Close()
PutProduct(ctx context.Context, p Product) error
GetProductByID(ctx context.Context, id string) (*Product, error)
ListProducts(ctx context.Context, skip uint64, take uint64) ([]Product, error)
ListProductsWithIDs(ctx context.Context, ids []string) ([]Product, error)
SearchProducts(ctx context.Context, query string, skip uint64, take uint64) ([]Product, error)
}
Because Elasticsearch stores IDs separately from documents, there's a helper struct for products which doesn't contain the ID.
type productDocument struct {
Name string `json:"name"`
Description string `json:"description"`
Price float64 `json:"price"`
}
Inserting products into the database involves copying over all the fields into the productDocument
struct:
func (r *elasticRepository) PutProduct(ctx context.Context, p Product) error {
_, err := r.client.Index().
Index("catalog").
Type("product").
Id(p.ID).
BodyJson(productDocument{
Name: p.Name,
Description: p.Description,
Price: p.Price,
}).
Do(ctx)
return err
}
gRPC
The gRPC service is defined in the catalog/catalog.proto file, and implemented in the catalog/server.go file.
One notable difference from the account service is that it doesn't define all the endpoints from the service interface.
syntax = "proto3";
package pb;
message Product {
string id = 1;
string name = 2;
string description = 3;
double price = 4;
}
message PostProductRequest {
string name = 1;
string description = 2;
double price = 3;
}
message PostProductResponse {
Product product = 1;
}
message GetProductRequest {
string id = 1;
}
message GetProductResponse {
Product product = 1;
}
message GetProductsRequest {
uint64 skip = 1;
uint64 take = 2;
repeated string ids = 3;
string query = 4;
}
message GetProductsResponse {
repeated Product products = 1;
}
service CatalogService {
rpc PostProduct (PostProductRequest) returns (PostProductResponse) {}
rpc GetProduct (GetProductRequest) returns (GetProductResponse) {}
rpc GetProducts (GetProductsRequest) returns (GetProductsResponse) {}
}
Searching and retrieving by IDs is missing, while GetProductsRequest
message contains extra fields.
This is how the GetProducts
functions looks like:
func (s *grpcServer) GetProducts(ctx context.Context, r *pb.GetProductsRequest) (*pb.GetProductsResponse, error) {
var res []Product
var err error
if r.Query != "" {
res, err = s.service.SearchProducts(ctx, r.Query, r.Skip, r.Take)
} else if len(r.Ids) != 0 {
res, err = s.service.GetProductsByIDs(ctx, r.Ids)
} else {
res, err = s.service.GetProducts(ctx, r.Skip, r.Take)
}
if err != nil {
log.Println(err)
return nil, err
}
products := []*pb.Product{}
for _, p := range res {
products = append(
products,
&pb.Product{
Id: p.ID,
Name: p.Name,
Description: p.Description,
Price: p.Price,
},
)
}
return &pb.GetProductsResponse{Products: products}, nil
}
It decides what service function to call based on arguments given. The goal is to mimic how a REST HTTP endpoint would look like.
Having one endpoint, which looks like /products?[ids=...]&[query=...]&skip=0&take=100
, is easier to work with while consuming the API.
Order service
Order service is a bit trickier. It needs to call account and catalog services to validate requests, since an order can only be created for an account and products that exist.
Service
The Service
interface defines functions for creating orders and retrieving all orders made by some account.
type Service interface {
PostOrder(ctx context.Context, accountID string, products []OrderedProduct) (*Order, error)
GetOrdersForAccount(ctx context.Context, accountID string) ([]Order, error)
}
type Order struct {
ID string
CreatedAt time.Time
TotalPrice float64
AccountID string
Products []OrderedProduct
}
type OrderedProduct struct {
ID string
Name string
Description string
Price float64
Quantity uint32
}
Database
An order can contain multiple products, so the data model must support that. The order_products
table below describes an ordered product with an ID of product_id
and the quantity of such products. The product_id
field will have to be retrieved from the catalog service.
CREATE TABLE IF NOT EXISTS orders (
id CHAR(27) PRIMARY KEY,
created_at TIMESTAMP WITH TIME ZONE NOT NULL,
account_id CHAR(27) NOT NULL,
total_price MONEY NOT NULL
);
CREATE TABLE IF NOT EXISTS order_products (
order_id CHAR(27) REFERENCES orders (id) ON DELETE CASCADE,
product_id CHAR(27),
quantity INT NOT NULL,
PRIMARY KEY (product_id, order_id)
);
The Repository
interface is very simple.
type Repository interface {
Close()
PutOrder(ctx context.Context, o Order) error
GetOrdersForAccount(ctx context.Context, accountID string) ([]Order, error)
}
But the implementation is not quite so simple.
One order must be inserted in two steps using a transaction, and then selected using a join statement.
Reading an order from a database requires parsing tabular data into the object hierarchy. The code below works by traversing through returned rows and groups products into orders based on order's ID.
orders := []Order{}
order := &Order{}
lastOrder := &Order{}
orderedProduct := &OrderedProduct{}
products := []OrderedProduct{}
// Scan rows into Order structs
for rows.Next() {
if err = rows.Scan(
&order.ID,
&order.CreatedAt,
&order.AccountID,
&order.TotalPrice,
&orderedProduct.ID,
&orderedProduct.Quantity,
); err != nil {
return nil, err
}
// Scan order
if lastOrder.ID != "" && lastOrder.ID != order.ID {
newOrder := Order{
ID: lastOrder.ID,
AccountID: lastOrder.AccountID,
CreatedAt: lastOrder.CreatedAt,
TotalPrice: lastOrder.TotalPrice,
Products: products,
}
orders = append(orders, newOrder)
products = []OrderedProduct{}
}
// Scan products
products = append(products, OrderedProduct{
ID: orderedProduct.ID,
Quantity: orderedProduct.Quantity,
})
*lastOrder = *order
}
// Add last order (or first :D)
if lastOrder != nil {
newOrder := Order{
ID: lastOrder.ID,
AccountID: lastOrder.AccountID,
CreatedAt: lastOrder.CreatedAt,
TotalPrice: lastOrder.TotalPrice,
Products: products,
}
orders = append(orders, newOrder)
}
gRPC
The gRPC server needs to contact account and catalog services before delegating the request to the order service implementation.
The protocol is defined as follows:
syntax = "proto3";
package pb;
message Order {
message OrderProduct {
string id = 1;
string name = 2;
string description = 3;
double price = 4;
uint32 quantity = 5;
}
string id = 1;
bytes createdAt = 2;
string accountId = 3;
double totalPrice = 4;
repeated OrderProduct products = 5;
}
message PostOrderRequest {
message OrderProduct {
string productId = 2;
uint32 quantity = 3;
}
string accountId = 2;
repeated OrderProduct products = 4;
}
message PostOrderResponse {
Order order = 1;
}
message GetOrderRequest {
string id = 1;
}
message GetOrderResponse {
Order order = 1;
}
message GetOrdersForAccountRequest {
string accountId = 1;
}
message GetOrdersForAccountResponse {
repeated Order orders = 1;
}
service OrderService {
rpc PostOrder (PostOrderRequest) returns (PostOrderResponse) {}
rpc GetOrdersForAccount (GetOrdersForAccountRequest) returns (GetOrdersForAccountResponse) {}
}
Running the server requires passing in the necessary URLs for other services.
type grpcServer struct {
service Service
accountClient *account.Client
catalogClient *catalog.Client
}
func ListenGRPC(s Service, accountURL, catalogURL string, port int) error {
accountClient, err := account.NewClient(accountURL)
if err != nil {
return err
}
catalogClient, err := catalog.NewClient(catalogURL)
if err != nil {
accountClient.Close()
return err
}
lis, err := net.Listen("tcp", fmt.Sprintf(":%d", port))
if err != nil {
accountClient.Close()
catalogClient.Close()
return err
}
serv := grpc.NewServer()
pb.RegisterOrderServiceServer(serv, &grpcServer{
s,
accountClient,
catalogClient,
})
reflection.Register(serv)
return serv.Serve(lis)
}
Creating an order involves calling the account service, to check if the account exists, and then doing the same for products. Fetching products is also required for calculating the total price, which is handled by the service. You don't want users passing in their own sum.
func (s *grpcServer) PostOrder(
ctx context.Context,
r *pb.PostOrderRequest,
) (*pb.PostOrderResponse, error) {
// Check if account exists
_, err := s.accountClient.GetAccount(ctx, r.AccountId)
if err != nil {
log.Println(err)
return nil, err
}
// Get ordered products
productIDs := []string{}
for _, p := range r.Products {
productIDs = append(productIDs, p.ProductId)
}
orderedProducts, err := s.catalogClient.GetProducts(ctx, 0, 0, productIDs, "")
if err != nil {
log.Println(err)
return nil, err
}
// Construct products
products := []OrderedProduct{}
for _, p := range orderedProducts {
product := OrderedProduct{
ID: p.ID,
Quantity: 0,
Price: p.Price,
Name: p.Name,
Description: p.Description,
}
for _, rp := range r.Products {
if rp.ProductId == p.ID {
product.Quantity = rp.Quantity
break
}
}
if product.Quantity != 0 {
products = append(products, product)
}
}
// Call service implementation
order, err := s.service.PostOrder(ctx, r.AccountId, products)
if err != nil {
log.Println(err)
return nil, err
}
// Make response order
orderProto := &pb.Order{
Id: order.ID,
AccountId: order.AccountID,
TotalPrice: order.TotalPrice,
Products: []*pb.Order_OrderProduct{},
}
orderProto.CreatedAt, _ = order.CreatedAt.MarshalBinary()
for _, p := range order.Products {
orderProto.Products = append(orderProto.Products, &pb.Order_OrderProduct{
Id: p.ID,
Name: p.Name,
Description: p.Description,
Price: p.Price,
Quantity: p.Quantity,
})
}
return &pb.PostOrderResponse{
Order: orderProto,
}, nil
}
When querying for orders made by specific account, calling the catalog service is also necessary because product details (name, price and description) are needed.
GraphQL service
The GraphQL schema is defined inside graphql/schema.graphql file.
scalar Time
type Account {
id: String!
name: String!
orders: [Order!]!
}
type Product {
id: String!
name: String!
description: String!
price: Float!
}
type Order {
id: String!
createdAt: Time!
totalPrice: Float!
products: [OrderedProduct!]!
}
type OrderedProduct {
id: String!
name: String!
description: String!
price: Float!
quantity: Int!
}
input PaginationInput {
skip: Int
take: Int
}
input AccountInput {
name: String!
}
input ProductInput {
name: String!
description: String!
price: Float!
}
input OrderProductInput {
id: String!
quantity: Int!
}
input OrderInput {
accountId: String!
products: [OrderProductInput!]!
}
type Mutation {
createAccount(account: AccountInput!): Account
createProduct(product: ProductInput!): Product
createOrder(order: OrderInput!): Order
}
type Query {
accounts(pagination: PaginationInput, id: String): [Account!]!
products(pagination: PaginationInput, query: String, id: String): [Product!]!
}
The gqlgen
tool will generate a bunch of types, but more control is needed for the Order
model. It is specified in the graphql/types.json file, so the model wont be automatically generated.
{
"Order": "github.com/tinrab/spidey/graphql/graph.Order"
}
The Order
struct can now be implemented manually.
package graph
import time "time"
type Order struct {
ID string `json:"id"`
CreatedAt time.Time `json:"createdAt"`
TotalPrice float64 `json:"totalPrice"`
Products []OrderedProduct `json:"products"`
}
The command for generating types is defined at the top of graphql/graph/graph.go file.
//go:generate gqlgen -schema ../schema.graphql -typemap ../types.json
package graph
It can be run with:
$ go generate ./graphql/graph/graph.go
GraphQL server has references to all other services.
type GraphQLServer struct {
accountClient *account.Client
catalogClient *catalog.Client
orderClient *order.Client
}
func NewGraphQLServer(accountUrl, catalogURL, orderURL string) (*GraphQLServer, error) {
// Connect to account service
accountClient, err := account.NewClient(accountUrl)
if err != nil {
return nil, err
}
// Connect to product service
catalogClient, err := catalog.NewClient(catalogURL)
if err != nil {
accountClient.Close()
return nil, err
}
// Connect to order service
orderClient, err := order.NewClient(orderURL)
if err != nil {
accountClient.Close()
catalogClient.Close()
return nil, err
}
return &GraphQLServer{
accountClient,
catalogClient,
orderClient,
}, nil
}
The GraphQLServer
struct needs to implement all generated resolvers. Mutations can be found in graphql/graph/mutations.go and queries in graphql/graph/queries.go.
Mutations call the relevant service by using its client, and passing in the arguments.
func (s *GraphQLServer) Mutation_createAccount(ctx context.Context, in AccountInput) (*Account, error) {
ctx, cancel := context.WithTimeout(ctx, 3*time.Second)
defer cancel()
a, err := s.accountClient.PostAccount(ctx, in.Name)
if err != nil {
log.Println(err)
return nil, err
}
return &Account{
ID: a.ID,
Name: a.Name,
}, nil
}
Queries can have other nested queries. In Spidey's example, querying for an account can also query its orders, as seen in the Account_orders
function.
func (s *GraphQLServer) Query_accounts(ctx context.Context, pagination *PaginationInput, id *string) ([]Account, error) {
// This will be called first
// ...
}
func (s *GraphQLServer) Account_orders(ctx context.Context, obj *Account) ([]Order, error) {
// Then this, to return orders from the account "obj"
// ...
}
Wrapping up
To run Spidey, execute the following commands:
$ vgo vendor
$ docker-compose up -d --build
And open http://localhost:8000/playground in your browser.
In the GraphQL tool presented, try creating an account:
mutation {
createAccount(account: {name: "John"}) {
id
name
}
}
Which returns:
{
"data": {
"createAccount": {
"id": "15t4u0du7t6vm9SRa4m3PrtREHb",
"name": "John"
}
}
}
Then create some products:
mutation {
a: createProduct(product: {name: "Kindle Oasis", description: "Kindle Oasis is the first waterproof Kindle with our largest 7-inch 300 ppi display, now with Audible when paired with Bluetooth.", price: 300}) { id },
b: createProduct(product: {name: "Samsung Galaxy S9", description: "Discover Galaxy S9 and S9+ and the revolutionary camera that adapts like the human eye.", price: 720}) { id },
c: createProduct(product: {name: "Sony PlayStation 4", description: "The PlayStation 4 is an eighth-generation home video game console developed by Sony Interactive Entertainment", price: 300}) { id },
d: createProduct(product: {name: "ASUS ZenBook Pro UX550VE", description: "Designed to entice. Crafted to perform.", price: 300}) { id },
e: createProduct(product: {name: "Mpow PC Headset 3.5mm", description: "Computer Headset with Microphone Noise Cancelling, Lightweight PC Headset Wired Headphones, Business Headset for Skype, Webinar, Phone, Call Center", price: 43}) { id }
}
Note the returned IDs:
{
"data": {
"a": {
"id": "15t7jjANR47uODEPUIy1od5APnC"
},
"b": {
"id": "15t7jsTyrvs1m4EYu7TCes1EN5z"
},
"c": {
"id": "15t7jrfDhZKgxOdIcEtTUsriAsY"
},
"d": {
"id": "15t7jpKt4VkJ5iHbwt4rB5xR77w"
},
"e": {
"id": "15t7jsYs0YzK3B7drQuf1mX5Dyg"
}
}
}
Then order something:
mutation {
createOrder(order: { accountId: "15t4u0du7t6vm9SRa4m3PrtREHb", products: [
{ id: "15t7jjANR47uODEPUIy1od5APnC", quantity: 2 },
{ id: "15t7jpKt4VkJ5iHbwt4rB5xR77w", quantity: 1 },
{ id: "15t7jrfDhZKgxOdIcEtTUsriAsY", quantity: 5 }
]}) {
id
createdAt
totalPrice
}
}
And verify the returned cost:
{
"data": {
"createOrder": {
"id": "15t8B6lkg80ZINTASts92nBzyE8",
"createdAt": "2018-06-11T21:18:18Z",
"totalPrice": 2400
}
}
}
The entire source code is available on GitHub.