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The Emergence 
of Edge Computing
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Industry investment and research interest in edge computing, in 

which computing and storage nodes are placed at the Internet’s 

edge in close proximity to mobile devices or sensors, have grown 

dramatically in recent years. This emerging technology promises 

to deliver highly responsive cloud services for mobile computing, 

scalability and privacy-policy enforcement for the Internet of 

Things, and the ability to mask transient cloud outages.

Cloud computing, which has dominated IT 
discourse in the past decade, has a twofold 
value proposition. First, centralization exploits 
economies of scale to lower the marginal 

cost of system administration and operations. Second, 
organizations can avoid the capital expenditure of 
creating a datacenter by consuming computing resources 
over the Internet from a large service provider. These 
considerations have led to the consolidation of computing 
capacity into multiple large datacenters spread across the 
globe. The proven economic benefits of cloud computing 
make it likely to remain a permanent feature of the future 
computing landscape.

However, the forces driving centralization are not the 
only ones at work. Nascent technologies and applications 
for mobile computing and the Internet of Things (IoT) are 
driving computing toward dispersion. Edge computing is a 

new paradigm in which substantial computing and storage 
resources—variously referred to as cloudlets,1 micro 
datacenters, or fog nodes2—are placed at the Internet’s 
edge in close proximity to mobile devices or sensors. 

Industry investment and research interest in edge 
computing have grown dramatically in recent years. 
Nokia and IBM jointly introduced the Radio Applications 
Cloud Server (RACS), an edge computing platform for 
4G/LTE networks, in early 2013.3 The following year, a 
mobile edge computing standardization effort began 
under the auspices of the European Telecommunications 
Standards Institute (ETSI).4 The Open Edge Computing 
initiative (OEC; openedgecomputing.org) was launched in 
June 2015 by Vodafone, Intel, and Huawei in partnership 
with Carnegie Mellon University (CMU) and expanded 
a year later to include Verizon, Deutsche Telekom, 
T-Mobile, Nokia, and Crown Castle. This collaboration 
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includes creation of a Living Edge 
Lab in Pittsburgh, Pennsylvania, to 
gain hands-on experience with a live 
deployment of proof-of-concept cloudlet-
based applications. Organized by the 
telecom industry, the first Mobile Edge 
Computing Congress (tmt.knect365.com 
/mobile-edge-computing) convened in 
London in September 2015 and again 
in Munich a year later. The Open Fog 
Consortium (www.openfogconsortium 
.org) was created by Cisco, Microsoft, 
Intel, Dell, and ARM in partnership 
with Princeton University in November 
2015, and has since expanded to include 
many other companies. The First IEEE/
ACM Symposium on Edge Computing 
(conferences.computer.org/SEC) was held 
in October 2016 in Washington, DC.

These developments raise several 
questions: why has edge computing 
emerged, what new capabilities does it 
enable, and where is it headed? 

ORIGIN AND BACKGROUND
The roots of edge computing reach 
back to the late 1990s, when Akamai 
introduced content delivery networks 
(CDNs) to accelerate web performance.5 
A CDN uses nodes at the edge close to 
users to prefetch and cache web content. 
These edge nodes can also perform some 
content customization, such as adding 
location-relevant advertising. CDNs are 
especially valuable for video content, 
because the bandwidth savings from 
caching can be substantial.

Edge computing generalizes and 
extends the CDN concept by leveraging 
cloud computing infrastructure. As 
with CDNs, the proximity of cloudlets 
to end users is crucial. However, 
instead of being limited to caching web 
content, a cloudlet can run arbitrary 
code just as in cloud computing. This 
code is typically encapsulated in a 
virtual machine (VM) or a lighter-weight 

container for isolation, safety, resource 
management, and metering.

In 1997, Brian Noble and his 
colleagues first demonstrated edge 
computing’s potential value to mobile 
computing.6 They showed how speech 

recognition could be implemented 
with acceptable performance on a 
resource-limited mobile device by 
offloading computation to a nearby 
server. Two years later, Jason Flinn 
and I extended this approach to 
improve battery life.7 In a 2001 article 
that generalized these concepts, I 
introduced the term cyber foraging for 
the amplification of a mobile device’s 
computing capabilities by leveraging 
nearby infrastructure.8

Cloud computing’s emergence in the 
mid-2000s led to the cloud becoming the 
most obvious infrastructure to leverage 
from a mobile device. Today, Apple’s 
Siri and Google’s speech-recognition 
services both offload computation to 
the cloud. Unfortunately, consolidation 
implies large average separation 
between a mobile device and its optimal 
cloud datacenter. Ang Li and his 
colleagues reported that the average 
round-trip time from 260 global 
vantage points to their optimal Amazon 
Elastic Compute Cloud (EC2) instances 
is 74 ms.9 To this must be added the 
latency of a wireless first hop. In terms 
of jitter, the variance inherent in a 
multihop network must be included. 

Clearly, reliance on a cloud datacenter 
is not advisable for applications that 
require end-to-end delays to be tightly 
controlled to less than a few tens of 
milliseconds. As will be discussed later, 
tight control of latency is necessary 

for emerging applications such as 
augmented reality (AR).

These observations about end-to- 
end latency and cloud computing 
were first articulated in a 2009 article 
I coauthored with Paramvir Bahl, 
Rámon Cáceres, and Nigel Davies 
that laid the conceptual foundation 
for edge computing.1 We advocated 
a two-level architecture: the first 
level is today’s unmodified cloud 
infrastructure; the second level 
consists of dispersed elements called 
cloudlets with state cached from the 
first level. Using persistent caching 
instead of hard state simplifies the 
management of cloudlets despite their 
physical dispersal at the Internet edge. 
The cloudlet concept can, of course, 
be expanded to a multilevel cloudlet 
hierarchy.

In 2012, Flavio Bonomi and his 
colleagues introduced the term fog 
computing to refer to this dispersed 
cloud infrastructure.2 However, their 
motivation for decentralization is 
IoT infrastructure scalability rather 
than mobile applications’ interactive 
performance. The researchers envision 
a multilevel hierarchy of fog nodes 

USING PERSISTENT CACHING SIMPLIFIES 
THE MANAGEMENT OF CLOUDLETS 

DESPITE THEIR PHYSICAL DISPERSAL AT 
THE INTERNET EDGE.
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stretching from the cloud to IoT edge 
devices.

WHY PROXIMITY MATTERS
As we explore new applications and 
use cases for both mobile computing 
and the IoT, the virtues of proximity 
are becoming increasingly apparent. 
In the physical world, the importance 
of proximity has never been in 
doubt. The old axiom about the 
three top determinants of real estate 
value being “location, location, and 
location” captures this observation 
well. In the cyber world, the seamless 
connectivity offered by the Internet 
has lulled us into a false sense of 
disregard for physical proximity. 
Because logical network proximity is 
entirely characterized by low latency, 
low jitter, and high bandwidth, the 
question “How close is physically 
close enough?” cannot be answered in 
the abstract. It is dependent on factors 
such as the networking technologies 
used, network contention, application 
characteristics, and user tolerance for 
poor interactive response.

Physical proximity affects end-to-  
end latency, economically viable 
band width, establishment of trust, 
and survivability. With sufficient 
effort and resource investment, the 
lack of proximity can be partially 
masked. For example, a direct fiber 
connection can achieve low latency 
and high bandwidth between distant 
points. However, there are limits to 
this approach. The speed of light is an 
obvious physical limit on latency. The 

need to use a multihop networking 
strategy to cover a large geographic 
area with many access points imposes 
an economic limit on both latency 
and bandwidth. Each hop introduces 
queuing and routing delay, as well as 
buffer bloat.10

The proximity of cloudlets helps in 
at least four distinct ways:

 › Highly responsive cloud services. 
A cloudlet’s physical proxim-
ity to a mobile device makes it 
easier to achieve low end-to-end 
latency, high bandwidth, and 
low jitter to services located on 
the cloudlet. This is valuable for 
applications such as AR and vir-
tual reality that offload compu-
tation to the cloudlet.

 › Scalability via edge analytics. The 
cumulative ingress bandwidth 
demand into the cloud from a 
large collection of high-band-
width IoT sensors, such as video 
cameras, is considerably lower 
if the raw data is analyzed 
on cloudlets. Only the (much 
smaller) extracted information 
and metadata must be transmit-
ted to the cloud.

 › Privacy-policy enforcement. By 
serving as the first point of 
contact in the infrastructure for 
IoT sensor data, a cloudlet can 
enforce the privacy policies of its 
owner prior to release of the data 
to the cloud.

 › Masking cloud outages. If a cloud 
service becomes unavailable due 

to network failure, cloud failure, 
or a denial-of-service attack, 
a fallback service on a nearby 
cloudlet can temporarily mask 
the failure.

I now discuss each of these advan-
tages in detail.

HIGHLY RESPONSIVE 
CLOUD SERVICES
Humans are acutely sensitive to delays 
in the critical path of interaction, and 
their performance on cognitive tasks 
is remarkably fast and accurate.11 
For example, under normal lighting 
conditions, face recognition takes 
370–620 ms, depending on familiarity. 
Speech recognition takes 300–450 ms 
for short phrases, and it requires only 
4 ms to tell that a sound is a human 
voice. VR applications that use head-
tracked systems require latencies of 
less than 16 ms to achieve perceptual 
stability. End-to-end latency of a few 
tens of milliseconds is a safe but 
achievable goal.

Figure 1 illustrates the importance 
of cloudlets for low-latency offload 
services. The graphs show the 
cumulative distribution of measured 
response times for an AR and a face 
recognition application on a mobile 
device.12 An image from the mobile 
device, which is located in Pittsburgh, 
is transmitted over a Wi-Fi first 
hop to a cloudlet or to an Amazon 
Web Services (AWS) datacenter. The 
image is processed at the destination 
by computer vision code executing 
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FIGURE 1. Response time distribution and per-operation energy cost of an (a) augmented reality and (b) face recognition application on 
a mobile device, in which an image from the device is transmitted over a Wi-Fi first hop to a cloudlet or an Amazon Web Services (AWS) 
datacenter. The ideal is best approximated by a cloudlet, demonstrating the importance of low-latency offload services. Figure adapted 
from K. Ha et al., “The Impact of Mobile Multimedia Applications on Data Center Consolidation,” Proc. 2013 IEEE Int’l Conf. Cloud Eng. 
(IC2E 13), 2013, pp. 166–176.
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within a VM. For AR, buildings in 
the image are recognized and labels 
corresponding to their identities are 
transmitted back to the mobile device. 
For face recognition, the identity of the 
person is returned.

The ideal curve in Figure 1 would 
be a step function that jumps to 1.0 
at the origin. As the figure shows, 
the ideal is best approximated by a 
cloudlet. End-to-end network latency 
impedes performance, as indicated by 
the worsening response-time curves 
corresponding to more distant AWS 
locations. Increasing response time 
also increases per-operation energy 
consumption on the mobile device. 
This value is indicated beside the 
corresponding label in the figure 
legend. For example, the device 
consumes 1.1 J on average to perform 
an AR operation on the cloudlet, but 
3.1 J, 5.1 J, and so on when performing 
it on AWS-East, AWS-West, and so on. 
Similar results can be expected with 
any offload service that is concentrated 
in a few large datacenters.

The label “mobile only” in the 
figure corresponds to a case where 
no offloading is performed and the 
computer vision code is run on the 
mobile device. In spite of avoiding 
the energy and performance cost of 
Wi-Fi communication, this option 
is slower than using the cloudlet. 
Offloading is clearly important for 
these applications.

Cloudlets are a disruptive technology 
that brings energy-rich high-end com- 
puting within one wireless hop of 
mobile devices, thereby enabling new 
applications that are both computation-
intensive and latency-sensitive. A prime 
example is wearable cognitive assistance,11 
which combines a device like Google 
Glass with cloudlet-based processing 
to guide users through a complex task. 

As with a GPS system, the user hears 
a synthesized voice describing what 
to do next and sees visual cues in the 
Glass display. The system catches errors 
immediately and corrects the user 
before they cascade. The final report of 
the 2013 National Science Foundation 

Workshop on Future Directions in 
Wireless Networking characterized 
this new genre of applications as 
“astonishingly transformative.”13 In 
ongoing work at CMU,14 we have built 
cognitive assistance applications for 
the seven tasks summarized in Table 1. 
Videos of some of these applications are 
available at goo.gl/02m0nL.

On the cloudlet, the workflow of 
these applications consists of two 
phases. In the first phase, the sensor 
inputs are analyzed to extract a sym-
bolic representation of task progress 
(fourth column of Table 1). This is an 
idealized representation of the input 
sensor values relative to the task, 
and excludes all irrelevant detail. 
This phase must be tolerant of con-
siderable real-world variability—for 
example, different lighting levels, 
light sources, viewer’s positions with 
respect to the task artifacts, task- 
unrelated clutter in the background, 
and so on. One can view the extraction 
of a symbolic representation as a 
task-specific “analog-to-digital” con-
version: the enormous state space of 
sensor values is simplified to a much 

smaller task-specific state space. The 
second phase of each task workflow 
operates solely on the symbolic rep-
resentation. Comparing the symbolic 
representation to the expected task 
state generates user guidance for the 
next step (last column of Table 1). The 

video guidance is shown on the Glass 
display, and audio guidance is given 
using the Android text-to-speech API.

SCALABILITY THROUGH 
EDGE ANALYTICS
Independent of latency considerations, 
cloudlets can also reduce ingress 
bandwidth into the cloud. For example, 
consider an application in which many 
colocated users are continuously 
transmitting video from their smart-
phone to the cloud for content 
analysis. The cumulative data rate 
for even a small fraction of users in 
a modest-size city would saturate its 
metropolitan area network: 12,000 
users transmitting 1080p video would 
require a link of 100 gigabits per 
second; a million users would require a 
link of 8.5 terabits per second.

Figure 2 shows how cloudlets can 
solve this problem. In the proposed 
GigaSight framework,15 video from 
a mobile device only travels as far as 
a nearby cloudlet. The cloudlet runs 
computer vision analytics in near 
real time and only sends the results 
(content tags, recognized faces, and 

INDEPENDENT OF LATENCY 
CONSIDERATIONS, CLOUDLETS 

CAN REDUCE INGRESS BANDWIDTH 
INTO THE CLOUD.
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TABLE 1. Example wearable cognitive assistance applications.

App 
name

Example input video 
frame

App description Symbolic 
representation

Example guidance

Face Jogs user’s memory of a familiar face whose name cannot 
be recalled. Detects and extracts a tightly cropped image 
of each face, then applies popular open source face 
recognizer OpenFace (cmusatyalab.github.io/openface), 
which is based on a deep neural network (DNN) algorithm. 
Whispers name of person. Can be used in combination with 
mood detection algorithms to o� er conversational hints.

ASCII text of name Whispers “Barack 
Obama”

Pool Helps novice pool player aim correctly. Gives continuous 
visual feedback (left arrow, right arrow, or thumbs up) as 
user turns cue stick. Correct shot angle is calculated based 
on widely used fractional aiming system. Uses color, line, 
contour, and shape detection. Symbolic representation 
describes positions of cue ball, object ball, target pocket, 
and top and bottom of cue stick.

<Pocket, object ball, 
cue ball, cue top, cue 
bottom>

Ping-
Pong

Tells novice player to hit ball to left or right, depending on 
which is more likely to beat opponent. Uses color, line, and 
optical-fl ow-based motion detection to detect ball, table, 
and opponent. Symbolic representation is a 3-tuple: in rally 
or not, opponent position, ball position. Whispers “left” or 
“right.”

<InRally, ball position, 
opponent position>

Whispers “Left”

Workout Guides correct user form in exercise actions like sit-ups 
and push-ups, and counts out repetitions. Uses volumetric 
template matching on a 10- to 15-frame video segment to 
classify poorly performed repetitions as distinct types of 
exercise (for example, “bad push-up”). Uses smartphone on 
fl oor for third-person viewpoint.

<Action count> Says “8”

Lego Guides user in assembling 2D Lego models. Analyzes 
each video frame in three steps: (1) fi nds board using its 
distinctive color and black dot pattern, (2) locates Lego 
bricks on board using edge and color detection, and 
(3) assigns brick color using weighted majority voting  
within each block. Symbolic representation is matrix 
showing color for each brick.

[[ 0, 2, 1, 1 ],
[  0, 2, 1, 6 ],
[  2, 2, 2, 2 ]]

Says “Find a 1 × 3 
green piece and put it 
on top”

Draw Helps user to sketch better. Builds on third-party app 
originally designed to input sketches from pen tablets 
and output corrective guidance on desktop screen. Our 
implementation preserves back-end logic. New Google 
Glass–based front end allows use of any drawing surface 
and instrument and displays guidance on Glass. Displays 
error alignment in sketch.

Sandwich Helps cooking novice prepare sandwiches according to a 
recipe. Because real food is perishable, we use realistic 
plastic toy food as ingredients. Object detection uses a 
region proposal and DNN approach. Implementation is on 
top of Ca� e (ca� e.berkeleyvision.org) and Dlib (dlib.net). 
Transfer learning saves time in labeling and training.

Object: “Lettuce on top 
of ham and bread”

Says “Now put a 
piece of bread on the 
lettuce”
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so on) along with metadata (owner, 
capture location, timestamp, and so on) 
to the cloud. This can reduce ingress 
bandwidth into the cloud by three to 
six orders of magnitude. GigaSight 
also shows how tags and metadata in 
the cloud can guide deeper and more 
customized searches of the content 
of a video segment during its (finite) 
retention period on a cloudlet.

A video camera is only one example 
of a high-data-rate sensor in the 
IoT. Another example is a modern 
aircraft, which can generate nearly 
half a terabyte of sensor data during 
a flight. Real-time analysis of this 
data on a cloudlet in the aircraft could 
generate timely guidance for preventive 
maintenance, fuel economy, and other 
benefits.

Cloudlets’ latency and bandwidth 
advantages are especially relevant 
in the context of automobiles, to 
complement vehicle-to-vehicle (V2V) 

approaches being explored for real-time 
control and accident avoidance. For the 
foreseeable future, cloud connectivity 
from a moving automobile will at 
best be 3G or 4G/LTE. An important 
question is whether cloudlets should 
be in automobiles or part of the telco 
infrastructure (perhaps one cloudlet 
connected via fiber links to multiple 
cell towers in an area). Both alternatives 
have value.

An application such as a multiplayer 
video game for automobile passengers 
is best hosted on the vehicle’s cloudlet. 
The cloudlet could also perform 
real-time analytics of high-data-rate 
sensor streams from the engine and 
other sources to alert the driver to 
imminent failure or the need for 
preventive maintenance. In addition, 
this information could be transmitted 
to the cloud for integration into the 
vehicle manufacturer’s database. Fine-
grain analysis of such anomaly data 

might reveal model-specific defects 
that could be corrected in a timely 
manner.

For other automotive applications, 
such as collaborative real-time avoidance 
of road hazards, the telco cloudlet is 
the optimal hosting site. For example, 
if a vehicle hits a pothole or swerves to 
avoid a fallen tree branch, the hazard’s 
coordinates can be rapidly shared 
within the telco cloudlet and then used 
for many hours by other automobiles 
to proactively cope with the hazard 
(for example, by warning drivers to 
make an early lane change).

PRIVACY POLICY 
ENFORCEMENT
Cloudlets could help address a 
vexing problem—namely, growing 
concerns over data privacy arising 
from IoT system overcentralization. 
Increasingly reluctant to release raw 
sensor data to an IoT cloud hub, users 
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FIGURE 2. GigaSight framework. A cloudlet performs computer vision analytics on video from mobile devices in near real time and only 
sends the results along with metadata to the cloud, sharply reducing ingress bandwidth into the cloud. VM: Virtual machine.
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and organizations desire finer-grain 
control over release of that data. For 
example, a user should be able to 
delete or denature a subset of sensor 
data he or she deems sensitive. From 
the end user’s per-spective, denatured 
sensor data is safe to release to the 
outside world: faces in images can 
be blurred, sensor readings can be 
coarsely aggregated or omitted at 
certain times of day or night, and so 
on. Today’s IoT architectures, in which 
data is transmitted directly from 
sensors to a cloud hub, make such fine-
grain control impossible.

Nigel Davies and his colleagues16 
propose an IoT privacy architecture 
(see Figure 3) that leverages a cloudlet 
within a sensor owner’s trust domain. 
This cloudlet is the first point of 

infrastructure contact for the sensor 
streams. Trusted software modules 
called privacy mediators execute on 
the cloudlet to perform denaturing 
and privacy-policy enforcement 
on the sensor streams. Cloudlets 
thus provide the foundation for a 
scalable and secure privacy solution 
that aligns well with natural 
organizational boundaries of trust 
and responsibility. 

As Figure 3 illustrates, full-fidelity 
sensor data can be archived on a 
cloudlet for a finite duration such as a 
few hours, days, or weeks depending 
on data volume and local storage 
size. This could be valuable in case 
the IoT hub discovers an anomaly and 
returns a request for more in-depth 
data analysis using less aggressively 

denatured data. Whether to relax 
the normal privacy policy in such 
situations is a decision that remains 
under end-user control.

MASKING CLOUD OUTAGES
As our dependence on the cloud grows, 
so does our vulnerability to cloud 
outages. Implicit in the convergence 
of mobile and cloud computing is the 
assumption that the cloud is easily 
accessible at all times—in other words, 
there is good end-to-end network quality 
and few network or cloud failures. 
However, there are usage contexts in 
which cloud access must be viewed as 
an occasional luxury rather than a basic 
necessity. This viewpoint applies to 
several important contexts that can be 
referred to as hostile environments.
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FIGURE 3. Internet of Things (IoT) privacy architecture. Software modules called privacy mediators execute on a cloudlet within a sensor 
owner’s trust domain to perform denaturing and privacy-policy enforcement on the sensor streams.
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The prime example of a hostile 
environment is a theater of military 
operations—jamming the enemy’s net- 
work is a standard tactic. Another 
example is a geographical region 
where recovery is under way after 
networking infrastructure has been 
destroyed by a natural disaster or 
terrorist attack. A third example 
is a developing country with weak 
networking infrastructure. A fourth 
example is any part of the Internet 
that has temporarily become a hostile 
environment because it is under cyber-
attack. There is growing concern that 
cyberattacks could soon become major 
weapons of organized crime as well as 
instruments of national policy. If these 
dire predictions come true, the entire 
Internet might have to be viewed as a 
hostile environment in the future.

Cloudlets can alleviate cloud out-
ages. Because of physical proximity, 
the survivability characteristics of a 
cloudlet are closer to its associated 
mobile devices than to the distant 
cloud. This opens the door to 
approaches in which a fallback service 
on a cloudlet can temporarily mask 
cloud inaccessibility.17 During failures, 
a cloudlet can serve as a proxy for the 
cloud and perform its critical services. 
Upon repair of the failure, actions that 
were tentatively committed to the 
cloudlet might need to be propagated to 
the cloud for reconciliation.

More than two decades ago, James 
Kistler and I anticipated how this 
concept could be applied to cloud-
sourced data in describing the Coda File 
System, which provided disconnectable 
read–write access to shared data.18 The 
essential steps are hoarding (prefetching 
data into a persistent cache), emulation 
(leveraging hoarded data in the cloud’s 
absence and precisely tracking local 
updates), and reintegration (propagating 

updates to the cloud, and detecting and 
resolving conflicts). Generalizing these 
steps to various cloud services will be 
an important future research area.

THE ROAD AHEAD
Edge computing clearly offers many 
benefits. At the same time, it also faces 
many technical and nontechnical 
challenges. 

On the technical side, there are  
many unknowns pertaining to the 
software mechanisms and algorithms 
needed for the collective control and 
sharing of cloudlets in distributed 
computing. There are also substantial 
hurdles in managing dispersed cloudlet 
infrastructure. As mentioned earlier, 
one of cloud computing’s driving 
forces is the lower management cost 
of centralized infrastructure. The 
dispersion inherent in edge computing 
raises the complexity of management 
considerably. Developing innovative 
technical solutions to reduce this 
complexity is a research priority for 
edge computing. Another important 
area of study will be the development 
of mechanisms to compensate for the 
weaker perimeter security of cloudlets, 
relative to cloud datacenters. The 
development of tamper-resistant and 
tamper-evident enclosures, remote 
surveillance, and Trusted Platform 
Module–based attestation are all 
important paths that could contribute 
to alleviating this problem.

On the nontechnical side, the 
biggest unknown relates to viable 
business models for deploying 
cloudlets. Success will require the 

involvement and support of a complex 
set of industries, communities, and 
standards organizations. This presents 
a classic bootstrapping problem. 
Without unique applications and 
services that leverage edge computing, 
there is no incentive for deploying 
cloudlets. Yet, without large-enough 
cloudlet deployments, there is little 
incentive for developers to create 
those new applications and services. 
How can we break this deadlock?

This state of affairs is similar to 
that at the dawn of the Internet in the 
late 1970s to early 1980s. An open 
ecosystem attracted investment in 
infrastructure and applications, with-
out any single entity bearing large 
risk or dominating the market. Over 
time, this lead to the emergence of a 
critical mass of Internet infrastructure 
and applications (such as email) that 
could uniquely benefit from that 
infrastructure. By the time the World 
Wide Web emerged as a “killer app” 
in the early 1990s, sufficient Internet 
infrastructure had been deployed for 
growth to explode.

Edge computing can follow a 
similar, but faster, path to success 
by nurturing the creation of an open 
cloudlet ecosystem. This is the goal of 

DURING FAILURES, A CLOUDLET CAN 
SERVE AS A PROXY FOR THE CLOUD AND 

PERFORM ITS CRITICAL SERVICES.
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OEC’s OpenStack++, a derivative of the 
popular OpenStack cloud computing 
platform. The “++” refers to the unique 
extensions necessary for cloudlet 
environments including cloudlet 
discovery, just-in-time provisioning, 
and VM hand-off. As edge computing 
grows, OpenStack++ aims to become 
a widely used platform that catalyzes 
many proprietary and nonproprietary 
innovations in hardware, software, 
and services.

The emergence of edge computing 
coincides with three important trends 
in the computing and communication 
landscape that, despite being driven 
by distinct forces, are convergent. One 
trend is software-defined networking 
(SDN) and the associated concept 
of network function virtualization  
(NFV), which must be supported 
by some of the same virtualized 
infrastructure as edge computing. A 
second trend is growing interest in 
ultra-low-latency (one millisecond 
or less) wireless networks for a new 
class of tactile applications. Ultra-
low latency is one of the proposed 
attributes for future 5G networks. 
Edge computing is a natural partner 

of 5G networks because it ensures 
that ultra-low first-hop latency is not 
swamped by the much larger latency 
of the remaining hops to the cloud. A 
third trend is continuing improvement 
in the computing capabilities of 
wearables, smartphones, and other 
mobile devices that represent the 
Internet’s extreme edge. Although 
these devices are indeed growing in 
computing power, their improvements 
are muted by the fundamental 
challenges of mobility such as weight, 
size, battery life, and heat dissipation. 
The sweet spot for edge computing is 
thus in the infrastructure, where it can 
amplify the capabilities of proximate 
mobile devices and sensors.

In closing, it is useful to reflect on 
edge computing from a historical 
perspective. Since the 1960s, com-

puting has alternated between 
centralization and decentralization. 
The centralized approaches of batch 
processing and timesharing prevailed 
in the 1960s and 1970s. The 1980s and 
1990s saw decentralization through 
the rise of personal computing. By the 

mid-2000s, the centralized approach 
of cloud computing began its ascent to 
the preeminent position that it holds 
today. Edge computing represents the 
latest phase of this ongoing dialectic. 
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