|
|
A103546
|
|
Decimal expansion of the negated value of the smallest real root of the quintic equation x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x -1 = 0.
|
|
2
|
|
|
2, 4, 8, 6, 3, 4, 3, 7, 6, 4, 9, 5, 9, 0, 7, 9, 6, 6, 5, 2, 6, 7, 1, 9, 5, 3, 3, 0, 9, 7, 0, 7, 2, 2, 1, 2, 0, 1, 4, 0, 9, 0, 3, 8, 5, 2, 5, 9, 2, 7, 0, 5, 8, 1, 9, 7, 6, 4, 9, 9, 4, 0, 3, 3, 2, 9, 9, 1, 1, 1, 8, 5, 4, 0, 0, 1, 1, 4, 7, 3, 0, 5, 5, 1, 5, 5, 9, 0, 9, 1, 0, 4, 6, 9, 2, 8, 0, 8, 0, 1, 7, 2, 3, 1, 7
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This is an approximation to the Feigenbaum reduction parameter.
The other two real roots are 0.76660865407289... and -1.16317291980104...
|
|
LINKS
|
Table of n, a(n) for n=1..105.
Eric Weisstein's World of Mathematics, Feigenbaum Constant.
|
|
EXAMPLE
|
The real roots are (roughly) -2.486343765, -1.163172920, 0.7666086541.
|
|
MATHEMATICA
|
RealDigits[ FindRoot[x^5 + 2x^4 - 2x^3 - x^2 + 2x - 1 == 0, {x, -3}, WorkingPrecision -> 2^7][[1, 2]]][[1]] (* Robert G. Wilson v, Mar 26 2005 *)
Root[#^5 + 2#^4 - 2#^3 - #^2 + 2# - 1&, 1] // RealDigits[#, 10, 105]& // First (* Jean-François Alcover, Feb 27 2013 *)
|
|
PROG
|
(PARI) -polrootsreal(x^5 + 2*x^4 - 2*x^3 - x^2 + 2*x -1)[1] \\ Charles R Greathouse IV, Apr 14 2014
|
|
CROSSREFS
|
Cf. A006891, A103616.
Sequence in context: A000689 A132137 A011180 * A080868 A046260 A254065
Adjacent sequences: A103543 A103544 A103545 * A103547 A103548 A103549
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
Jun Mizuki (suzuki32(AT)sanken.osaka-u.ac.jp), Mar 23 2005
|
|
STATUS
|
approved
|
|
|
|