

2332-26

School on Synchrotron and FEL Based Methods and their Multi-Disciplinary Applications

19 - 30 March 2012

History and fundamentals of coherent diffraction imaging

Janos Kirz

ALS Berkeley, United States of America

History and fundamentals of coherent diffraction imaging

Janos Kirz ALS Berkeley

Outline

- Motivation
- Basic ideas
- · Coherence
- · The phase problem
- · Solutions holography
- · Solutions Diffraction microscopy
- Prior knowledge
- The apparatus
- First experiments
- Challenges

Why go lensless?

- A technique for 3D imaging of $0.5 20 \mu m$ isolated objects
- Too thick for EM (0.5 μ m is practical upper limit)
- Too thick for tomographic X-ray microscopy (depth of focus < 1 μ m at 10 nm resolution for soft X-rays even if lenses become available)
- Flash imaging: (Chapman lectures this afternoon)

Goals @ synchrotrons

- 10 nm resolution (3D) in 1 10 µm size biological specimens (small frozen hydrated cell, organelle; see macromolecular aggregates)

 Limitation: radiation damage!
- <4 nm resolution in less sensitive nanostructures
 (Inclusions, porosity, clusters, composite nanostructures, aerosols...)
 eg: molecular sieves, catalysts, crack propagation

Alternatives to using a lens

A lens recombines scattered rays with correct phases to form the image

Lenses have limitations. Do we really need them?

If you record the diffraction pattern, you lose the phase

Resolution: $\delta = \lambda / \sin \theta$

Phase matters

Image→ Fourier transform→ zero magnitude or phase→ inverse Fourier transform

Malcolm Howells at La Clusaz

Image using only Fourier magnitudes

Image using only Fourier phases

C. Jacobsen

Image reconstruction from the diffraction pattern

- ·Lenses do it, mirrors do it
 - but they use the full complex amplitude!
- Recording the diffraction intensity leads to the "phase problem"!
- Holographers do it but they mix in a reference wave, need very high resolution detector or similar precision apparatus
- •Crystallographers do it but they use MAD, isomorphous replacement, or other tricks (plus the amplification of many repeats)

Holography

Gabor Nobel lecture 1971 Gabor in-line holography

First holography experiment with synchrotron radiation: Aoki, Ichihara & Kikuta, 1972

Holography

- · Gabor holography
 - Encodes phase in fringes/speckles
 - Mimic reconstruction by computer
 - Requires high resolution detector
 - Aoki, Ichihara & Kikuta JJAP 11, 1847 (1972)
 - Howells, et al., Science 238, 514, (1987)
 - Not used much for high resolution imaging
- Fourier transform holography
 - Spherical reference wave spreads speckles
 - Simple reconstruction by inverse FT
 - How to get spherical reference?
 - McNulty et al., Science 256, 1009 (1992)

Fourier transform holography at _____ the NSLS

Fourier transform holography at BESSY

S. Eisebitt, J. Lüning, W. F. Schlotter, M. Lörgen, O. Hellwig, W. Eberhardt and J. Stöhr Nature 432, 885-888(2004)

Fourier transform holography

- · Size of pinhole sets resolution
- How to get enough photons through?
- · Do we really need a reference wave?

Diffraction microscopy is lensless

Use a computer to phase the scattered light, rather than a lens

A lens recombines the scattered rays with correct phases to give the image

An algorithm finds the phases that are consistent with measurements and prior knowledge

Resolution: $\delta = \lambda / \sin \theta$

Idea of David Sayre

Basic principles

 Single object, plane wave incident, scattered amplitude is Fourier transform of (complex) electron density f(r)

$$F(k) = \int f(r) e^{-2\pi i k \cdot r} dr$$

- Assume: Born Approximation
- Assume coherent illumination

Creating coherent beams

- Life before lasers
- Temporal coherence
 - spectral lines or grating monochromators
 - measure of temporal coherence: $\lambda/\Delta\lambda$
- Spatial coherence (plane or spherical waves)
 - slits or pinholes "spatial filter"
 - Impose $\Delta x \cdot \Delta \theta < \lambda$ in each dimension
 - As gets A shorter, acceptance becomes smaller

X-ray sources

- X-ray tubes
 - electron bombardment of solid target
- Synchrotron light sources
 - bending magnets
 - wigglers
 - undulators
- High harmonic generation
- Free electron lasers

X-ray sources

X-ray tubes

 $\Delta x \cdot \Delta y \quad \Delta \Omega$ $0.1 \text{mm}^2 \cdot 4\pi \quad \sim 10^{14} \text{A}^2$

0.01 mm²· $10^{-6} \sim 10^{6}$ λ^{2}

 Synchrotron light sources (bend magn)

Undulators

 $0.01 \text{mm}^2 \cdot 10^{-8} \sim 10^4 \text{A}^2$

· FELs

Can be mostly coherent

Diffraction microscopy is lensless

Use a computer to phase the scattered light, rather than a lens

A lens recombines the scattered rays with correct phases to give the image

An algorithm finds the phases that are consistent with measurements and prior knowledge

Resolution: $\delta = \lambda / \sin \theta$

Idea of David Sayre

Where does prior knowledge come from?

(c)

(d)

19

"Oversampling":

Non-crystals: pattern continuous, can do finer sampling of intensity

Finer sampling; larger array; smaller transform; "finite support"

(area around specimen must be clear!)

Miao thesis

Real Space **Recriprocal Space** DFT -1 2N DFT ⁻¹

Reconstruction

Equations can still not be solved analytically

Fienup iterative algorithm
Reciprocal space Real space

Positivity of electron density helps!

Miao thesis 3/28/12

History

- Sayre 1952: Shannon sampling theorem in crystallography
- Gerchberg & Saxton, 1971: iterative phase retrieval algorithm in EM
- Sayre 1980: pattern stronger with soft X-rays;
 use SR to work without xtals!
- Fienup 1982: Hybrid Input-Output, support
- Bates 1982: 2x Bragg sampling gives unique answer for ≥ 2 dimensions
- Yun, Kirz & Sayre 1984-87: first experimental attempts

Modern era

- 1998: Sayre, Chapman, Miao: oversampling & Fienup algorithm for X-rays
- 1999: first experimental demonstration in 2D

Miao, Charalambous, Kirz & Sayre Nature 400, 342, (1999)

Data collected at NSLS beamline X1B

 λ =1.8 nm soft x-ray diffraction pattern

Low angle data From optical micrograph

Scanning electron micrograph of object

Image reconstructed from diffraction pattern (θ_{max} corresponds to 80 nm). Assumed positivity

Where we really want to be

- Collect a high resolution 3D data set in an hour or two
- Reconstruct reliably in a comparable amount of time

Challenges 1/ recording the pattern

- · Beamline to supply sufficient coherent photons
 - Eliminate higher orders: aperiodic undulator?
- · Shielding detector from all but diffracted signal
- · Aligning specimen with small beam-spot,
 - Keeping it aligned as specimen is rotated
- Minimizing missing data
 - (beam stop, large rotation angles, etc.)
- Dynamic range of detector
- · Automation of data collection

Inside vacuum chamber

Diffraction Microscope by Stony Brook and NSLS

Gatan 630 cryo holder

Challenges 2/reconstruction

- How to avoid stagnation; local minima?
 - The enantiomorph problem
- How to tell whether algorithm converged?
 - (easy when object known...)
 - Multiple random starts
- How to make best use of the data?
 - Of prior knowledge? (Fienup, Elser, Szöke)
- · How to optimize use of computer resources?
 - Want many 10243 DFT
- · Much work remains to be done!

When rough support is not available, it can be found from "Shrink-wrap"

Marchesini et al., Phys. Rev. B
68, 140101 (2003)

algorithmic steps

- Algorithm starts with an image (random)
- Apply projections
- Iteratively modify image until converge

hybrid input-output

(Fienup, *Appl. Opt.* 21, 2759 (1982))

difference map: Elser, J. Opt. Soc. Am. A 4, 118 (2002)

by adding the difference of two projections

Comments

- Works perfectly for perfect, complete data
- Algorithm often requires thousands of iterations, stagnates sometimes
 - (Enantiomorph problem)
- Works even better for 3D!
- Real data are rarely perfect, or complete

Diffraction data and its reconstruction of freeze-dried yeast cell

Yeast cell: 2.5 micron thick, unstained freeze-dried, at 750 eV Total dose \sim 10 8 Gray (room temperature) Oversampling is about 5 in each dimension

David Shapiro, Stony Brook, now at ALS

Impose known constraints (information about the sample)

- 1. Impose measured Fourier magnitude
 - 2. Impose sample boundary (support)

Iterative solutions "hop around"! BERKELEY L

Two images (iterates) separated by 40 iterations

Noise in the data gives random fluctuations in the reconstructed image Averaging many iterates:

- reinforce reproducible information
- suppress non-reproducible information
- **D. Shapiro et al.,** Biological imaging by soft x-ray diffraction microscopy, *PNAS* **102** (43), 15343, (2005)

Iterate averaging

- If the solution fluctuates, let's take many samples and average them!
- Non-reproducible phases get washed out; reproducible phases get reinforced
- Thibault, Elser, Jacobsen, Shapiro, and Sayre, Acta Crystallographica A 62, 248 (2006)
- Other approaches: compare results from several different starting random phases (e.g., Miao, Robinson)

Summary of reconstruction details

 Final reconstruction was obtained by averaging iterates

10,000 iterations
Brightness - amplitude, hue - phase averaged over 100 iterates

The reconstruction

Reconstructed image

Shapiro et al., Proc. Nat. Acad. Sci. 102, 15343 (2005).

Is the solution unique and faithful?

Comparison with a microscope

Diffraction reconstruction (data taken at 750 eV; absorption as brightness, phase as hue).

Stony Brook/NSLS STXM image with 45 nm Rayleigh resolution zone plate at 520 eV (absorption as brightness)

Different starting random phases

Two separate runs of algorithm with different random starting phases. In both cases, 125 iterates spaced 40 iterations apart were averaged (E. Lima).

Reconstructions from data 1 degree apart show similar 30 nm structure

What is the resolution?

- Data extends to an angle corresponding to 9 nm half-period but is it all equally well phased?
- Fourier intensity of reconstructed solution versus raw data
 - → analogous to the modulation transfer function

-> Reconstructed image at 30 nm resolution

How can we believe the phasing?

- By understanding the nature of solution finding and averaging iterates (Elser and Thibault).
- By comparing reconstruction with a microscope image.
- By getting similar images from separate data sets from tilts 1° apart.
- By getting similar images from independent runs on the same data with different random starting phases.

Challenges: 3/ damage

- The ultimate limitation for radiation-sensitive materials only
- Dose fractionation (Hegerl and Hoppe 1976, McEwen 1995)

Dose fractionation

- You can divide the number of photons needed for a good 2D view into 3D views.
- Hegerl and Hoppe, Z. Naturforschung 31a, 1717 (1976); McEwen et al., Ultramic. 60, 357 (1995).

Diffraction microscopy in 3D

Bragg gratings that diffract to a certain angle represent a specific transverse and longitudinal periodicity (Ewald sphere)

Data collection over a series of rotations about an axis fills in 3D Fourier space for phasing

Stability of frozen hydrated specimens

D. Shapiro, PhD thesis

The ultimate challenge

Radiation damage in biological samples in XDM: Frozen hydrated state of protein by Howells et al.

Inverse fourth power law of dose vs resolution: Dose ~ 1/resolution-size4

Acknowledgements

- David Sayre
- Wenbing Yun
- · Chris Jacobsen, Malcolm Howells
- · Henry Chapman
- · John Miao
- David Shapiro, Enju Lima, Stefano Marchesini
- · Veit Elser & Pierre Thibault
- · DOE/BES; NIH

Conclusions

- Method of choice for micron-size specimens
- Damage will set limit on resolution for radiation-sensitive specimens