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The kissing number in four dimensions

By Oleg R. Musin

Abstract

The kissing number problem asks for the maximal number k(n) of equal
size nonoverlapping spheres in n-dimensional space that can touch another
sphere of the same size. This problem in dimension three was the subject of a
famous discussion between Isaac Newton and David Gregory in 1694. In three
dimensions the problem was finally solved only in 1953 by Schütte and van der
Waerden.

In this paper we present a solution of a long-standing problem about the
kissing number in four dimensions. Namely, the equality k(4) = 24 is proved.
The proof is based on a modification of Delsarte’s method.

1. Introduction

The kissing number k(n) is the highest number of equal nonoverlapping
spheres in Rn that can touch another sphere of the same size. In three dimen-
sions the kissing number problem is asking how many white billiard balls can
kiss (touch) a black ball.

The most symmetrical configuration, 12 billiard balls around another, is
if the 12 balls are placed at positions corresponding to the vertices of a regular
icosahedron concentric with the central ball. However, these 12 outer balls do
not kiss each other and may all move freely. So perhaps if you moved all of
them to one side a 13th ball would possibly fit in?

This problem was the subject of a famous discussion between Isaac
Newton and David Gregory in 1694. It is commonly said that Newton be-
lieved the answer was 12 balls, while Gregory thought that 13 might be possi-
ble. However, Casselman [8] found some puzzling features in this story.

The Newton-Gregory problem is often called the thirteen spheres problem.
Hoppe [18] thought he had solved the problem in 1874. However, there was
a mistake — an analysis of this mistake was published by Hales [17] in 1994.
Finally, this problem was solved by Schütte and van der Waerden in 1953 [31].
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A subsequent two-page sketch of a proof was given by Leech [22] in 1956. The
thirteen spheres problem continues to be of interest, and several new proofs
have been published in the last few years [20], [24], [6], [1], [26].

Note that k(4) ≥ 24. Indeed, the unit sphere in R4 centered at (0, 0, 0, 0)
has 24 unit spheres around it, centered at the points (±

√
2,±

√
2, 0, 0), with

any choice of signs and any ordering of the coordinates. The convex hull of
these 24 points yields a famous 4-dimensional regular polytope - the “24-cell”.
Its facets are 24 regular octahedra.

Coxeter proposed upper bounds on k(n) in 1963 [10]; for n = 4, 5, 6,
7, and 8 these bounds were 26, 48, 85, 146, and 244, respectively. Coxeter’s
bounds are based on the conjecture that equal size spherical caps on a sphere
can be packed no denser than packing where the Delaunay triangulation with
vertices at the centers of caps consists of regular simplices. This conjecture
was proved by Böröczky in 1978 [5].

The main progress in the kissing number problem in high dimensions was
made at the end of the 1970s. In 1978: Kabatiansky and Levenshtein found
an asymptotic upper bound 20.401n(1+o(1)) for k(n) [21]. (Currently known,
the lower bound is 20.2075n(1+o(1)) [32].) In 1979: Levenshtein [23], and inde-
pendently Odlyzko and Sloane [27] (= [9, Chap.13]), using Delsarte’s method,
proved that k(8) = 240, and k(24) = 196560. This proof is surprisingly short,
clean, and technically easier than all proofs in three dimensions.

However, n = 8, 24 are the only dimensions in which this method gives a
precise result. For other dimensions (for instance, n = 3, 4) the upper bounds
exceed the lower. In [27] the Delsarte method was applied in dimensions up
to 24 (see [9, Table 1.5]). For comparison with the values of Coxeter’s bounds
on k(n) for n = 4, 5, 6, 7, and 8 this method gives 25, 46, 82, 140, and 240,
respectively. (For n = 3 Coxeter’s and Delsarte’s methods only gave k(3) ≤ 13
[10], [27].)

Improvements in the upper bounds on kissing numbers (for n < 24)
were rather weak during the next years (see [9, Preface, Third Edition] for a
brief review and references). Arestov and Babenko [2] proved that the bound
k(4) ≤ 25 cannot be improved using Delsarte’s method. Hsiang [19] claims a
proof of k(4) = 24. His work has not yet received a positive peer review.

If M unit spheres kiss the unit sphere in Rn, then the set of kissing points
is an arrangement on the central sphere such that the (Euclidean) distance
between any two points is at least 1. So the kissing number problem can be
stated in another way: How many points can be placed on the surface of Sn−1

so that the angular separation between any two points is at least π/3?
This leads to an important generalization: a finite subset X of Sn−1 is

called a spherical ψ-code if for every pair (x, y) of X the inner product x · y ≤
cos ψ; i.e., the minimal angular separation is at least ψ. Spherical codes have
many applications. The main application outside mathematics is in the design
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of signals for data transmission and storage. There are interesting applications
to the numerical evaluation of n-dimensional integrals [9, Chap. 3].

Delsarte’s method (also known in coding theory as Delsarte’s linear pro-
gramming method or Delsarte’s scheme) is widely used for finding bounds
for codes. This method is described in [9], [21] (see also [28] for a beautiful
exposition).

In this paper we present an extension of the Delsarte method that allowed
us to prove the bound k(4) < 25, i.e. k(4) = 24. This extension yields also a
proof for k(3) < 13 [26].

The first version of these proofs used numerical solutions of some non-
convex constrained optimization problems [25] (see also [28]). Now, using a
geometric approach, we reduced it to relatively simple computations.

The paper is organized as follows: Section 2 shows that the main theorem:
k(4) = 24 easily follows from two lemmas: Lemma A and Lemma B. Section 3
reviews the Delsarte method and gives a proof of Lemma A. Section 4 extends
Delsarte’s bounds and reduces the upper bound problem for ψ-codes to some
optimization problem. Section 5 reduces the dimension of the corresponding
optimization problem. Section 6 develops a numerical method for a solution
of this optimization problem and gives a proof of Lemma B.

Acknowledgment. I wish to thank Eiichi Bannai, Dmitry Leshchiner,
Sergei Ovchinnikov, Makoto Tagami, Günter Ziegler, and especially anony-
mous referees of this paper for helpful discussions and useful comments.

I am very grateful to Ivan Dynnikov who pointed out a gap in arguments
in an earlier draft of [25].

2. The main theorem

Let us introduce the following polynomial of degree nine:1

f4(t) :=
1344
25

t9 − 2688
25

t7 +
1764
25

t5 +
2048
125

t4 − 1229
125

t3 − 516
125

t2 − 217
500

t− 2
125

.

Lemma A. Let X = {x1, . . . , xM} be points in the unit sphere S3. Then

S(X) =
M∑
i=1

M∑
j=1

f4(xi · xj) ≥ M2.

We give a proof of Lemma A in the next section.

1The polynomial f4 was found by the linear programming method (see details in the
appendix). This method for n = 4, z = 1/2, d = 9, N = 2000, t0 = 0.6058 gives E ≈ 24.7895.
For f4, coefficients were changed to “better looking” ones with E ≈ 24.8644.
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Lemma B. Suppose X = {x1, . . . , xM} is a subset of S3 such that the
angular separation between any two distinct points xi, xj is at least π/3. Then

S(X) =
M∑
i=1

M∑
j=1

f4(xi · xj) < 25M.

A proof of Lemma B is given at the end of Section 6.

Main theorem. k(4) = 24.

Proof. Let X be a spherical π/3-code in S3 with M = k(4) points. Then
X satisfies the assumptions in Lemmas A, B. Therefore, M2 ≤ S(X) < 25M.

From this M < 25 follows, i.e. M ≤ 24. From the other side we have k(4) ≥ 24,
showing that M = k(4) = 24.

3. Delsarte’s method

From here on we will speak of x ∈ Sn−1, alternatively, of points in Sn−1

or of vectors in Rn.

Let X = {x1, x2, . . . , xM} be any finite subset of the unit sphere Sn−1 ⊂
Rn, Sn−1 = {x : x ∈ Rn, x · x = ||x||2 = 1}. By φi,j = dist(xi, xj) we denote
the spherical (angular) distance between xi, xj . Clearly, cos φi,j = xi · xj .

3-A. Schoenberg ’s theorem. Let u1, u2, . . . , uM be any real numbers.
Then

||
∑

uixi||2 =
∑
i,j

cos φi,juiuj ≥ 0,

or equivalently the Gram matrix
(

cos φi,j

)
is positive semidefinite.

Schoenberg [29] extended this property to Gegenbauer polynomials G
(n)
k .

He proved: The matrix
(
G

(n)
k (cos φi,j)

)
is positive semidefinite for any finite

X ⊂ Sn−1.
Schoenberg proved also that the converse holds: If f(t) is a real polynomial

and for any finite X ⊂ Sn−1 the matrix
(
f(cos φi,j)

)
is positive semidefinite,

then f(t) is a linear combination of G
(n)
k (t) with nonnegative coefficients.

3-B. The Gegenbauer polynomials. Let us recall definitions of Gegenbauer
polynomials C

(n)
k (t), which are defined by the expansion

(1 − 2rt + r2)(2−n)/2 =
∞∑

k=0

rkC
(n)
k (t).
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Then the polynomials G
(n)
k (t) := C

(n)
k (t)/C

(n)
k (1) are called Gegenbauer or

ultraspherical polynomials. (So the normalization of G
(n)
k is determined by the

condition G
(n)
k (1) = 1.) Also the Gegenbauer polynomials G

(n)
k can be defined

by the recurrence formula:

G
(n)
0 = 1, G

(n)
1 = t, . . . , G

(n)
k =

(2k + n − 4) t G
(n)
k−1 − (k − 1)G

(n)
k−2

k + n − 3
.

They are orthogonal on the interval [−1, 1] with respect to the weight
function ρ(t) = (1 − t2)(n−3)/2 (see details in [7], [9], [15], [29]). In the case
n = 3, G

(n)
k are Legendre polynomials Pk, and G

(4)
k are Chebyshev polynomials

of the second kind (but with a different normalization than usual, Uk(1) = 1),

G
(4)
k (t) = Uk(t) =

sin ((k + 1)φ)
(k + 1) sinφ

, t = cos φ, k = 0, 1, 2, . . . .

For instance, U0 = 1, U1 = t, U2 = (4t2 − 1)/3, U3 = 2t3 − t,

U4 = (16t4 − 12t2 + 1)/5, . . . , U9 = (256t9 − 512t7 + 336t5 − 80t3 + 5t)/5.

3-C. Delsarte’s inequality. If a symmetric matrix is positive semidefinite,
then the sum of all its entries is nonnegative. Schoenberg’s theorem implies
that the matrix

(
G

(n)
k (ti,j)

)
is positive semidefinite, where ti,j := cos φi,j , Then

(3.1)
M∑
i=1

M∑
j=1

G
(n)
k (ti,j) ≥ 0.

Definition 1. We denote by G+
n the set of continuous functions f : [−1, 1]

→ R representable as series

f(t) =
∞∑

k=0

ckG
(n)
k (t)

whose coefficients satisfy the following conditions:

c0 > 0, ck ≥ 0 for k = 1, 2, . . . , f(1) =
∞∑

k=0

ck < ∞.

Suppose f ∈ G+
n and let

S(X) = Sf (X) :=
M∑
i=1

M∑
j=1

f(ti,j).

Using (3.1), we get

S(X) =
∞∑

k=0

ck

⎛⎝ M∑
i=1

M∑
j=1

G
(n)
k (ti,j)

⎞⎠ ≥
M∑
i=1

M∑
j=1

c0G
(n)
0 (ti,j) = c0M

2.
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Then

(3.2) S(X) ≥ c0M
2.

3-D. Proof of Lemma A. The expansion of f4 in terms of Uk = G
(4)
k is

f4 = U0 + 2U1 +
153
25

U2 +
871
250

U3 +
128
25

U4 +
21
20

U9.

We see that f4 ∈ G+
4 with c0 = 1. So Lemma A follows from (3.2).

3-E. Delsarte’s bound. Let X = {x1, . . . , xM} ⊂ Sn−1 be a spherical
ψ-code, i.e. for all i 	= j, ti,j = cos φi,j = xi · xj ≤ z := cos ψ, i.e. ti,j ∈ [−1, z]
(but ti,i = 1).

Suppose f ∈ G+
n and f(t) ≤ 0 for all t ∈ [−1, z]; then f(ti,j) ≤ 0 for all

i 	= j. That implies

Sf (X) = Mf(1) + 2f(t1,2) + . . . + 2f(tM−1,M ) ≤ Mf(1).

If we combine this with (3.2), then we get M ≤ f(1)/c0.

Let A(n, ψ) be the maximal size of a ψ-code in Sn−1. Then we have:

(3.3) A(n, ψ) ≤ f(1)
c0

.

The inequality (3.3) plays a crucial role in the Delsarte method (see details
in [2], [3],[4], [9], [13], [14], [21], [23], [27]). If z = 1/2 and c0 = 1, then (3.3)
implies

k(n) = A(n, π/3) ≤ f(1).

Levenshtein [23], and independently Odlyzko and Sloane [27] for n = 8, 24 have
found suitable polynomials f(t): f(t) ≤ 0 for all t ∈ [−1, 1/2], f ∈ G+

n , c0 = 1
with

f(1) = 240 for n = 8; and f(1) = 196560 for n = 24.

Then
k(8) ≤ 240, k(24) ≤ 196560.

For n = 8, 24 the minimal vectors in sphere packings E8 and Leech lattice give
these kissing numbers. Thus k(8) = 240, and k(24) = 196560.

When n = 4, a polynomial f of degree 9 with f(1) ≈ 25.5585 was found
in [27]. This implies 24 ≤ k(4) ≤ 25.

4. An extension of Delsarte’s method

4-A. An extension of Delsarte’s bound. Let f(t) be any real function on
the interval [−1, 1]. Let, for a given ψ, z := cos ψ. Consider on the sphere
Sn−1 points y0, y1, . . . , ym such that

(4.1) yi · yj ≤ z for all i 	= j, f(y0 · yi) > 0 for 1 ≤ i ≤ m.
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Definition 2. For fixed y0 ∈ Sn−1, m ≥ 0, z, and f(t) let us define the
family Qm(y0) = Qm(y0, n, f) of finite sets of points from Sn−1 by the formula

Qm(y0) :=
{

{y0}, m = 0,

{Y = {y1, . . . , ym} ⊂ Sn−1 : {y0} ∪ Y satisfies (4.1)}, m ≥ 1.

Denote μ = μ(n, z, f) := max{m : Qm(y0) 	= ∅}.
For 0 ≤ m ≤ μ we define the function H = Hf on the family Qm(y0):

H(y0) := f(1) for m = 0,

H(y0;Y ) = H(y0; y1, . . . , ym) := f(1) + f(y0 · y1) + . . . + f(y0 · ym) for m ≥ 1.

Let

hm = hm(n, z, f) := sup
Y ∈Qm(y0)

{H(y0;Y )}, hmax := max {h0, h1, . . . , hμ}.

Theorem 1. Suppose f ∈ G+
n . Then

A(n, ψ) ≤ hmax(n, cos ψ, f)
c0

=
1
c0

max{h0, h1, . . . , hμ}.

Proof. Let X = {x1, . . . , xM} ⊂ Sn−1 be a spherical ψ-code. Since
f ∈ G+

n , (3.2) yields: S(X) ≥ c0M
2.

Denote J(i) := {j : f(xi · xj) > 0, j 	= i}, X(i) := {xj : j ∈ J(i)}. Then

Si(X) :=
M∑

j=1

f(xi · xj) ≤ f(1) +
∑

j∈J(i)

f(xi · xj) = H(xi;X(i)) ≤ hmax,

so that

(4.2) S(X) =
M∑
i=1

Si(X) ≤ Mhmax.

We have c0M
2 ≤ S(X) ≤ Mhmax, i.e. c0M ≤ hmax as required.

Note that h0 = f(1). If f(t) ≤ 0 for all t ∈ [−1, z], then μ(n, z, f) = 0,

i.e. hmax = h0 = f(1). Therefore, this theorem yields the Delsarte bound
M ≤ f(1)/c0.

4-B. The class of functions Φ(t0, z). The problem of evaluating hmax in
the general case looks even more complicated than the upper bound problem
for spherical ψ-codes. It is not clear how to find μ, which is an optimal ar-
rangement for Y ? Here we consider this problem only for a very restrictive
class of functions Φ(t0, z). For the bound given by Theorem 1 we need f ∈ G+

n .

However, for evaluations of hm we do not need this assumption. So we do not
assume that f ∈ G+

n .
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Definition 3. Let real numbers t0, z satisfy 1 > t0 > z ≥ 0. We denote by
Φ(t0, z) the set of functions f : [−1, 1] → R such that

f(t) ≤ 0 for t ∈ [−t0, z].

Let f ∈ Φ(t0, z), and let Y ∈ Qm(y0, n, f). Denote

e0 := −y0, θ0 := arccos t0, θi := dist(e0, yi) for i = 1, . . . , m.

(In other words, e0 is the antipodal point to y0.)
It is easy to see that f(y0 · yi) > 0 only if θi < θ0. Therefore, Y is a

spherical ψ-code in the open spherical cap Cap(e0, θ0) of center e0 and radius
θ0 with π/2 ≥ ψ > θ0. This assumption is quite restrictive and in particular
derives the convexity property for Y . We use this property in the next section.

4-C. Convexity property. A subset of Sn−1 is called spherically convex if it
contains, with every two nonantipodal points, the small arc of the great circle
containing them. The closure of a convex set is convex and is the intersection
of closed hemispheres (see details in [12]).

Let Y = {y1, . . . , ym} ⊂ Cap(e0, θ0), θ0 < π/2. Then the convex hull of Y

is well defined, and is the intersection of all convex sets containing Y . Denote
the convex hull of Y by Δm = Δm(Y ).

Recall a definition of a vertex of a convex set: A point y ∈ W is called the
vertex (extremal point) of a spherically convex closed set W , if the set W \ {y}
is spherically convex or, equivalently, there are no points x, z from W for which
y is an interior point of the minor arc x̂z of large radius connecting x, z.

Theorem 2. Let Y = {y1, . . . , ym} ⊂ Sn−1 be a spherical ψ-code. Sup-
pose Y ⊂ Cap(e0, θ0), and 0 < θ0 < ψ ≤ π/2. Then any yk is a vertex of
Δm.

Proof. The cases m = 1, 2 are evident. For the case m = 3 the theorem
can be easily proved by contradiction. Indeed, suppose that some point, for
instance, y2, is not a vertex of Δ3. Then, firstly, the set Δ3 is the arc ŷ1y3,
and, secondly, the point y2 lies on the arc ŷ1y3. From this it follows that
dist(y1, y3) ≥ 2ψ, since Y is a ψ-code. On the other hand, according to the
triangle inequality, we have

2ψ ≤ dist(y1, y3) ≤ dist(e0, y1) + dist(e0, y3) < 2θ0.

We obtained the contradiction. It remains to prove the theorem for m ≥ 4.
In this paper we need only one fact from spherical trigonometry, namely

the law of cosines (or the cosine theorem):

cos φ = cos θ1 cos θ2 + sin θ1 sin θ2 cos ϕ,

where for a spherical triangle ABC the angular lengths of its sides are
dist(A, B) = θ1, dist(A, C) = θ2, dist(B, C) = φ, and ∠BAC = ϕ.
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By the assumptions:

θk = dist(yk, e0) < θ0 < ψ for 1 ≤ k ≤ m; φk,j := dist(yk, yj) ≥ ψ, k 	= j.

Let us prove that there is no point yk belonging both to the interior of Δm

and relative interior of some facet of dimension d, 1 ≤ d ≤ dim Δm. Assume
the converse. Then consider the great (n − 2)-sphere Ωk such that yk ∈ Ωk,

and Ωk is orthogonal to the arc e0yk. (Note that θk > 0. Conversely, yk = e0

and φk,j = θj ≤ θ0 < ψ.)
The great sphere Ωk divides Sn−1 into two closed hemispheres: H1 and

H2. Suppose e0 lies in the interior of H1, then at least one yj belongs to
H2. Consider the triangle e0ykyj and denote by γk,j the angle ∠e0ykyj in this
triangle. The law of cosines yields

cos θj = cos θk cos φkj + sin θk sinφk,j cos γk,j

Since yj ∈ H2, we have γk,j ≥ 90◦, and cos γk,j ≤ 0 (Fig. 1). From the
conditions of Theorem 2 there follow the inequalities

sin θk > 0, sinφk,j > 0, cos θk > 0, cos θj > 0.

�

�

�

�
�

�
�

�

e0

yk

yj

H1

H2

Ωk

Figure 1

Hence, using the cosine theorem we obtain

cos θj = cos θk cos φk,j + sin θk sinφk,j cos γk,j ,

0 < cos θj ≤ cos θk cos φk,j .

From these inequalities and 0 < cos θk < 1 it follows that, firstly,

0 < cos φk,j

(
i.e. ψ ≤ φk,j < π/2

)
,

and, secondly, the inequalities

cos θj < cos φk,j ≤ cos ψ.

Therefore, θj > ψ. This contradiction completes the proof of Theorem 2.
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4-D. Bounds on μ.

Theorem 3. Let Y = {y1, . . . , ym} ⊂ Sn−1 be a spherical ψ-code. Sup-
pose Y ⊂ Cap(e0, θ0), and 0 < ψ/2 ≤ θ0 < ψ ≤ π/2. Then

m ≤ A

(
n − 1, arccos

cos ψ − cos2 θ0

sin2 θ0

)
.

Proof. It is easy to see that the assumption 0 < ψ/2 ≤ θ0 < ψ ≤ π/2
guarantees, firstly, that the right side of the inequality in Theorem 3 is well
defined, secondly, that there is Y with m ≥ 2.

If m ≥ 2, then yi 	= e0. Conversely, ψ ≤ dist(yi, yj) = dist(e0, yj) = θj <

θ0, a contradiction. Therefore, the projection Π from the pole e0 which sends
x ∈ Sn−1 along its meridian to the equator of the sphere is defined for all yi.

Denote γi,j := dist (Π(yi),Π(yj)) (see Fig. 2). Then from the law of
cosines and the inequality cosφi,j ≤ z = cos ψ, we get

cos γi,j =
cos φi,j − cos θi cos θj

sin θi sin θj
≤ z − cos θi cos θj

sin θi sin θj

Figure 2

�
e0

�
�

� �

Π(yi) Π(yj)

yi yjφi,j

γi,j

θi θj

Let

R(α, β) =
z − cos α cos β

sinα sinβ
, then

∂R(α, β)
∂α

=
cos β − z cos α

sin2 α sinβ
.

We have θ0 < ψ. Therefore, if 0 < α, β < θ0, then cos β > z. That yields:
∂R(α, β)/∂α > 0; i.e., R(α, β) is a monotone increasing function in α. We
obtain R(α, β) < R(θ0, β) = R(β, θ0) < R(θ0, θ0).

Therefore,

cos γi,j ≤
z − cos θi cos θj

sin θi sin θj
<

z − cos2 θ0

sin2 θ0
= cos δ.

Thus Π(Y ) is a δ-code on the equator Sn−2. That yields m ≤ A(n − 1, δ).
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Corollary 1. Suppose f ∈ Φ(t0, z). If 2t20 > z+1, then μ(n, z, f) ≤ 1;
otherwise

μ(n, z, f) ≤ A
(
n − 1, arccos

z − t20
1 − t20

)
.

Proof. Let cos ψ = z, cos θ0 = t0. Then 2t20 > z +1 if and only if ψ > 2θ0.

Clearly in this case the size of any ψ-code in the cap Cap(e0, θ0) is at most 1.
Otherwise, ψ ≤ 2θ0 and this corollary follows from Theorem 3.

Corollary 2. Suppose f ∈ Φ(t0, z). Then

μ(3, z, f) ≤ 5.

Proof. Note that

T =
z − t20
1 − t20

≤ z − z2

1 − z2
=

z

1 + z
<

1
2
. Then δ = arccos T > π/3.

Thus μ(3, z, f) ≤ A(2, δ) ≤ 2π/δ < 6.

Corollary 3. Suppose f ∈ Φ(t0, z).

(i) If t0 >
√

z, then μ(4, z, f) ≤ 4.

(ii) If z = 1/2, t0 ≥ 0.6058, then μ(4, z, f) ≤ 6.

Proof. Denote by ϕk(M) the largest angular separation that can be at-
tained in a spherical code on Sk−1 containing M points. In three dimensions
the best codes and the values ϕ3(M) presently known for M ≤ 12 and M = 24
(see [11], [16], [30]). It is well known [16], [30] that ϕ3(5) = ϕ3(6) = 90◦. It
has been proved by Schütte and van der Waerden [30] that

cos ϕ3(7) = cot 40◦ cot 80◦, ϕ3(7) ≈ 77.86954◦.

(i) Since z − t20 < 0, Corollary 1 yields: μ(4, z, f) ≤ A(3, δ), where δ > 90◦.
We have δ > ϕ3(5). Thus μ < 5.

(ii) Note that for t0 ≥ 0.6058,

arccos
1/2 − t20
1 − t20

> 77.87◦.

Thus, Corollary 1 implies μ(4, 1/2, f)≤A(3, 77.87◦). Since 77.87◦ > ϕ3(7),
we have A(3, 77.87◦) < 7, i.e. μ ≤ 6.

4-E. Optimization problem. Let

t0 := cos θ0, z := cos ψ, cos δ :=
z − t20
1 − t20

, μ∗ := A(n − 1, δ).
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For given n, ψ, θ0, f ∈ Φ(t0, z), e0 ∈ Sn−1, and m ≤ μ∗, the value hm(n, z, f) is
the solution of the following optimization problem on Sn−1:

maximize f(1) + f(−e0 · y1) + . . . + f(−e0 · ym)

subject to the constraints

yi ∈ Sn−1, i = 1, . . . , m, dist(e0, yi) ≤ θ0, dist(yi, yj) ≥ ψ, i 	= j.

The dimension of this problem is (n − 1)m ≤ (n − 1)μ∗. If μ∗ is small
enough, then for small n it gets relatively small dimensional optimization
problems for computation of values hm. If additionally f(t) is a monotone
decreasing function on [−1,−t0], then in some cases this problem can be re-
duced to (n−1)-dimensional optimization problem of a type that can be treated
numerically.

5. Optimal and irreducible sets

5-A. The monotonicity assumption and optimal sets.

Definition 4. We denote by Φ∗(z) the set of all functions f ∈ ⋃
τ0>z

Φ(τ0, z)

such that f(t) is a monotone decreasing function on the interval [−1,−τ0],
and f(−1) > 0 > f(−τ0).

For any f ∈ Φ∗(z), denote t0 = t0(f) := sup{t ∈ [τ0, 1] : f(−t) < 0}.

Clearly, if f ∈ Φ∗(z), then f ∈ Φ(t0, z), i.e. f(t) ≤ 0 for t ∈ [−t0, z].
Moreover, if f(t) is a continious function on [−1,−z], then f(−t0) = 0.

Consider a spherical ψ-code Y = {y1, . . . , ym} ⊂ Cap(e0, θ0) ⊂ Sn−1.
Then we have the constraint: φi,j := dist(yi, yj) ≥ ψ for all i 	= j. Denote
by Γψ(Y ) the graph with the set of vertices Y and the set of edges yiyj with
φi,j = ψ.

Definition 5. Let f ∈ Φ∗(z), ψ = arccos(z), θ0 = arccos(t0). We say that
a spherical ψ-code Y = {y1, . . . , ym} ⊂ Cap(e0, θ0) ⊂ Sn−1 is optimal for f if
Hf (−e0;Y ) = hm(n, z, f).

If optimal Y is not unique up to isometry, then we call Y optimal if the
graph Γψ(Y ) has the maximal number of edges.

Let θk := dist(yk, e0). Then H(−e0;Y ) can be represented in the form:

Ff (θ1, . . . , θm) := Hf (−e0;Y ) = f(1) + f(− cos θ1) + . . . + f(− cos θm).

We call F (θ1, . . . , θm) = Ff (θ1, . . . , θm) the efficient function. Clearly, if
f ∈ Φ∗(z), then the efficient function is a monotone decreasing function in the
interval [0, θ0] for any variable θk.
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5-B. Irreducible sets.

Definition 6. Let 0 < θ0 < ψ ≤ π/2. We say that a spherical ψ-code
Y = {y1, . . . , ym} ⊂ Cap(e0, θ0) ⊂ Sn−1 is irreducible (or jammed) if any yk

cannot be shifted towards e0 (i.e. this shift decreases θk) such that Y ′, which
is obtained after this shifting, is also a ψ-code.

As above, in the case when irreducible Y is not defined uniquely up to
isometry by θi, we say that Y is irreducible if the graph Γψ(Y ) has the maximal
number of edges.

Proposition 1. Let f ∈ Φ∗(z). Suppose Y ⊂ Cap(e0, θ0) ⊂ Sn−1 is
optimal for f . Then Y is irreducible.

Proof. The efficient function F (θ1, . . . , θm) increases whenever θk de-
creases. From this it follows that yk cannot be shifted towards e0. In the
converse case, H(−e0;Y ) = F (θ1, . . . , θm) increases whenever yk tends to e0.
This contradicts the optimality of the initial set Y .

Lemma 1. If Y = {y1, . . . , ym} is irreducible, then

(i) e0 ∈ Δm =convex hull of Y ;

(ii) If m > 1, then deg yi > 0 for all yi ∈ Y , where deg yi denotes the degree
of the vertex yi in the graph Γψ(Y ).

Proof. (i) Otherwise whole Y can be shifted towards e0.

(ii) Clearly, if φi,j > ψ for all j 	= i, then yi can be shifted towards e0.

For m = 1, it follows that e0 = y1; i.e., h1 = sup{F (θ1)} = F (0). Thus

(5.1) h1 = f(1) + f(−1).

For m = 2, Lemma 1 implies that dist (y1, y2) = ψ, i.e.

(5.2) Δ2 = y1y2 is an arc of length ψ.

Consider Δm ⊂ Sn−1 of dimension k, dim Δm = k. Since Δm is a convex
set, there exists the great k-dimensional sphere Sk in Sn−1 containing Δm.

Note that if dim Δm = 1, then m = 2. Indeed, since dim Δm = 1, it follows
that Y belongs to the great circle S1. It is clear that in this case m = 2. (For
instance, m > 2 contradicts Theorem 2 for n = 2.)

To prove our main results in this section for n = 3, 4 we need the following
fact. (For n = 3, when Δ is an arc, a proof of this claim is trivial.)

Lemma 2. Consider in Sn−1 an arc ω and a regular simplex Δ, both with
edge lengths ψ, ψ ≤ π/2. Suppose the intersection of ω and Δ is not empty.
Then at least one of the distances between vertices of ω and Δ is less than ψ.
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Proof. We have ω = u1u2, Δ = v1v2 . . . vk,dist(u1, u2) = dist(vi, vj) = ψ.

Assume the converse. Then dist(ui, vj) ≥ ψ for all i, j. By U denote the union
of the spherical caps of centers vi, i = 1, . . . , k, and radius ψ. Let B be the
boundary of U. Note that u1 and u2 do not lie inside U. If {u′

1, u
′
2} = ω

⋂
B,

then ψ = dist(u1, u2) ≥ dist(u′
1, u

′
2), and ω′ ⋂ Δ 	= ∅, where ω′ = u′

1u
′
2.

We have the following optimization problem: to find an arc w1w2 of min-
imal length subject to the constraints w1, w2 ∈ B, and w1w2

⋂
Δ 	= ∅. It is

not hard to prove that dist(w1, w2) attains its minimum when w1 and w2 are
at distance ψ from all vi, i.e. w1v1 . . . vk and w2v1 . . . vk are regular simplices
with the common facet Δ. Using this, we show by direct calculation that

(5.3) cos α =
2kz2 − (k − 1)z − 1

1 + (k − 1)z
, α = min dist(w1, w2), z = cos ψ.

We have α ≤ ψ. From (5.3), it follows that cosα ≥ z if and only if z ≥ 1
or (k + 1)z + 1 ≤ 0. This contradicts the assumption 0 ≤ z < 1.

5-C. Irreducible sets in S2. Now we consider irreducible sets for n = 3. In
this case dim Δm ≤ 2.

Theorem 4. Suppose Y is irreducible and dim(Δm)=2. Then 3≤m≤5,
and Δm is a spherical regular triangle, rhomb, or equilateral pentagon with
edge lengths ψ.

Proof. From Corollary 2 it follows that m ≤ 5. On the other hand, m > 2.

Then m = 3, 4, 5. Theorem 2 implies that Δm is a convex polygon with vertices
y1, . . . , ym. From Lemma 1 it follows that e0 ∈ Δm, and deg yi � 1.

First let us prove that if deg yi ≥ 2 for all i, then Δm is an equilateral
m-gon with edge lengths ψ. Indeed, it is clear for m = 3.

Lemma 2 implies that two diagonals of Δm of lengths ψ do not intersect
each other. That yields the proof for m = 4. When m = 5, it remains to
consider the case where Δ5 consists of two regular nonoverlapping triangles
with a common vertex (Fig. 3). This case contradicts the convexity of Δ5.
Indeed, since the angular sum in a spherical triangle is strictly greater than
180◦ and a larger side of a spherical triangle subtends the opposite large angle,
we have ∠yiy1yj > 60◦. Then

180◦ ≥ ∠y2y1y5 = ∠y2y1y3 + ∠y3y1y4 + ∠y4y1y5 > 180◦

— a contradiction.
Now we prove that deg yi ≥ 2. Suppose deg y1 = 1, i.e. φ1,2 = ψ, φ1,i > ψ

for i = 3, . . . , m. (Recall that φi,j = dist(yi, yj).) If e0 /∈ y1y2, then after a
sufficiently small turn of y1 around y2 to e0 (Fig. 4) the distance θ1 decreases -
a contradiction. (This turn will be considered in Lemma 3 with more details.)
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It remains to consider the case: e0 ∈ y1y2. If φi,j = ψ where i > 2 or
j > 2, then e0 /∈ yiyj . Indeed, in the converse case, we have two intersecting
diagonals of lengths ψ. Therefore, deg yi ≥ 2 for 2 < i ≤ m. For m = 3, 4 this
implies the proof. For m = 5 there is the case where Q3 = y3y4y5 is a regular
triangle of side length ψ. Note that y1y2 cannot intersect Q3 (otherwise we
again have intersecting diagonals of lengths ψ), and so y1y2 is a side of Δ5. In
this case, as above, after a sufficiently small turn of Q3 around y2 to e0 the
distance θi, i = 3, 4, 5, decreases – a contradiction.

5-D. Rotations and irreducible sets in n dimensions. Now we extend these
results to n dimensions.2 Let us consider a rotation R(ϕ,Ω) on Sn−1 about
an (n − 3)-dimensional great sphere Ω in Sn−1. Without loss of generality, we
may assume that

Ω = {�u = (u1, . . . , un) ∈ Rn : u1 = u2 = 0, u2
1 + . . . + u2

n = 1}.
Denote by R(ϕ, Ω) the rotation in the plane {ui = 0, i = 3, . . . , n} through an
angle ϕ about the origin Ω:

u′
1 = u1 cos ϕ − u2 sinϕ, u′

2 = u1 sinϕ + u2 cos ϕ, u′
i = ui, i = 3, . . . , n.

Let

H+ = {�u ∈ Sn−1 : u2 ≥ 0}, H− = {�u ∈ Sn−1 : u2 ≤ 0},
Q = {�u ∈ Sn−1 : u2 = 0, u1 > 0}, Q̄ = {�u ∈ Sn−1 : u2 = 0, u1 ≥ 0}.

2In the first version of this paper for m ≥ n it has been claimed that any vertex of Γψ(Y )
has degree at least n − 1. However, E. Bannai, M. Tagami, and referees of this paper found
some gaps in our exposition. Most of them are related to “degenerated” configurations. In
this paper we need only the case n = 4, m < 6. For this case Bannai and Tagami verified
each step of our proof, considered all “degenerated” configurations, and finally gave clean and
detailed proof (see E. Bannai and M. Tagami: On optimal sets in Musin’s paper “The kissing
number in four dimensions” in the Proceedings of the COE Workshop on Sphere Packings,
November 1-5, 2004, in Fukuoka Japan). Now this claim for all n can be considered only as
conjecture. In 5-D we prove the claim when {yi} are in “general position”. I wish to thank
Eiichi Bannai, Makoto Tagami, and anonymous referees for helpful and useful comments.
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Note that H− and H+ are closed hemispheres of Sn−1, Q̄ = Q
⋃

Ω, and Q̄ is
a hemisphere of the unit sphere Ω2 = {�u ∈ Sn−1 : u2 = 0} bounded by Ω.

Lemma 3. Consider two points y and e0 in Sn−1. Suppose y ∈ Q and
e0 /∈ Q̄. If e0 ∈ H+, then any rotation R(ϕ, Ω) of y with sufficiently small pos-
itive ϕ decreases the distance between y and e0. If e0 ∈ H−, then any rotation
R(ϕ, Ω) of y with sufficiently small negative ϕ decreases the distance between
y and e0.

Proof. Let y be rotated into the point y(ϕ). If the coordinate expressions
of y and e0 are

y = (u1, 0, u3, . . . , un), u1 > 0; e0 = (v1, v2, . . . , vn), then

r(ϕ) := y(ϕ) · e0 = u1v1 cos ϕ + u1v2 sinϕ + u3v3 + . . . + unvn.

Therefore, r′(ϕ) = −u1v1 sinϕ + u1v2 cos ϕ; i.e., r′(0) = u1v2. Then

r′(0) > 0 iff v2 > 0, i.e. e0 ∈
o
H+;

r′(0) < 0 iff v2 < 0, i.e. e0 ∈
o
H− .

That proves the lemma for v2 	= 0. In the case v2 = 0, by assumption (e0 /∈ Q̄)
we have v1 < 0. In this case r′(0) = 0, and r′′(0) = −u1v1 > 0, i.e. ϕ = 0 is a
minimum point. This completes the proof.

Proposition 2. Let Y be irreducible and m = |Y | ≥ n. Suppose there
are no closed great hemispheres Q̄ in Sn−1 such that Q̄ contains n − 1 points
from Y and e0. Then any vertex of Γψ(Y ) has degree at least n − 1.

Proof. Without loss of generality, we may assume that

φ1,i = ψ, i = 2, . . . ,deg y1 + 1; φ1,i > ψ, i = deg y1 + 2, . . . , m.

Suppose deg y1 < n − 1. Then φ1,i > ψ for i = n, . . . , m. Let us con-
sider the great (n − 3)-dimensional sphere Ω in Sn−1 that contains the points
y2, . . . , yn−1. Then Lemma 3 implies that a rotation R(ϕ, Ω) of y1 with suffi-
ciently small ϕ decreases θ1. This contradicts the irreducibility of Y .

Proposition 3. If Y is irreducible, |Y | = n, dim Δn = n − 1, then
deg yi = n − 1 for all i = 1, . . . , n. In other words, Δn is a regular sim-
plex of edge lengths ψ.

Proof. Clearly, Δn is a spherical simplex. Denote by Fi its facets,

Fi := conv {y1, . . . , yi−1, yi+1, . . . , yn}.
Let for σ ⊂ In := {1, . . . , n}

Fσ :=
⋂
i∈σ

Fi .
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We claim for i 	= j that:

(5.4) If e0 /∈ F{i,j}, then φi,j = ψ.

Conversely, from Lemma 3 it follows that there exists a rotation R(ϕ, Ωij)
of yi (or yj if e0 ∈ Fi) decreasing θi (respectively, θj), where Ωij is the great
(n − 3)-dimensional sphere contain F{i,j}. This contradicts the irreducibility
assumption for Y .

Now, if there is no pair {i, j} such that e0 ∈ F{i,j}, then φi,j = ψ for all
i, j from In.

Suppose e0 ∈ Fσ, where σ has maximal size and |σ| > 1. Let σ̄ = In \ σ.
From (5.4) it follows that φi,j = ψ if i ∈ σ̄ or j ∈ σ̄. It remains to prove
that φi,j = ψ for i, j ∈ σ.

Let Λ be the intersection of the spheres of centers yi, i ∈ σ̄, and radius
ψ. Then Λ is a sphere in Sn−1 of dimension |σ| − 1. Note that Fσ = convex
hull of {yi : ∈ σ̄}, and for any fixed point x from Fσ (in particular for x = e0)
the distance dist(x, y) possesses the same value (depending only on x) on the
entire set y ∈ Λ. Then yi, i ∈ σ, lie in Λ at the same distance from e0. It is
clear that Y is irreducible if and only if yi, i ∈ σ, in Λ are vertices of a regular
simplex of edge length ψ.

Finally, all edges of Δn are of lengths ψ as required.

Corollary 4. If n > 3, then Δ4 is a regular tetrahedron of edge lengths ψ.

Proof. Let us show that dim Δ4 = 3. In the converse case, dim Δ4 = 2,
and from Theorem 4 it follows that Δ4 is a rhomb. Suppose y1y3 is the minimal
length diagonal of Δ4. Then φ2,4 > ψ (see Lemma 2). Let us consider a
sufficiently small turn of the facet y1y2y3 around y1y3. If e0 /∈ y1y3, then this
turn decreases either θ4 (if e0 ∈ y1y2y3) or θ2, a contradiction. In the case
e0 ∈ y1y3 any turn of y2 around y1y3 decreases φ2,4 and does not change θ2.
Obviously, there is a turn such that φ2,4 becomes equal to ψ. That contradicts
the irreducibility of Y also.

5-E. Irreducible sets in S3.

Lemma 4. If Y ⊂ S3 is irreducible and |Y | = 5, then deg yi ≥ 3 for
all i.

Proof. (1) Let us show that dim Δ5 = 3. In the converse case, dim Δ5

= 2, and from Theorem 4 it follows that Δ5 is a convex equilateral pentagon.
Suppose y1y3 is the minimal length diagonal of Δ5. We have φ2,k > ψ for
k > 3. Suppose e0 /∈ y1y3. If e0 ∈ y1y2y3 then any sufficiently small turn of
the facet y1y3y4y5 around y1y3 decreases θ4 and θ5; otherwise it decreases θ2, a
contradiction. In the case e0 ∈ y1y3 any turn of y2 around y1y3 decreases φ2,k
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for k = 4, 5, and does not change θi. It can be shown in an elementary way
that there is a turn such that φ2,4 or φ2,5 becomes equal to ψ, a contradiction.

In three dimensions there exist only two combinatorial types of convex
polytopes with five vertices: (A) and (B) (see Fig. 5). In the case (A) the arc
y3y5 lies inside Δ5, and for (B): y2y3y4y5 is a facet of Δ5.

Figure 5
(A)

�

�

�

�

�

								
















�
�

�
�

�
�

�
�

������

�
�
�
�
�
�
�
�























������

�
�

�
�

�
��

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �
� �

� �

y5

y2

y4

y3

y1

(B)

�

�

�

�

�

������

�
�

�
�

�
�
�
�
�
�
�
�

������

�
�

�
�























�
�

�
�

�
�

y5

y2

y4

y3

y1

(2) By sij we denote the arc yiyj , and by sijk denote the triangle yiyjyk.

Let s̃ijk be the intersection of the great 2−hemisphere Qijk and Δ5, where
Qijk contains yi, yj , yk and is bounded by the great circle passing through
yi, yj . Proposition 2 yields: if there are no i, j, k such that e0 ∈ s̃ijk, then
deg yi ≥ 3 for all i.

It remains to consider all cases e0 ∈ s̃ijk. Note that for (A), s̃ijk 	= sijk only
for three cases, i = 1, 2, 4; where j = 3, k = 5, or j = 5, k = 3 (s̃i35 = s̃i53).

(3) Lemma 1 yields that deg yk > 0. Now we consider the cases deg yk =
1, 2.

If deg yk = 1, φk,� = ψ, then e0 ∈ sk�.

Indeed, otherwise there exists the great circle Ω in S3 such that Ω contains
y�, and the great sphere passes through Ω and yk does not pass through e0.
Then Lemma 3 implies that a rotation R(ϕ,Ω) of yk with sufficiently small ϕ

decreases θk — a contradiction.
Since θ0 < ψ, e0 cannot be a vertex of Δ5. Therefore, e0 lies inside sk�.

From this we have: If sij for any j does not intersect sk�, then deg yi ≥ 2.

Arguing as above, we can prove that

If deg yk = 2, φk,i = φk,j = ψ, then e0 ∈ s̃ijk.

(4) Now we prove that deg yk ≥ 2 for all k. Conversely, deg yk = 1, e0 ∈ sk�.

a) First we consider the case when sk� is an “external” edge of Δ5. For
type (A) this means sk� differs from s35, and for (B) it is not s35 or s24. Since
Δ5 is convex, there exists the great 2-sphere Ω2 passes through yk, y� such that
three other points yi, yj , yq lie inside the hemisphere H+ bounded by Ω2. Let Ω
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be the great circle in Ω2 that contains y� and is orthogonal to the arc sk�. Then
(Lemma 3) there exists a small turn of yi, yj , yq around Ω that simultaneously
decreases θi, θj , θq — a contradiction.

b) For type (A) when deg y3 = 1, φ3,5 = ψ, e0 ∈ s35; we claim that s124 is
a regular triangle with side length ψ. Indeed, from a) it follows that deg yi ≥ 2
for i = 1, 2, 4. Moreover, if deg yi = 2, then e0 = s35

⋂
s124. Therefore, in any

case, φ1,2 = φ1,4 = φ2,4 = ψ. We have the arc s35 and the regular triangle
s124, both are with edge lengths ψ. Then from Lemma 2 it follows that some
φi,j < ψ — a contradiction.

c) Now for type (B) consider the case: deg y3 = 1, φ3,5 = ψ, e0 ∈ s35.
Then for y2 we have: deg y2 = 1 only if φ2,4 = ψ, e0 = s24

⋂
s35; deg y2 = 2

only if φ2,4 = φ2,5 = ψ; and φ2,4 = φ1,2 = φ2,5 = ψ if deg y2 = 3. Thus, in any
case, φ2,4 = ψ. We have two intersecting diagonals s24, s35 of lengths ψ. Then
Lemma 2 contradicts the assumption that Y is a ψ-code. This contradiction
concludes the proof that deg yk ≥ 2 for all k.

(5) Finally we prove that deg yk ≥ 3 for all k. Assume the converse. Then
deg yk = 2, e0 ∈ s̃ijk, where φk,i = φk,j = ψ.

Case facet. Let sijk be a facet of Δ5, and e0 /∈ sij . By the same argument
as in (4a), where Ω2 the great sphere contains sijk, and Ω the great circle
passes through yi, yj , we can prove that there exist shift decreases θ�, θq for
two other points y�, yq from Y , a contradiction.

If e0 ∈ sij , then any turn of s�q around Ω does not change θ� and θq.
However, if this turn is in a positive direction, then it decreases φk,� and φk,q.
Clearly, there exists a turn when φk,� or φk,q is equal to ψ — a contradiction.

It remains to consider all cases where sijk is not a facet. These are:
s124, s135 (type (A) and type (B)), s234 (type (B)).

Case s124. We have deg y1 = 2, φ1,2 = φ1,4 = ψ, e0 ∈ s124. Consider a
small turn of y3 around s24 towards y1. If e0 /∈ s24, then this turn decreases
θ3. Therefore, the irreducibility yields φ3,5 = ψ. In the case e0 ∈ s24, θ′3 = θ3,

but φ1,3 decreases. This again implies φ3,5 = ψ. Since s35 cannot intersects a
regular triangle s124 [see Lemma 2, (4b)], φ2,4 > ψ. Then deg y2 = deg y4 = 3.

(Since e0 ∈ s124, deg y2 = 2 only if φ2,4 = ψ.) Thus we have three isosceles
triangles s243, s241, s245. Using this and φ3,5 = ψ, we obviously have φ1,i < ψ

for i = 3, 5, — a contradiction.

Case s135 (type (B)) is equivalent to the Case s124.

Case s135 (type (A)). This case has two subcases: s̃351, s̃153. In the subcase
s̃135 we have deg y1 = 2, φ1,3 = φ1,5 = ψ, e0 ∈ s̃135. If e0 /∈ s135, then any turn
of y1 around s35 decreases θ1 (Lemma 3). Then e0 ∈ s135. Clearly, any small
turn of y2 around s35 increases φ2,4. On the other hand, this turn decreases θ2
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(if e0 /∈ s35) and φ1,2. Arguing as above, we get a contradiction. The subcase
s̃315, where φ3,5 = ψ, can be proven by the same arguments as Case s124.

Case s234 (type (B)). This case has two subcases: s̃243, s̃234. It is not hard
to see that s̃243 follows from Case facet, and s̃234 can be proven in the same
way as subcase s̃135. This concludes the proof.

Lemma 4 yields that the degree of any vertex of Γψ(Y ) is not less than 3.
This implies that at least one vertex of Γψ(Y ) has degree 4. Indeed, if all
vertices of Γψ(Y ) are of degree 3, then the sum of the degrees equals 15, i.e. is
not an even number. There exists only one type of Γψ(Y ) with these conditions
(Fig. 6). The lengths of all edges of Δ5 except y2y4, y3y5 are equal to ψ. For
fixed φ2,4 = α, Δ5 is uniquely defined up to isometry. Therefore, we have the
1-parametric family P5(α) on S3. If φ3,5 ≥ φ2,4, then z ≥ cos α ≥ 2z − 1.

Figure 6: P5(α)
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Thus Theorem 4, Corollary 4 and Lemma 4 for n = 4 yield:

Theorem 5. Let Y ⊂ S3 be an irreducible set, |Y | = m ≤ 5. Then Δm

for 2 ≤ m ≤ 4 is a regular simplex of edge lengths ψ, and Δ5 is isometric to
P5(α) for some α ∈ [ψ, arccos (2z − 1)].

5-F. Optimization problem. We see that if Y is optimal, then for some
cases Y can be determined up to isometry. For fixed yi ∈ Sn−1, i = 1, . . . , m,
the function H depends only on a position y = −y0 = e0 ∈ Sn−1. Now,

Hm(y) := f(1) + f(−y · y1) + . . . + f(−y · ym);

i.e. Hm(y) = H(−y;Y ).
Thus for hm we have the following (n−1)-dimensional optimization prob-

lem:
hm = max

y
{Hm(y)}

subject to the constraint

y ∈ T (Y, θ0) := {y ∈ Δm ⊂ Sn−1 : y · yi ≥ t0, i = 1, . . . , m}.
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We present an efficient numerical method for solving this problem in the
next section.

6. On calculations of hm

In this technical section we explain how to find an upper bound on hm

for n = 4, m ≤ 6. Note that Theorem 5 gives for computation of hm a
low-dimensional optimization problem (see 5-F). Our first approach for this
problem was to apply numerical methods [25]. However, that is a noncon-
vex constrained optimization problem. In this case, the Nelder-Mead simplex
method and other local improvements cannot guarantee finding a global op-
timum. It is possible (using estimations of derivatives) to organize the com-
putational process in such way that it gives a global optimum. However, such
solutions are very hard to verify and some mathematicians do not accept that
kind of proof. Fortunately, using a geometric approach, estimations of hm can
be reduced to relatively simple computations.

Throughout this section we use the function f̃(θ) defined for f ∈ Φ∗(z)
by

f̃(θ) :=
{

f(− cos θ) 0 ≤ θ ≤ θ0 = arccos t0 (see Definition 4)
−∞ θ > θ0.

Since f ∈ Φ∗(z), f̃(θ) is a monotone decreasing function in θ on [0, θ0].

6-A. The case m = 2. Suppose m = 2 and Y is optimal for f ∈ Φ∗(z).
Then Δ2 = y1y2 is an arc of length ψ, e0 ∈ Δ2, and θ1 +θ2 = ψ, where θi ≤ θ0

(see Lemma 1 and (5.2)). The efficient function F (θ1, θ2) = f(1)+f̃(θ1)+f̃(θ2)
is a symmetric function in θ1, θ2.

We can assume that θ1 ≤ θ2, and then θ1 ∈ [ψ − θ0, ψ/2]. Since Θ2(θ1) :=
ψ − θ1 is a monotone decreasing function, f̃(Θ2(θ1)) is a monotone increasing
function in θ1. Thus for any θ1 ∈ [u, v] ⊂ [ψ − θ0, ψ/2] we have

F (θ1, θ2) ≤ Φ2([u, v]) := f(1) + f̃(u) + f̃(ψ − v).

Let u1 = ψ − θ0, u2, . . . , uN , uN+1 = ψ/2 be points in [ψ − θ0, ψ/2]
such that ui+1 = ui + ε, where ε = (θ0 − ψ/2)/N. If θ1 ∈ [ui, ui+1], then
h2 = H(y0;Y ) = F (θ1, θ2) ≤ Φ2([ui, ui+1]). Thus

h2 ≤ λ2(N, ψ, θ0) := max
1≤i≤N

{Φ2(si)}, where si := [ui, ui+1].

Clearly, λ2(N, ψ, θ0) tends to h2 as N → ∞ (ε → 0).
This implies a very simple method for calculation of h2. Now we extend

this approach to higher m.

6-B. The function Θk. Suppose we know that (up to isometry) optimal
Y = {y1, . . . , ym} ⊂ Sn−1. Let us assume that dim Δm = n − 1, and V :=
convex hull of {y1 . . . yn−1} is a facet of Δm. Then rank{y1, . . . , yn−1} = n−1,
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and Y belongs to the hemisphere H+, where H+ contains Y and is bounded
by the great sphere S̃ passing through V .

Let us show that any y = y+ ∈ H+ is uniquely determined by the set
of distances θi = dist(y, yi), i = 1, . . . , n − 1. Indeed, there are at most two
solutions: y+ ∈ H+ and y− ∈ H− of the quadratic equation

(6.1) y · y = 1 with y · yi = cos θi, i = 1, . . . , n − 1.

Note that y+ = y− if and only if y ∈ S̃.

This implies that θk, k ≥ n, is determined by θi, i = 1, . . . , n − 1;

θk = Θk(θ1, . . . , θn−1).

It is not hard to solve (6.1) and, therefore, to give an explicit expression for
Θk.

For instance, let Δn be a regular simplex of edge lengths π/3. (We need
this case for n = 3, 4.) Then3

cos θ3 = cos Θ3(θ1, θ2)

=
1
3

(
cos θ1 + cos θ2 +

√
6 − 8[cos θ1 cos θ2 + (cos θ2 − cos θ1)2]

)
;

cos θ4 = cos Θ4(θ1, θ2, θ3) =
1
4

(
cos θ1 + cos θ2 + cos θ3

+
√

10
√

1 + cos θ1 cos θ2 + cos θ1 cos θ3 + cos θ2 cos θ3 − 3
2 (cos2 θ1 + cos2 θ2 + cos2 θ3)

)
.

6-C. Extremal points of Θk on D. Let a = (a1, . . . , an−1), where 0 <

ai ≤ θ0 < ψ. (Recall that φi,j = dist(yi, yj); cos ψ = z; cos θ0 = t0.) Now we
consider a domain D(a) in H+, where

D(a) = {y ∈ H+ : dist(y, yi) ≤ ai, 1 ≤ i ≤ n − 1}.
In other words, D(a) is the intersection of the closed caps Cap(yi, ai) in H+:

D(a) =
n−1⋂
i=1

Cap(yi, ai)
⋂

H+.

Suppose dimD(a) = n − 1. Then D(a) has “vertices”, “edges”, and
“k-faces” for k ≤ n − 1. Indeed, let

σ ⊂ I := {1, . . . , n − 1}, 0 < |σ| ≤ n − 1;

F̃σ := {y ∈ D(a) : dist(y, yi) = ai ∀ i ∈ σ}.
It is easy to prove that dim F̃σ = n − 1 − |σ|; F̃σ belongs to the boundary B

of D(a); and if σ ⊂ σ′, then F̃σ′ ⊂ F̃σ.

3I am very grateful to referees for these explicit formulas.
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Now we consider the minimum of Θk(θ1, . . . , θn−1) on D(a) for k ≥ n. In
other words, we are looking for a point pk(a) ∈ D(a) such that

dist(yk, pk(a)) = dist(yk, D(a)).

Since φi,k ≥ ψ > θ0, all yk lie outside D(a). Clearly, Θk achieves its minimum
at some point in B. Therefore, there is σ ⊂ I such that

(6.2) pk(a) ∈ F̃σ.

Suppose σ = I, then F̃σ is a vertex of D(a). Let us denote this point by
p∗(a). Note that the function Θk at the point p∗(a) is equal to Θk(a).

Let σk(a) denote σ ⊂ I of the maximal size such that σ satisfies (6.2).
Then for σk(a) = I, pk(a) = p∗(a), and for |σk(a)| < n − 1, pk(a) belongs to
the open part of F̃σk(a).

Consider n = 3. There are two cases for pk(a) (see Fig. 7): p3(a) =
p∗(a) = F̃{1,2}, and p4(a) is the intersection in H+ of the great circle passing
through y1, y4, and the circle S̃(y1, a1) of center y1 and radius a1 (F̃{1} ⊂
S̃(y1, a1)). The same holds for all dimensions.

Denote by Sσ(k) the great |σ|−dimensional sphere passing through yi,
i ∈ σ, and yk. Let S̃(yi, ai) be the sphere of center yi and radius ai; and for
σ ⊂ I

S̃σ :=
⋂
i∈σ

S̃(yi, ai).

Denote by s(σ, k) the intersection of Sσ(k) and S̃σ in D(a),

s(σ, k) = Sσ(k)
⋂

S̃σ

⋂
D(a).
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Lemma 5. Suppose D(a) 	= ∅, 0 < ai ≤ θ0 for all i, and k ≥ n. Then

(i) pk(a) ∈ s(σk(a), k),

(ii) if s(σ, k) 	= ∅, |σ| < n − 1, then s(σ, k) consists of the one point pk(a).
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Proof. (i) Let θ∗k := Θk(pk(a)) = dist(yk, pk(a)). Since Θk achieves its
minimum at pk(a), the sphere S̃(yk, θ

∗
k) touches the sphere S̃σ(a) at pk(a).

If some sphere touches the intersections of spheres, then the touching point
belongs to the great sphere passing through the centers of these spheres. Thus
pk(a) ∈ Sσ(a)(k).

(ii) Note that s(σ, k) belongs to the intersection in D(a) ⊂ H+ of the
spheres S(yi, ai), i ∈ σ, and Sσ(k). Any intersection of spheres is also a
sphere. Since

dimSσ(k) + dim S̃σ = n − 1,

this intersection is empty, or is a 0−dimensional sphere (i.e. 2-points set).
In the last case, one point lies in H+, and another one in H−. Therefore,
s(σ, k) = ∅, or s(σ, k) = {p}. Denote by σ′ the maximal size σ′ ⊃ σ such that
s(σ′, k) = {p}. It is not hard to see that S̃(yk,dist(yk, p)) touches S̃σ′ at p.
Thus p = pk(a).

Lemma 5 implies a simple method for calculations of the minimum of Θk

on D(a). For this we can consider s(σ, k), σ ⊂ I, and if s(σ, k) 	= ∅, then
s(σ, k) = {pk(a)}, so then Θk attains its minimum at this point. In the case
when Δn is a simplex we can find the minimum by a very simple method.

Corollary 5. Suppose |Y | = n, 0 < ai ≤ θ0 for all i, and D(a) lies
inside Δn. Then

θn ≥ Θn(a1, . . . , an−1) for all y ∈ D(a).

Proof. Clearly, Δn is a simplex. Since D(a) lies inside Δn, for |σ| < n−1
the intersection of S̃σ and Sσ(k) is empty. Thus pn(a) = p∗(a).

6-D. Upper bounds on Hm. Suppose dim Δm = n − 1, and y1 . . . yn−1 is
a facet of Δm. Then (see 5-F for the definitions of Hm and T (Y, θ0))

Hm(y) = F (θ1, . . . , θn−1,Θn, . . . ,Θm) = F̃m(θ1, . . . , θn−1),

where

F̃m(θ1, . . . , θn−1) := f(1) + f̃(θ1) + . . . + f̃(θn−1) + f̃(Θn(θ1, . . . , θn−1))

+ . . . + f̃(Θm(θ1, . . . , θn−1)).

Lemma 6. Suppose f ∈ Φ∗(z), |Y | = m, dim Δm = n − 1, y1 . . . yn−1

is a facet of Δm, dist(yi, yj) ≥ ψ > θ0 for i 	= j, 0 ≤ bi < ai ≤ θ0 for
i = 1, . . . , n − 1; and Θk(a) ≤ θ0 for all k ≥ n. If D(a) 	= ∅, then

Hm(y) ≤ ΦY (b,a) for any y ∈ E(b,a) := D(a) \ U(b),
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where

ΦY (b,a) := f(1) + f̃(b1) + . . . + f̃(bn−1) + f̃(Θn(pn(a))) + . . . + f̃(Θm(pm(a))),

U(b) :=
n−1⋃
i=1

Cap(yi, bi).

Proof. We have for 1 ≤ i ≤ n − 1 and y ∈ E(b,a), θi ≥ bi (Fig. 8). By
the monotonicity assumption this implies f̃(θi) ≤ f̃(bi). On the other hand,
y ∈ D(a). Then Lemma 5 yields f̃(θk) ≤ f̃(Θk(pk(a))) for k ≥ n.

From Corollary 5 and Lemma 6 we obtain

Corollary 6. Let |Y | = n. Suppose f, a, b, and Y satisfy the assump-
tions of Lemma 6 and Corollary 5. Then for any y ∈ E(b,a):

Hm(y) ≤ f(1) + f̃(b1) + . . . + f̃(bn−1) + f̃(Θn(a)).

Let K(n, θ0) := [0, θ0]n−1, i.e. K(n, θ0) is an (n − 1)−dimensional cube
of side length θ0. Consider for K(n, θ0) the cubic grid L(N) of sidelength ε,

where ε = θ0/N for a given positive integer N . Then the grid (tessellation)
L(N) consists of Nn−1 cells, any cell c ∈ L(N) (θ1, . . . , θn−1) in c we have

bi(c) ≤ θi ≤ ai(c), ai(c) = bi(c) + ε, i = 1, . . . , n − 1.

Let L̃(N) be the subset of cells c in L(N) such that D(a(c)) 	= ∅. There exists
c ∈ L(N) such that Hm attains its maximum on T (Y, θ0) at some point in
E(b(c),a(c)). Therefore, Lemma 6 yields

Lemma 7. Suppose f and Y satisfy the assumptions of Lemma 6, N is a
positive integer, and y ∈ Δm is such that dist(y, yi) ≤ θ0 for all i. Then

Hm(y) ≤ max
c∈L̃(N)

{ΦY (b(c),a(c))}.

6-E. Upper bounds on hm. Suppose Δm is a regular simplex of edge
length ψ. Then the efficient function F is a symmetric function in the variables
θ1, . . . , θm. Consider this problem only on the domain

Λ := {y ∈ Δm : ψ − θ0 ≤ θ1 ≤ θ2 ≤ . . . ≤ θm ≤ θ0}.
Let LΛ(N) be the subset of cells c in L̃(N) such that E(b(c),a(c))

⋂
Λ 	= ∅.

Then we have an explicit expression for Φm(c) := ΦY (b(c),a(c)) (see Corol-
lary 6). For n = 4, Theorem 5 implies that Δm is a regular simplex, where
m = 2, 3, 4. Thus from Lemma 7,

hm ≤ λm(N, ψ, θ0) := max
c∈LΛ(N)

{Φm(c)}.

Now we consider the case n = 4, m = 5. Theorem 5 yields: Δ5 is iso-
metric to P5(α) for some α ∈ [ψ, ψ′ := arccos (2z − 1)] (see Fig. 6). Let the
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vertices y1, y2, y3 of P5(α) be fixed. Then the vertices y4(α), y5(α) are uniquely
determined by α.

Note that for any y ∈ D(θ0, θ0, θ0) the distance θ4(α) := dist(y, y4(α))
increases, and θ5(α) decreases whenever α increases. Let α1 = ψ, α2, . . . , αN ,
αN+1 = ψ′ be points in [ψ, ψ′] such that αi+1 = αi + ε, where ε = (ψ′ −ψ)/N.

Then
θ4(αi) < θ4(αi+1), θ5(αi) > θ5(αi+1),

so that
f̃(θ4(αi)) > f̃(θ4(αi+1)), f̃(θ5(αi)) < f̃(θ5(αi+1)).

Combining this with Lemma 7, we get

h5 ≤ λ5(N, ψ, θ0) := f(1) + max
c∈L̃(N)

{R1,2,3(c) + max
1≤i≤N

{R4,5(c, i)}},

R1,2,3(c) = f̃(b1(c)) + f̃(b2(c)) + f̃(b3(c)),

R4,5(c, i) = f̃(Θ4(p4(a(c), αi))) + f̃(Θ5(p5(a(c), αi+1))),

where pk(a, α) = pk(a) with yk = yk(α).
Clearly, λm(2N, ψ, θ0) ≤ λm(N, ψ, θ0). It is not hard to show that

hm ≤ λm(ψ, θ0) := lim
N→∞

λm(N, ψ, θ0).

Finally let us consider the case: n = 4, m = 6. In this case, we give an
upper bound on h6 by a separate argument.

Lemma 8. Let n = 4, f ∈ Φ∗(z),
√

z > t0 > z, θ′0 ∈ [arccos
√

z, θ0].
Then

h6 ≤ max { f̃(θ′0) + λ5(ψ, θ0), f(−
√

z) + λ5(ψ, θ′0) }.

Proof. Let Y = {y1, . . . , y6} ⊂ C(e0, θ0) ⊂ S3, where Y is an optimal
z-code. We may assume that θ1 ≤ θ2 ≤ . . . ≤ θ6. Then from Corollary 3(i) we
obtain that

θ0 ≥ θ6 ≥ θ5 ≥ arccos
√

z.

Let us consider two cases: (a) θ0 ≥ θ6 ≥ θ′0, (b) θ′0 ≥ θ6 ≥ arccos
√

z.

(a) We have h6 = H(y0; y1, . . . , y6) = H(y0; y1, . . . , y5) + f̃(θ6),

H(y0; y1, . . . , y5) ≤ h5 = λ5(ψ, θ0), f̃(θ6) ≤ f̃(θ′0).

Then h6 ≤ f̃(θ′0) + λ5(ψ, θ0).

(b) In this case all θi ≤ θ′0; i.e. Y ⊂ C(e0, θ
′
0). Since

H(y0; y1, . . . , y5) ≤ λ5(ψ, θ′0), f̃(θ6) ≤ f(−
√

z),

it follows that h6 ≤ f(−√
z) + λ5(ψ, θ′0).
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We have proved the following theorem.

Theorem 6. Suppose n = 4, f ∈ Φ∗(z),
√

z > t0 > z > 0, and N is a
positive integer. Then

(i) h0 = f(1), h1 = f(1) + f(−1);

(ii) hm ≤ λm(ψ, θ0) ≤ λm(N, ψ, θ0) for 2 ≤ m ≤ 5;

(iii) h6 ≤ max {f̃(θ′0) + λ5(ψ, θ0), f(−√
z) + λ5(ψ, θ′0)} ∀ θ′0 ∈ [arccos

√
z, θ0].

6-F. Proof of Lemma B. First we show that f4 ∈ Φ∗(1/2) (see Fig. 9).
Indeed, the polynomial f4 has two roots on [−1, 1]: t1 = −t0, t0 ≈ 0.60794,
t2 = 1/2; f4(t) ≤ 0 for t ∈ [−t0, 1/2], and f4 is a monotone decreasing function
on the interval [−1,−t0]. The last property holds because there are no zeros
of the derivative f ′

4(t) on [−1,−t0]. Thus, f4 ∈ Φ∗(1/2).
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Figure 9. The graph of the function f4(t)

We have t0 > 0.6058. Then Corollary 3(ii) gives μ ≤ 6. For calculations of
hm let us apply Theorem 6 with ψ = arccos z = 60◦, θ0 = arccos t0 ≈ 52.5588◦.
We get

h0 = f(1) = 18.774, h1 = f(1) + f(−1) = 24.48.

H2 achieves its maximum at θ1 = 30◦. Then

h2 = f(1) + 2f(− cos 30◦) ≈ 24.8644.

For m = 3 we have
h3 = λ3(60◦, θ0) ≈ 24.8345

at θ3 = θ0, θ1 = θ2 ≈ 30.0715◦.
The polynomial H4 attains its maximum

h4 ≈ 24.818
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at the point with θ1 = θ2 ≈ 30.2310◦, θ3 = θ4 ≈ 51.6765◦, and

h5 ≈ 24.6856

at α = 60◦, θ1 ≈ 42.1569◦, θ2 = θ4 = 32.3025◦, θ3 = θ5 = θ0.

Let θ′0 = 50◦. We have f̃(50◦) ≈ 0.0906, arccos
√

z = 45◦, f̃(45◦) ≈
0.4533,

λ5(60◦, θ0) = h5 ≈ 24.6856, λ5(60◦, 50◦) ≈ 23.9181,

h6 ≤ max { f̃(50◦) + h5, f̃(45◦) + λ5(60◦, 50◦) } ≈ 24.7762 < h2.

Thus hmax = h2 < 25. By (4.2), we have S(X) < 25M .

7. Concluding remarks

This extension of the Delsarte method can be applied to other dimensions
and spherical ψ-codes. The most interesting application is a new proof for the
Newton-Gregory problem, k(3) < 13. In dimension three computations of hm

are technically much easier than for n = 4 (see [26]).
Let

f(t) =
2431
80

t9 − 1287
20

t7 +
18333
400

t5 +
343
40

t4 − 83
10

t3 − 213
100

t2 +
t

10
− 1

200
.

Then f ∈ Φ∗(1/2), t0 ≈ 0.5907, μ(3, 1/2, f) = 4, and hmax = h1 = 12.88. The
expansion of f in terms of Legendre polynomials Pk = G

(3)
k is

f = P0 + 1.6P1 + 3.48P2 + 1.65P3 + 1.96P4 + 0.1P5 + 0.32P9.

Since c0 = 1, ci ≥ 0, we have k(3) ≤ hmax = 12.88 < 13.

Direct application of the method developed in this paper, presumably,
could lead to some improvements in the upper bounds on kissing numbers in
dimensions 9, 10, 16, 17, 18 given in [9, Table 1.5]. (“Presumably” because
the equality hmax = E is not proven yet.)

In 9 and 10 dimensions Table 1.5 gives:

306 ≤ k(9) ≤ 380, 500 ≤ k(10) ≤ 595.

Our method gives:

n = 9 : deg f = 11, E = h1 = 366.7822, t0 = 0.54;

n = 10 : deg f = 11, E = h1 = 570.5240, t0 = 0.586.

For these dimensions there is a good chance to prove that k(9) ≤ 366, k(10)
≤ 570.

From the equality k(3) = 12, it follows that ϕ3(13) < 60◦. The method
gives ϕ3(13) < 59.4◦ (deg f = 11). The lower bound on ϕ3(13) is 57.1367◦ [16].
Therefore, we have 57.1367◦ ≤ ϕ3(13) < 59.4◦.
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By our approach it can be proven that ϕ4(25) < 59.81◦, ϕ4(24) < 60.5◦.
that can be proven by the same method as Theorem 4.) This improve the
bounds:

ϕ4(25) < 60.79◦, ϕ4(24) < 61.65◦ [23] (cf. [4]); ϕ4(24) < 61.47◦ [4];

ϕ4(25) < 60.5◦, ϕ4(24) < 61.41◦ [3].

Now in these cases we have

57.4988◦ < ϕ4(25) < 59.81◦, 60◦ ≤ ϕ4(24) < 60.5◦.4

However, for n = 5, 6, 7 direct use of this extension of the Delsarte method
does not give better upper bounds on k(n) than Odlyzko-Sloane’s bounds [27].
It is an interesting challange to find better methods.

Appendix. An algorithm
for computation-suitable polynomials f(t)

In this appendix we present an algorithm for computation “optimal”5

polynomials f such that f(t) is a monotone decreasing function on the interval
[−1,−t0], and f(t) ≤ 0 for t ∈ [−t0, z], t0 > z ≥ 0. This algorithm is
based on our knowledge about optimal arrangement of points yi for given m.
Coefficients ck can be found via discretization and linear programming; such a
method was employed by Odlyzko and Sloane [27] for the same purpose.

We have a polynomial f represented in the form f(t) = 1 +
d∑

k=1

ckG
(n)
k (t)

and the following constraints for f :

(C1) ck ≥ 0, 1 ≤ k ≤ d;

(C2) f(a) > f(b) for −1 ≤ a < b ≤ −t0;

(C3) f(t) ≤ 0 for −t0 ≤ t ≤ z.

We do not know e0 where Hm attains its maximum; so for evaluation of
hm let us use e0 = yc, where yc is the center of Δm. All vertices yk of Δm are
at the distance of ρm from yc, where

cos ρm =
√

(1 + (m − 1)z)/m.

When m = 2n−2, Δm presumably is a regular (n−1)-dimensional cross-
polytope.6 In this case cos ρm =

√
z.

Let In = {1, . . . , n}⋃{2n− 2}, m ∈ In, bm = − cos ρm. Then Hm(yc) =
f(1) + mf(bm). If F0 is such that H(y0;Y ) ≤ E = F0 + f(1), then

4The long-standinding conjecture: The maximal kissing arrangment in four dimensions is
unique up to isometry (in other words, is the “24-cell”), and ϕ4(24) = 60◦.

5Open problem: Is it true that for given t0, d this algorithm defines f with minimal hmax?
6This is also an open problem.
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(C4) f(bm) ≤ F0/m, m ∈ In.

Note that E = F0 + 1 + c1 + . . . + cd = F0 + f(1) is a lower estimate of hmax.
A polynomial f that satisfies (C1-C4) and gives the minimal E can be found
by the following:

Algorithm

Input: n, z, t0, d, N.

Output: c1, . . . , cd, F0, E.

First : replace (C2) and (C3) by a finite set of inequalities at the points
aj = −1 + εj, 0 ≤ j ≤ N, ε = (1 + z)/N ;

Second : Use linear programming to find F0, c1, . . . , cd so as to minimize E−1 =

F0 +
d∑

k=1

ck, subject to the constraints

ck ≥ 0, 1 ≤ k ≤ d;
d∑

k=1

ckG
(n)
k (aj) ≥

d∑
k=1

ckG
(n)
k (aj+1), aj ∈ [−1,−t0];

1 +
d∑

k=1

ckG
(n)
k (aj) ≤ 0, aj ∈ [−t0, z]; 1 +

d∑
k=1

ckG
(n)
k (bm) ≤ F0/m, m ∈ In.

We note again that E ≤ hmax, and E = hmax only if hmax = Hm0(yc) for
some m0 ∈ In.

University of Texas, Brownsville, Texas

E-mail address: omusin@gmail.com

References

[1] K. Anstreicher, The thirteen spheres: A new proof, Discrete and Computational Ge-
ometry 31 (2004), 613–625.

[2] V. V. Arestov and A. G. Babenko, On Delsarte scheme of estimating the contact num-
bers, Proc. of the Steklov Inst. of Math. 219 (1997), 36–65.

[3] ———, Estimates for the maximal value of the angular code distance for 24 and 25
points on the unit sphere in R4, Math. Notes 68 (2000), 419–435.

[4] P. G. Boyvalenkov, D. P. Danev, and S. P. Bumova, Upper bounds on the minimum
distance of spherical codes, IEEE Trans. Inform. Theory 42 (1996), 1576–1581.
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[12] L. Danzer, B. Grünbaum, and V. Klee, Helly’s theorem and its relatives, Proc. Sympos.
Pure Math. 7, A. M. S., Providence, RI, (1963), 101–180.

[13] Ph. Delsarte, Bounds for unrestricted codes by linear programming, Philips Res. Rep.
27 (1972), 272–289.

[14] Ph. Delsarte, J. M. Goethals, and J. J. Seidel, Spherical codes and designs, Geom.
Dedicata 6 (1977), 363–388.
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