Deep RL Bootcamp
26-27 August 2017 | Berkeley CA
Lectures
- Core Lecture 1 Intro to MDPs and Exact Solution Methods -- Pieter Abbeel (video | slides)
- Core Lecture 2 Sample-based Approximations and Fitted Learning -- Rocky Duan (video | slides)
- Core Lecture 3 DQN + Variants -- Vlad Mnih (video | slides)
- Core Lecture 4a Policy Gradients and Actor Critic -- Pieter Abbeel (video | slides)
- Core Lecture 4b Pong from Pixels -- Andrej Karpathy (video | slides)
- Core Lecture 5 Natural Policy Gradients, TRPO, and PPO -- John Schulman (video | slides)
- Core Lecture 6 Nuts and Bolts of Deep RL Experimentation -- John Schulman (video | slides)
- Core Lecture 7 SVG, DDPG, and Stochastic Computation Graphs -- John Schulman (video | slides)
- Core Lecture 8 Derivative-free Methods -- Peter Chen (video | slides)
- Core Lecture 9 Model-based RL -- Chelsea Finn (video | slides)
- Core Lecture 10a Utilities -- Pieter Abbeel (video | slides)
- Core Lecture 10b Inverse RL -- Chelsea Finn (video | slides)
- Frontiers Lecture I: Recent Advances, Frontiers and Future of Deep RL -- Vlad Mnih (video | slides)
- Frontiers Lecture II: Recent Advances, Frontiers and Future of Deep RL -- Sergey Levine (video | slides)
- TAs Research Overviews (video | slides)