Efficient Methods and Hardware for Deep Learning

Song Han

Stanford University

May 25, 2017

Intro

Song Han PhD Candidate Stanford Bill Dally Chief Scientist NVIDIA Professor Stanford

Deep Learning is Changing Our Lives

Self-Driving Car

This image is licensed under CC-BY 2.0

This image is in the public domain

AlphaGo

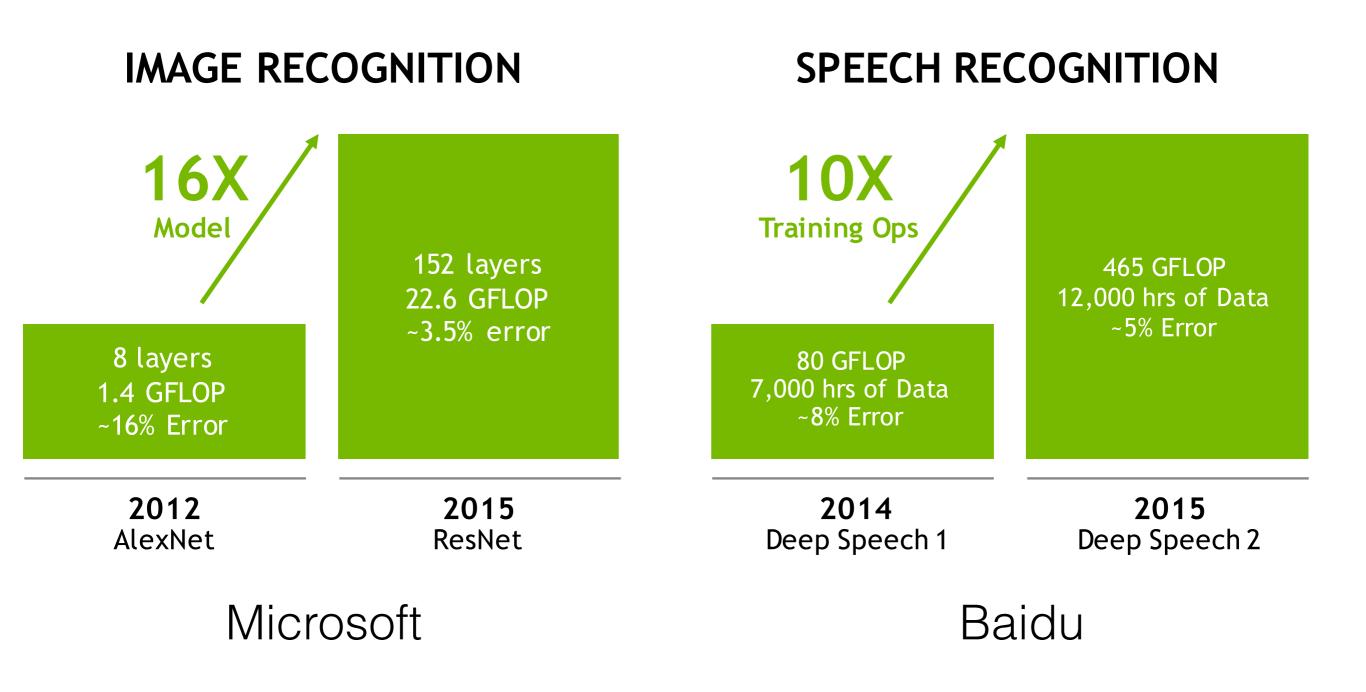
Machine Translation

This image is in the public domain

This image is licensed under CC-BY 2.0

Smart Robots

Models are Getting Larger



Dally, NIPS'2016 workshop on Efficient Methods for Deep Neural Networks

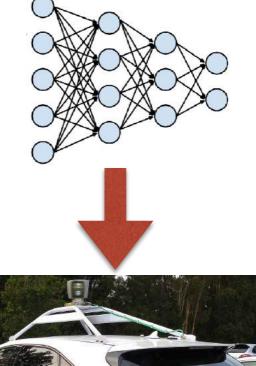
The first Challenge: Model Size

Hard to distribute large models through over-the-air update

<u>App icon</u> is in the public domain <u>Phone image</u> is licensed under <u>CC-BY 2.0</u>

This item is over 100MB.

Microsoft Excel will not download until you connect to Wi-Fi.



This image is licensed under CC-BY 2.0

The Second Challenge: Speed

	Error rate	Training time
ResNet18:	10.76%	2.5 days
ResNet50:	7.02%	5 days
ResNet101:	6.21%	1 week
ResNet152:	6.16%	1.5 weeks

Such long training time limits ML researcher's productivity

Training time benchmarked with fb.resnet.torch using four M40 GPUs

The Third Challenge: Energy Efficiency

This image is in the public domain

AlphaGo: 1920 CPUs and 280 GPUs, \$3000 electric bill per game

This image is in the public domain

Phone image is licensed under CC-BY 2.0

on mobile: drains battery on data-center: increases TCO

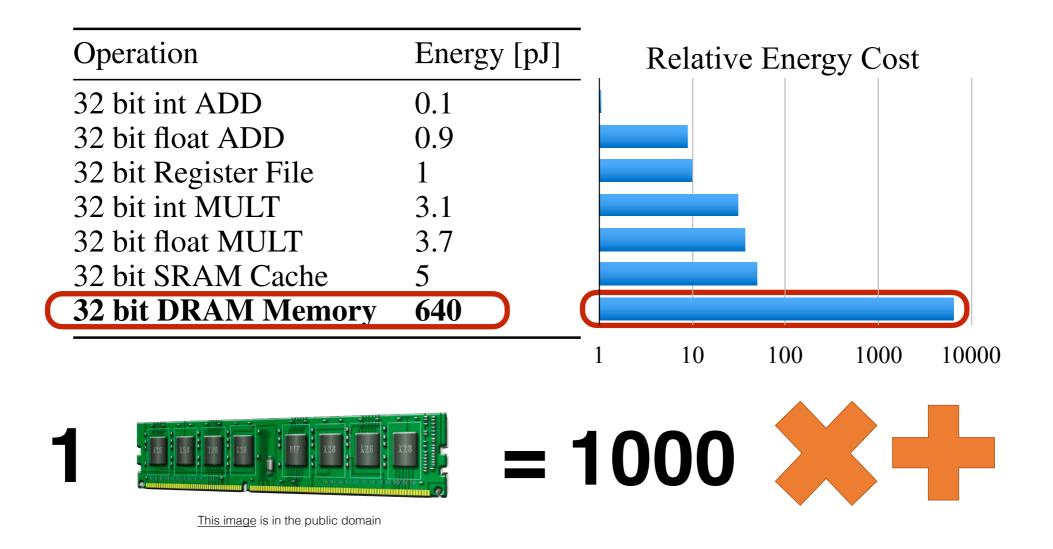
This image is licensed under CC-BY 2.0

Where is the Energy Consumed?

larger model => more memory reference => more energy

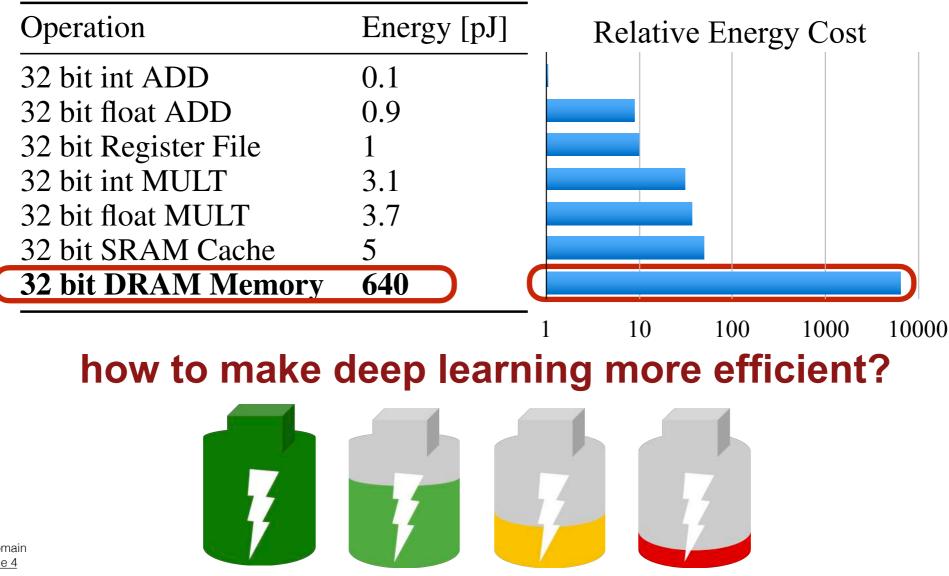
Where is the Energy Consumed?

larger model => more memory reference => more energy



Where is the Energy Consumed?

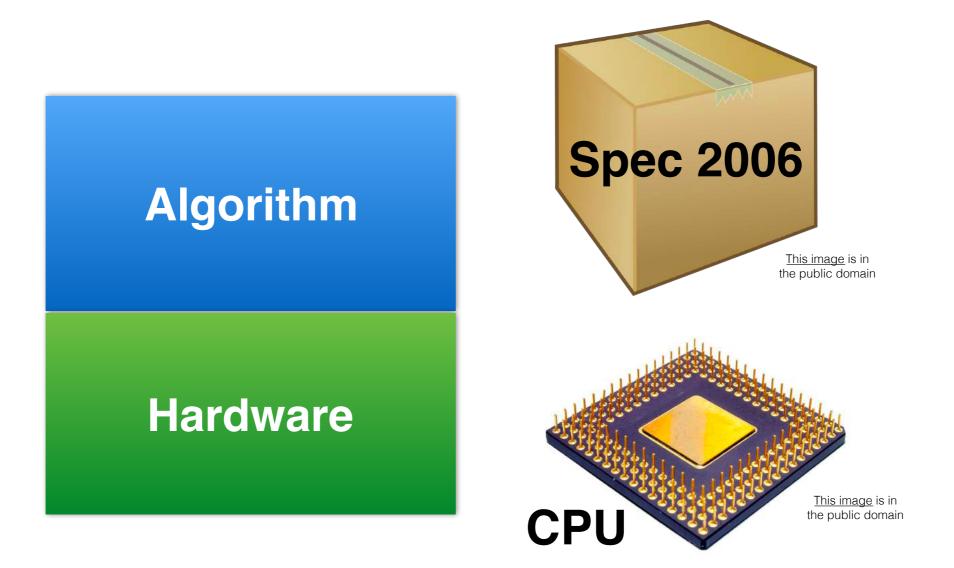
larger model => more memory reference => more energy



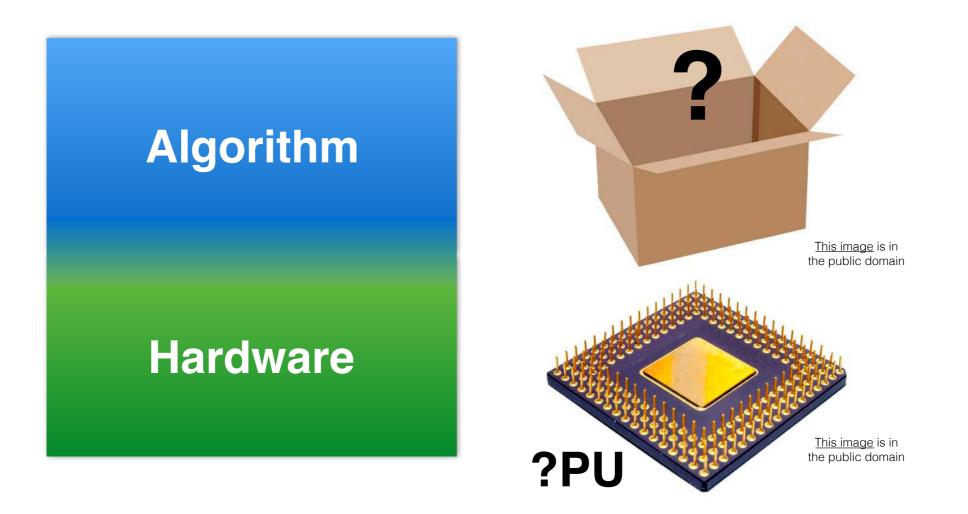
Battery images are in the public domain Image 1, image 2, image 2, image 4

Improve the Efficiency of Deep Learning by Algorithm-Hardware Co-Design

Application as a Black Box



Open the Box before Hardware Design

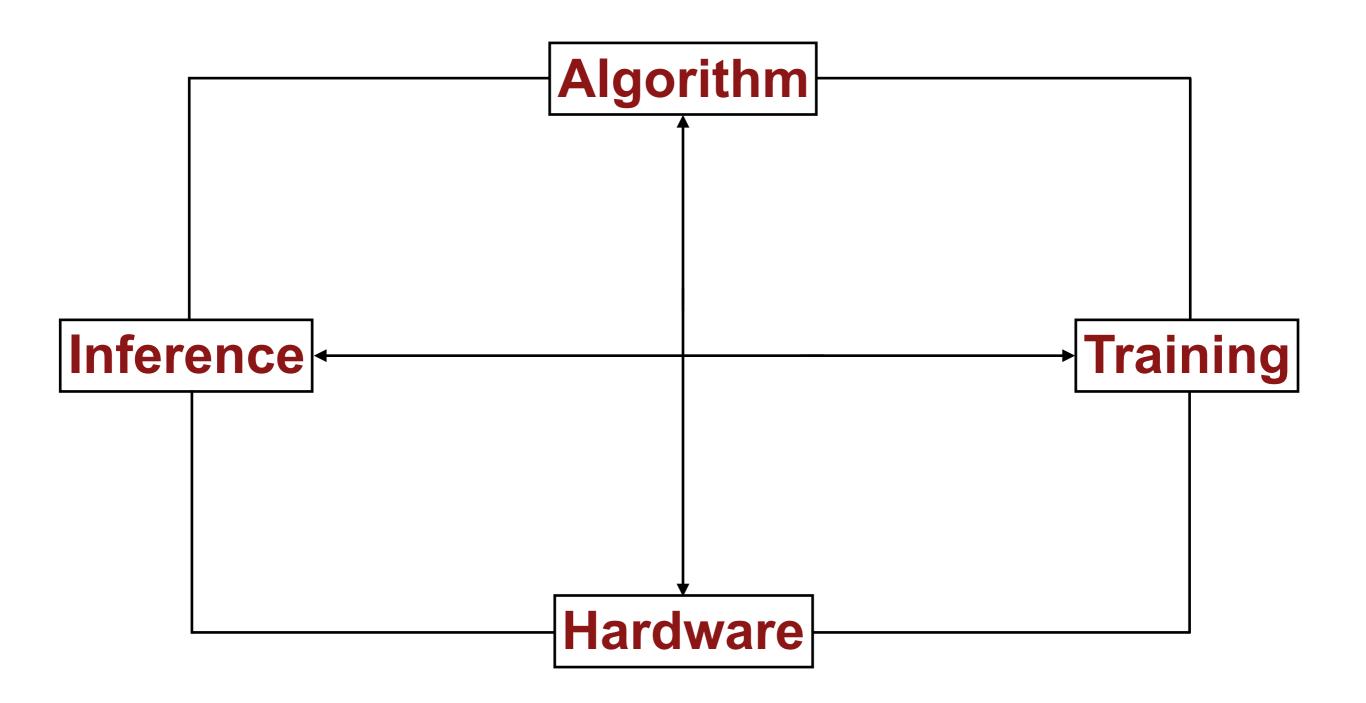


Breaks the boundary between algorithm and hardware

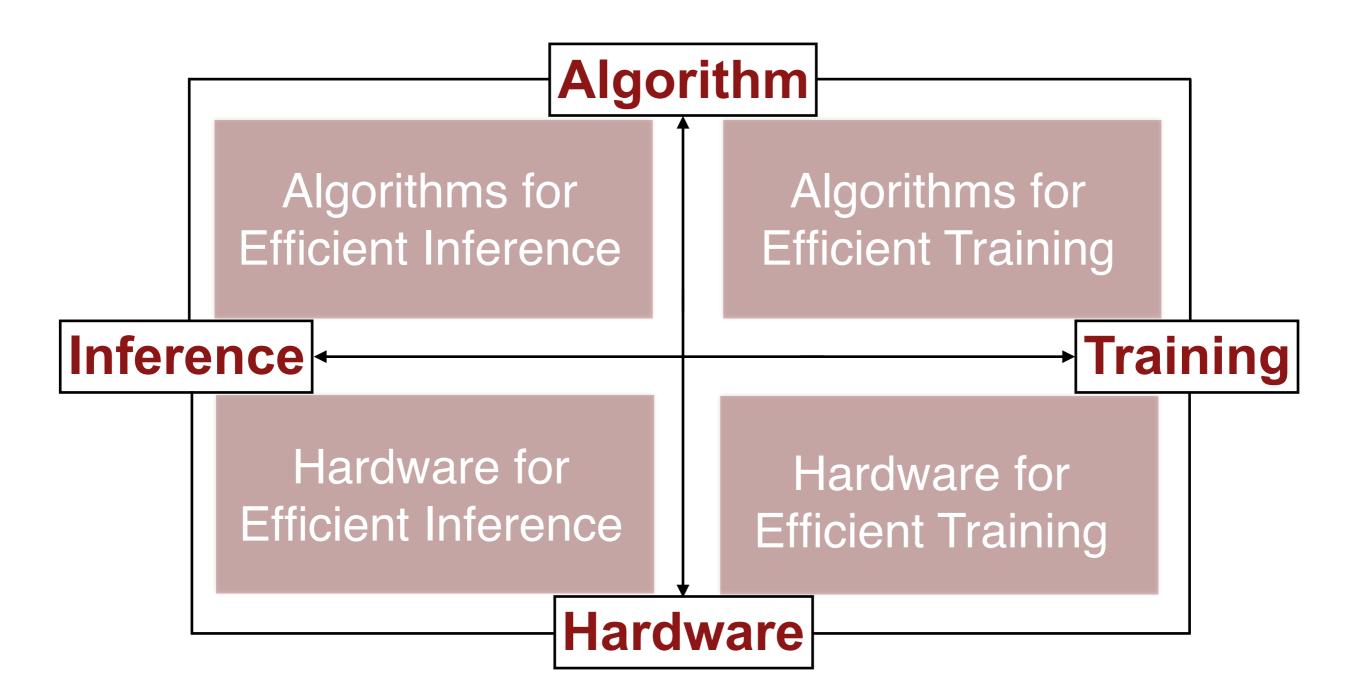
Algorithm

Hardware

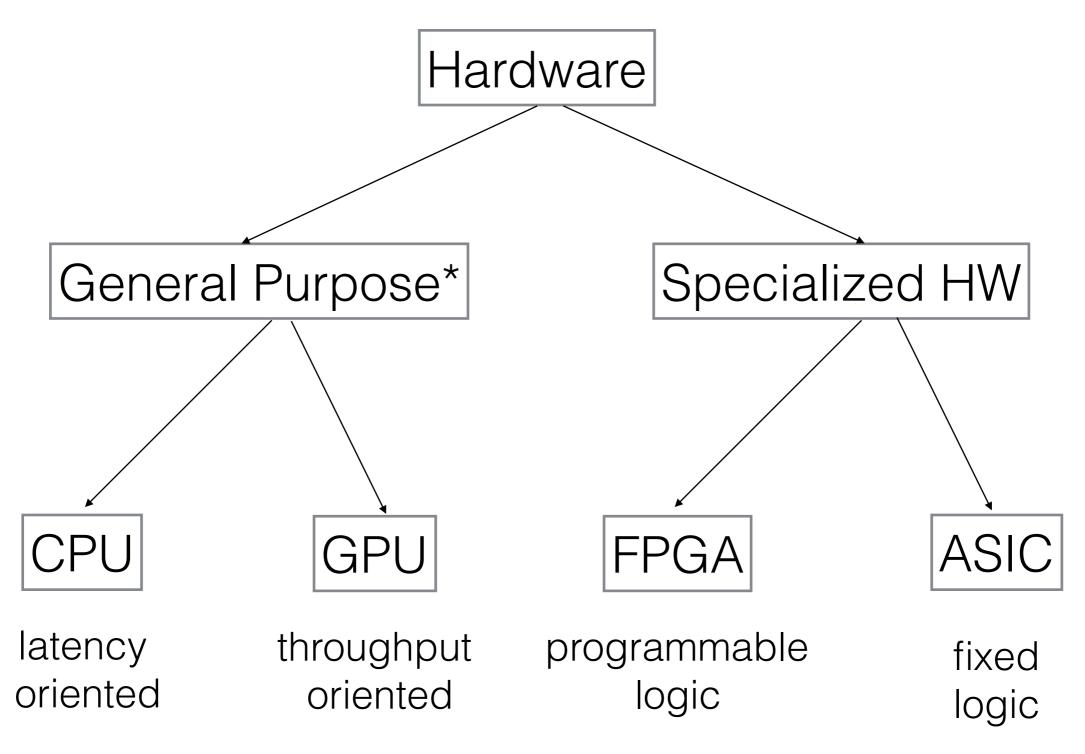
Agenda



Agenda

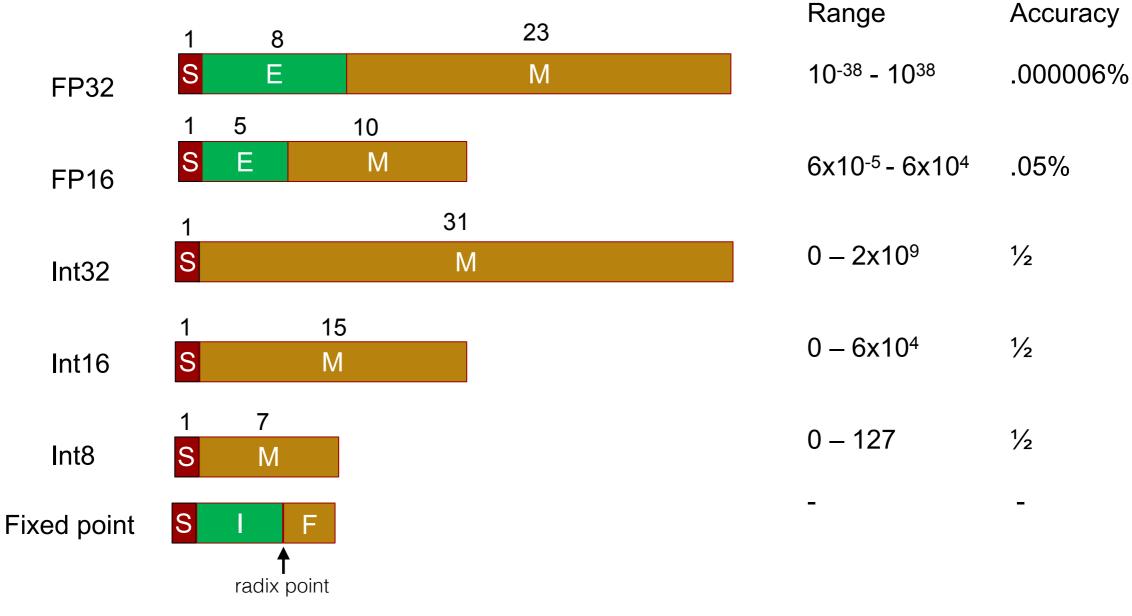


Hardware 101: the Family



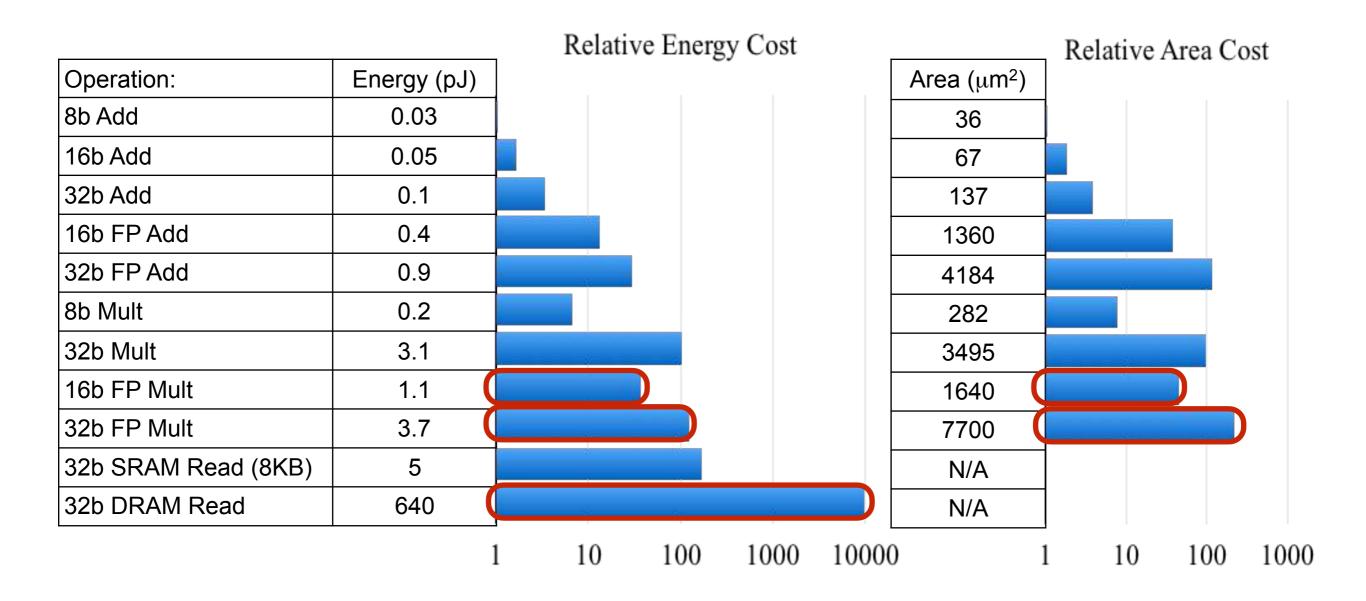
* including GPGPU

Hardware 101: Number Representation



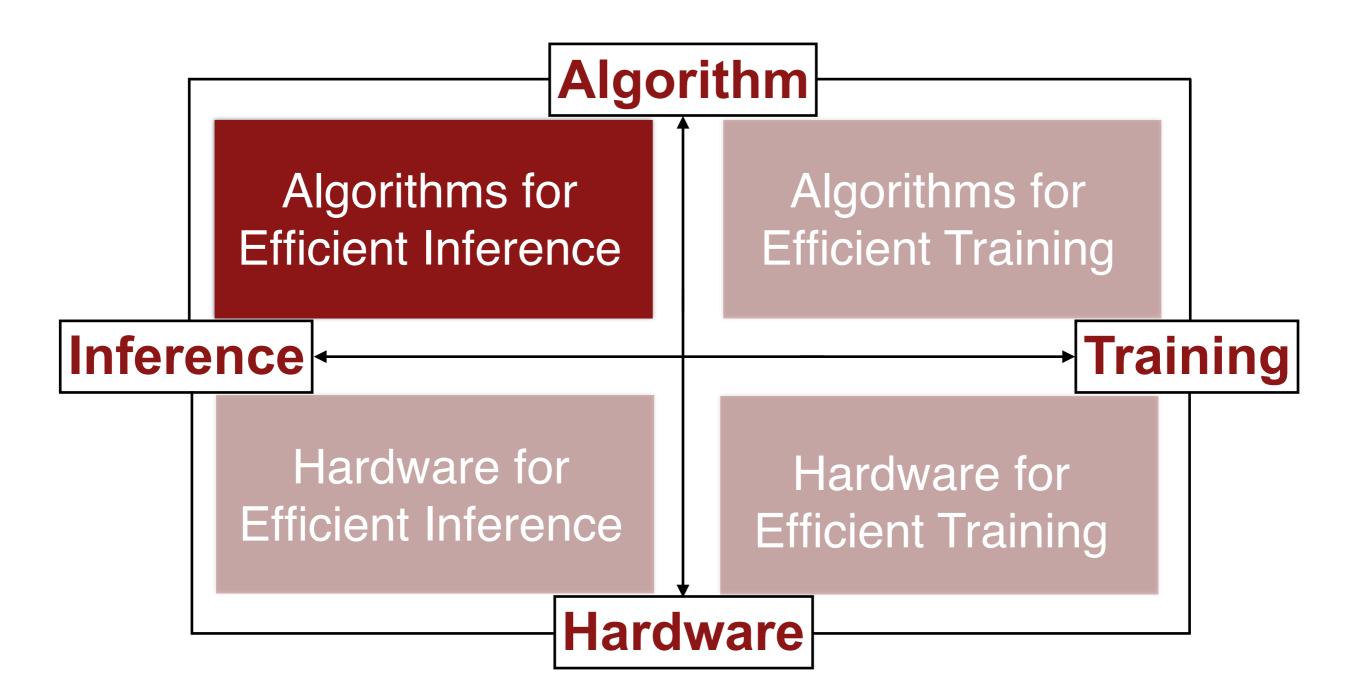
Dally, High Performance Hardware for Machine Learning, NIPS'2015

Hardware 101: Number Representation



Energy numbers are from Mark Horowitz "Computing's Energy Problem (and what we can do about it)", ISSCC 2014 Area numbers are from synthesized result using Design Compiler under TSMC 45nm tech node. FP units used DesignWare Library.

Agenda



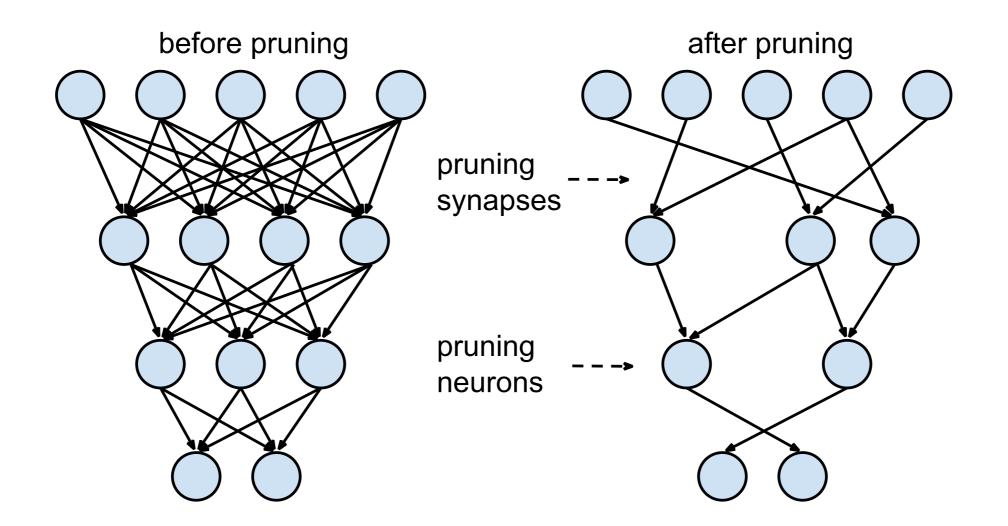
Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Pruning Neural Networks



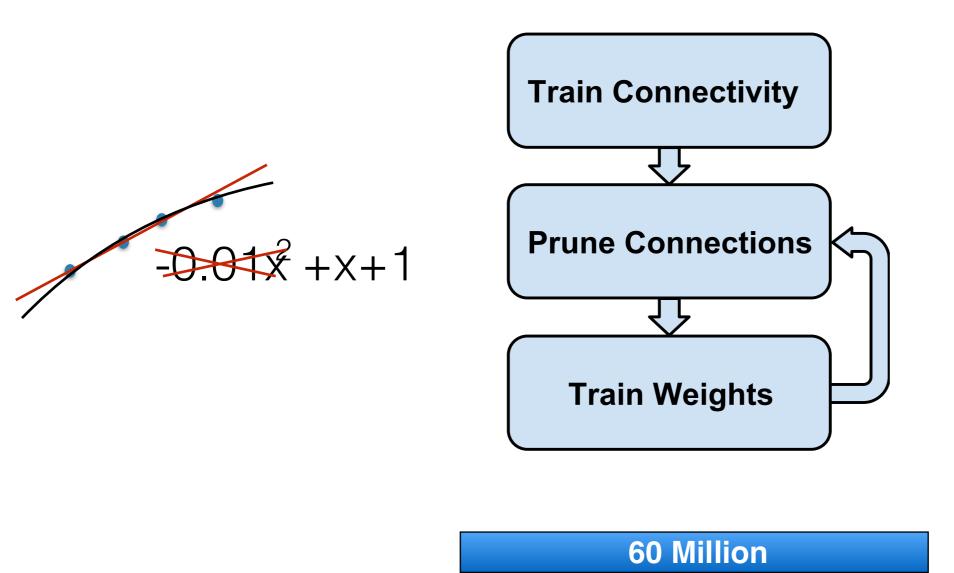
[Lecun et al. NIPS'89] [Han et al. NIPS'15]

Pruning Trained Quantization

Huffman Coding

Stanford University

Pruning Neural Networks



6M

10x less connections

Pruning

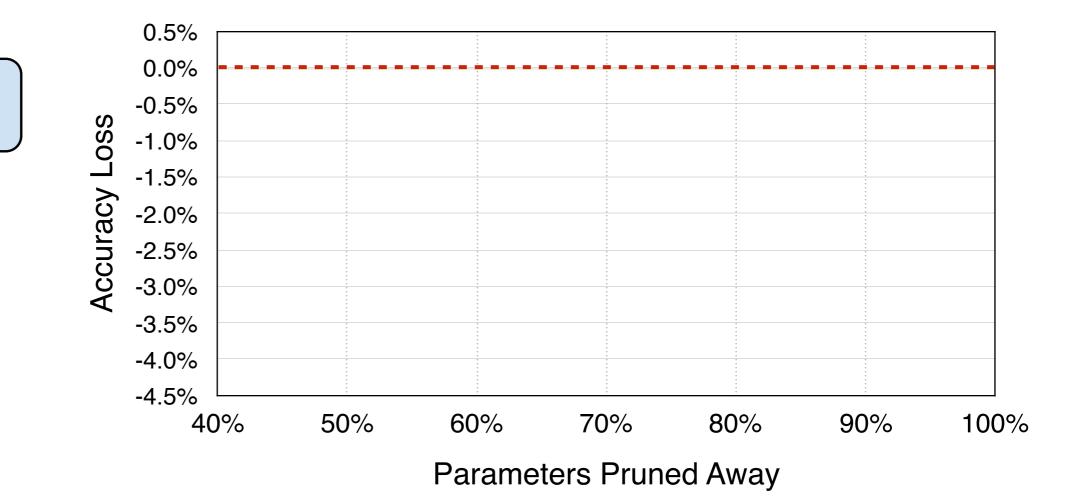
Trained Quantization

Huffman Coding

Stanford University

[Han et al. NIPS'15]

Pruning Neural Networks

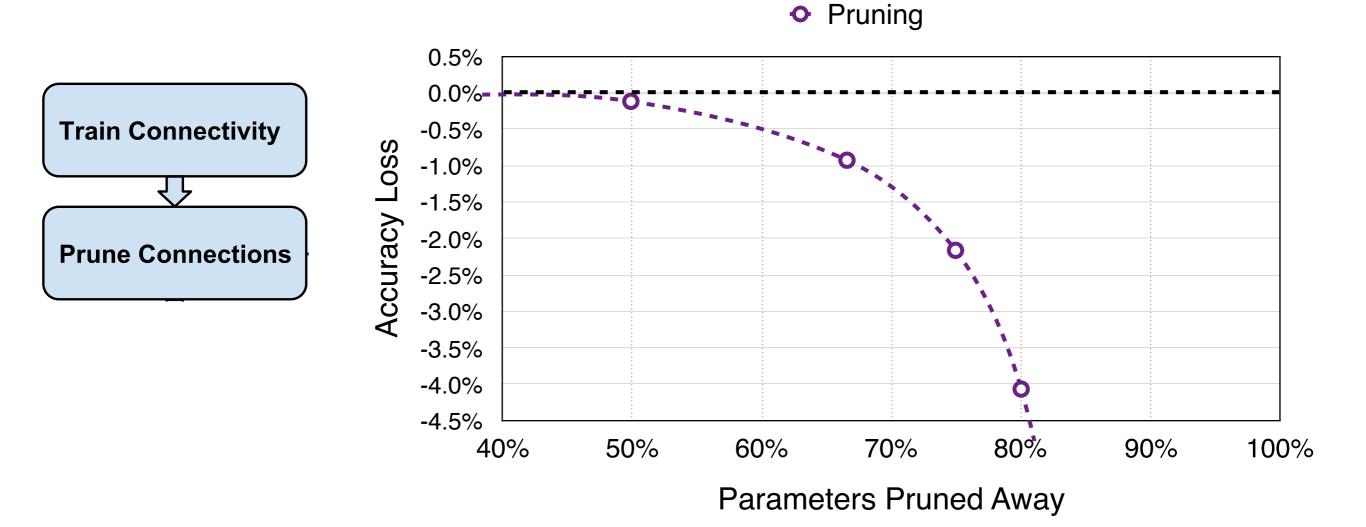


Pruning

Trained Quantization

Huffman Coding

Pruning Neural Networks



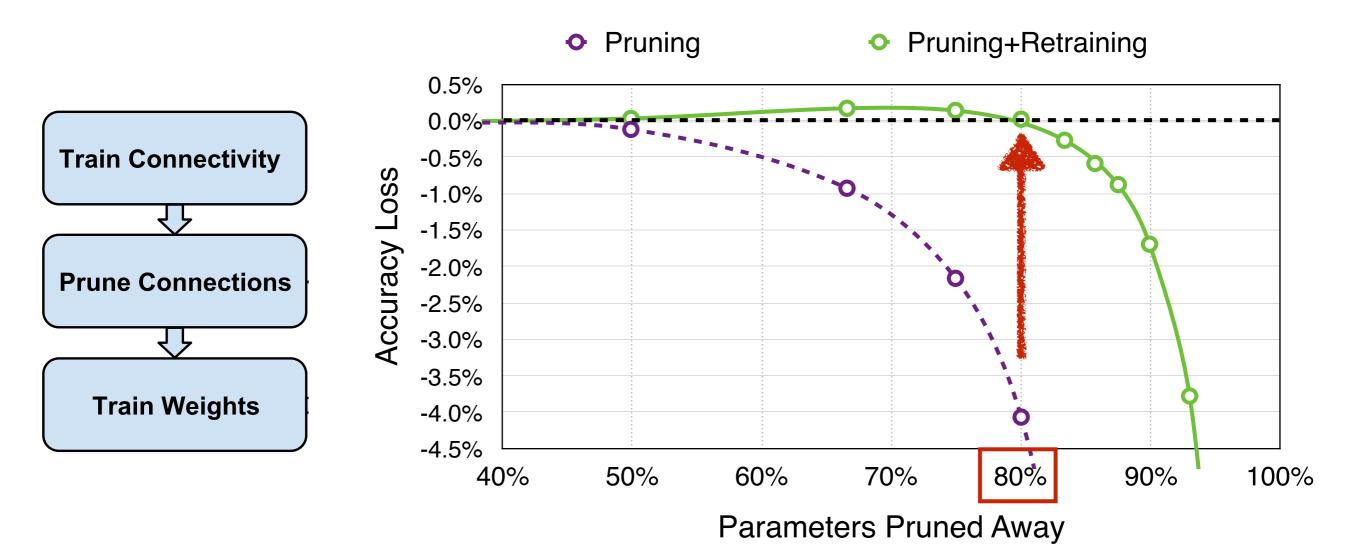
Pruning

Trained Quantization

Huffman Coding

[Han et al. NIPS'15]

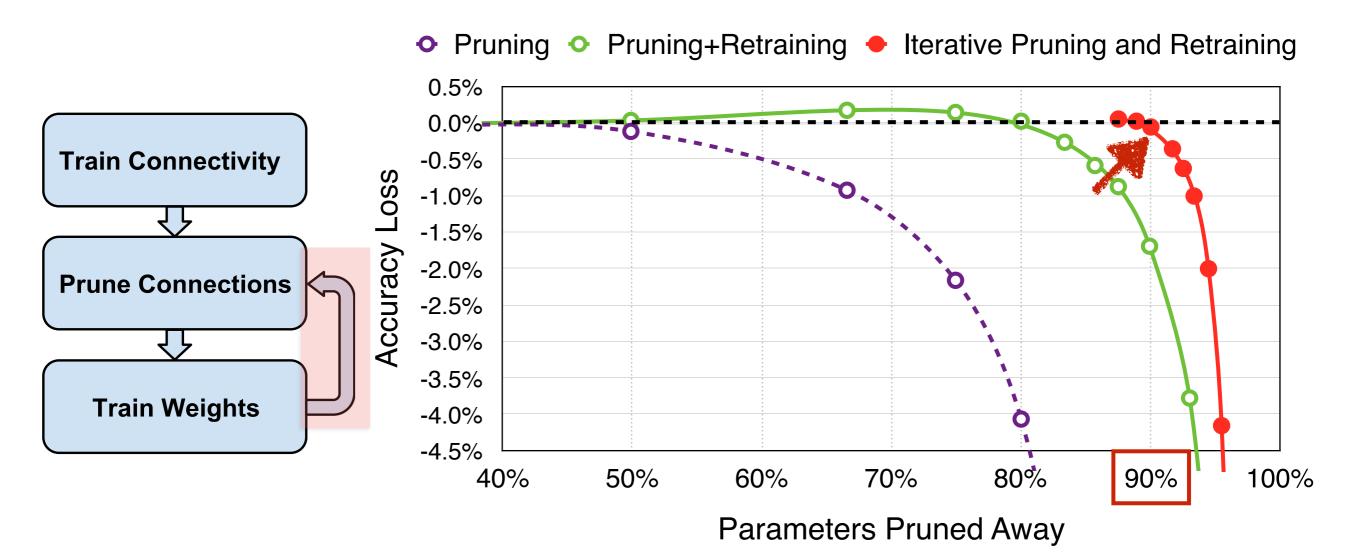
Retrain to Recover Accuracy



Trained Quantization

Huffman Coding

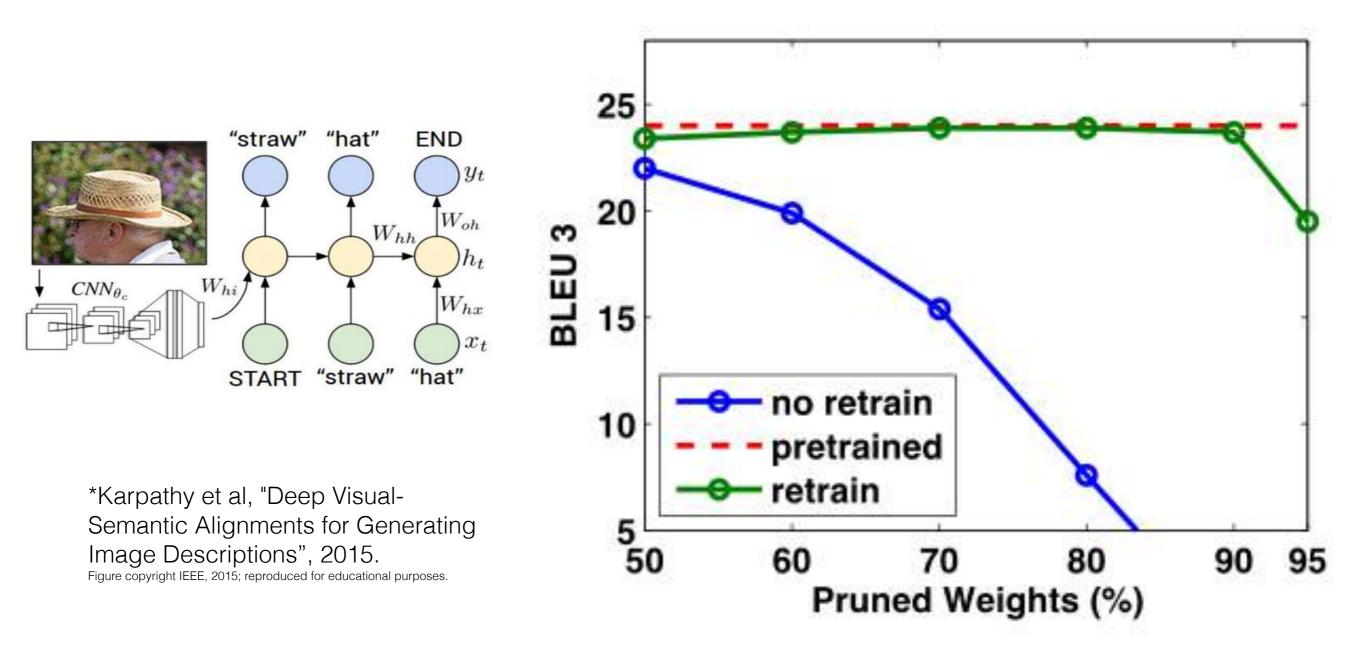
[Han et al. NIPS'15] Iteratively Retrain to Recover Accuracy



Trained Quantization

Huffman Coding

Pruning RNN and LSTM



Pruning

Trained Quantization

Huffman Coding

Pruning RNN and LSTM

%	
	%

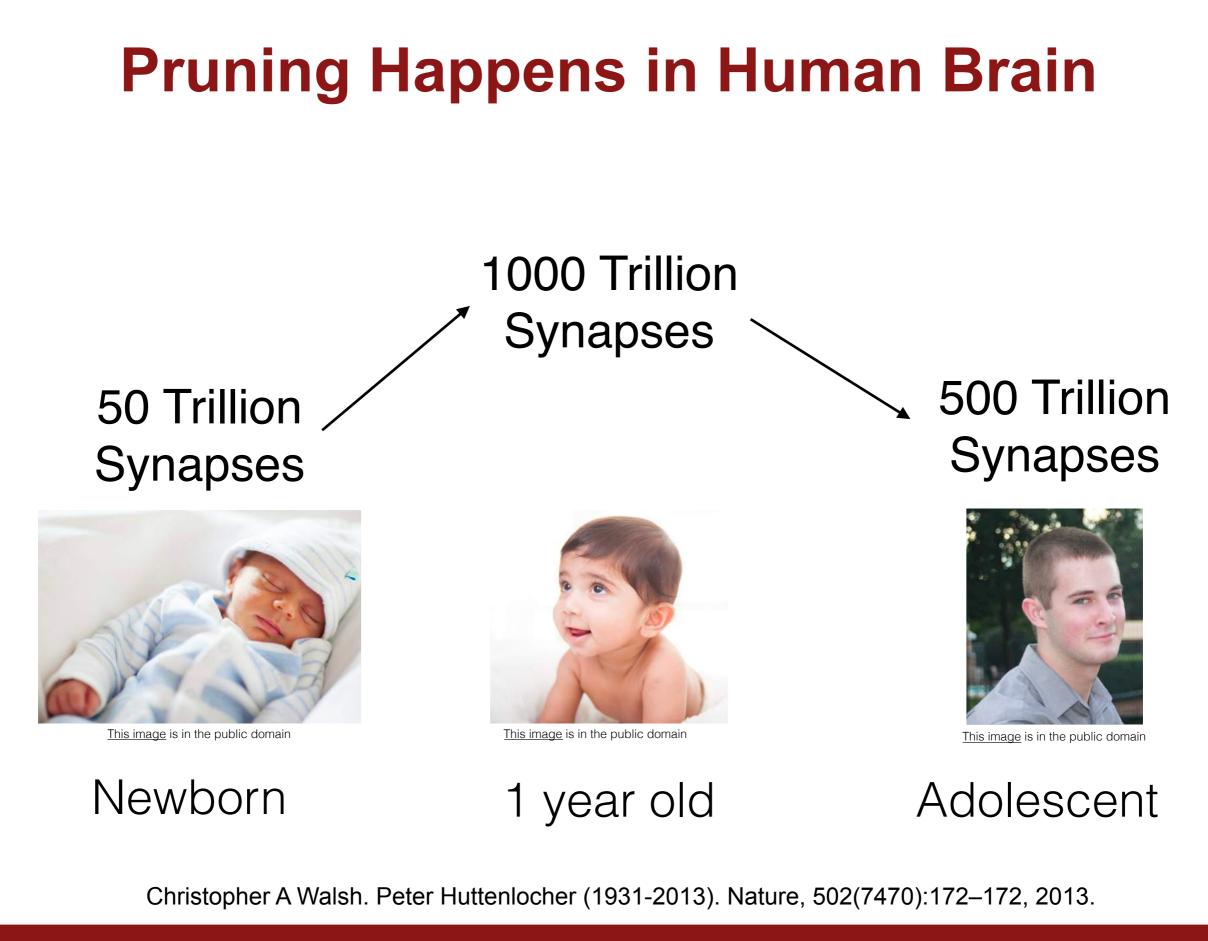
90%

95%

90%

- Original: a basketball player in a white uniform is playing with a ball
- **Pruned 90%**: a basketball player in a white uniform is playing with a basketball
 - **Original** : a brown dog is running through a grassy field
- **Pruned 90%**: a brown dog is running through a grassy area
- **Original** : a man is riding a surfboard on a wave
- **Pruned 90%**: a man in a wetsuit is riding a wave on a ulletbeach
- **Original** : a soccer player in red is running in the field
 - **Pruned 95%:** a man in a red shirt and black and white black shirt is running through a field

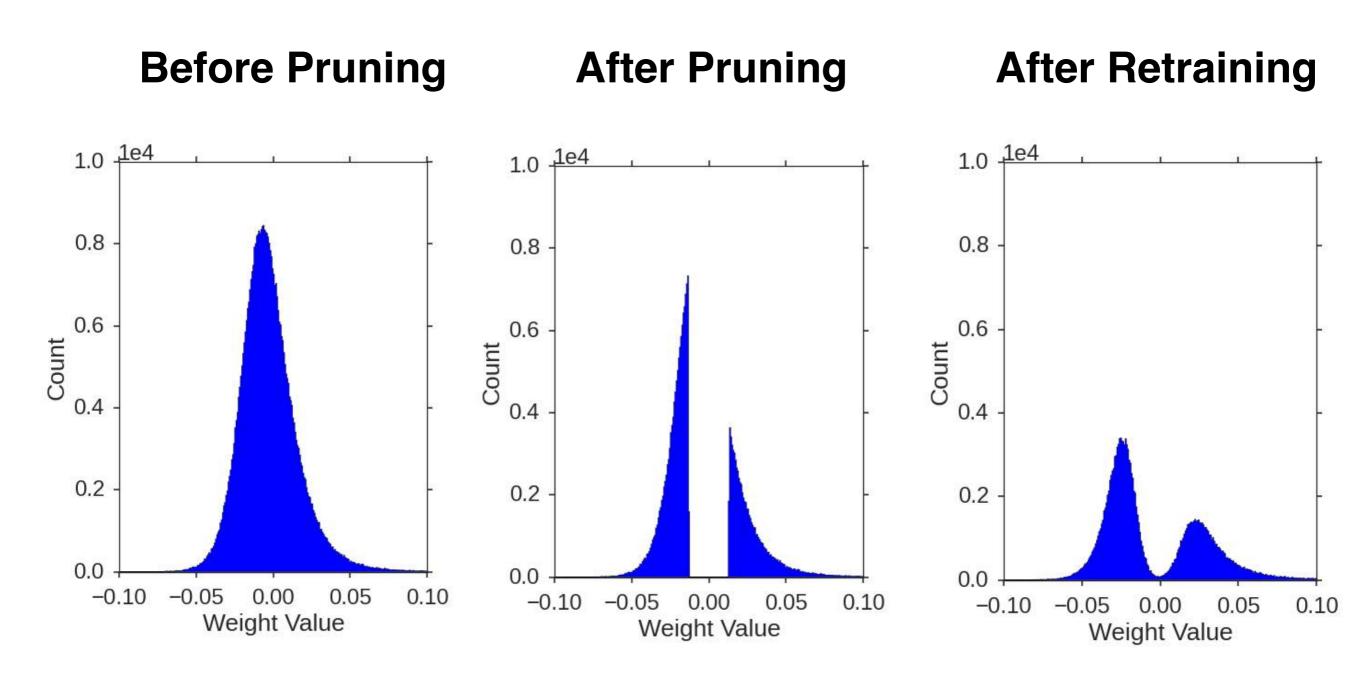
Pruning



Trained Quantization

Huffman Coding

[Han et al. NIPS'15] Pruning Changes Weight Distribution



Conv5 layer of Alexnet. Representative for other network layers as well.

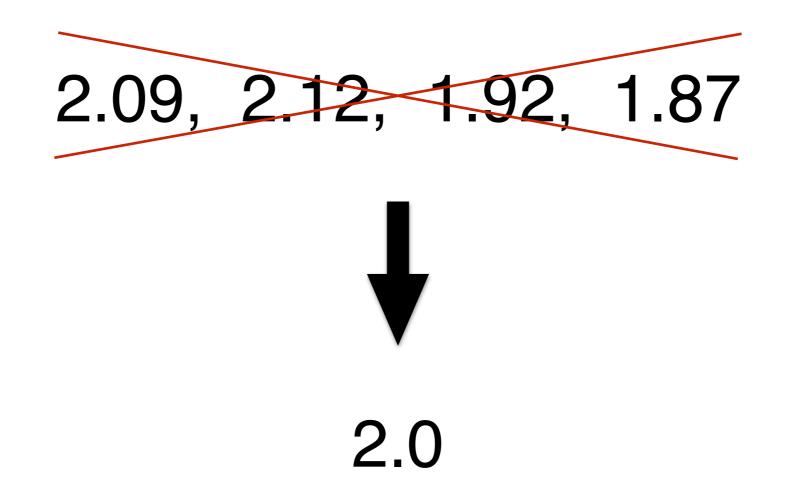
Huffman Coding

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

[Han et al. ICLR'16]

Trained Quantization



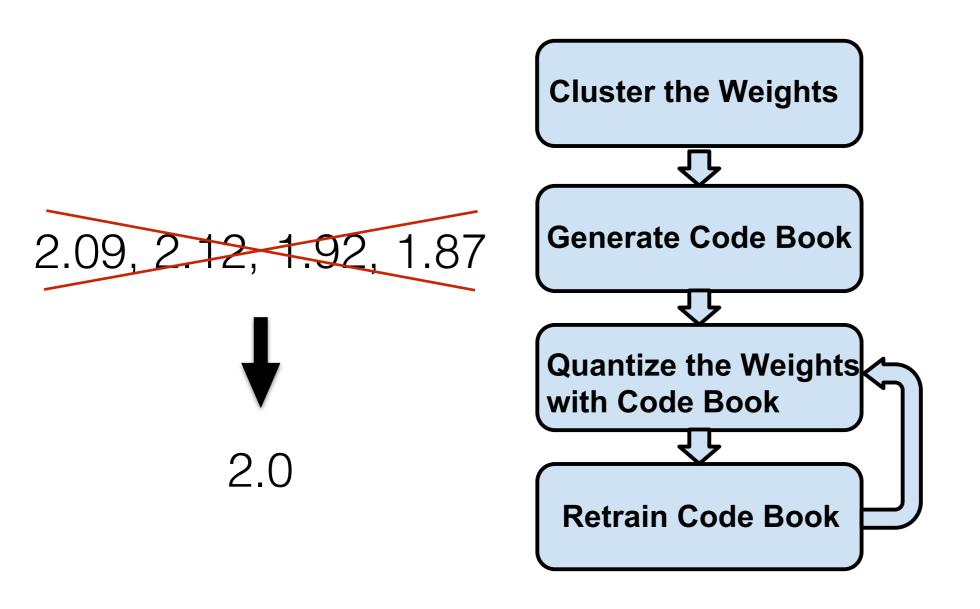
Pruning

Trained Quantization

Huffman Coding

Stanford University

Trained Quantization



32 bit

4bit 8x less memory footprint

Pruning

Trained Quantization

Huffman Coding

weights (32 bit float) 2.09 -0.98 1.48 0.09 0.05 -0.14 -1.08 2.12 -0.91 1.92 -1.03 0 1.87 0 1.53 1.49

Pruning

Trained Quantization

Huffman Coding

[Han et al. ICLR'16]

Trained Quantization

Pruning

Trained Quantization

Huffman Coding

weights (32 bit float)					cluster index (2 bit uint)				centroids		
2.09	-0.98	1.48	0.09		3	0	2	1	3:	2.00	
0.05	-0.14	-1.08	2.12	cluster	1	1	0	3	2:	1.50	
-0.91	1.92	0	-1.03		0	3	1	0	1:	0.00	
1.87	0	1.53	1.49		3	1	2	2	0:	-1.00	

Pruning

Trained Quantization

Huffman Coding

weights (32 bit float)				cluster index (2 bit uint)				се	ntroids	
2.09	-0.98	1.48	0.09		3	0	2	1	3:	2.00
0.05	-0.14	-1.08	2.12	cluster	1	1	0	3	2:	1.50
-0.91	1.92	0	-1.03		0	3	1	0	1:	0.00
1.87	0	1.53	1.49		3	1	2	2	0:	-1.00

gradient

	_		
-0.03	-0.01	0.03	0.02
-0.01	0.01	-0.02	0.12
-0.01	0.02	0.04	0.01
-0.07	-0.02	0.01	-0.02

Pruning

Trained Quantization

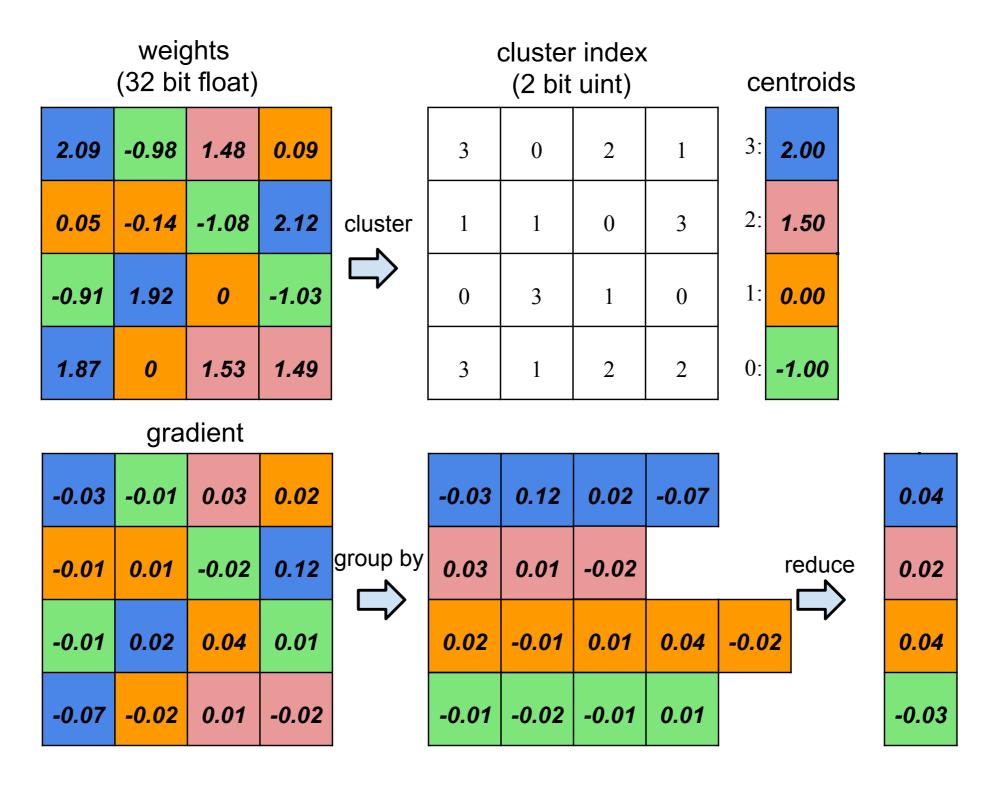
Huffman Coding

	weię (32 bit	ghts t float)			(clustei (2 bit	r index uint)		се	ntroids
2.09	-0.98	1.48	0.09		3	0	2	1	3:	2.00
0.05	-0.14	-1.08	2.12	cluster	1	1	0	3	2:	1.50
-0.91	1.92	0	-1.03		0	3	1	0	1:	0.00
1.87	0	1.53	1.49		3	1	2	2	0:	-1.00
gradient										
-0.03	-0.01	0.03	0.02		-0.03	0.12	0.02	-0.07		
-0.01	0.01	-0.02	0.12	group by	0.03	0.01	-0.02		-	
-0.01	0.02	0.04	0.01		0.02	-0.01	0.01	0.04	-0.02	2
-0.07	-0.02	0.01	-0.02		-0.01	-0.02	-0.01	0.01		

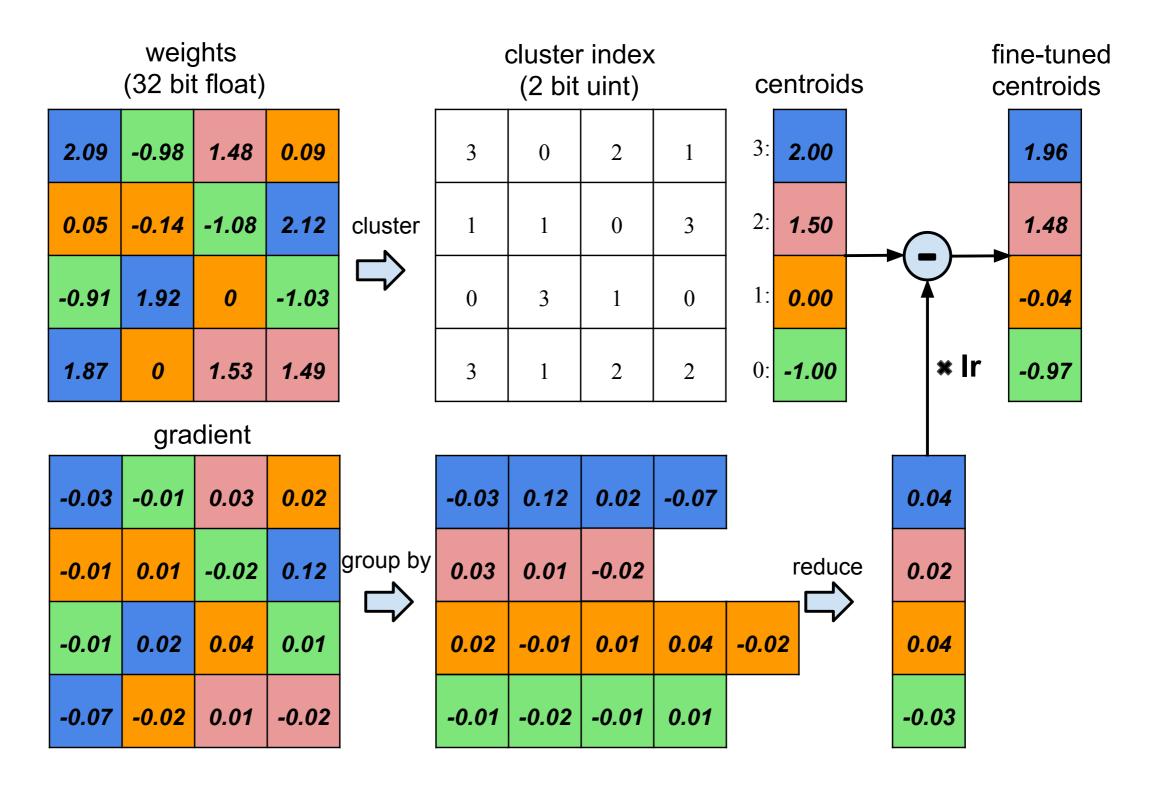
Pruning

Trained Quantization

Huffman Coding



Trained Quantization



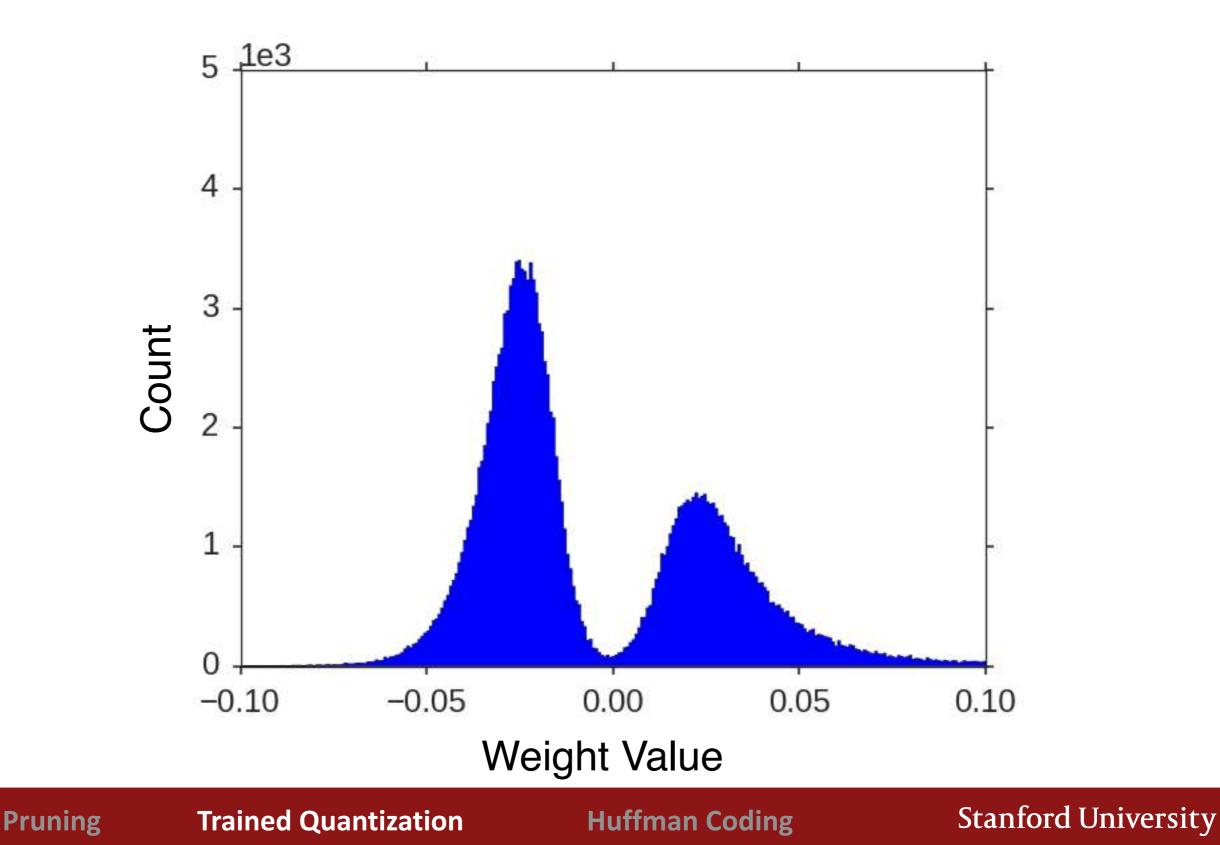
Pruning

Trained Quantization

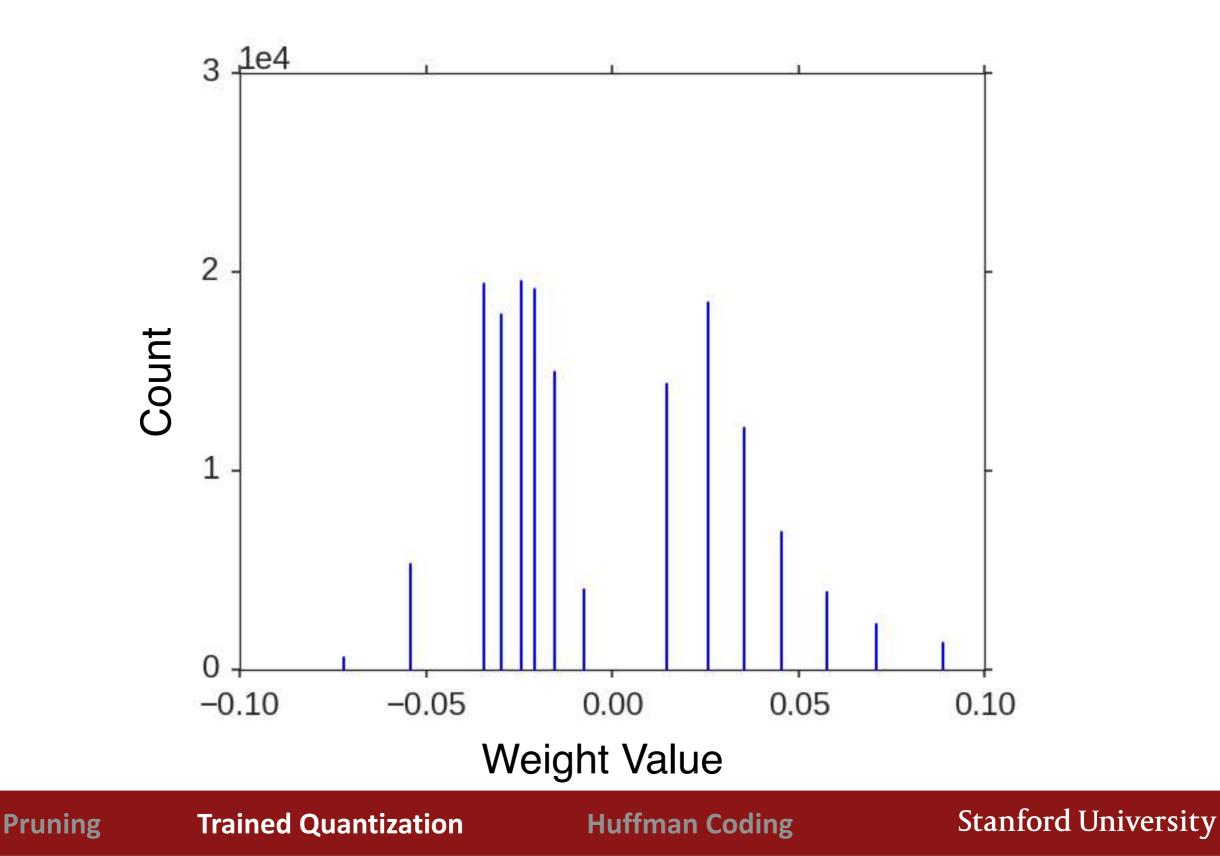
Huffman Coding

[Han et al. ICLR'16]

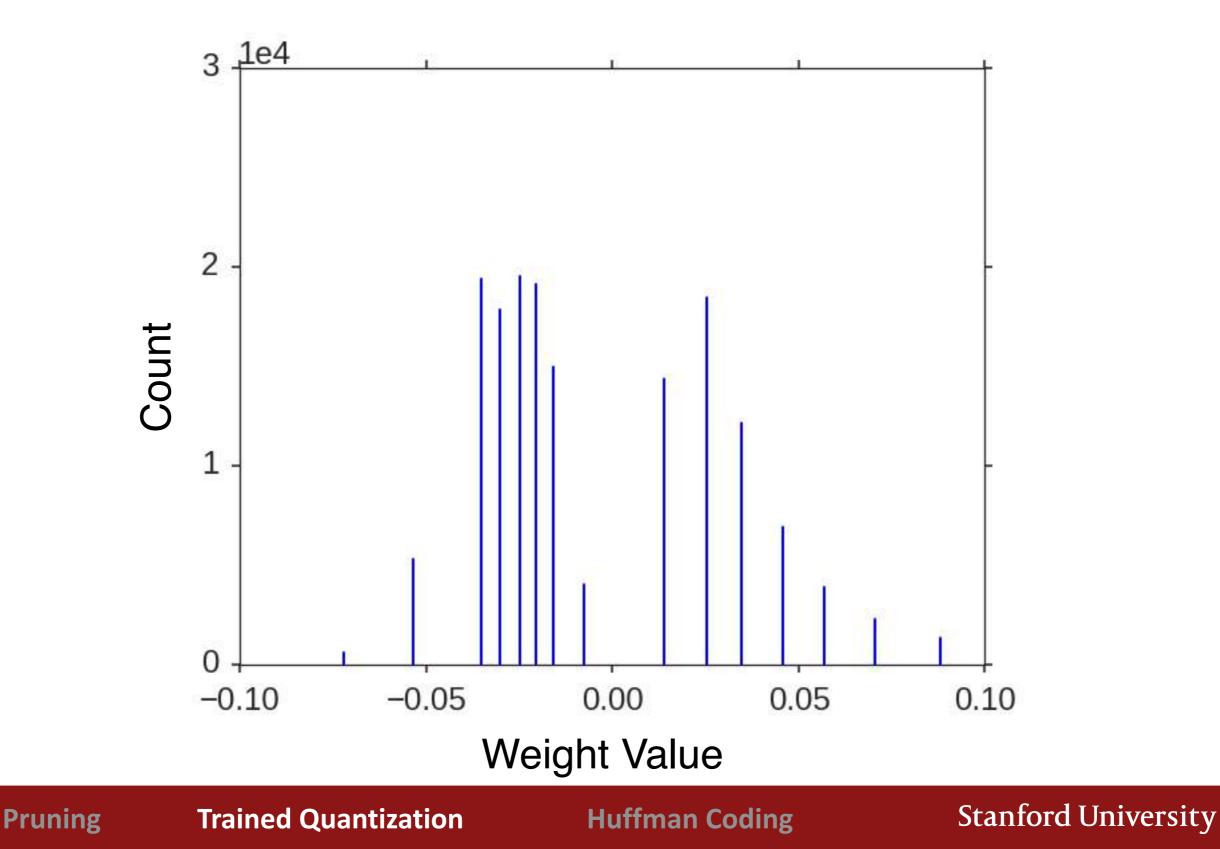
Before Trained Quantization: Continuous Weight



After Trained Quantization: Discrete Weight



After Trained Quantization: Discrete Weight after Training



[Han et al. ICLR'16]

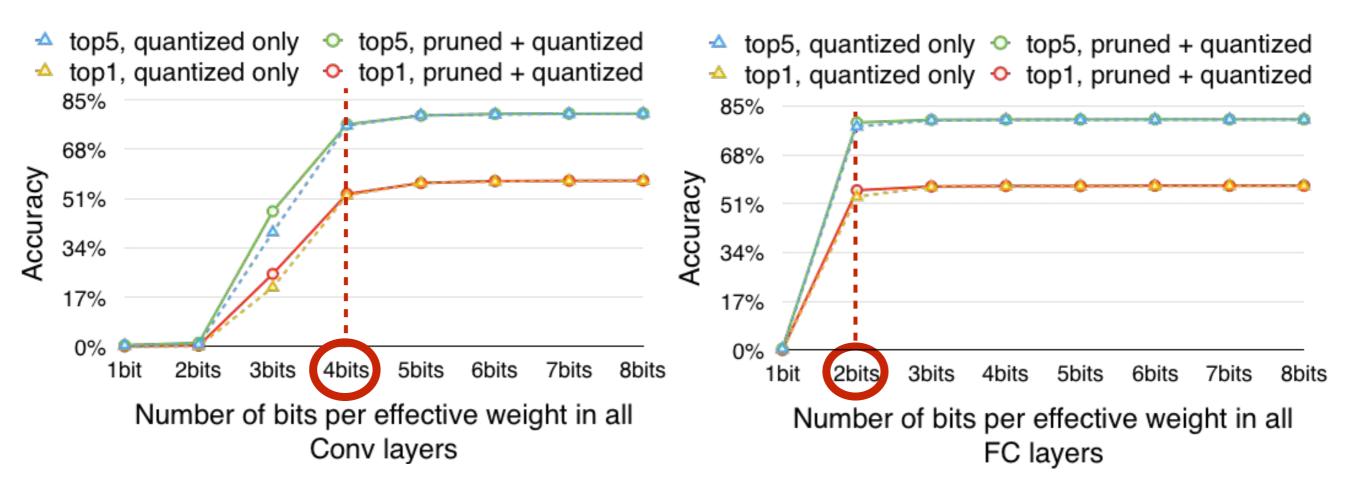
How Many Bits do We Need?

Pruning Trained Quantization

Huffman Coding

Stanford University

How Many Bits do We Need?



Trained Quantization

Huffman Coding

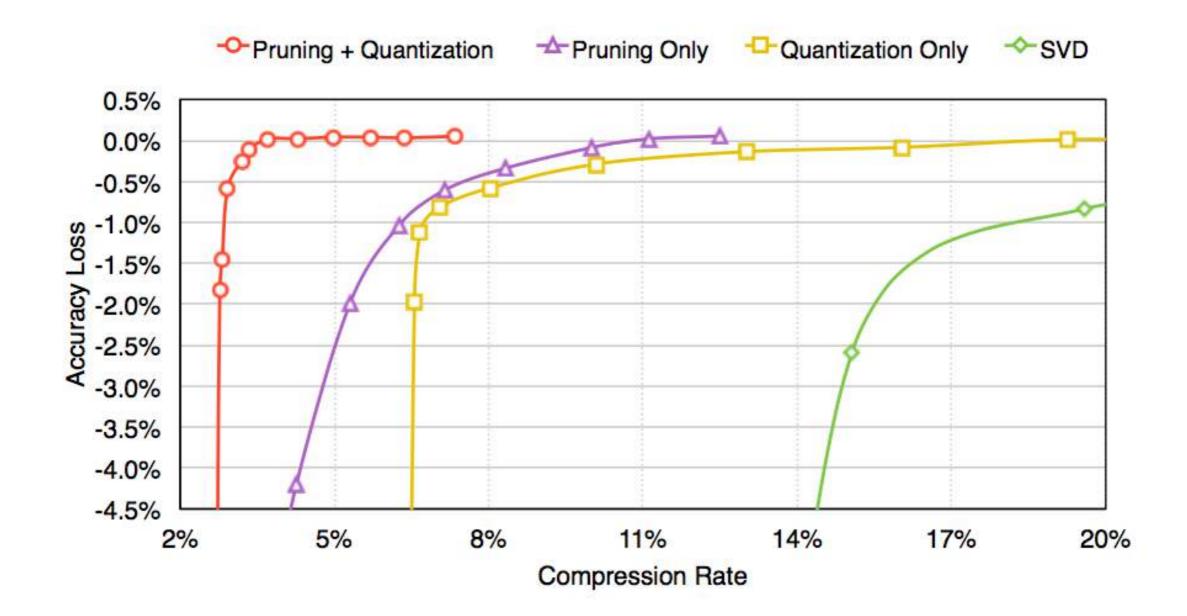
Pruning + Trained Quantization Work Together

Pruning Trained Q

Trained Quantization

Huffman Coding

Pruning + Trained Quantization Work Together

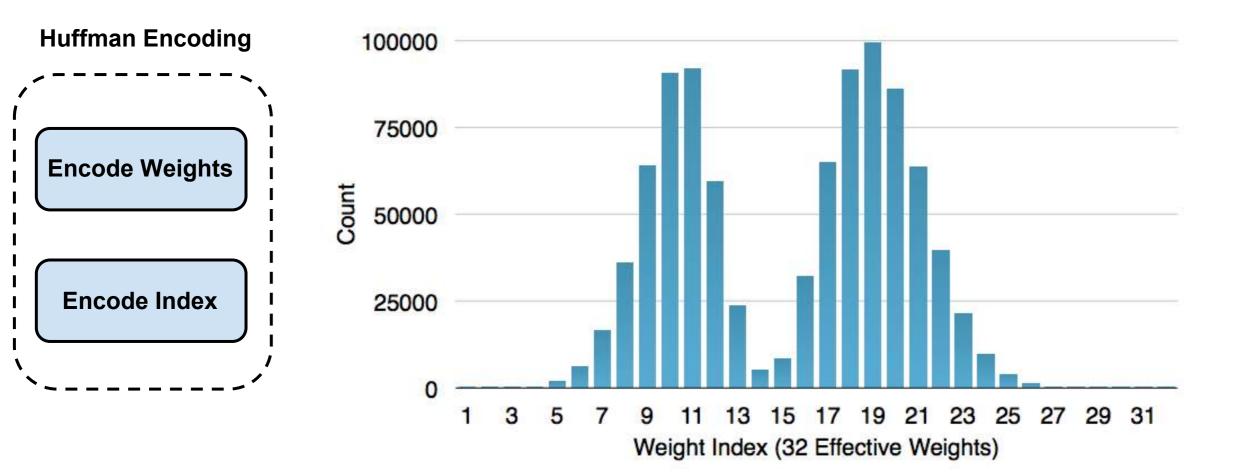


AlexNet on ImageNet

Trained Quantization

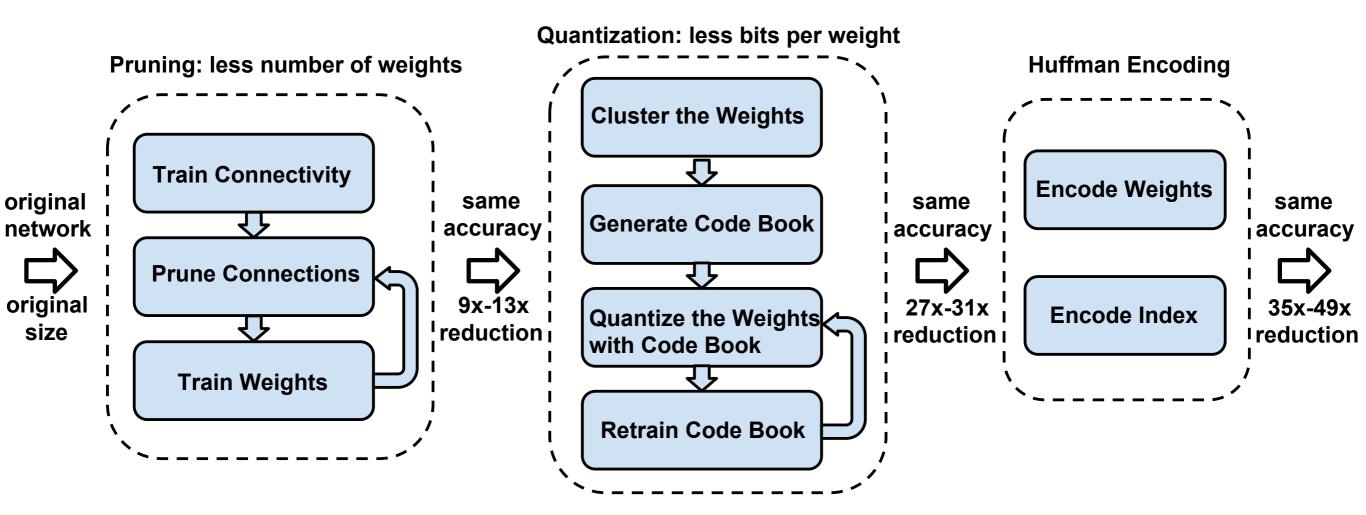
Huffman Coding

Huffman Coding



- In-frequent weights: use more bits to represent
- Frequent weights: use less bits to represent

Summary of Deep Compression



Trained Quantization

Huffman Coding

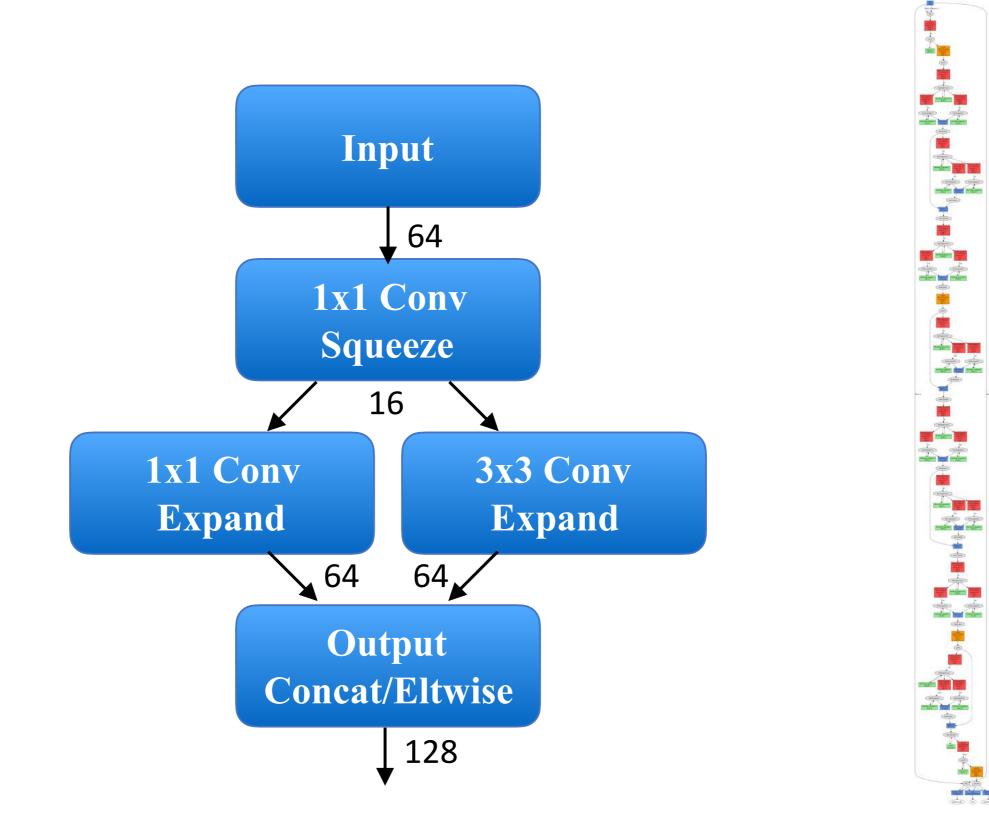
Results: Compression Ratio

Network	Original Compressed Size Size	Compression Ratio	Original Compressed Accuracy Accuracy
LeNet-300	1070KB → 27KB	40x	98.36% → 98.42%
LeNet-5	1720KB → 44KB	39x	99.20% → 99.26%
AlexNet	240MB → 6.9MB	35x	80.27% → 80.30%
VGGNet	550MB→11.3MB	49x	88.68% → 89.09%
GoogleNet	28MB → 2.8MB	10x	88.90% → 88.92%
ResNet-18	44.6MB → 4.0MB	11x	89.24% → 89.28%

Can we make compact models to begin with?

Com	2661	nn

SqueezeNet



landola et al, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size", arXiv 2016

Regularization

Acceleration

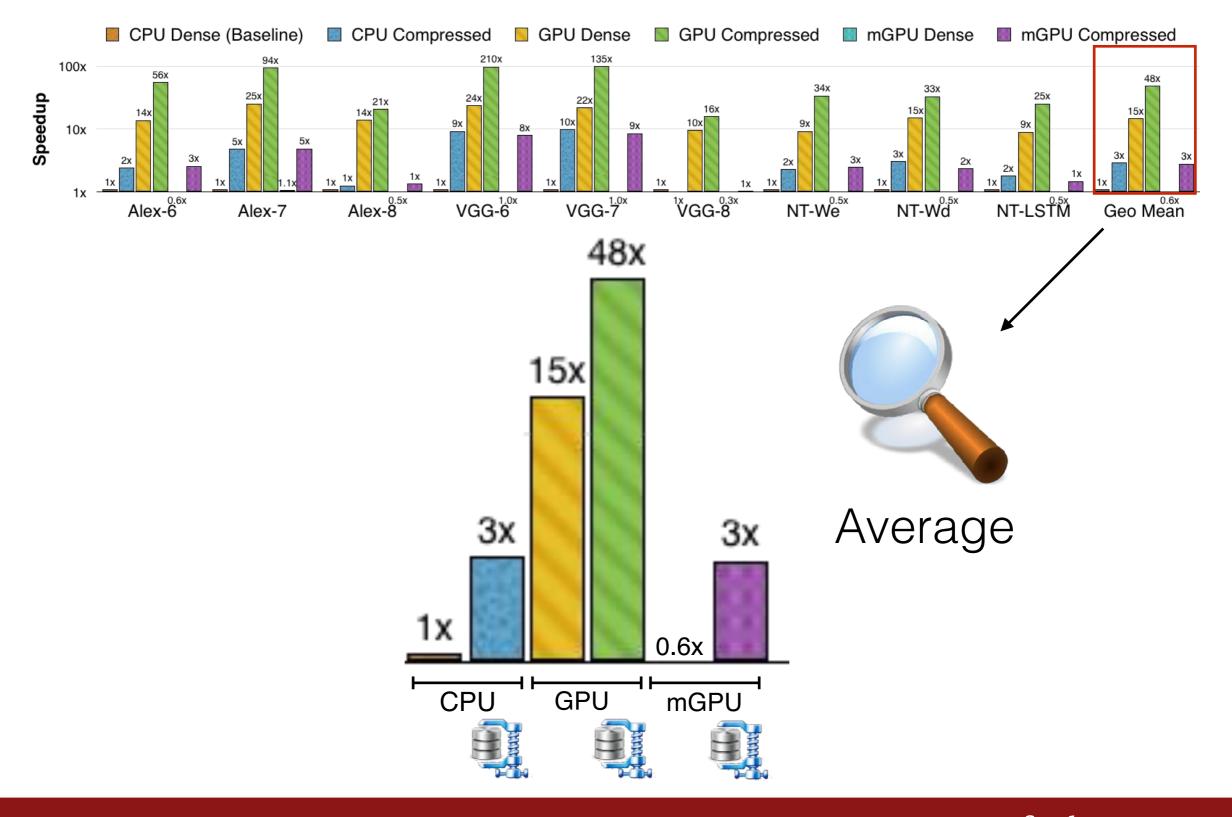
Compression

Compressing SqueezeNet

Network	Approach	Size	Ratio	Top-1 Accuracy	Top-5 Accuracy
AlexNet	-	240MB	1 x	57.2%	80.3%
AlexNet	SVD	48MB	5x	56.0%	79.4%
AlexNet	Deep Compression	6.9MB	35x	57.2%	80.3%
SqueezeNet	_	4.8MB	50x	57.5%	80.3%
SqueezeNet	Deep Compression	0.47MB	510x	57.5%	80.3%

landola et al, "SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size", arXiv 2016

Results: Speedup

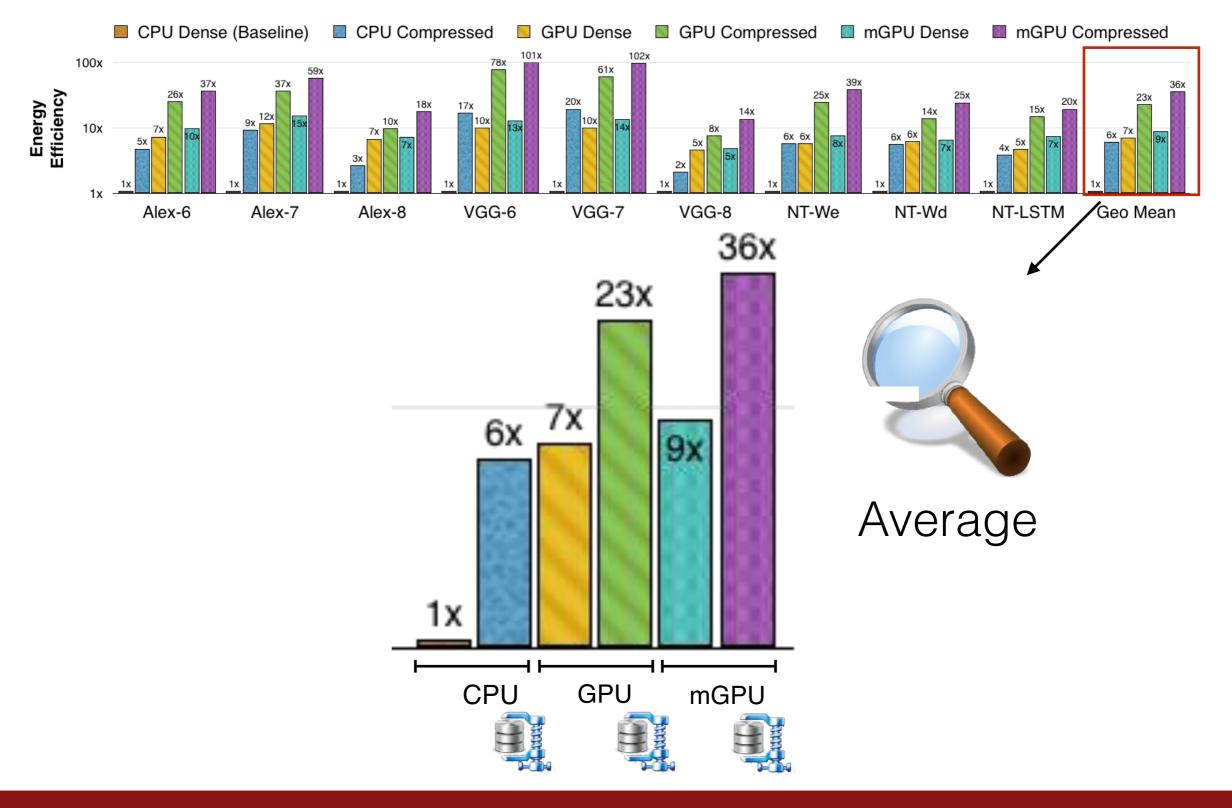


Compression

Acceleration

Regularization

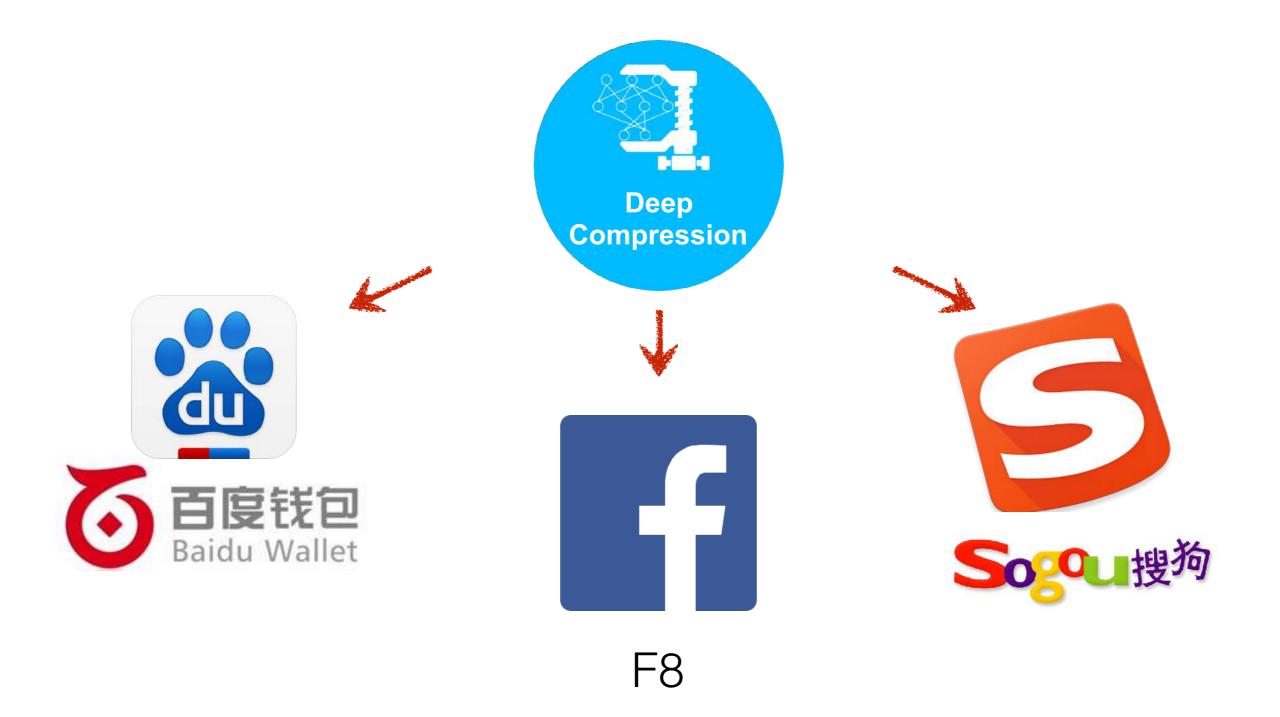
Results: Energy Efficiency



Acceleration

Regularization

Deep Compression Applied to Industry



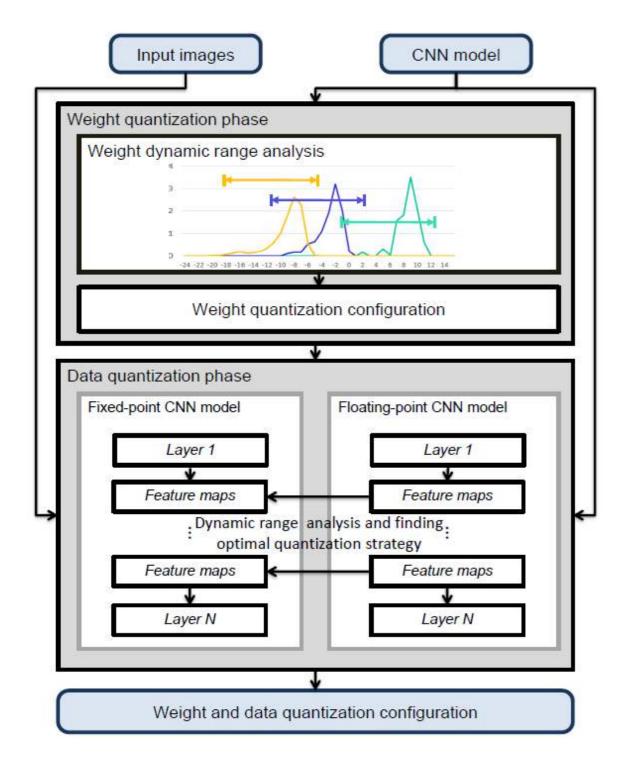
Acceleration

Regularization

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Quantizing the Weight and Activation



- Train with float
- Quantizing the weight and activation:
 - Gather the statistics for weight and activation
 - Choose proper radix point position
- Fine-tune in float format
- Convert to fixed-point format

Qiu et al. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network, FPGA'16

Quantization Result



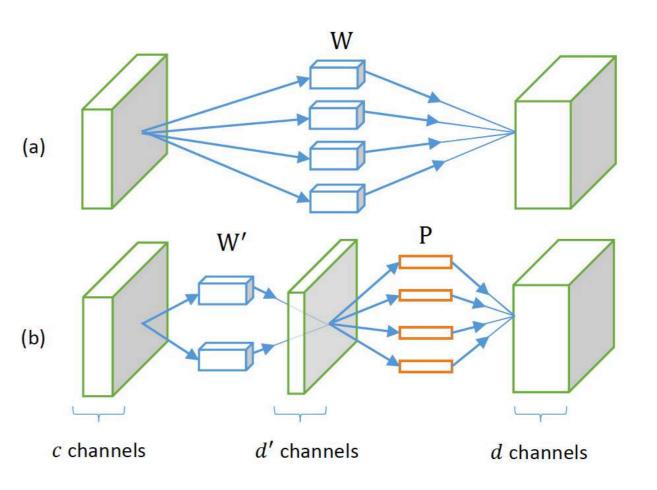
Qiu et al. Going Deeper with Embedded FPGA Platform for Convolutional Neural Network, FPGA'16

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Low Rank Approximation for Conv

- Layer responses lie in a lowrank subspace
- Decompose a convolutional layer with d filters with filter size $k \times k \times c$ to
 - A layer with d' filters ($k \times k \times c$)
 - A layer with d filter $(1 \times 1 \times d')$



Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR'15

Low Rank Approximation for Conv

speedup	rank sel.	Conv1	Conv2	Conv3	Conv4	Conv5	Conv6	Conv7	err. ↑ %
2×	no	32	110	199	219	219	219	219	1.18
2×	yes	32	83	182	211	239	237	253	0.93
2.4×	no	32	96	174	191	191	191	191	1.77
2.4×	yes	32	74	162	187	207	205	219	1.35
3×	no	32	77	139	153	153	153	153	2.56
3×	yes	32	62	138	149	166	162	167	2.34
4×	no	32	57	104	115	115	115	115	4.32
4×	yes	32	50	112	114	122	117	119	4.20
5×	no	32	46	83	92	92	92	92	6.53
5×	yes	32	41	94	93	98	92	90	6.47

Zhang et al Efficient and Accurate Approximations of Nonlinear Convolutional Networks CVPR'15

Low Rank Approximation for FC

Build a mapping from row / column indices of matrix W = [W(x, y)] to vectors i and $j: x \leftrightarrow i = (i_1, \ldots, i_d)$ and $y \leftrightarrow j = (j_1, \ldots, j_d)$.

TT-format for matrix W: $W(i_1, \ldots, i_d; j_1, \ldots, j_d) = W(x(i), y(j)) = \underbrace{G_1[i_1, j_1]}_{1 \times r} \underbrace{G_2[i_2, j_2]}_{r \times r} \ldots \underbrace{G_d[i_d, j_d]}_{r \times 1}$

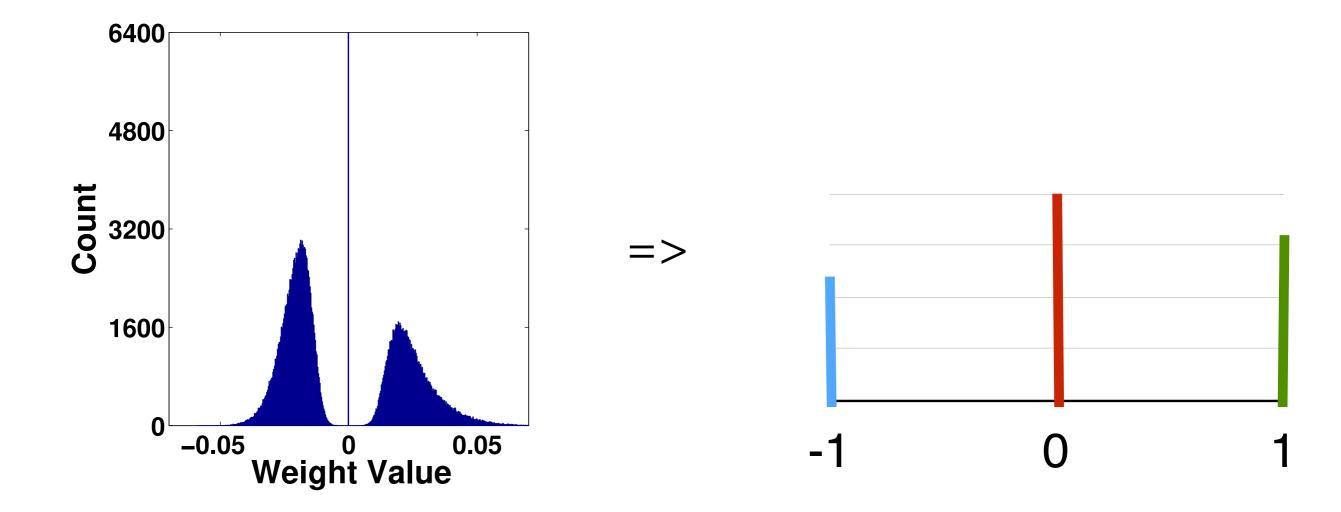
Туре	1 im. time (ms)	100 im. time (ms)
CPU fully-connected layer	16.1	97.2
CPU TT-layer	1.2	94.7
GPU fully-connected layer	2.7	33
GPU TT-layer	1.9	12.9

Novikov et al Tensorizing Neural Networks, NIPS'15

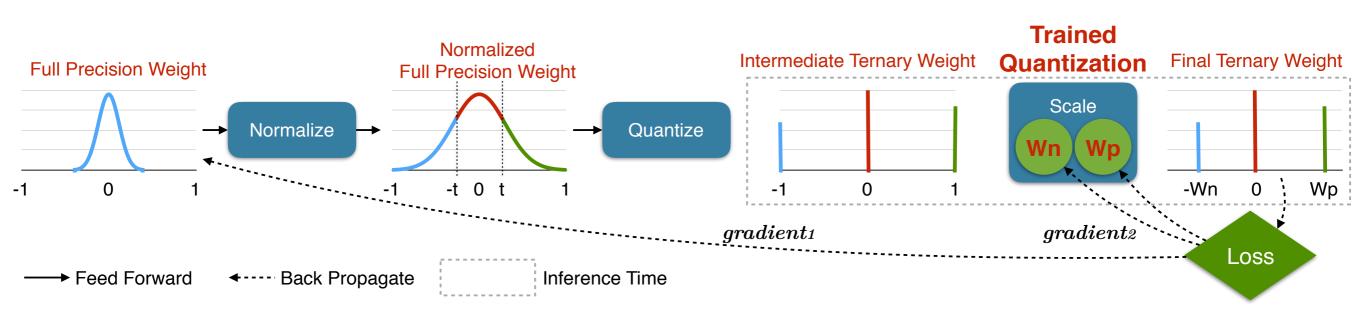
Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

Binary / Ternary Net: Motivation



Trained Ternary Quantization



Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17

Pruning Trained Quantization Huffman Coding

Weight Evolution during Training

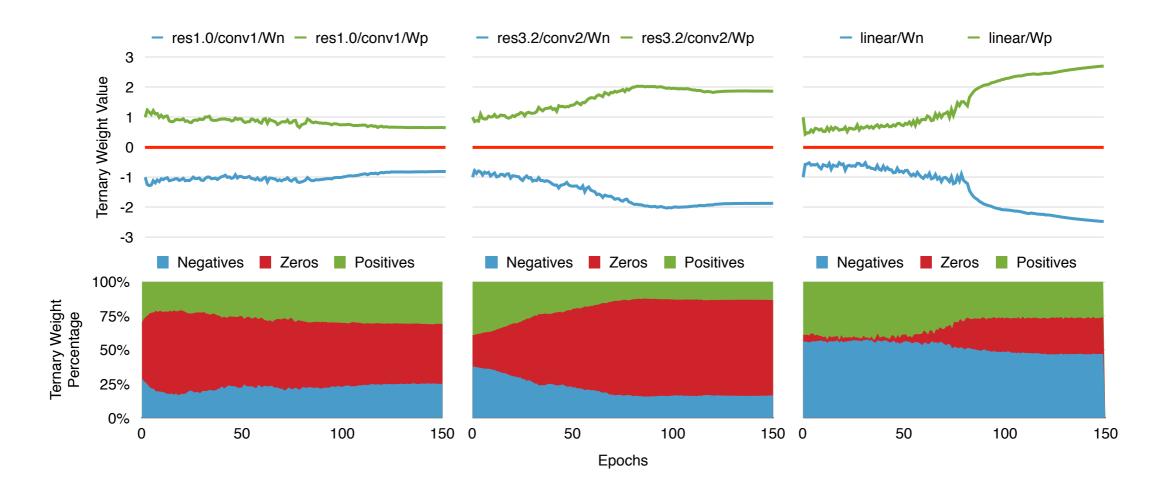
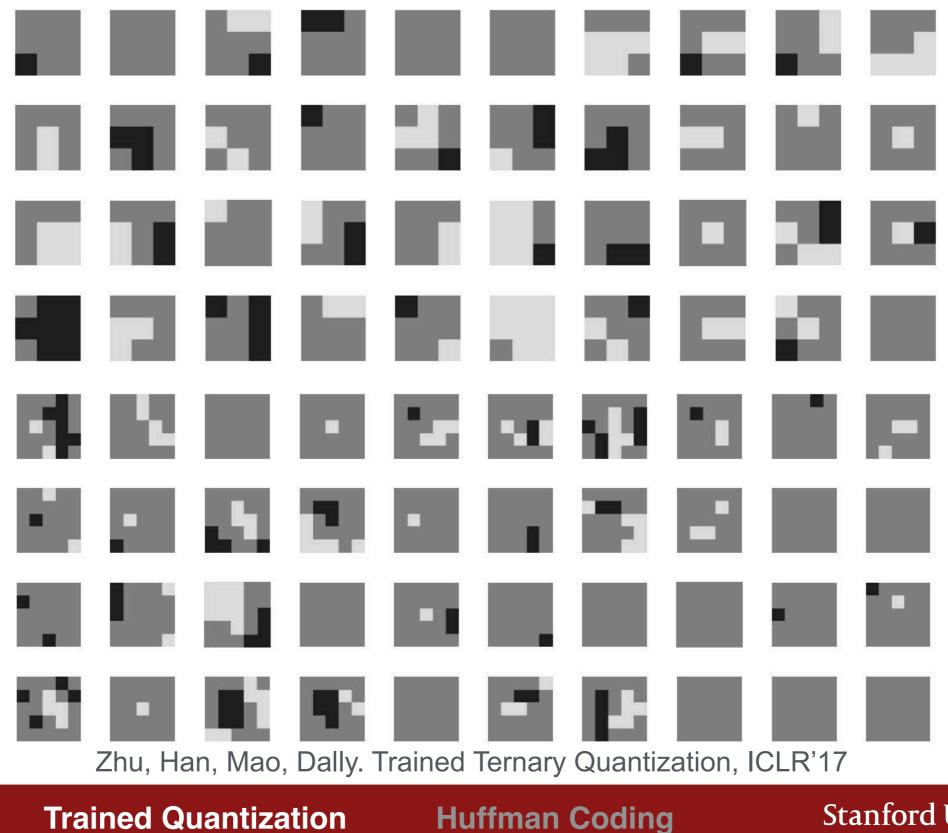


Figure 2: Ternary weights value (above) and distribution (below) with iterations for different layers of ResNet-20 on CIFAR-10.

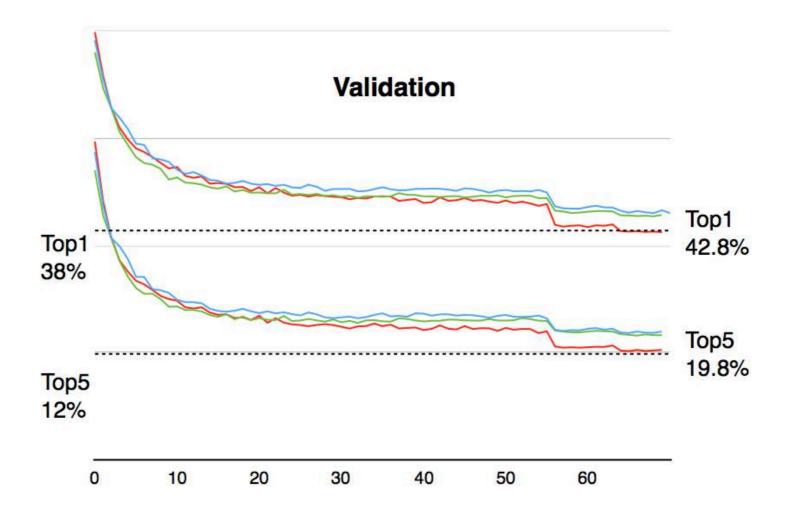
Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17

Visualization of the TTQ Kernels



Pruning

Error Rate on ImageNet



Zhu, Han, Mao, Dally. Trained Ternary Quantization, ICLR'17

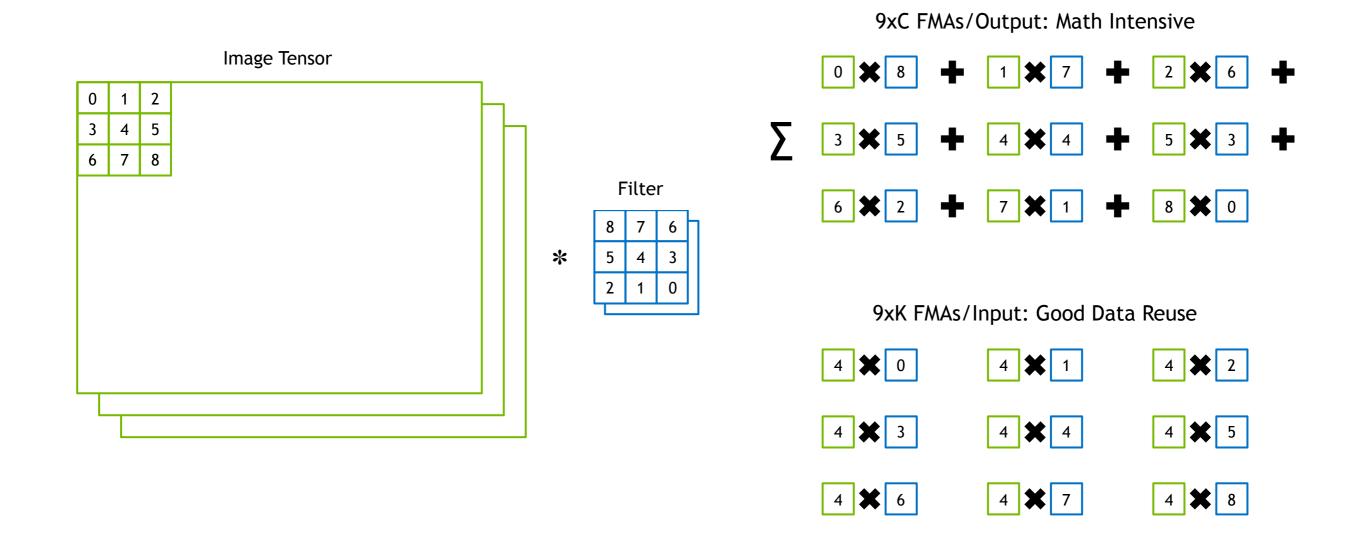
Pruning Trained Quantization Huffman Coding

Part 1: Algorithms for Efficient Inference

- 1. Pruning
- 2. Weight Sharing
- · 3. Quantization
- 4. Low Rank Approximation
- 5. Binary / Ternary Net
- 6. Winograd Transformation

3x3 DIRECT Convolutions

Compute Bound

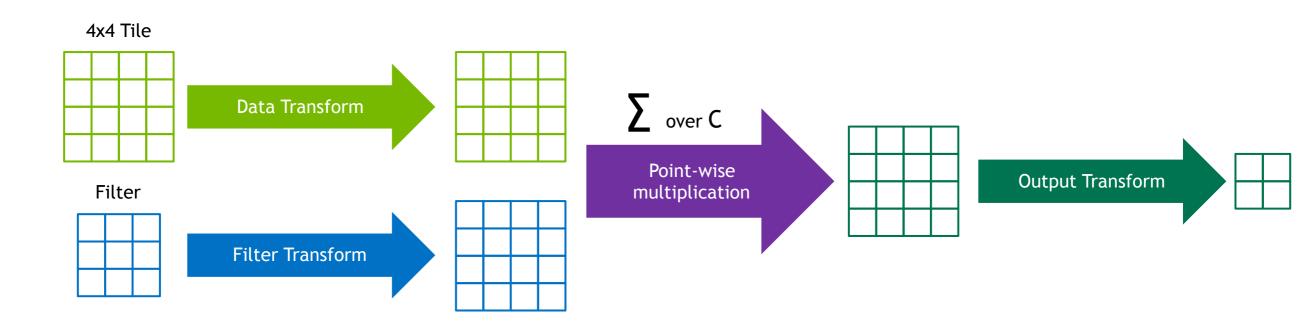


Direct convolution: we need 9xCx4 = 36xC FMAs for 4 outputs

Julien Demouth, Convolution OPTIMIZATION: Winograd, NVIDIA

3x3 WINOGRAD Convolutions

Transform Data to Reduce Math Intensity

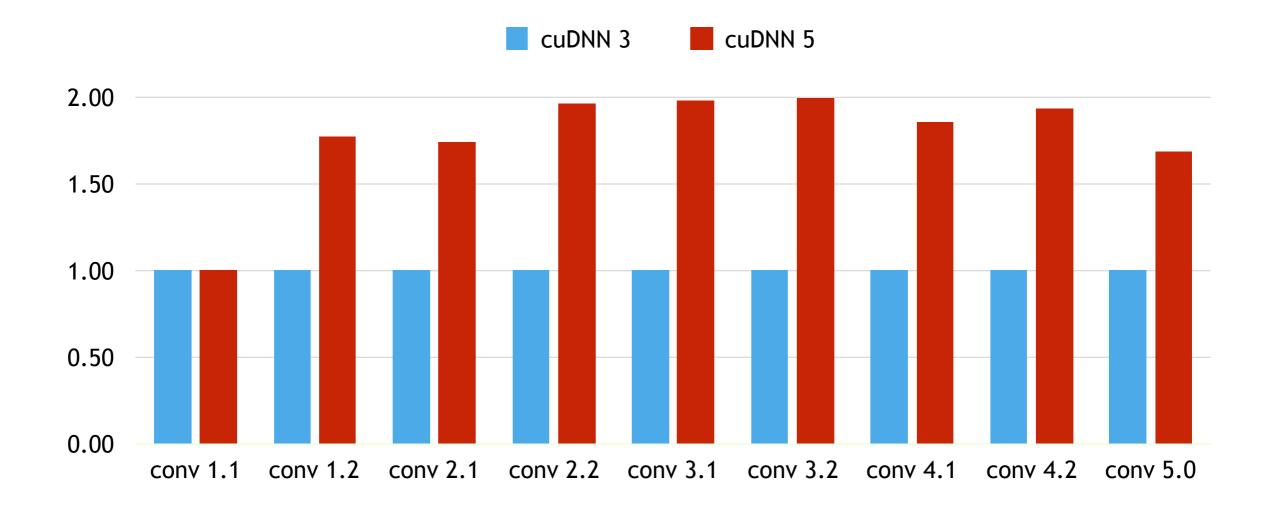


Direct convolution: we need 9xCx4 = 36xC FMAs for 4 outputs Winograd convolution: we need 16xC FMAs for 4 outputs: 2.25x fewer FMAs

See A. Lavin & S. Gray, "Fast Algorithms for Convolutional Neural Networks Julien Demouth, Convolution OPTIMIZATION: Winograd, NVIDIA

Speedup of Winograd Convolution

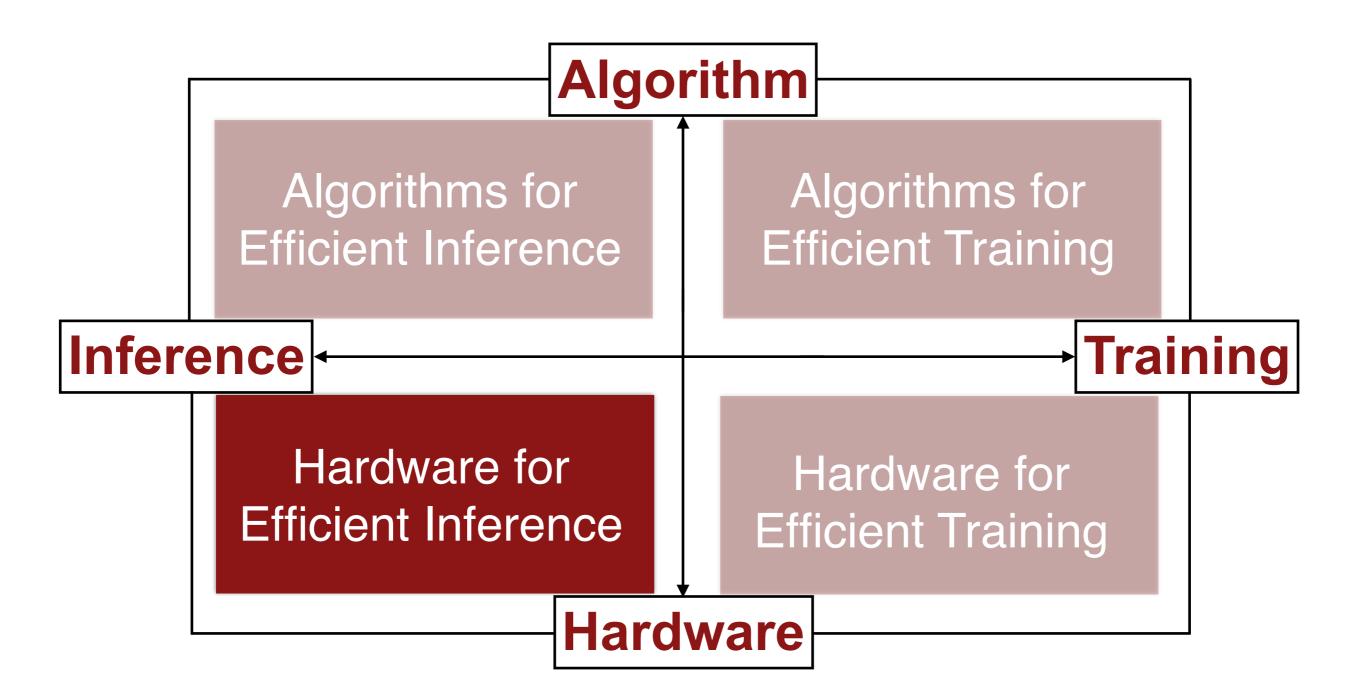
VGG16, Batch Size 1 - Relative Performance



Measured on Maxwell TITAN X

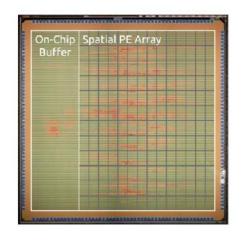
Julien Demouth, Convolution OPTIMIZATION: Winograd, NVIDIA

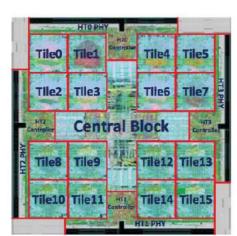
Agenda

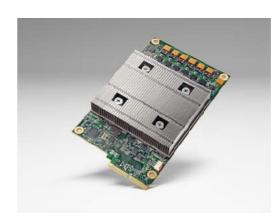


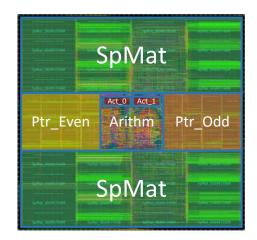
Hardware for Efficient Inference

a common goal: minimize memory access









Eyeriss MIT RS Dataflow

DaDiannao CAS eDRAM

TPU Google 8-bit Integer

"This unit is designed for dense matrices. Sparse architectural support was omitted for time-todeploy reasons. Sparsity will have high priority in future designs"

EIE Stanford Compression/ Sparsity

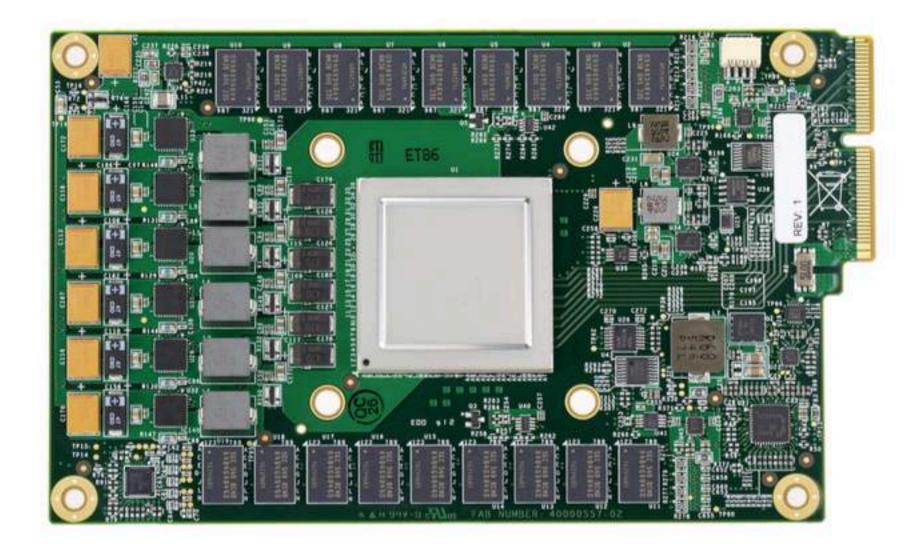
Compression

Acceleration

Regularization

Stanford University

Google TPU



TPU Card to replace a disk

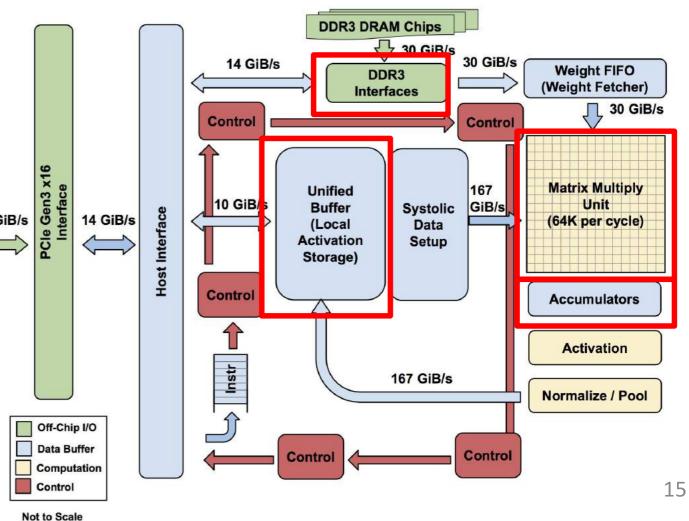
Up to 4 cards / server

David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit

Google TPU

- The Matrix Unit: 65,536 (256x256) 8-bit multiply-accumulate units
- 700 MHz clock rate
- Peak: 92T operations/second
 65,536 * 2 * 700M
- >25X as many MACs vs GPU
- >100X as many MACs vs CPU
- 4 MiB of on-chip Accumulator memory
- 24 MiB of on-chip Unified Buffer, (activation memory)
- 3.5X as much on-chip memory vs GPU
- Two 2133MHz DDR3 DRAM channels
- 8 GiB of off-chip weight DRAM memory

TPU: High-level Chip Architecture



David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit

Google TPU

Processor	mm ²	Clock MHz	TDP Watts	Idle Watts	Memory GB/sec	Peak TOPS/chip	
						8b int.	32b FP
CPU: Haswell (18 core)	662	2300	145	<mark>41</mark>	51	2.6	1.3
GPU: Nvidia K80 (2 / card)	561	560	150	25	160		2.8
TPU	<331*	700	75	28	34	91.8	

*TPU is less than half die size of the Intel Haswell processor

K80 and TPU in 28 nm process; Haswell fabbed in Intel 22 nm process

These chips and platforms chosen for comparison because widely deployed in Google data centers

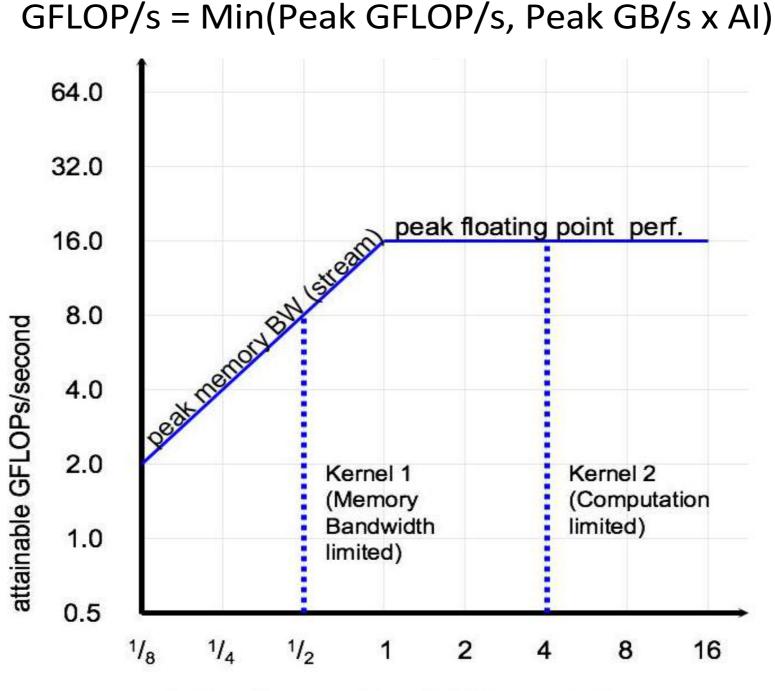
David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit

Inference Datacenter Workload

Name	LOC	FC		Layers Vector	Pool	Total	Nonlinear function	Weights	TPU Ops / Weight Byte	TPU Batch Size	% Deployed
MLP0	0.1k		Conv	V CCION		5	ReLU	20M	200	200	(10/
MLP1	1k	4				4	ReLU	5M	168	168	61%
LSTM0	1k	24		34		58	sigmoid, tanh	52M	64	64	2007
LSTM1	1.5k	37		19		56	sigmoid, tanh	34M	96	96	29%
CNN0	1k		16			16	ReLU	8M	2888	8	50/
CNN1	1k	4	72		13	89	ReLU	100M	1750	32	5%

David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit

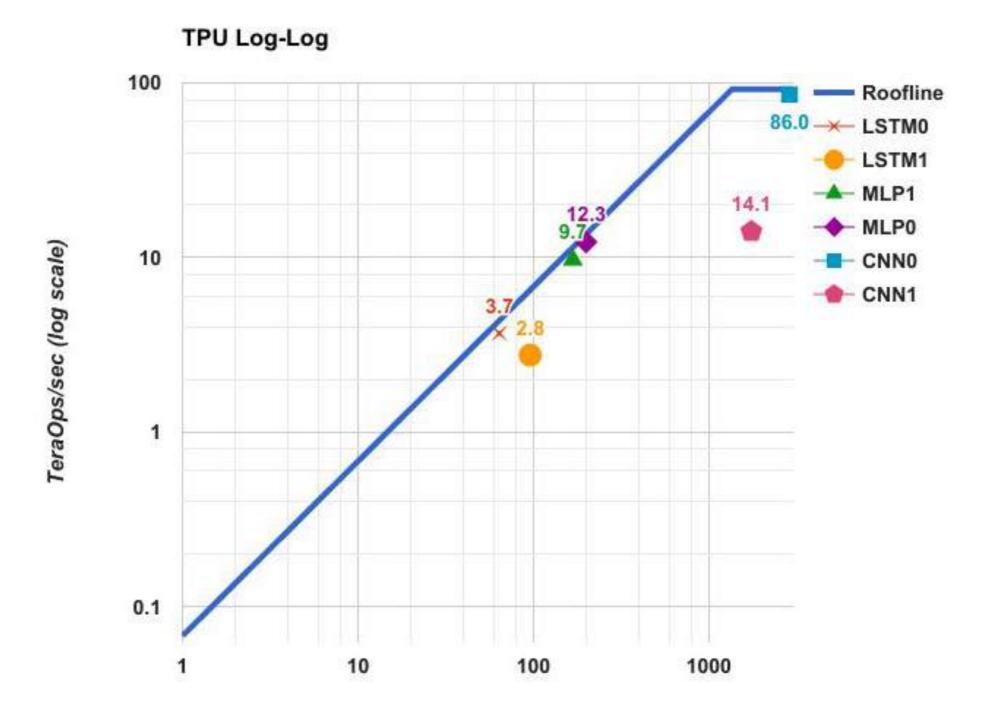
Roofline Model: Identify Performance Bottleneck



Arithmetic Intensity: FLOPs/Byte Ratio

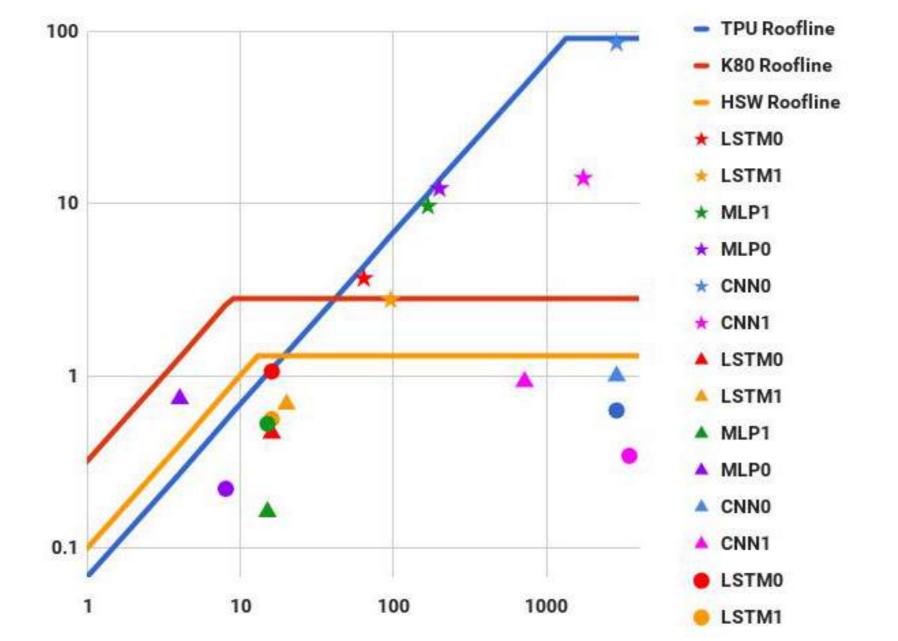
David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit

TPU Roofline

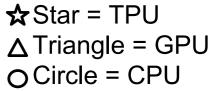


Operational Intensity: Ops/weight byte (log scale) David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit

Log Rooflines for CPU, GPU, TPU

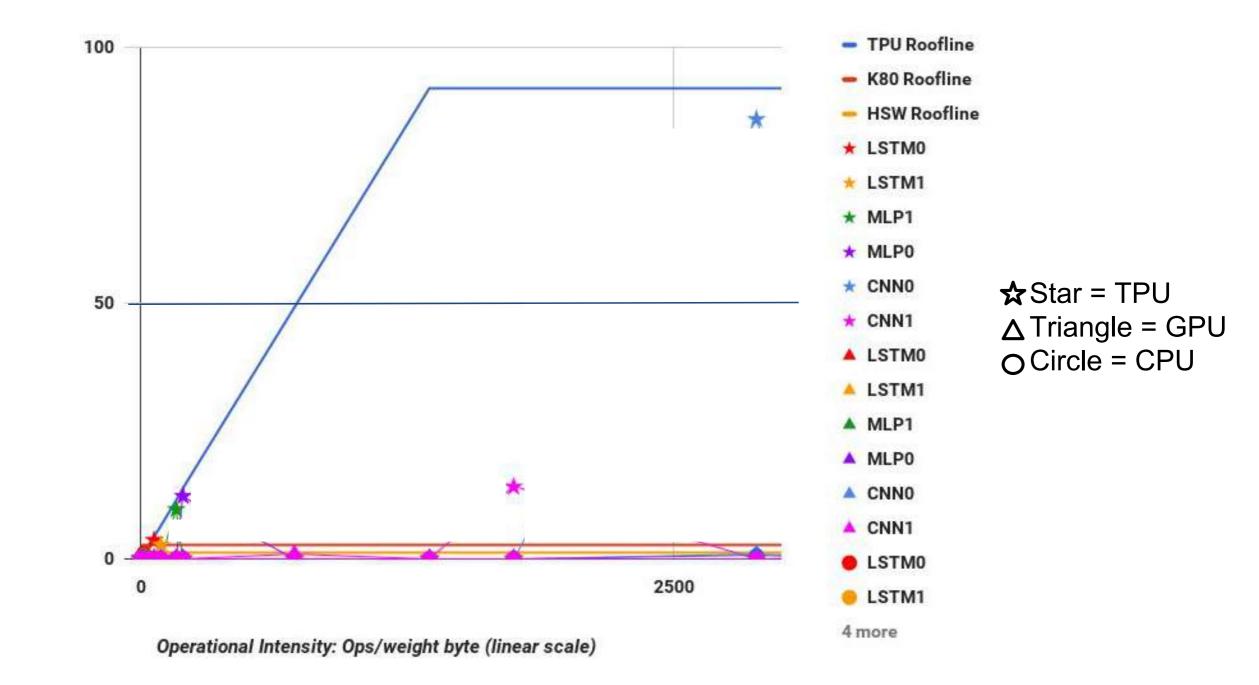


TeraOps/sec (log scale)



David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit

Linear Rooflines for CPU, GPU, TPU



David Patterson and the Google TPU Team, In-Data Center Performance Analysis of a Tensor Processing Unit

Stanford University

Why so far below Rooflines?

Low latency requirement => Can't batch more => low ops/byte

How to Solve this?

less memory footprint => need compress the model

Challenge:

Hardware that can infer on compressed model

[Han et al. ISCA'16]

EIE: the First DNN Accelerator for Sparse, Compressed Model

Compression

Acceleration

Regularization

Stanford University

[Han et al. ISCA'16]

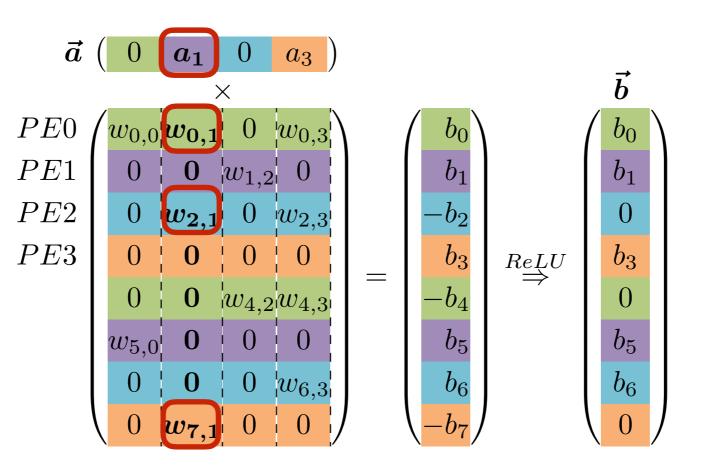
EIE: the First DNN Accelerator for Sparse, Compressed Model



Acceleration

Regularization

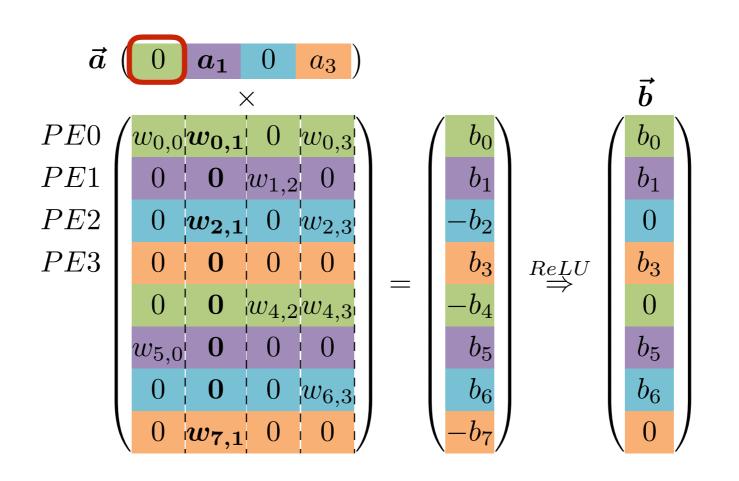
EIE: Reduce Memory Access by Compression



physically

Virtual Weight	W _{0,0}	W _{0,1}	W _{4,2}	W _{0,3}	W _{4,3}
Relative Index	0	1	2	0	0
Column Pointer	0	1	2	3	

Han et al. "EIE: Efficient Inference Engine on Compressed Deep Neural Network", ISCA 2016, Hotchips 2016

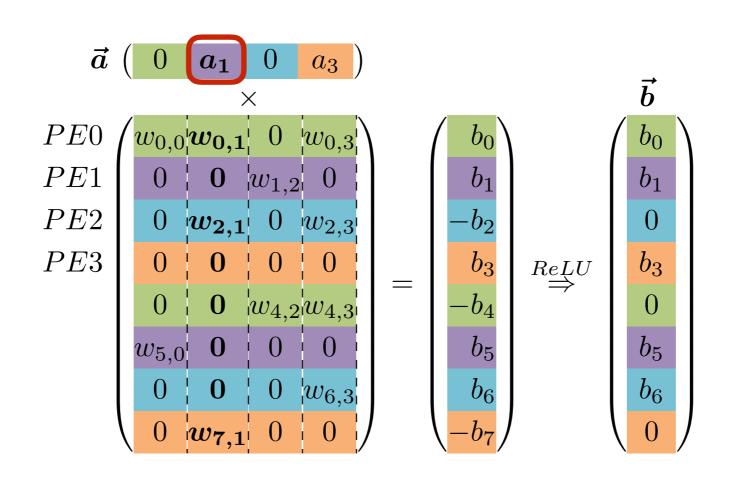


rule of thumb: 0 * A = 0 W * 0 = 0

Compression

Acceleration

Regularization

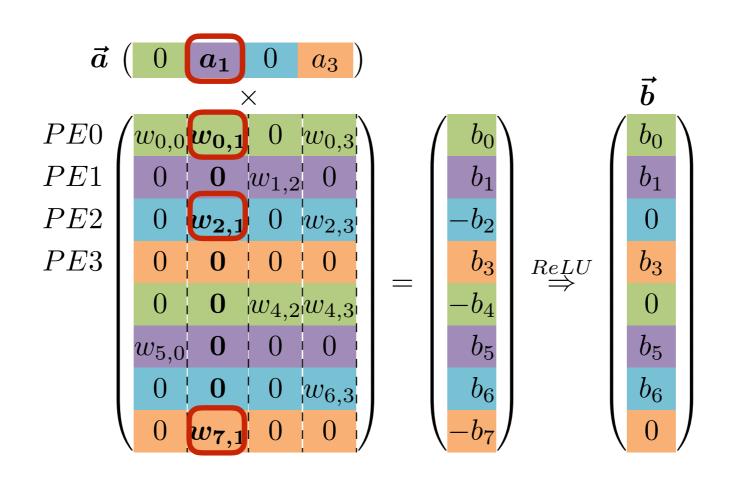


rule of thumb: 0 * A = 0 W * 0 = 0

Compression

Acceleration

Regularization

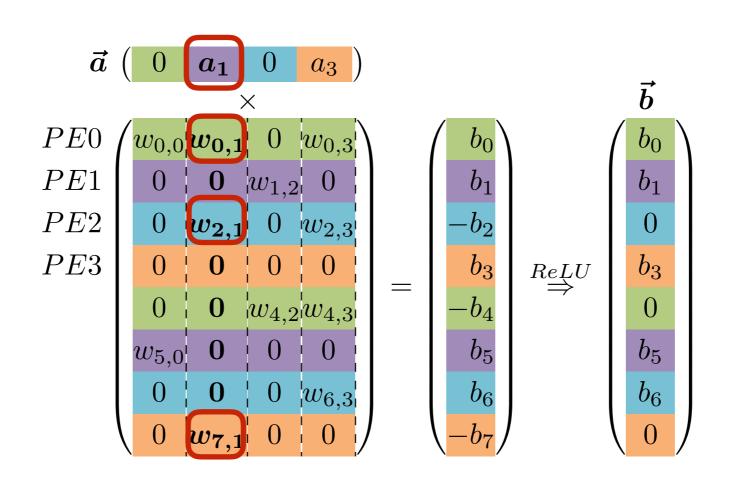


rule of thumb: 0 * A = 0 W * 0 = 0

Compression

Acceleration

Regularization

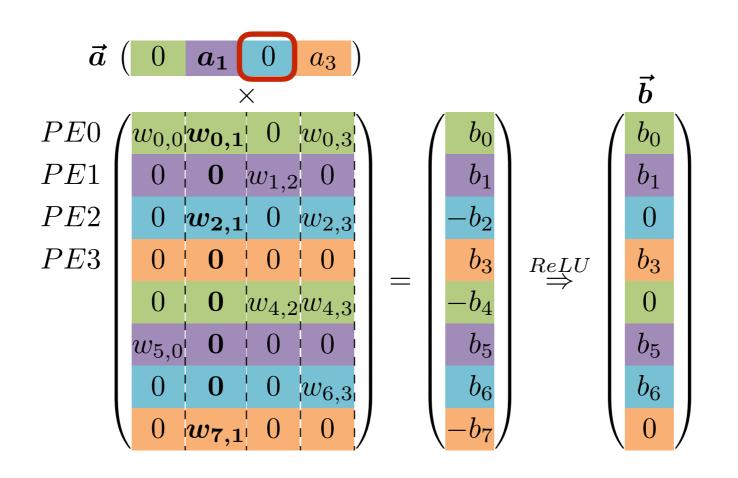


rule of thumb: 0 * A = 0 W * 0 = 0

Compression

Acceleration

Regularization

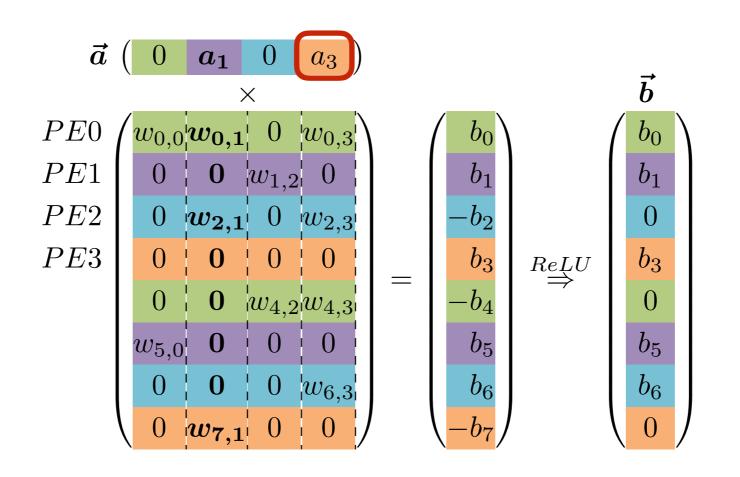


rule of thumb: 0 * A = 0 W * 0 = 0

Compression

Acceleration

Regularization

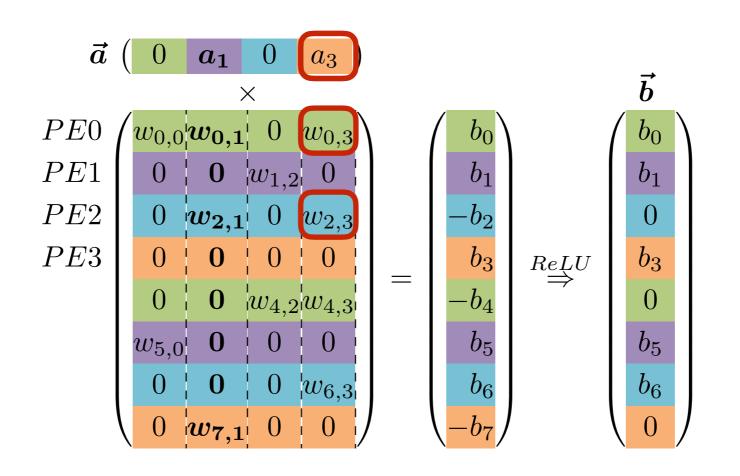


rule of thumb: 0 * A = 0 W * 0 = 0

Compression

Acceleration

Regularization

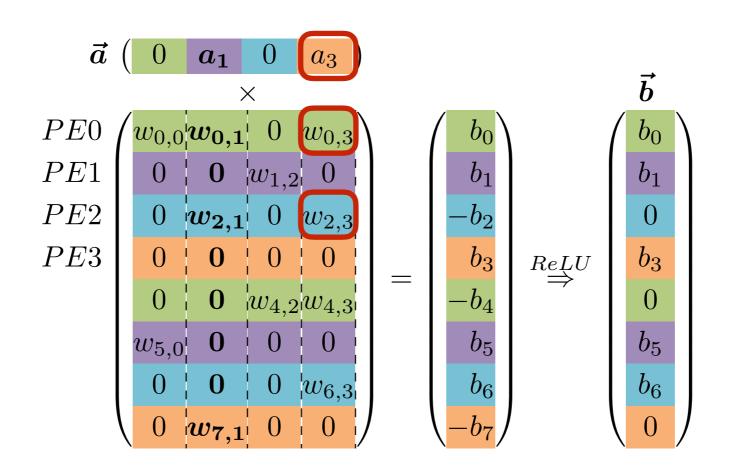


rule of thumb: 0 * A = 0 W * 0 = 0

Compression

Acceleration

Regularization

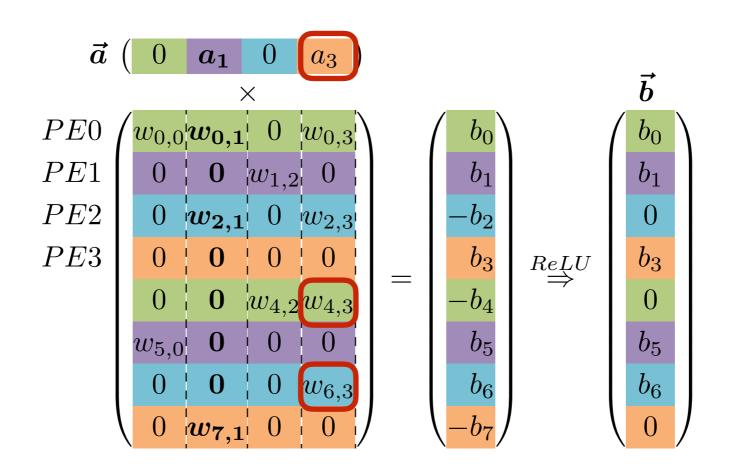


rule of thumb: 0 * A = 0 W * 0 = 0

Compression

Acceleration

Regularization

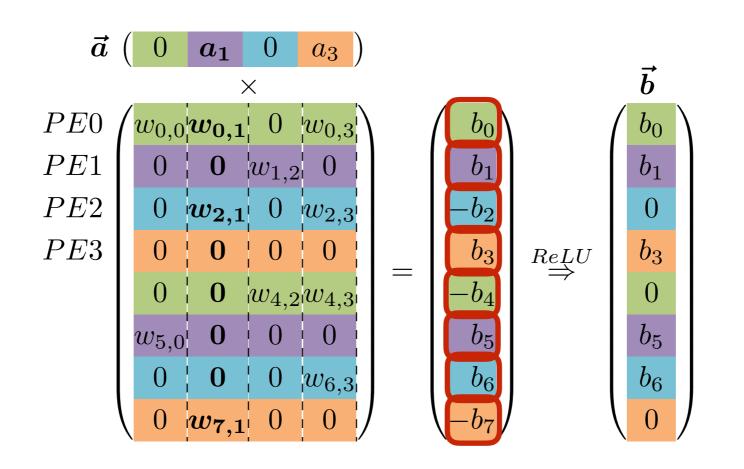


rule of thumb: 0 * A = 0 W * 0 = 0

Compression

Acceleration

Regularization



rule of thumb: 0 * A = 0 W * 0 = 0

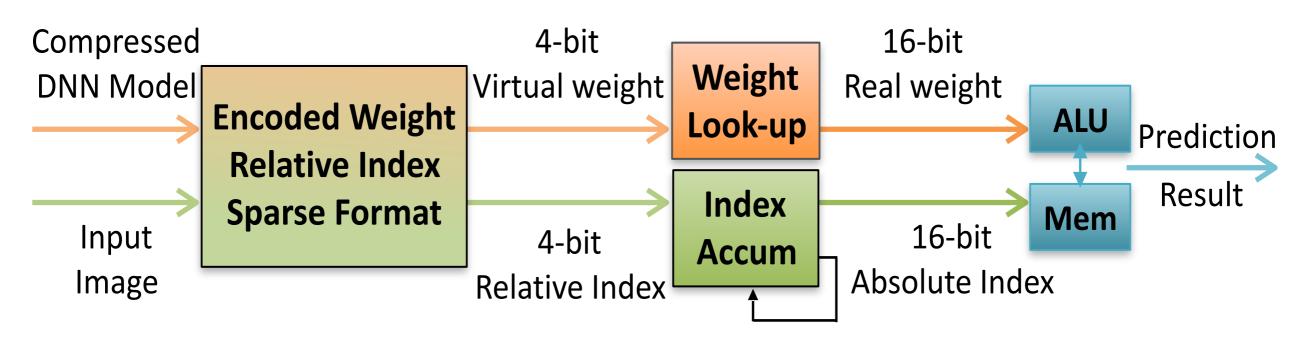
Compression

Acceleration

Regularization

EIE Architecture

Weight decode



Address Accumulate

rule of thumb:
$$0 * A = 0$$
 $W * 0 = 0$ $2.09, 1.92 => 2$

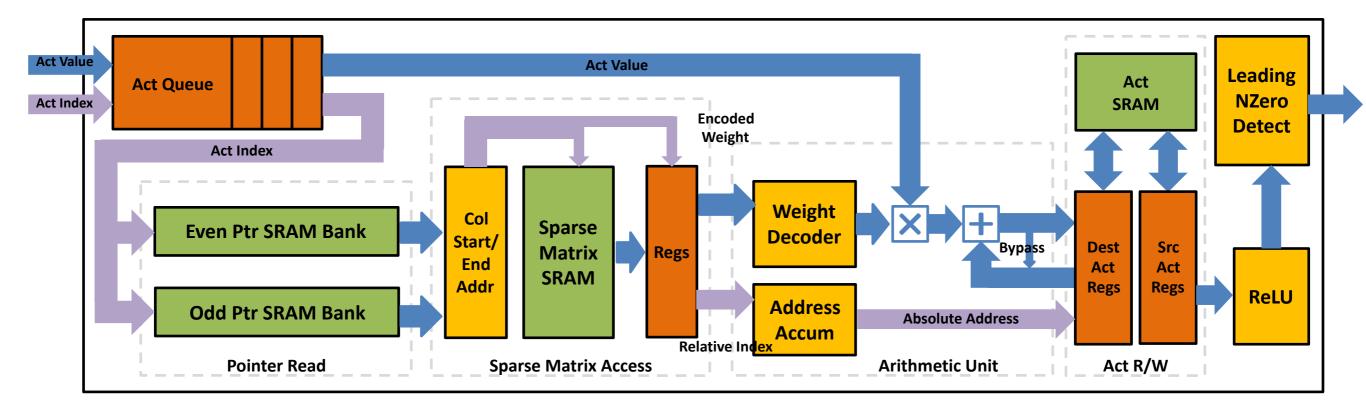
Compression

Acceleration

Regularization

[Han et al. ISCA'16]

Micro Architecture for each PE



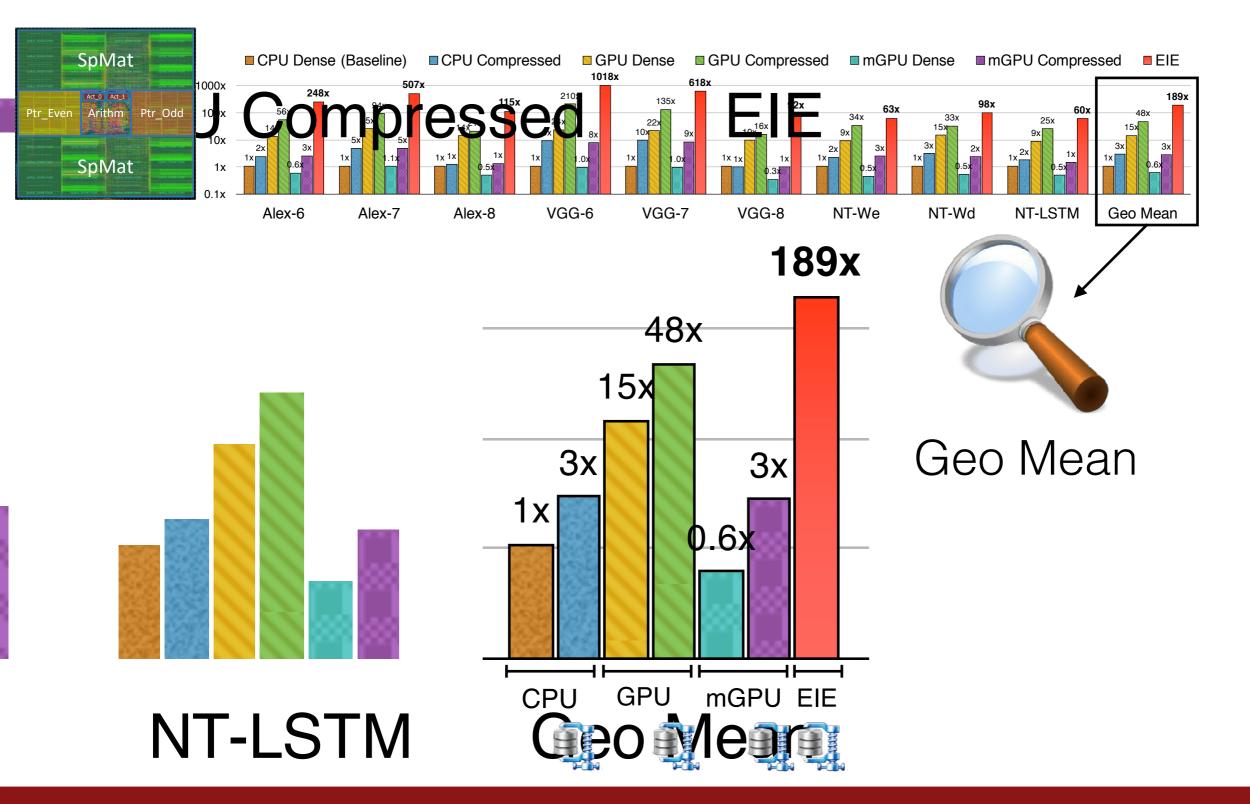
Compression

Acceleration

Regularization

[Han et al. ISCA'16]

Speedup on EIE

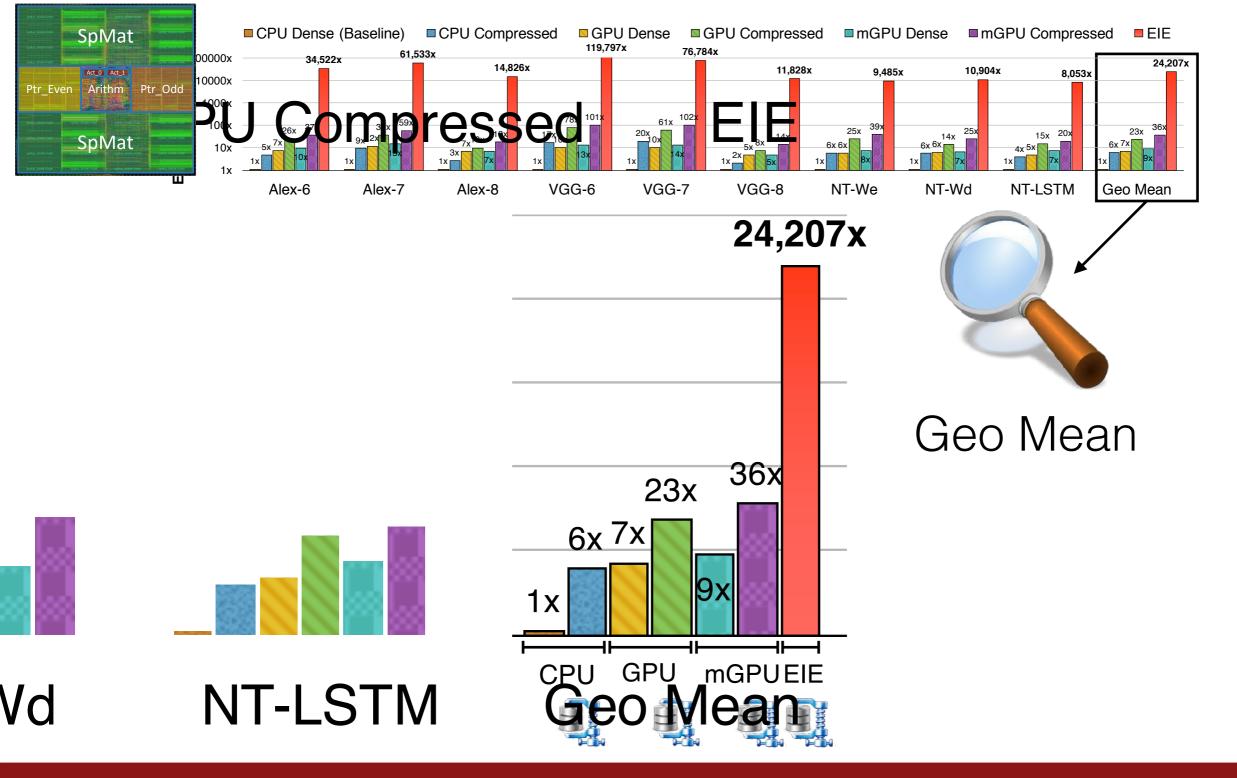


Compression

Acceleration

Regularization

d NT-LSTM Geo Mean Energy Efficiency on EIE



Compression

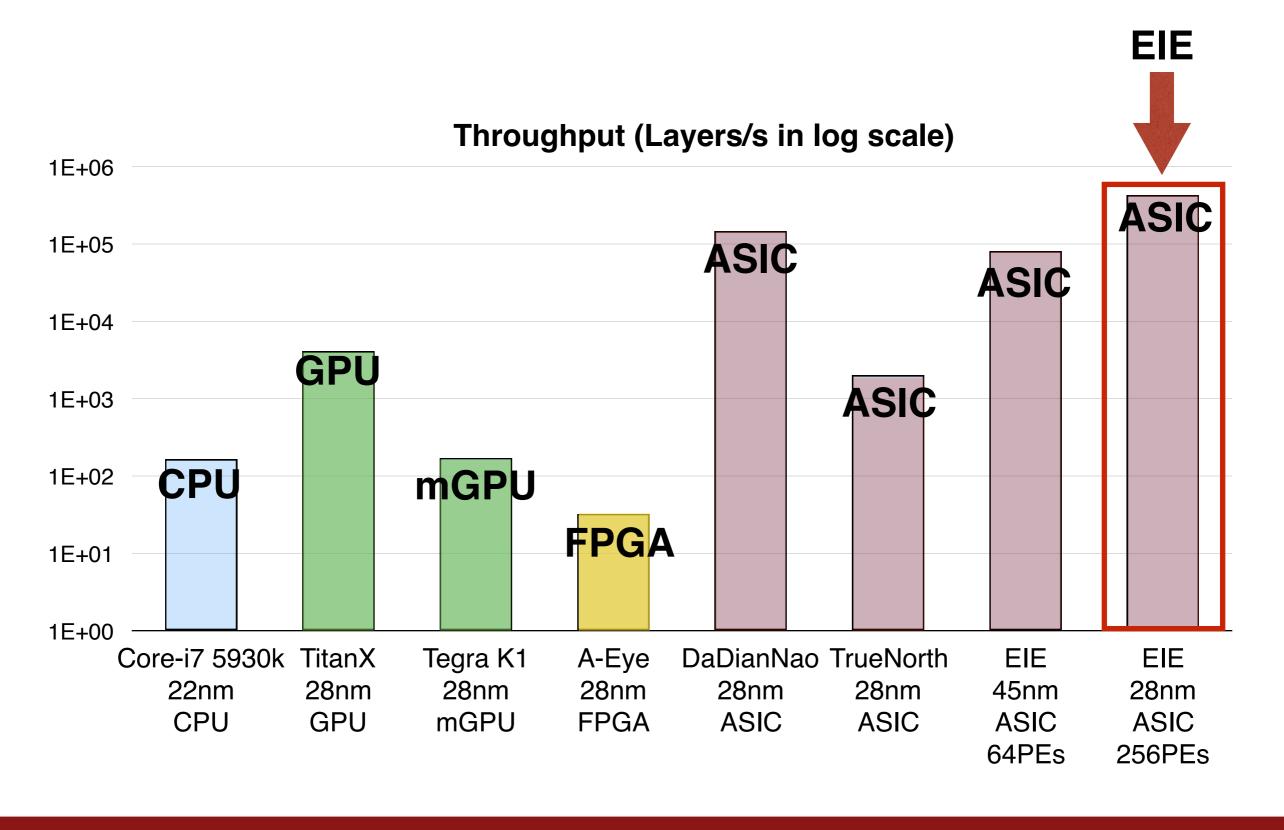
Acceleration

Regularization

103

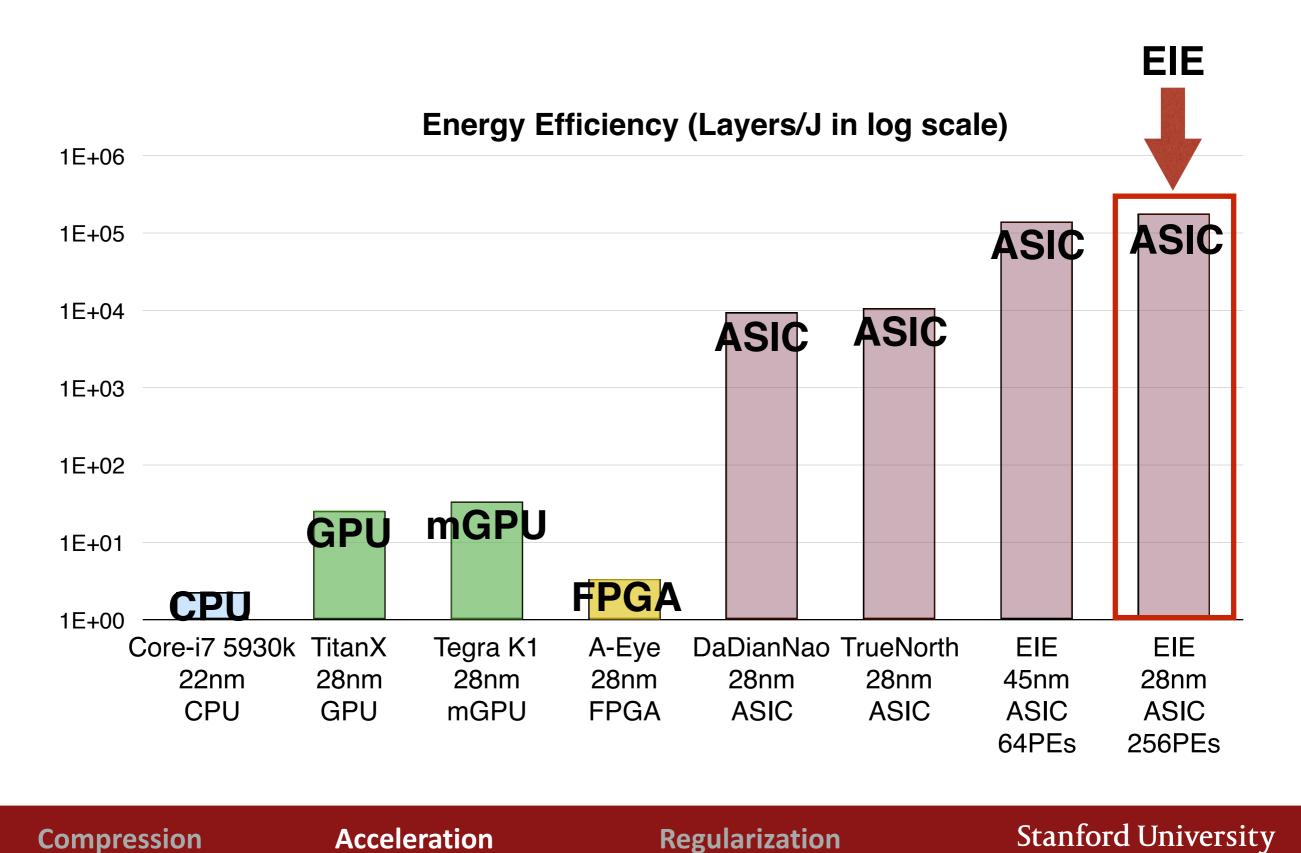
[Han et al. ISCA'16]

Comparison: Throughput

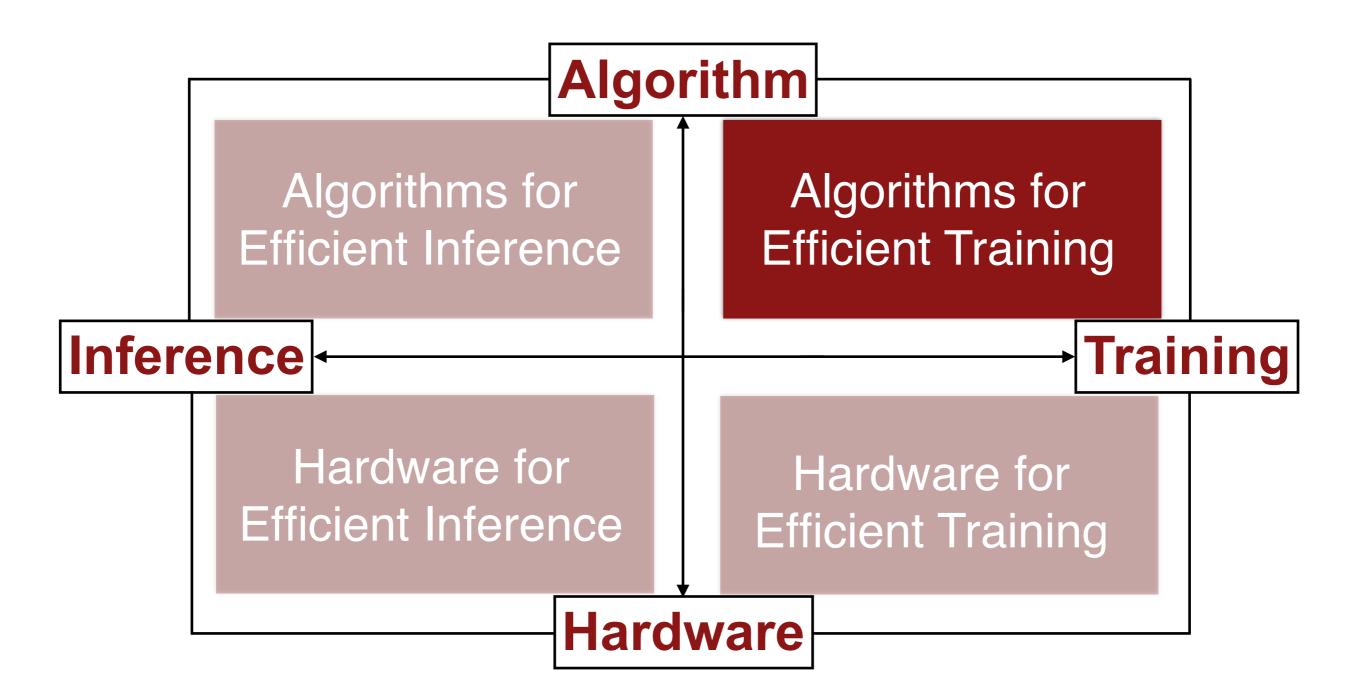


[Han et al. ISCA'16]

Comparison: Energy Efficiency



Agenda



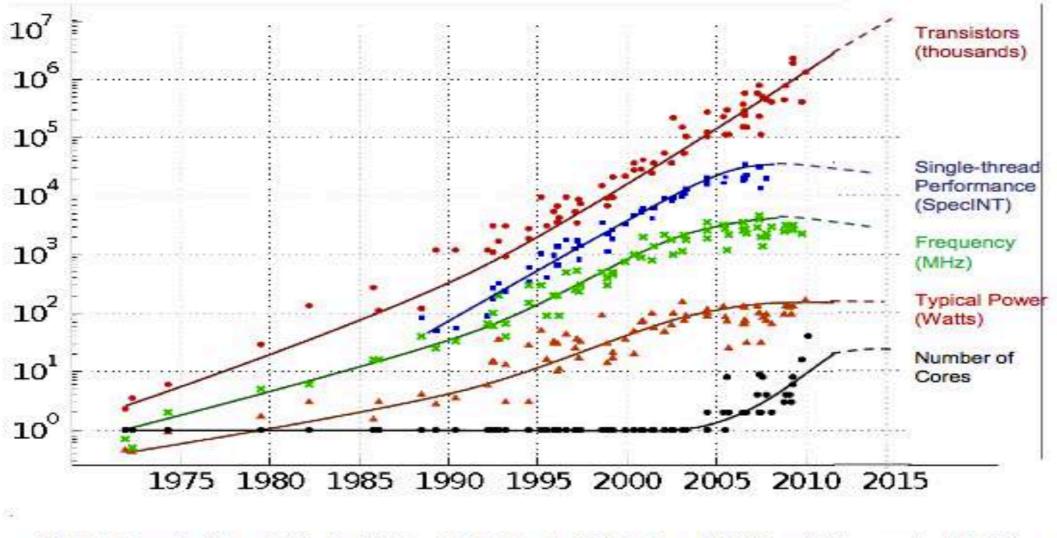
Part 3: Efficient Training — Algorithms

- 1. Parallelization
- 2. Mixed Precision with FP16 and FP32
- 3. Model Distillation
- 4. DSD: Dense-Sparse-Dense Training

Part 3: Efficient Training — Algorithms

- 1. Parallelization
- 2. Mixed Precision with FP16 and FP32
- 3. Model Distillation
- 4. DSD: Dense-Sparse-Dense Training

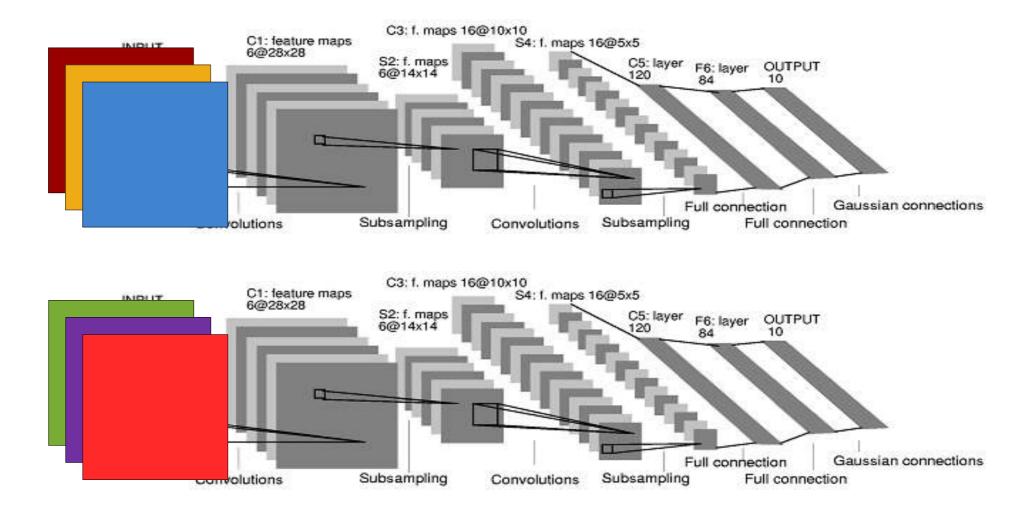
Moore's law made CPUs 300x faster than in 1990 But its over...



Original data collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond and C. Batten Dotted line extrapolations by C. Moore

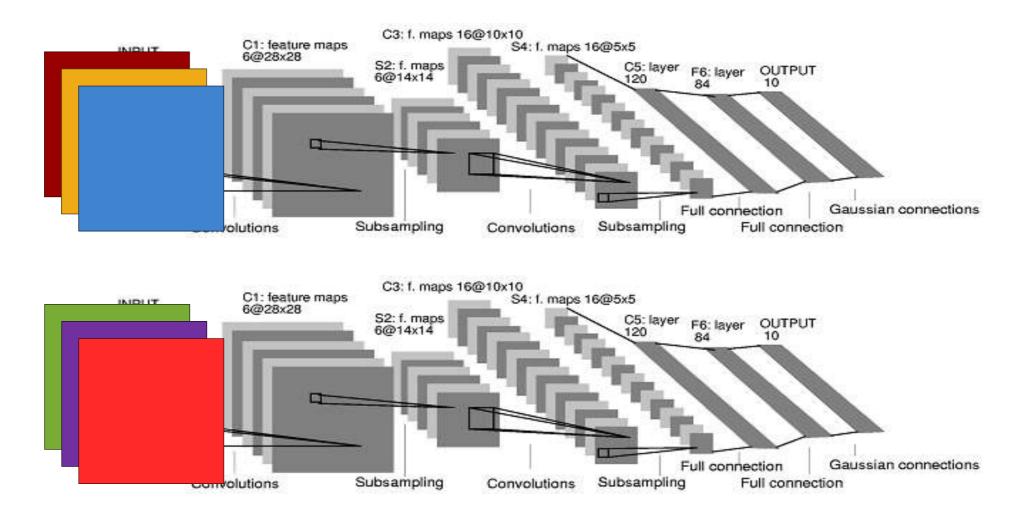
C Moore, Data Processing in ExaScale-ClassComputer Systems, Salishan, April 2011

Data Parallel – Run multiple inputs in parallel



Dally, High Performance Hardware for Machine Learning, NIPS'2015

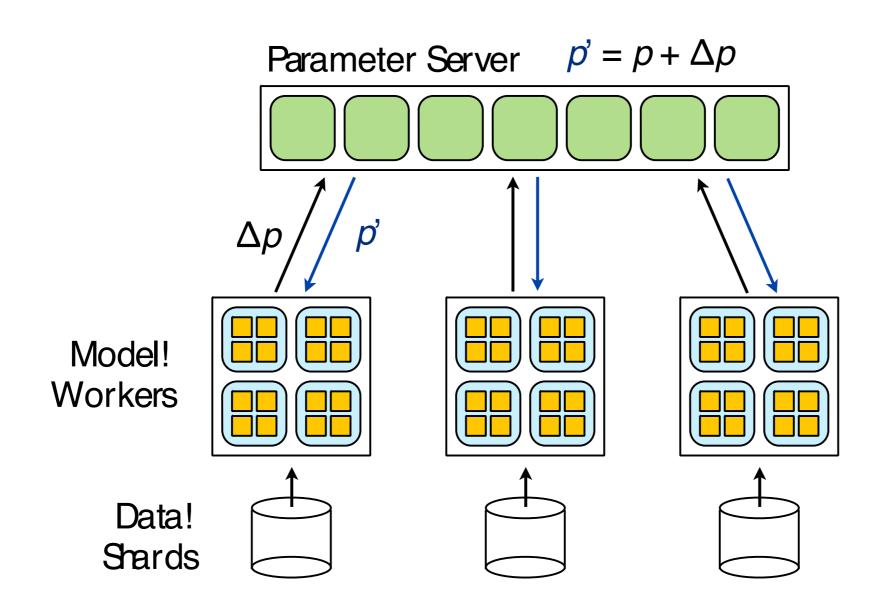
Data Parallel – Run multiple inputs in parallel



- Doesn't affect latency for one input
- Requires P-fold larger batch size
- For training requires coordinated weight update

Dally, High Performance Hardware for Machine Learning, NIPS'2015

Parameter Update

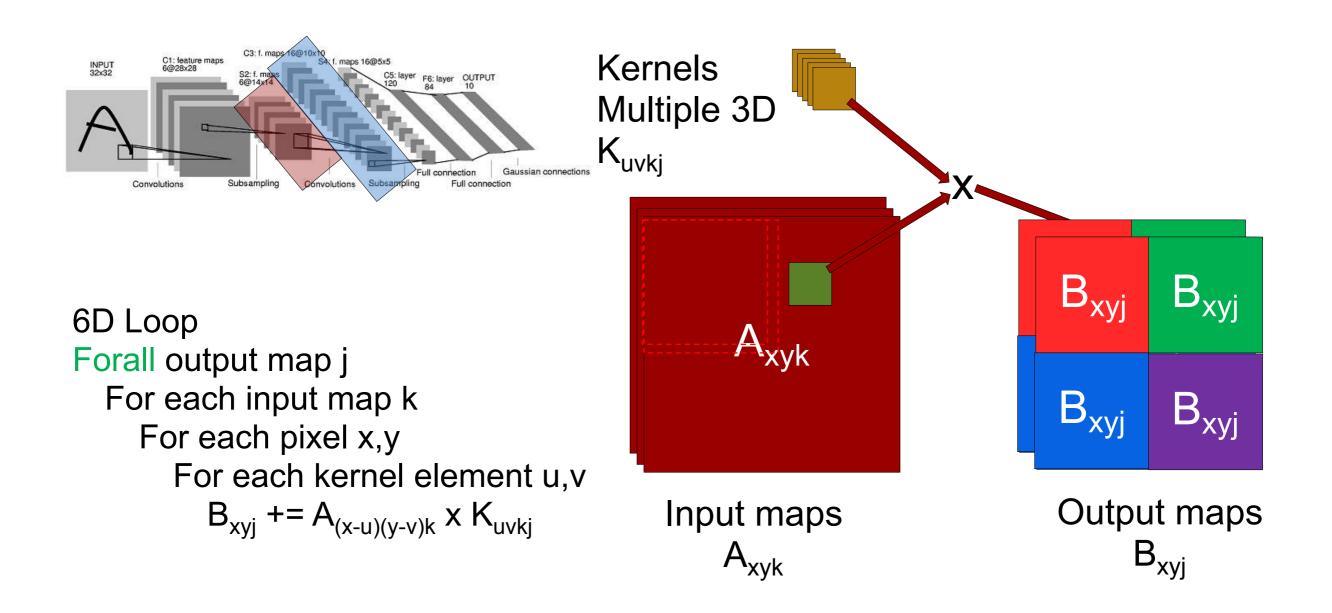


Large Scale Distributed Deep Networks, Jeff Dean et al., 2013

Model Parallel Split up the Model – i.e. the network

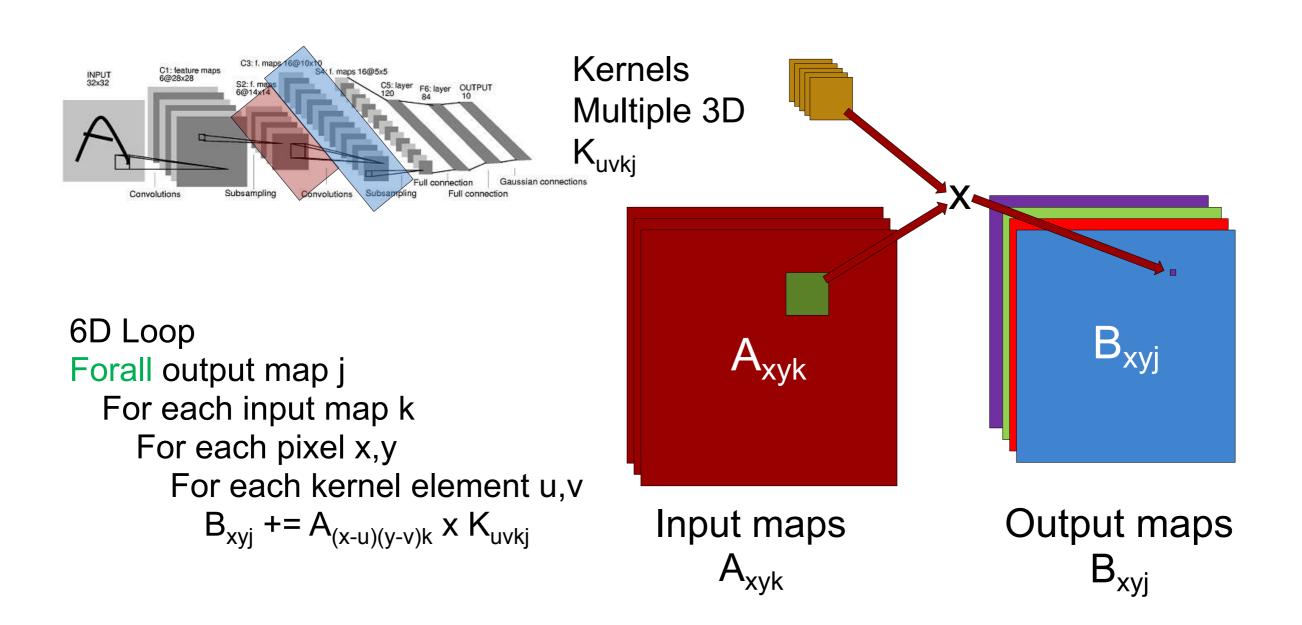
Dally, High Performance Hardware for Machine Learning, NIPS'2015

Model-Parallel Convolution – by output region (x,y)



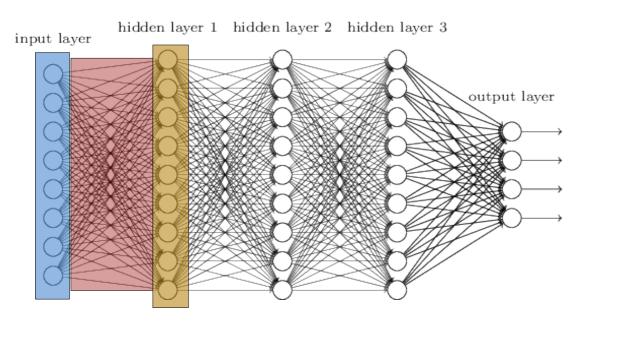
Dally, High Performance Hardware for Machine Learning, NIPS'2015

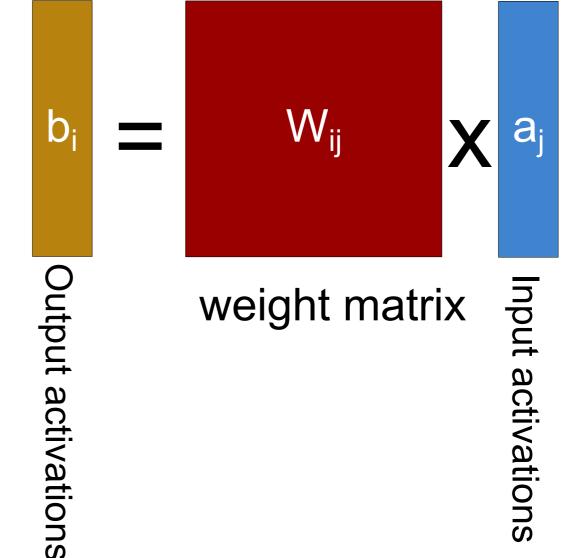
Model-Parallel Convolution – By output map j (filter)



Dally, High Performance Hardware for Machine Learning, NIPS'2015

Model Parallel Fully-Connected Layer (M x V)

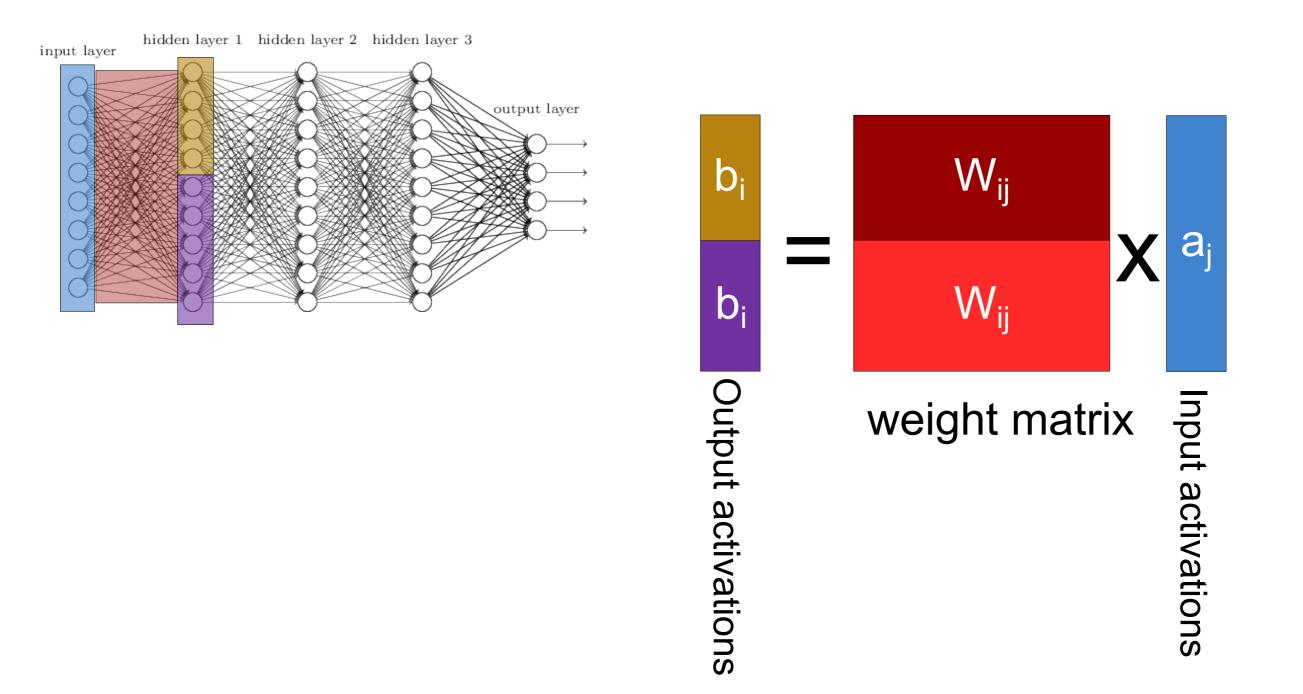




Dally, High Performance Hardware for Machine Learning, NIPS'2015

Stanford University

Model Parallel Fully-Connected Layer (M x V)



Dally, High Performance Hardware for Machine Learning, NIPS'2015

Hyper-Parameter Parallel Try many alternative networks in parallel

Dally, High Performance Hardware for Machine Learning, NIPS'2015

Summary of Parallelism

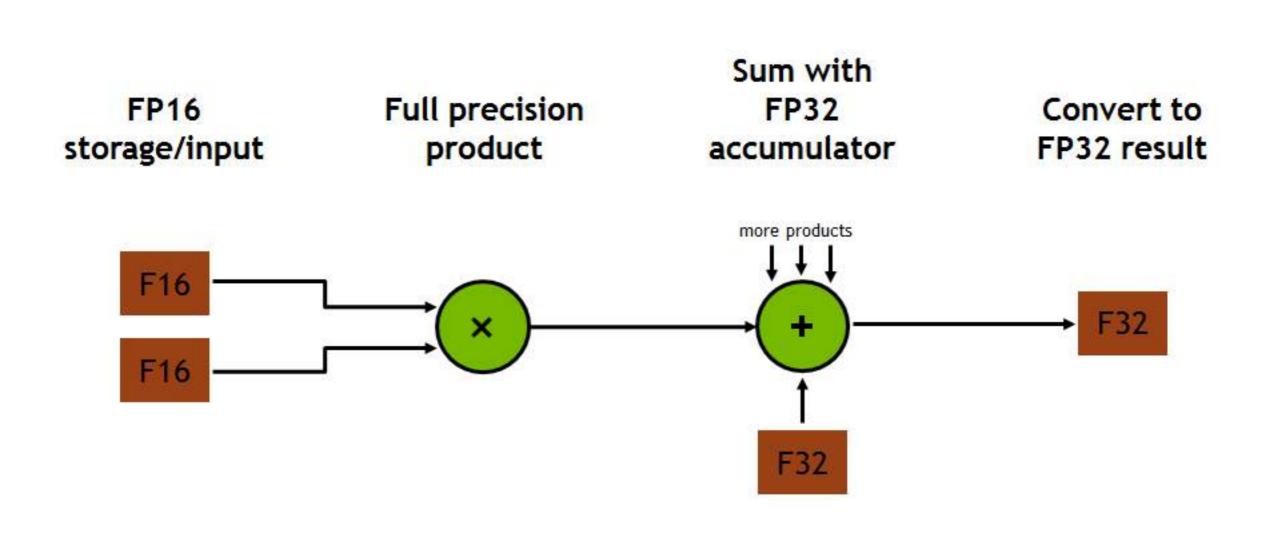
- Lots of parallelism in DNNs
 - · 16M independent multiplies in one FC layer
 - · Limited by overhead to exploit a fraction of this
- Data parallel
 - Run multiple training examples in parallel
 - · Limited by batch size
- Model parallel
 - Split model over multiple processors
 - · By layer
 - Conv layers by map region
 - Fully connected layers by output activation
- Easy to get 16-64 GPUs training one model in parallel

Dally, High Performance Hardware for Machine Learning, NIPS'2015

Part 3: Efficient Training — Algorithms

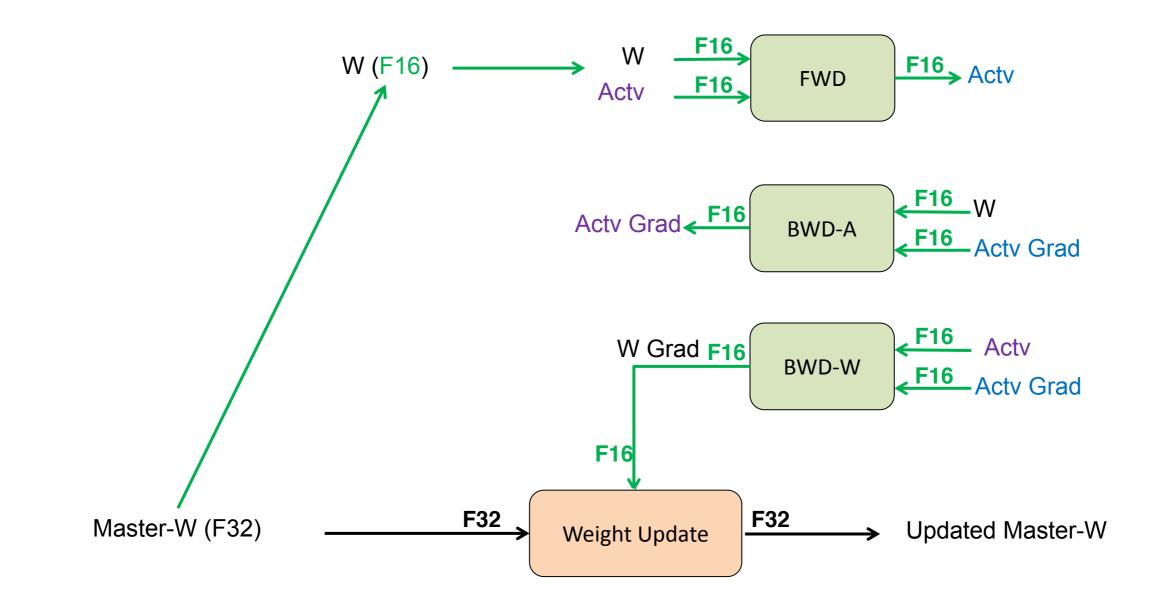
- 1. Parallelization
- 2. Mixed Precision with FP16 and FP32
- 3. Model Distillation
- 4. DSD: Dense-Sparse-Dense Training

Mixed Precision



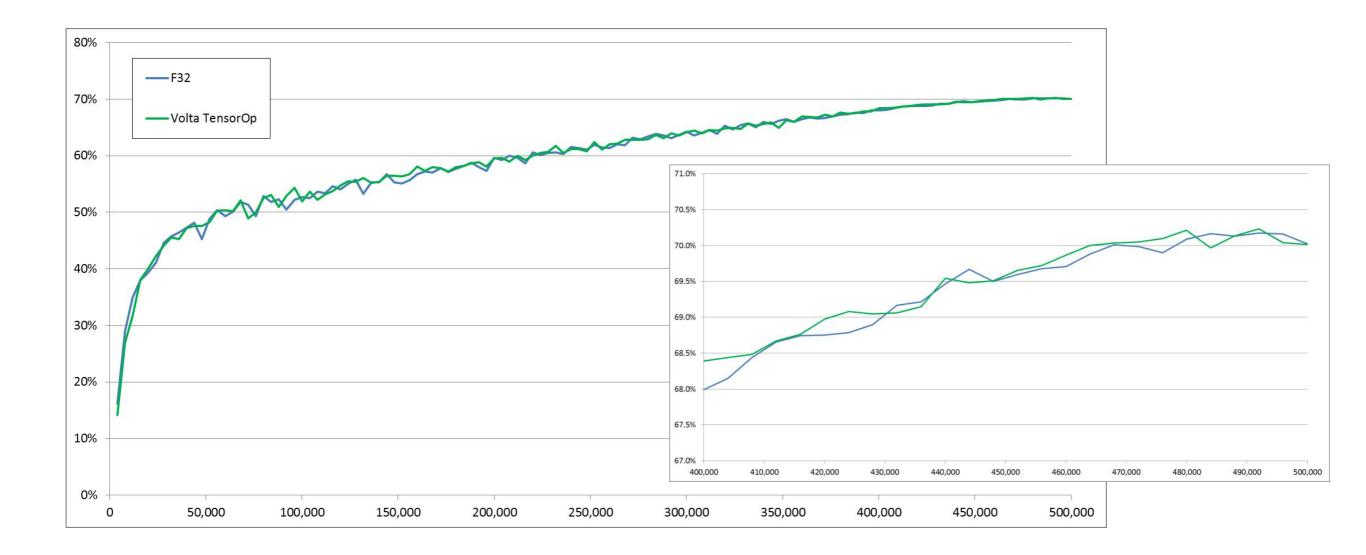
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

Mixed Precision Training



Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, "Training with mixed precision", NVIDIA GTC 2017

Inception V1



Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, "Training with mixed precision", NVIDIA GTC 2017

ResNet



Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, "Training with mixed precision", NVIDIA GTC 2017

AlexNet

Mode	Top1 accuracy, %	Top5 accuracy, %						
Fp32	58.62	81.25						
Mixed precision training	58.12	80.71						
Inceptio	Inception V3							
Mode	Top1 accuracy, %	Top5 accuracy, %						
Fp32	71.75	90.52						
Mixed precision training	71.17	90.10						

ResNet-50

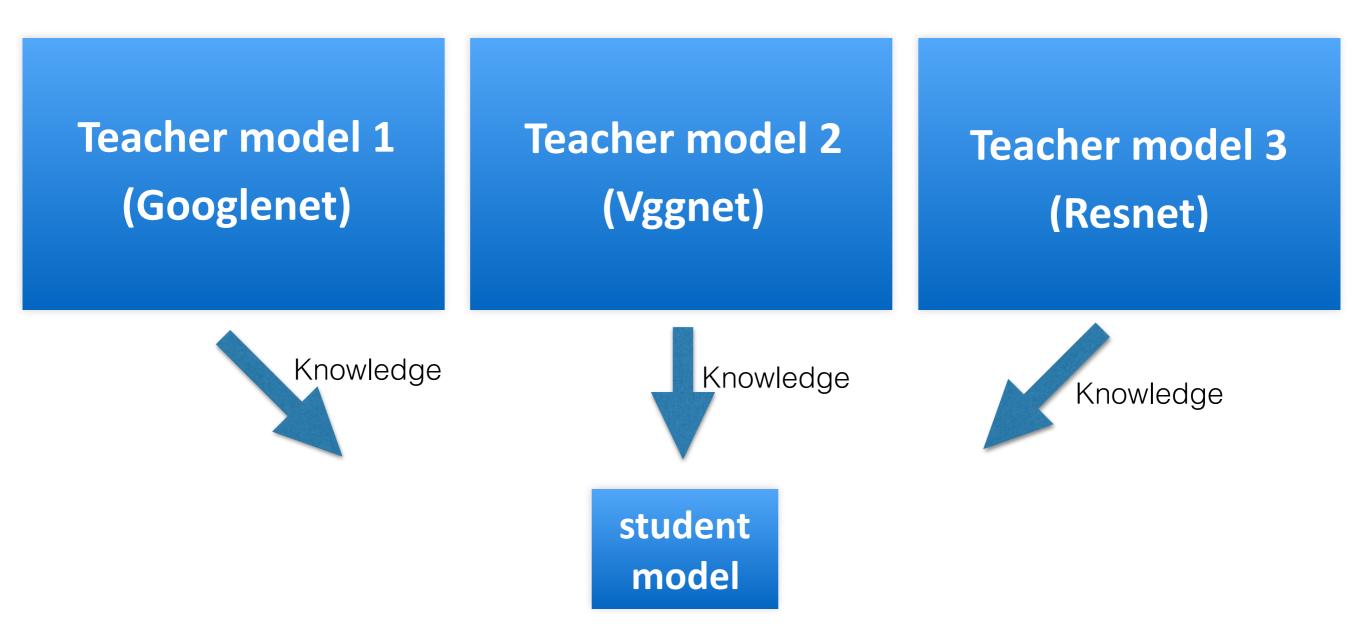
	Top1	Top5
Mode	accuracy, %	accuracy, %
Fp32	73.85	91.44
Mixed precision training	73.6	91.11

Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius, "Training with mixed precision", NVIDIA GTC 2017

Part 3: Efficient Training Algorithm

- 1. Parallelization
- 2. Mixed Precision with FP16 and FP32
- 3. Model Distillation
- 4. DSD: Dense-Sparse-Dense Training

Model Distillation



student model has much smaller model size

Softened outputs reveal the dark knowledge

cow	dog 1	cat	car 0	original hard
0	L	0	0	targets
COW	dog	cat	car	output of
10 ⁻⁶	.9	.1	10 ⁻⁹	geometric
				ensemble
cow	dog	cat	car	a offered output
.05	.3	.2	.005	softened output of ensemble

Hinton et al. Dark knowledge / Distilling the Knowledge in a Neural Network

Softened outputs reveal the dark knowledge

$$p_i = \frac{\exp\left(\frac{z_i}{T}\right)}{\sum_j \exp\left(\frac{z_j}{T}\right)}$$

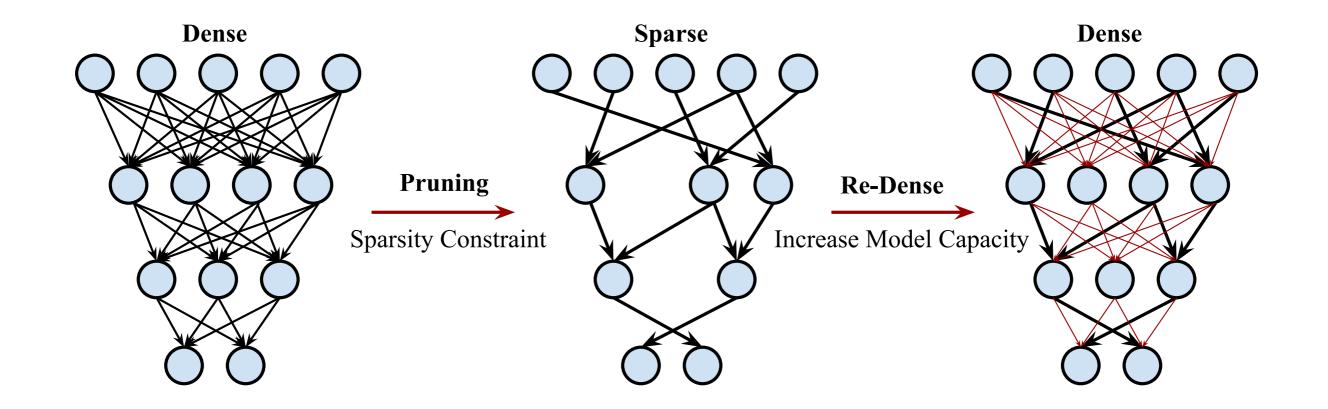
- Method: Divide score by a "temperature" to get a much softer distribution
- Result: Start with a trained model that classifies 58.9% of the test frames correctly. The new model converges to 57.0% correct even when it is only trained on 3% of the data

Hinton et al. Dark knowledge / Distilling the Knowledge in a Neural Network

Part 3: Efficient Training Algorithm

- 1. Parallelization
- 2. Mixed Precision with FP16 and FP32
- 3. Model Distillation
- 4. DSD: Dense-Sparse-Dense Training

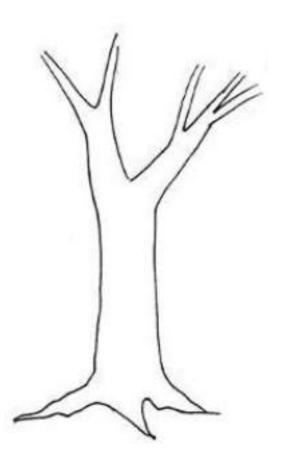
DSD: Dense Sparse Dense Training

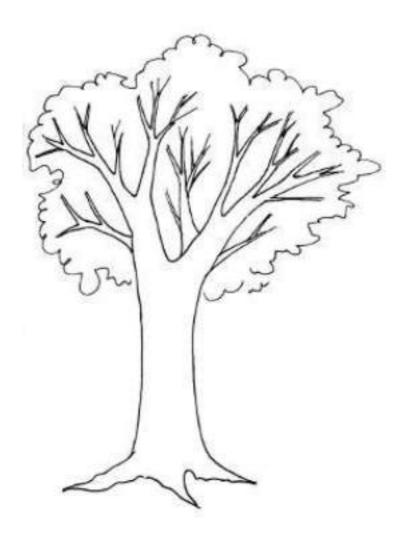


DSD produces same model architecture but can find better optimization solution, arrives at better local minima, and achieves higher prediction accuracy across a wide range of deep neural networks on CNNs / RNNs / LSTMs.

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

DSD: Intuition





learn the trunk first

then learn the leaves

Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

DSD is General Purpose: Vision, Speech, Natural Language

Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogleNet	Vision	ImageNet	CNN	31.1% →	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	31.5% →	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	30.4% →	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	24.0% →	23.2%	0.9%	3.5%

Open Sourced DSD Model Zoo: https://songhan.github.io/DSD

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo. ResNet18, ResNet50 are from fb.resnet.torch.

(nm	pression
COIII	NICSSIUII

133

DSD is General Purpose: Vision, Speech, Natural Language

Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogleNet	Vision	ImageNet	CNN	31.1% →	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	31.5% →	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	30.4% →	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	24.0% →	23.2%	0.9%	3.5%
NeuralTalk	Caption	Flickr-8K	LSTM	16.8 →	18.5	1.7	10.1%

Open Sourced DSD Model Zoo: <u>https://songhan.github.io/DSD</u>

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo. ResNet18, ResNet50 are from fb.resnet.torch.

(nm	pression
COIII	NICSSIUI

Regularization

DSD is General Purpose: Vision, Speech, Natural Language

Network	Domain	Dataset	Туре	Baseline	DSD	Abs. Imp.	Rel. Imp.
GoogleNet	Vision	ImageNet	CNN	31.1% →	30.0%	1.1%	3.6%
VGG-16	Vision	ImageNet	CNN	31.5% →	27.2%	4.3%	13.7%
ResNet-18	Vision	ImageNet	CNN	30.4% →	29.3%	1.1%	3.7%
ResNet-50	Vision	ImageNet	CNN	24.0% →	23.2%	0.9%	3.5%
NeuralTalk	Caption	Flickr-8K	LSTM	16.8 →	18.5	1.7	10.1%
DeepSpeech	Speech	WSJ'93	RNN	33.6% →	31.6%	2.0%	5.8%
DeepSpeech-2	Speech	WSJ'93	RNN	14.5% →	13.4%	1.1%	7.4%

Open Sourced DSD Model Zoo: <u>https://songhan.github.io/DSD</u>

The beseline results of AlexNet, VGG16, GoogleNet, SqueezeNet are from Caffe Model Zoo. ResNet18, ResNet50 are from fb.resnet.torch.

Compression

Acceleration

Regularization

Stanford University

135

DSD Model Zoo

DSD model zoo. Better accuracy models from DSD training on Imagenet with same model architecture.

DSD Model Zoo

This repo contains pre-trained models by Dense-Sparse-Dense(DSD) training on Imagenet.

Download

ftar Download

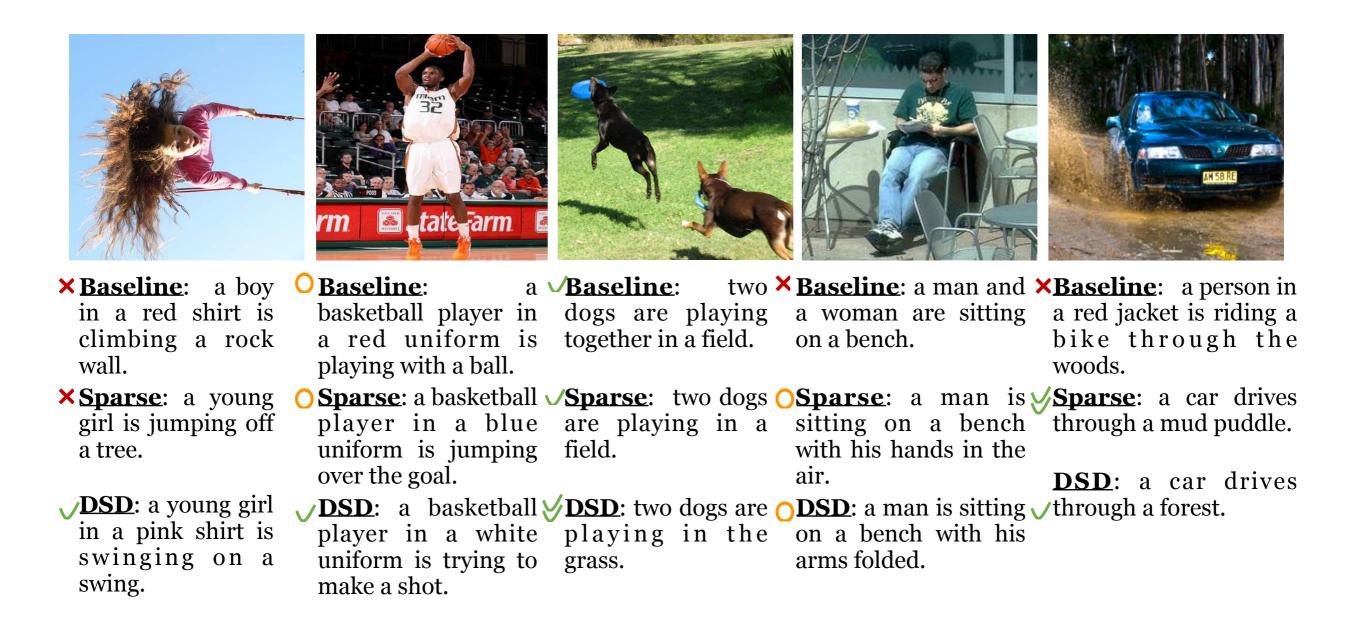
Compared to conventional training method, dense→sparse→dense (DSD) training yielded higher accuracy with same model architecture.

Sparsity is a powerful form of regularization. Our intuition is that, once the network arrives at a local minimum given the sparsity constraint, relaxing the constraint gives the network more freedom to escape the saddle point and arrive at a higher-accuracy local minimum.

Download:

https://songhan.github.io/DSD

DSD on Caption Generation



Baseline model: Andrej Karpathy, Neural Talk model zoo. Han et al. "DSD: Dense-Sparse-Dense Training for Deep Neural Networks", ICLR 2017

A. Supplementary Material: More Examples of DSD framing improves the Ferrormance of NeuralTalk Auto-Caption System DSD on Caption Generation

- **<u>Baseline</u>**: a boy is swimming in a pool. Sparse: a small black dog is jumping into a pool.
- **DSD**: a black and white dog is swimming in front of a building. in a pool.

Baseline: a group of people are standing in front of a building. Sparse: a group of people are standing

DSD: a group of people are walking in a park.

- **Baseline**: two girls in bathing suits are playing in the water.
- **Sparse**: two children are playing in the sand.
- **DSD**: two children are playing in the sand.

Baseline: a man in a red shirt and jeans is riding a bicycle down a street. **Sparse**: a man in a red shirt and a woman in a wheelchair. **DSD**: a man and a woman are riding on a street.

Baseline: a group of people sit on a bench in front of a building. **Sparse**: a group of people are standing in front of a building. **DSD**: a group of people are standing 'in a fountain.

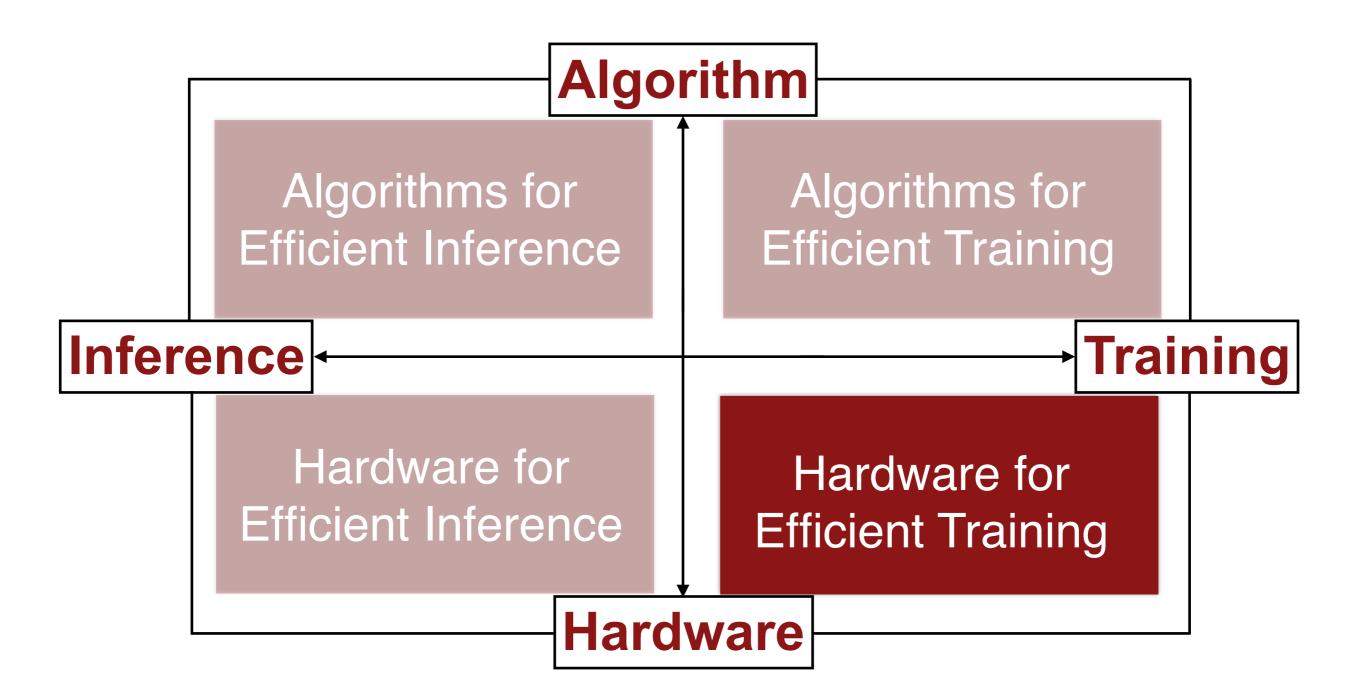
- **xBaseline**: a man in a black jacket and a black jacket is smiling.
- **Sparse**: a man and a woman are standing **Sparse**: a group of football players in a in front of a mountain.
- **DSD**: a man in a black jacket is standing next to a man in a black shirt.

- **Baseline**: a group of football players in **Baseline**: a dog runs through the grass. red uniforms.
- field.
- **DSD**: a group of football players in red and white uniforms.

Sparse: a dog runs through the grass. **DSD**: a white and brown dog is running through the grass.

Baseline model: Andrej Karpathy, Neural Talk model zoo.

Agenda



CPUs for Training

Intel Knights Landing (2016)

- 7 TFLOPS FP32
- 16GB MCDRAM- 400 GB/s
- 245W TDP
- 29 GFLOPS/W (FP32)
- 14nm process

Knights Mill: next gen Xeon Phi "optimized for deep learning"

Intel announced the addition of new vector instructions for deep learning (AVX512-4VNNIW and AVX512-4FMAPS), October 2016

Slide Source: Sze et al Survey of DNN Hardware, MICRO'16 Tutorial. Image Source: Intel, Data Source: Next Platform

GPUs for Training

Nvidia PASCAL GP100 (2016)

- 10/20 TFLOPS FP32/FP16
- 16GB HBM 750 GB/s
- 300W TDP
- 67 GFLOPS/W (FP16)
- 16nm process
- 160GB/s NV Link

Slide Source: Sze et al Survey of DNN Hardware, MICRO'16 Tutorial. Data Source: NVIDIA

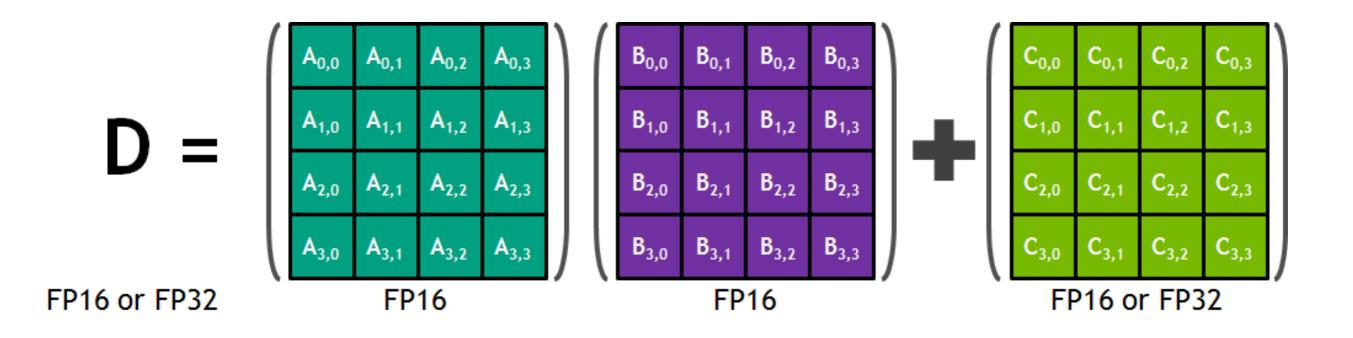
GPUs for Training

Nvidia Volta GV100 (2017)

- 15 FP32 TFLOPS
- 120 Tensor TFLOPS
- 16GB HBM2 @ 900GB/s
- 300W TDP
- 12nm process
- 21B Transistors
- die size: 815 mm2
- 300GB/s NVLink

Data Source: NVIDIA

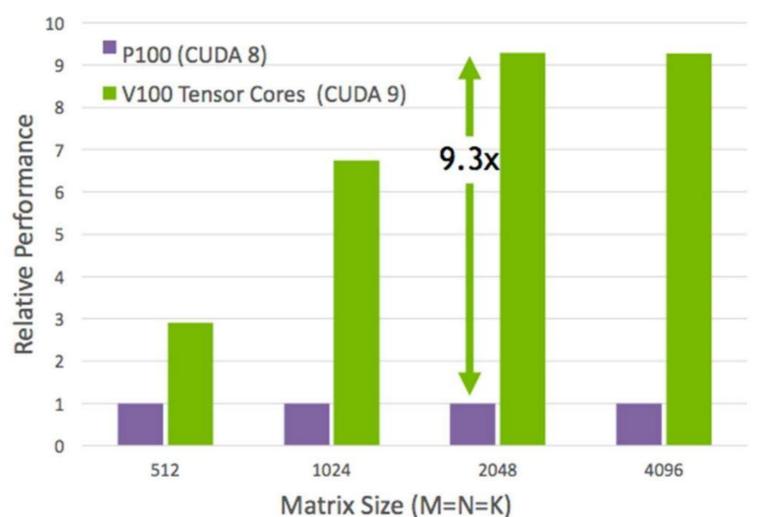
What's new in Volta: Tensor Core



a new instruction that performs 4x4x4 FMA mixed-precision operations per clock 12X increase in throughput for the Volta V100 compared to the Pascal P100

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

Pascal v.s. Volta



cuBLAS Mixed Precision (FP16 Input, FP32 compute)

Tesla V100 Tensor Cores and CUDA 9 deliver up to 9x higher performance for GEMM operations.

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

Pascal v.s. Volta

Left: Tesla V100 trains the ResNet-50 deep neural network 2.4x faster than Tesla P100. Right: Given a target latency per image of 7ms, Tesla V100 is able to perform inference using the ResNet-50 deep neural network 3.7x faster than Tesla P100.

https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

M														
						L1 Instruc	tion Cache							
		1 0 Ir	nstruct	ion C	ache					nstruc	tion C	ache		
	War	and said					L0 Instruction Cache Warp Scheduler (32 thread/clk)							
	Warp Scheduler (32 thread/clk) Dispatch Unit (32 thread/clk)						-	h Unit						
	100				l x 32-bit)					File ('				
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32			FP64	INT	INT	FP32	FP32			
FP64	INT	INT	FP32	FP32	TENSOR	TENSOR	FP64	INT	INT	FP32	FP32		SOR	TENSO
FP64	INT	INT	FP32		CORE	CORE	FP64	INT	INT	FP32			RE	CORE
FP64	INT	INT	FP32				FP64	INT	INT	FP32				
FP64	INT	INT	FP32				FP64	INT	INT	FP32				
FP64	INT	INT	FP32 LD/	FP32	LD/ LD/		FP64	INT	INT	FP32	FP32 LD/	LD/	LD/	
ST ST	ST	ST	ST	ST	ST ST	SFU	ST ST	ST	ST	ST	ST	ST	ST	SFU
		L0 Ir	nstruct	ion C	ache				L0 Ir	nstruc	tion C	ache		
	War				hread/clk)			War		edule			/clk)	
		A REAL PROPERTY.			read/clk)				Contraction in the	h Unit	A REAL PROPERTY.			
	Reg	ister	File (1	6,384	l x 32-bit)			Reg	ister	File (1	16,384	4 x 32	2-bit)	
FP64	INT	INT												
ED.C.		INT	FP32	FP32			FP64	INT	INT	FP32	FP32			
FP64	INT	INT	FP32 FP32				FP64 FP64	INT INT	INT INT		FP32 FP32			
FP64 FP64	INT INT			FP32							FP32			
		INT INT INT	FP32 FP32 FP32	FP32 FP32 FP32	TENSOR	TENSOR	FP64	INT	INT INT INT	FP32 FP32 FP32	FP32 FP32 FP32		SOR	
FP64 FP64 FP64	INT INT INT	INT INT INT INT	FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32	TENSOR	TENSOR CORE	FP64 FP64 FP64 FP64	INT INT INT INT	INT INT INT	FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32		ISOR DRE	TENSOI
FP64 FP64 FP64 FP64	INT INT INT INT	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32		Income which seems areas	FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT	INT INT INT INT	FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32		the second se	
FP64 FP64 FP64 FP64 FP64	INT INT INT INT	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32		Income which seems areas	FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT INT	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32		the second se	
FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT	INT INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32	CORE	Income which seems areas	FP64 FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT INT	INT INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32 FP32	CC	DRE	
FP64 FP64 FP64 FP64 FP64	INT INT INT INT	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32		Income which seems areas	FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT INT	INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32	FP32 FP32 FP32 FP32 FP32 FP32		the second se	
FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT LD/	INT INT INT INT INT INT	FP32 FP32 FP32 FP32 FP32 FP32 FP32 LD/	FP32 FP32 FP32 FP32 FP32 FP32 FP32 LD/	CORE LD/ ST LD/ ST	CORE	FP64 FP64 FP64 FP64 FP64 FP64 FP64	INT INT INT INT INT INT LD/ ST	INT INT INT INT INT INT LD/ ST	FP32 FP32 FP32 FP32 FP32 FP32 FP32 LD/	FP32 FP32 FP32 FP32 FP32 FP32 FP32 LD/	CC		

The GV100 SM is partitioned into four processing blocks, each with:

- 8 FP64 Cores
- 16 FP32 Cores
- 16 INT32 Cores
- two of the new mixed-precision Tensor Cores for deep learning
- a new L0 instruction cache
- one warp scheduler
- one dispatch unit
- a 64 KB Register File.

https://devblogs.nvidia.com/parallelforall/ cuda-9-features-revealed/

Tesla Product	Tesla K40	Tesla M40	Tesla P100	Tesla V100
GPU	GK110 (Kepler)	GM200 (Maxwell)	GP100 (Pascal)	GV100 (Volta)
GPU Boost Clock	810/875 MHz	1114 MHz	1480 MHz	1455 MHz
Peak FP32 TFLOP/s*	5.04	6.8	10.6	15
Peak Tensor Core TFLOP/s*	-	-	-	120
Memory Interface	384-bit GDDR5	384-bit GDDR5	4096-bit HBM2	4096-bit HBM2
Memory Size	Up to 12 GB	Up to 24 GB	16 GB	16 GB
TDP	235 Watts	250 Watts	300 Watts	300 Watts
Transistors	7.1 billion	8 billion	15.3 billion	21.1 billion
GPU Die Size	551 mm ²	601 mm ²	610 mm ²	815 mm ²
Manufacturing Process	28 nm	28 nm	16 nm FinFET+	12 nm FFN

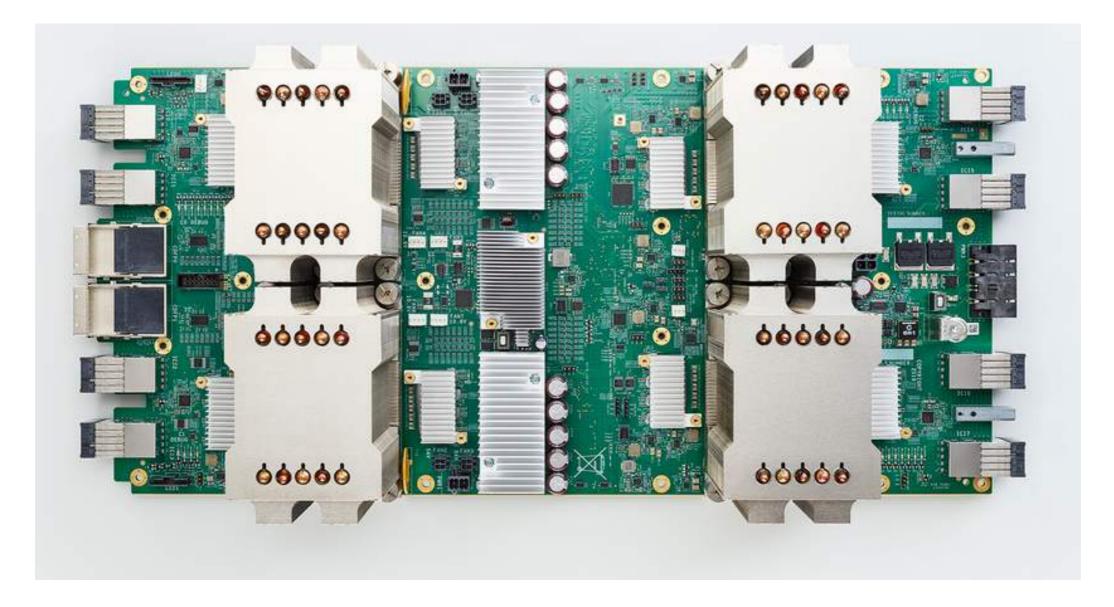
https://devblogs.nvidia.com/parallelforall/cuda-9-features-revealed/

GPU / TPU

	K80 2012	TPU 2015	P40 2016
Inferences/Sec <10ms latency	1/ ₁₃ X	1X	2X
Training TOPS	6 FP32	NA	12 FP32
Inference TOPS	6 FP32	90 INT8	48 INT8
On-chip Memory	16 MB	24 MB	11 MB
Power	300W	75W	250W
Bandwidth	320 GB/S	34 GB/S	350 GB/S

https://blogs.nvidia.com/blog/2017/04/10/ai-drives-rise-accelerated-computing-datacenter/

Google Cloud TPU



Cloud TPU delivers up to 180 teraflops to train and run machine learning models.

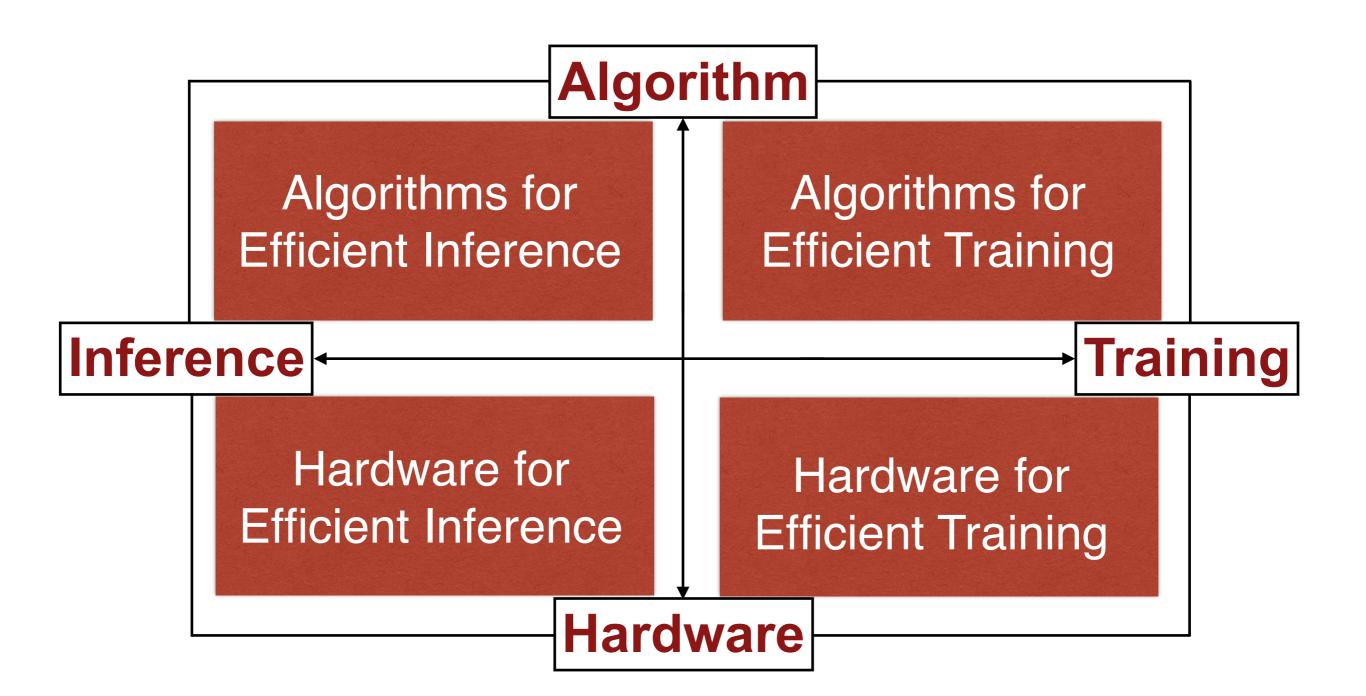
source: Google Blog

Google Cloud TPU

A "TPU pod" built with 64 second-generation TPUs delivers up to 11.5 petaflops of machine learning acceleration.

"One of our new large-scale translation models used to take a full day to train on 32 of the best commercially-available GPUs—now it trains to the same accuracy in an afternoon using just one eighth of a TPU pod."— Google Blog

Wrap-Up



Future

Smart

Low Latency

Privacy

Mobility

Energy-Efficient

Outlook: the Focus for Computation

PC Era

Mobile-First Era

AI-First Era

Brain-Inspired Cognitive Computing

Sundar Pichai, Google IO, 2016

Thank you!

stanford.edu/~songhan

