Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
  • Channels
    • 4D Nucleome
    • Advances in Genome Biology and Technology (AGBT) General Meeting 2016 #AGBT16
    • Allen Institute for Cell Science
    • Biology of Genomes 2016 #BOG16
    • Drug Development and Clinical Therapeutics
    • Francis Crick Institute
    • IMO Workshop
    • Mathematical Oncology
    • Simons Foundation Autism Research Initiative (SFARI)
    • Society for Molecular Biology and Evolution #SMBE2016
    • The Sainsbury Laboratory
Advanced Search
New Results

Opportunities And Obstacles For Deep Learning In Biology And Medicine

View ORCID ProfileTravers Ching, View ORCID ProfileDaniel S. Himmelstein, View ORCID ProfileBrett K. Beaulieu-Jones, View ORCID ProfileAlexandr A. Kalinin, View ORCID ProfileBrian T. Do, View ORCID ProfileGregory P. Way, View ORCID ProfileEnrico Ferrero, View ORCID ProfilePaul-Michael Agapow, View ORCID ProfileWei Xie, View ORCID ProfileGail L. Rosen, View ORCID ProfileBenjamin J. Lengerich, View ORCID ProfileJohnny Israeli, View ORCID ProfileJack Lanchantin, View ORCID ProfileStephen Woloszynek, View ORCID ProfileAnne E. Carpenter, View ORCID ProfileAvanti Shrikumar, View ORCID ProfileJinbo Xu, View ORCID ProfileEvan M. Cofer, View ORCID ProfileDavid J. Harris, View ORCID ProfileDave DeCaprio, View ORCID ProfileYanjun Qi, View ORCID ProfileAnshul Kundaje, View ORCID ProfileYifan Peng, View ORCID ProfileLaura K. Wiley, View ORCID ProfileMarwin H. S. Segler, View ORCID ProfileAnthony Gitter, View ORCID ProfileCasey S. Greene
doi: https://doi.org/10.1101/142760
This article is a preprint and has not been peer-reviewed [what does this mean?].
Travers Ching
University of Hawaii at Manoa;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Travers Ching
Daniel S. Himmelstein
University of Pennsylvania;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Daniel S. Himmelstein
Brett K. Beaulieu-Jones
University of Pennsylvania;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Brett K. Beaulieu-Jones
Alexandr A. Kalinin
University of Michigan;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexandr A. Kalinin
Brian T. Do
Harvard Medical School;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Brian T. Do
Gregory P. Way
University of Pennsylvania;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gregory P. Way
Enrico Ferrero
GlaxoSmithKline;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Enrico Ferrero
Paul-Michael Agapow
Imperial College London;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Paul-Michael Agapow
Wei Xie
Vanderbilt University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Wei Xie
Gail L. Rosen
Drexel University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Gail L. Rosen
Benjamin J. Lengerich
Carnegie Mellon University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Benjamin J. Lengerich
Johnny Israeli
Stanford University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Johnny Israeli
Jack Lanchantin
University of Virginia;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jack Lanchantin
Stephen Woloszynek
Drexel University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Stephen Woloszynek
Anne E. Carpenter
Broad Institute;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anne E. Carpenter
Avanti Shrikumar
Stanford University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Avanti Shrikumar
Jinbo Xu
Toyota Technical Institute at Chicago;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Jinbo Xu
Evan M. Cofer
Trinity University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Evan M. Cofer
David J. Harris
University of Florida;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for David J. Harris
Dave DeCaprio
ClosedLoop.ai;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Dave DeCaprio
Yanjun Qi
University of Virginia;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yanjun Qi
Anshul Kundaje
Stanford University;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anshul Kundaje
Yifan Peng
National Institutes of Health;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yifan Peng
Laura K. Wiley
University of Colorado School of Medicine;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Laura K. Wiley
Marwin H. S. Segler
Westfalische Wilhelms-Universitat Munster;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marwin H. S. Segler
Anthony Gitter
University of Wisconsin-Madison and Morgridge Institute for Research
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Anthony Gitter
Casey S. Greene
University of Pennsylvania;
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Casey S. Greene
  • Abstract
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

Deep learning, which describes a class of machine learning algorithms, has recently showed impressive results across a variety of domains. Biology and medicine are data rich, but the data are complex and often ill-understood. Problems of this nature may be particularly well-suited to deep learning techniques. We examine applications of deep learning to a variety of biomedical problems -- patient classification, fundamental biological processes, and treatment of patients -- to predict whether deep learning will transform these tasks or if the biomedical sphere poses unique challenges. We find that deep learning has yet to revolutionize or definitively resolve any of these problems, but promising advances have been made on the prior state of the art. Even when improvement over a previous baseline has been modest, we have seen signs that deep learning methods may speed or aid human investigation. More work is needed to address concerns related to interpretability and how to best model each problem. Furthermore, the limited amount of labeled data for training presents problems in some domains, as can legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning powering changes at the bench and bedside with the potential to transform several areas of biology and medicine.

Copyright 
The copyright holder for this preprint is the author/funder. It is made available under a CC-BY 4.0 International license.
Blog posts linking to this article:
Co.Exist, 14 Jun 2017
A new feature will use machine learning to analyze medical data, starting with electrocardiograms. Figure 1 has made a name…
the Node, 05 Jun 2017
Our latest monthly trawl for developmental biology (and other cool) preprints. See last year’s introductory post for background…
Tweets referencing this article:
7 followers
millikan
@partialf

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

09:28AM
ReplyRetweetFavourite
1,313 followers
堀畑 和弘
@kazzhori

Opportunities And Obstacles For Deep Learning In Biology And Medicine https://t.co/imO3ioShJL

09:17AM
ReplyRetweetFavourite
363 followers
kh
@kanji14134

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

09:02AM
ReplyRetweetFavourite
103 followers
KdV
@6uux_uxxx_ut

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

08:53AM
ReplyRetweetFavourite
714 followers
ただ/だた (pinmarch)
@pinmarch_t

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

08:53AM
ReplyRetweetFavourite
6,025 followers
Dr. Lerch
@Daniel_Lerch

RT @biorxivpreprint: Opportunities And Obstacles For Deep Learning In Biology And Medicine https://t.co/KIo3WsRAhr #bioRxiv

08:41AM
ReplyRetweetFavourite
308 followers
Tom Tit Tot
@Tom_Tit_Tot

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

08:31AM
ReplyRetweetFavourite
413 followers
うちやま
@uchiyama4949

Opportunities And Obstacles For Deep Learning In Biology And Medicine | bioRxiv https://t.co/crcodRMRPc _φ(´ε`*c⌒っカキカキ

08:30AM
ReplyRetweetFavourite
4,764 followers
aidiary
@sylvan5

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

08:30AM
ReplyRetweetFavourite
427 followers
たかとー 🌸ΩΣ
@takatoh1

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

08:28AM
ReplyRetweetFavourite
123 followers
Katsushi Kagaya
@katzkagaya

RT @biorxivpreprint: Opportunities And Obstacles For Deep Learning In Biology And Medicine https://t.co/KIo3WsRAhr #bioRxiv

08:15AM
ReplyRetweetFavourite
123 followers
Katsushi Kagaya
@katzkagaya

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

08:13AM
ReplyRetweetFavourite
889 followers
Hiroki
@taniokah

やっぱ Transfer Learning くるよね。コモディティ化が一気に進む。 https://t.co/B7ePqP8LpG

08:04AM
ReplyRetweetFavourite
240 followers
Yoshiyuki Nishio
@nishiokov

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

08:04AM
ReplyRetweetFavourite
996 followers
たーくん (a.k.a. たーさん★)
@hrtmnr

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

08:00AM
ReplyRetweetFavourite
1,803 followers
mat
@ballforest

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

07:58AM
ReplyRetweetFavourite
462 followers
原幌鰭晴
@P_tan

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

06:58AM
ReplyRetweetFavourite
910 followers
Kota Takaoka
@chronologic1

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

06:56AM
ReplyRetweetFavourite
494 followers
know thyself(山口達生)
@thyself_know

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

05:44AM
ReplyRetweetFavourite
599 followers
さとし
@SatoshiThermoph

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

05:42AM
ReplyRetweetFavourite
115 followers
rkakamilan
@rkakamilan

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

05:22AM
ReplyRetweetFavourite
680 followers
やっぱスモールデータ派
@otanet

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

05:06AM
ReplyRetweetFavourite
223 followers
Kohei.Sakamoto
@KoheiSakamoto88

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

05:05AM
ReplyRetweetFavourite
71 followers
temptemp
@panpu333

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

05:03AM
ReplyRetweetFavourite
4 followers
mogami290
@TsuguoMogami

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

04:38AM
ReplyRetweetFavourite
1,088 followers
masa
@masaun2551

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

04:17AM
ReplyRetweetFavourite
62 followers
nmygle
@allmikanx

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

04:14AM
ReplyRetweetFavourite
1,253 followers
そねを
@ATH_ray_

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

04:14AM
ReplyRetweetFavourite
425 followers
Naoki Fukuta(福田直樹)
@fukutax

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

04:11AM
ReplyRetweetFavourite
36 followers
mii_kun
@chibi_miikun

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

04:02AM
ReplyRetweetFavourite
186 followers
iray_tno@tanao
@iray_tno

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

03:38AM
ReplyRetweetFavourite
84 followers
skyrunner
@skyrunner_01

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

03:31AM
ReplyRetweetFavourite
1,674 followers
Naoki Oguri
@Wynne_D_

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

03:13AM
ReplyRetweetFavourite
160 followers
ken
@H2_nekonyan

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

03:13AM
ReplyRetweetFavourite
152 followers
annaآنا
@iAmOsakaJin

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

03:05AM
ReplyRetweetFavourite
1,917 followers
chezou
@chezou

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

02:55AM
ReplyRetweetFavourite
115 followers
Ryuichiro Nakato
@RyuichiroNakato

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

02:11AM
ReplyRetweetFavourite
409 followers
江崎貴裕/Takahiro Ezaki
@tkEzaki

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:39AM
ReplyRetweetFavourite
628 followers
Takaya Ukai
@ukka_21

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:35AM
ReplyRetweetFavourite
1,319 followers
Shunta Saito
@mitmul

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:34AM
ReplyRetweetFavourite
630 followers
Yasuhiro Morioka
@morioka

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:28AM
ReplyRetweetFavourite
114 followers
T.Suzuki
@toto_toilet

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:28AM
ReplyRetweetFavourite
15,230 followers
Satoshi Matsuoka
@ProfMatsuoka

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:26AM
ReplyRetweetFavourite
475 followers
世界平和 慈悲男
@aurevoirenfants

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:25AM
ReplyRetweetFavourite
453 followers
Nobuyuki Tanaka
@tn0bu

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:23AM
ReplyRetweetFavourite
287 followers
叶えるZONE@KIBIT
@sankajt

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:19AM
ReplyRetweetFavourite
279 followers
宮島正
@yasuokajihei

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:08AM
ReplyRetweetFavourite
257 followers
mas
@masyos

RT @hillbig: 深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.c…

01:06AM
ReplyRetweetFavourite
9,379 followers
岡野原 大輔
@hillbig

深層学習が生物学や医療分野でどのように活用され,問題があるかのまとめ。患者分類、診断、オミックス解析、創薬、薬剤耐性など広く扱う。生物画像や音声と比べて医療のデータ量は限られており,学習済みモデルの転用や転移学習などが重要となる。https://t.co/8YACVNdic5

01:01AM
ReplyRetweetFavourite
118 followers
Ben Zheng
@benczheng

Opportunities of Deep Learning in Biology and Medicine. https://t.co/EQrcz8LdgI

19 Aug 2017
ReplyRetweetFavourite
1,644 followers
Alexandr Kalinin
@alxndrkalinin

RT @anthonygitter: @academicswrite we managed to write a collaborative review article with ~30 authors using GitHub https://t.co/YcJ51Qrh2J…

17 Aug 2017
ReplyRetweetFavourite
45 followers
Azim Dehghani Amirab
@Azim30153364

Opportunities And Obstacles For Deep Learning In Biology And Medicine https://t.co/LJwcKlCw12

16 Aug 2017
ReplyRetweetFavourite
309 followers
Anthony Gitter
@anthonygitter

@academicswrite we managed to write a collaborative review article with ~30 authors using GitHub https://t.co/YcJ51Qrh2J https://t.co/DNsOJan7YU

15 Aug 2017
ReplyRetweetFavourite
1,644 followers
Alexandr Kalinin
@alxndrkalinin

RT @michaelhoffman: @molpopgen @ThomasMailund This entire review (https://t.co/BHoPNqNQD0) is written in Markdown. @GreeneScientist @anthon…

14 Aug 2017
ReplyRetweetFavourite
683 followers
Casey Greene
@GreeneScientist

RT @michaelhoffman: @molpopgen @ThomasMailund This entire review (https://t.co/BHoPNqNQD0) is written in Markdown. @GreeneScientist @anthon…

11 Aug 2017
ReplyRetweetFavourite
7,642 followers
Michael Hoffman
@michaelhoffman

@molpopgen @ThomasMailund This entire review (https://t.co/BHoPNqNQD0) is written in Markdown. @GreeneScientist @anthonygitter https://t.co/FJagf6fBPI

11 Aug 2017
ReplyRetweetFavourite
10,533 followers
Alberto Muñoz
@AlbertoMunoz

RT @shakir_za: Opportunities and obstacles for deep learning in biology and medicine https://t.co/sT62y3TU4C https://t.co/sT62y3TU4C

08 Aug 2017
ReplyRetweetFavourite
13 followers
解少俊(Shaojun Xie)
@zeamxie

RT @Labo_Bioinfo: Opportunities And Obstacles For Deep Learning In Biology And Medicine https://t.co/Kj9GymPnPJ #deeplearning #Bioinformati…

06 Aug 2017
ReplyRetweetFavourite
150 followers
Juan Felipe Beltran
@SgtLennon

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

04 Aug 2017
ReplyRetweetFavourite
156 followers
John Yost
@hokiegeek2

RT @kyleserikawa: Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of t…

01 Aug 2017
ReplyRetweetFavourite
3,320 followers
scottbot_17
@scottbot_17

RT @kyleserikawa: Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of t…

01 Aug 2017
ReplyRetweetFavourite
140 followers
Evan Cofer
@evan_cofer

RT @kyleserikawa: Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of t…

01 Aug 2017
ReplyRetweetFavourite
9,858 followers
alejandro vergara
@alevergara78

RT @kyleserikawa: Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of t…

01 Aug 2017
ReplyRetweetFavourite
1,644 followers
Alexandr Kalinin
@alxndrkalinin

RT @kyleserikawa: Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of t…

01 Aug 2017
ReplyRetweetFavourite
309 followers
Anthony Gitter
@anthonygitter

@curiouswavefn thanks for commenting on https://t.co/DNsOJan7YU Would you like to open an issue at https://t.co/MhVvcpFiC0 to discuss edits?

01 Aug 2017
ReplyRetweetFavourite
943 followers
Report Buyer
@reportbuyer

RT @Networkshashi: #AGoodRead #Opportunity #Obstacle For #DeepLearning In #Biology #Medicine #medtech #Report https://t.co/WB0or4VYfy https…

01 Aug 2017
ReplyRetweetFavourite
19,983 followers
Shashi Kumar
@Networkshashi

#AGoodRead #Opportunity #Obstacle For #DeepLearning In #Biology #Medicine #medtech #Report https://t.co/WB0or4VYfy https://t.co/QepDQbOdmm https://t.co/iLecPBJ6hT

01 Aug 2017
ReplyRetweetFavourite
4,549 followers
Keith Robison
@OmicsOmicsBlog

RT @kyleserikawa: Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of t…

31 Jul 2017
ReplyRetweetFavourite
679 followers
Marc Chevrette
@wildtypeMC

RT @kyleserikawa: Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of t…

31 Jul 2017
ReplyRetweetFavourite
9,539 followers
pmedina
@pmedina

RT @kyleserikawa: Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of t…

31 Jul 2017
ReplyRetweetFavourite
4,913 followers
Ash Jogalekar
@curiouswavefn

RT @kyleserikawa: Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of t…

31 Jul 2017
ReplyRetweetFavourite
476 followers
Kyle Serikawa
@kyleserikawa

Opportunities And Obstacles For #DeepLearning In #Biology And #Medicine https://t.co/mGfAKIiQ5H Really nice overview of the state of things.

28 Jul 2017
ReplyRetweetFavourite
8 followers
Crescent
@mr_plane

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

26 Jul 2017
ReplyRetweetFavourite
146 followers
Héctor Tejero
@htejero81

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

24 Jul 2017
ReplyRetweetFavourite
211 followers
Venkat Malladi
@katatonikkat

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

23 Jul 2017
ReplyRetweetFavourite
2,303 followers
ANSHUL KUNDAJE
@anshulkundaje

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

23 Jul 2017
ReplyRetweetFavourite
208 followers
Enrico Ferrero
@enricoferrero

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

23 Jul 2017
ReplyRetweetFavourite
1,644 followers
Alexandr Kalinin
@alxndrkalinin

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

23 Jul 2017
ReplyRetweetFavourite
140 followers
Evan Cofer
@evan_cofer

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

23 Jul 2017
ReplyRetweetFavourite
981 followers
Genome Informatics
@isugif

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

23 Jul 2017
ReplyRetweetFavourite
3,409 followers
Tech Now or Never
@TechNowOrNever

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

23 Jul 2017
ReplyRetweetFavourite
1,385 followers
Sorena
@Sorena997

RT @GreeneScientist: At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https:…

23 Jul 2017
ReplyRetweetFavourite
683 followers
Casey Greene
@GreeneScientist

At #ismbeccb & Interested in #deeplearning + #biology? See review: https://t.co/C8jRg6MN6L The help write it! https://t.co/M2uAC61UEp

23 Jul 2017
ReplyRetweetFavourite
844 followers
Duncan MacCannell
@dmaccannell

RT @alxndrkalinin: @infoecho @volkuleshov we briefly discussed the challenges for deep learning in variant calling in our recent review, se…

18 Jul 2017
ReplyRetweetFavourite
2,338 followers
Jason Chin
@infoecho

RT @alxndrkalinin: @infoecho @volkuleshov we briefly discussed the challenges for deep learning in variant calling in our recent review, se…

18 Jul 2017
ReplyRetweetFavourite
1,644 followers
Alexandr Kalinin
@alxndrkalinin

@infoecho @volkuleshov we briefly discussed the challenges for deep learning in variant calling in our recent review, see https://t.co/S6QKVauHtR

18 Jul 2017
ReplyRetweetFavourite
16 followers
Anuj Mishra
@AnujMis86153198

Opportunities And Obstacles For Deep Learning In Biology And Medicine https://t.co/SUw431IXDL

16 Jul 2017
ReplyRetweetFavourite
214 followers
Danny Siegle 🔎
@cetusparibus

RT @alxndrkalinin: On the question raised in our review paper whether deep learning transform biomedical research (see https://t.co/S6QKVau…

13 Jul 2017
ReplyRetweetFavourite
13 followers
kishore Anekalla
@KishoreAnekalla

Nice paper for Deep Learning in Medicine "Opportunities And Obstacles For Deep Learning In Biology And Medicine" https://t.co/Cozpw9mXwV

12 Jul 2017
ReplyRetweetFavourite
1,943 followers
priya joseph
@ayirpelle

RT @pranavathiyani: @goodfellow_ian Your views & How can DL can revolutionize biology? Hoping for a reply. 😎 https://t.co/9aSjQQjU9i

11 Jul 2017
ReplyRetweetFavourite
1,644 followers
Alexandr Kalinin
@alxndrkalinin

On the question raised in our review paper whether deep learning transform biomedical research (see https://t.co/S6QKVauHtR) https://t.co/LwhLXpNeYj

11 Jul 2017
ReplyRetweetFavourite
1,644 followers
Alexandr Kalinin
@alxndrkalinin

RT @pranavathiyani: @goodfellow_ian Your views & How can DL can revolutionize biology? Hoping for a reply. 😎 https://t.co/9aSjQQjU9i

11 Jul 2017
ReplyRetweetFavourite
16 followers
David Cittadini
@davidcittadini

Opportunities And Obstacles For Deep Learning In Biology And Medicine | bioRxiv https://t.co/8KueE9WhL7

11 Jul 2017
ReplyRetweetFavourite
173 followers
Deep Learningly
@DeepLearningly

RT @OneBillionCat: Opportunities & Obstacles for #DeepLearning In Biology & Medicine https://t.co/8zGlVNLz1d

10 Jul 2017
ReplyRetweetFavourite
145 followers
Gille de Bast
@OneBillionCat

Opportunities & Obstacles for #DeepLearning In Biology & Medicine https://t.co/8zGlVNLz1d

10 Jul 2017
ReplyRetweetFavourite
15 followers
Jeppe Thagaard
@JeppeThagaard

Opportunities And Obstacles For Deep Learning In Biology And Medicine https://t.co/nS3Sna512V

10 Jul 2017
ReplyRetweetFavourite
3,323 followers
Guillaume Dumas ☣️🤖
@introspection

Opportunities & Obstacles for #DeepLearning In Biology & Medicine cc @danilobzdok @pasteurDLC https://t.co/GfEnbpqwxT

10 Jul 2017
ReplyRetweetFavourite
124 followers
Pranavathiyani G
@pranavathiyani

@goodfellow_ian Your views & How can DL can revolutionize biology? Hoping for a reply. 😎 https://t.co/9aSjQQjU9i

10 Jul 2017
ReplyRetweetFavourite
1,236 followers
DeepLearningApplied
@DeepLearnApp

RT @shakir_za: Opportunities and obstacles for deep learning in biology and medicine https://t.co/sT62y3TU4C https://t.co/sT62y3TU4C

08 Jul 2017
ReplyRetweetFavourite
437 followers
Raj Towfique
@trajnp

RT @shakir_za: Opportunities and obstacles for deep learning in biology and medicine https://t.co/sT62y3TU4C https://t.co/sT62y3TU4C

08 Jul 2017
ReplyRetweetFavourite
View comments on earlier versions of this paper
Back to top
PreviousNext
  • Posted May 28, 2017.

Download PDF

Email
Share
Opportunities And Obstacles For Deep Learning In Biology And Medicine
Travers Ching, Daniel S. Himmelstein, Brett K. Beaulieu-Jones, Alexandr A. Kalinin, Brian T. Do, Gregory P. Way, Enrico Ferrero, Paul-Michael Agapow, Wei Xie, Gail L. Rosen, Benjamin J. Lengerich, Johnny Israeli, Jack Lanchantin, Stephen Woloszynek, Anne E. Carpenter, Avanti Shrikumar, Jinbo Xu, Evan M. Cofer, David J. Harris, Dave DeCaprio, Yanjun Qi, Anshul Kundaje, Yifan Peng, Laura K. Wiley, Marwin H. S. Segler, Anthony Gitter, Casey S. Greene
bioRxiv 142760; doi: https://doi.org/10.1101/142760
This article is a preprint and has not been peer-reviewed [what does this mean?].
Permalink:
del.icio.us logo Digg logo Reddit logo Technorati logo Twitter logo CiteULike logo Connotea logo Facebook logo Google logo Mendeley logo
Citation Tools

Subject Area

  • Bioinformatics
Subject Areas
All Articles
  • Animal Behavior and Cognition (308)
  • Biochemistry (403)
  • Bioengineering (222)
  • Bioinformatics (2808)
  • Biophysics (689)
  • Cancer Biology (459)
  • Cell Biology (623)
  • Clinical Trials (15)
  • Developmental Biology (471)
  • Ecology (934)
  • Epidemiology (338)
  • Evolutionary Biology (2427)
  • Genetics (1517)
  • Genomics (2068)
  • Immunology (216)
  • Microbiology (1034)
  • Molecular Biology (393)
  • Neuroscience (2966)
  • Paleontology (20)
  • Pathology (57)
  • Pharmacology and Toxicology (101)
  • Physiology (128)
  • Plant Biology (464)
  • Scientific Communication and Education (149)
  • Synthetic Biology (238)
  • Systems Biology (710)
  • Zoology (90)
Email this Article

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Opportunities And Obstacles For Deep Learning In Biology And Medicine
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
Citation Tools
Opportunities And Obstacles For Deep Learning In Biology And Medicine
Travers Ching, Daniel S. Himmelstein, Brett K. Beaulieu-Jones, Alexandr A. Kalinin, Brian T. Do, Gregory P. Way, Enrico Ferrero, Paul-Michael Agapow, Wei Xie, Gail L. Rosen, Benjamin J. Lengerich, Johnny Israeli, Jack Lanchantin, Stephen Woloszynek, Anne E. Carpenter, Avanti Shrikumar, Jinbo Xu, Evan M. Cofer, David J. Harris, Dave DeCaprio, Yanjun Qi, Anshul Kundaje, Yifan Peng, Laura K. Wiley, Marwin H. S. Segler, Anthony Gitter, Casey S. Greene
bioRxiv 142760; doi: https://doi.org/10.1101/142760
This article is a preprint and has not been peer-reviewed [what does this mean?].

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero