
Profunctor Optics
Modular Data Accessors

Matthew Pickeringa, Jeremy Gibbonsb, and Nicolas Wua

a University of Bristol

b University of Oxford

Abstract Data accessors allow one to read and write components of a data structure, such as the fields of a
record, the variants of a union, or the elements of a container. These data accessors are collectively known as
optics; they are fundamental to programs that manipulate complex data. Individual data accessors for simple
data structures are easy to write, for example as pairs of ‘getter’ and ‘setter’ methods. However, it is not
obvious how to combine data accessors, in such a way that data accessors for a compound data structure are
composed out of smaller data accessors for the parts of that structure. Generally, one has to write a sequence
of statements or declarations that navigate step by step through the data structure, accessing one level at a
time—which is to say, data accessors are traditionally not first-class citizens, combinable in their own right.

We present a framework for modular data access, in which individual data accessors for simple data struc-
tures may be freely combined to obtain more complex data accessors for compound data structures. Data
accessors become first-class citizens. The framework is based around the notion of profunctors, a flexible gen-
eralization of functions. The language features required are higher-order functions (‘lambdas’ or ‘closures’),
parametrized types (‘generics’ or ‘abstract types’) of higher kind, and some mechanism for separating inter-
faces from implementations (‘abstract classes’ or ‘modules’). We use Haskell as a vehicle in which to present
our constructions, but other languages such as Scala that provide the necessary features should work just as
well. We provide implementations of all our constructions, in the form of a literate program: the manuscript
file for the paper is also the source code for the program, and the extracted code is available separately for
evaluation. We also prove the essential properties, demonstrating that our profunctor-based representations
are precisely equivalent to the more familiar concrete representations. Our results should pave the way to
simpler ways of writing programs that access the components of compound data structures.

ACM CCS 2012
Software and its engineering→ Abstract data types; Patterns; Polymorphism;

Keywords lens, traversal, compositionality

The Art, Science, and Engineering of Programming

cb
© Matthew Pickering, Jeremy Gibbons, and Nicolas Wu
This work is licensed under a “CC BY 4.0” license.
In The Art, Science, and Engineering of Programming; 51 pages.

https://creativecommons.org/licenses/by/4.0/deed.en

Profunctor Optics

1 Introduction

Modularity is at the heart of good engineering, since it encourages a separation of
concerns whereby solutions to problems can be composed from solutions to subprob-
lems. Compound data structures are inherently modular, and are key to software
engineering. A key issue when dealing with compound data structures is in accessing
their components—specifically, extracting those components, and modifying them.
Since the data structures are compound, we should expect their data accessors to be
modular, that is, for data accessors onto compound data structures to be assembled
out of data accessors for the components of those structures.
There has been a recent flourishing of work on lenses [9] as one such mechanism

for data access, bringing programming language techniques to bear on the so-called
view–update problem [2]. In the original presentation, a lens onto a component of
type A within a larger data structure of type S consists of a function view :: S→ A that
extracts the component from its context, and a function update :: A× S→ S that takes
a new component of type A and an old data structure of type S and yields a new data
structure with the component updated.
We can generalize this presentation, allowing the new component to have a dif-

ferent type B from the old one of type A, and the new compound data structure
correspondingly to have a different type T from the old one of type S. This is a strict
generalisation; the earlier definition can be retrieved by specialising the types to A= B
and S = T. The situation is illustrated in Figure 1(a); the view function is a simple
arrow S→ A, whereas the update function has type B× S→ T, so is illustrated by an
‘arrow’ with two tails and one head. We assemble these functions into a single entity
representing the lens as a whole:

data Lens a b s t= Lens {view :: s→ a, update :: b× s→ t}

This definition declares that the type Lens, parametrized by four type variables a, b, s, t,
has a single constructor, also called Lens; a value of that type consists of the constructor
applied to a record consisting of two fields, one called view of type s→ a and one
called update of type b× s→ t. (We use an idealization of Haskell as a vehicle for our
presentation. See Appendix A for a summary of Haskell notation, and an explanation
of those idealizations.)
For example, there is a lens onto the left component of a pair:

π1 :: Lens a b (a× c) (b× c)
π1 = Lens view update where

view (x, y) = x
update (x′, (x, y)) = (x′, y)

That is, the value π1 is instance of the type Lens in which the third and fourth type
parameters are instantiated to pair types; the value itself is obtained by applying
the constructor Lens to the two functions view and update, whose definitions are
provided by the where clause. Thus, π1 is the lens whose view function extracts the
first component of a pair, and whose update function overwrites that first component.

2

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

S

T

A

B

view

update

S

T

A

B

match

build

(a) (b)

Figure 1 Illustrations of (a) a lens and (b) a prism. Notice that update :: B× S→ T (one
head and two tails) in (a), but match :: S→ T+A (one tail and two heads) in (b).

In the case of π1, the element in focus—the left component of the pair—is directly
and separately represented in the compound data structure, as the first component of
the pair. The component in focus need not be so explicitly represented. For example,
there is also a lens onto the sign of an integer (where, for simplicity, we say that the
sign denotes whether the integer is non-negative, rather than being three-valued):

sign :: Lens Bool Bool Integer Integer
sign= Lens view update where

view x = (x ¾ 0)
update (b, x) = if b then abs x else− (abs x)

Thus, sign is a lens onto a boolean within an integer; the view function extracts the
sign, and the update function enforces a new sign while preserving the absolute value.
Note that sign is a monomorphic lens, whereas π1 was polymorphic: the boolean sign
can be replaced only with another boolean, not with a value of a different type.
Analogously to lenses, one could consider compound data structures of several

variants. Given a compound data structure of type S, one of whose possible variants is
of type A, one can access that variant via a function match :: S→ S+A that ‘downcasts’
to an A if possible, and yields the original S if not; conversely, one may update the
data structure via a function build :: A→ S that ‘upcasts’ a new A to the compound
type S. Such a pair of functions is formally dual to a lens (in the mathematical sense
of ‘reversing all arrows’), and continuing the optical metaphor has been dubbed a
prism; prisms are to sum datatypes as lenses are to product datatypes.
More generally, one can again allow the new component to be of a different type B

from the old one of type A, and the new compound structure correspondingly to have
a different type T from the old one of type S. The situation is illustrated in Figure 1(b);
this time it is the build function of type B→ T that is a simple arrow, whereas match
has type S→ T + A and performs a case analysis, so is illustrated by an ‘arrow’ with
one tail and two heads. Again, we assemble these two functions together into a record,
leading to the following declaration of Prism as a four-parameter type, constructed by
applying the constructor (also called Prism) to a record consisting of two functions
match and build.

data Prism a b s t= Prism {match :: s→ t+ a, build :: b→ t}

For example, there is a prism onto an optional value, downcasting to that value if
present, for which upcasting guarantees its presence:

3

Profunctor Optics

the :: Prism a b (Maybe a) (Maybe b)
the= Prism match build where

match (Just x) = Right x
match Nothing= Left Nothing
build x = Just x

An optional value of type Maybe A is either of the form Just x for some x :: A, or simply
Nothing. The match field of the performs a case analysis on such a value, yielding
a result of type Maybe B + A, namely Right x when the optional x is present and
Left Nothing otherwise. The build function simply injects a new value x :: B into the
option type Maybe B.
Less trivially, there is a prism to provide possible access to a floating-point number

as a whole number, ‘downcasting’ a Double to an Integer whenever the fractional part
is zero.

whole :: Prism Integer Integer Double Double
whole= Prism match build where

match x
| f == 0 = Right n
| otherwise= Left x
where (n, f) = properFraction x

build= fromIntegral

The fromIntegral function converts from Integer to Double, while properFraction x re-
turns a pair (n, f)where n::Integer is the integer part of x and f ::Double is the fractional
part. (Of course, there are the usual caveats about floating-point precision.)
For any given kind of compound data structure, it is usually straightforward to

provide such accessors. However, when it comes to composing data structures out of
parts, the data accessors do not compose conveniently. For example, there is a lens
onto the leftmost component A of a nested pair (A× B)× C; but it is very clumsy to
write that lens in terms of the existing lens π1 for non-nested pairs:

π11 :: Lens a b ((a× c)× d) ((b× c)× d)
π11 = Lens view update where

Lens v u = π1

view = v · v
update (x′, xyz) = u (xy′, xyz)where

xy = v xyz
xy′ = u (x′, xy)

(here, the first local definition matches the pattern Lens v u against π1, thereby binding
v and u to the two fields of π1). In fact, for the update method it is clearer to resort
instead to first principles, defining update (x′, ((x, y), z)) = ((x′, y), z); this points to a
failure of modularity in our abstraction.
The situation is even worse for heterogeneous composite data structures. For exam-

ple, we might want to access the A component of a compound type (1+ A)× B built
using both sums and products. We might further hope to be able to construct this

4

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

accessor onto the optional left-hand component by composing the prism the onto an
optional value and the lens π1 onto a left-hand component. However, the composite
accessor is not a lens, because it cannot guarantee a view as an A; neither is it a prism,
because it cannot build the composite data structure from an A alone. We cannot
even express this combination; our universe of accessors is not closed under the usual
operations for composing data. The abstraction is clearly broken.
Lenses and prisms, and some other variations that we will see in Section 2, have

collectively been called optics. In this paper, we present a different representation of
optics, which fixes the broken abstraction for lenses, prisms, and the other optics. The
representation is based on the notion of profunctors, a generalization of functions;
we introduce and explain the ideas as we go along. We call this new representation
profunctor optics. It provides accessors for composite data that are trivially composed
from accessors for the parts of the data, using ordinary function composition: for
example, lenses become easily combinable with lenses, and lenses become combinable
at all with prisms—hence modular data accessors. Moreover, the profunctor represen-
tation reveals a lattice structure among varieties of optics—structure that remains
hidden with the concrete representations.
The constructions we present are not in fact new; they are Haskell folklore, having

been introduced by others in the form of Internet Relay Chat comments, blog posts,
sketches of libraries, and so on. But they deserve to be better known; our main
contribution is to write these constructions up in a clear and consistent manner.
The remainder of this paper is structured as follows. In Section 2, we introduce a

common specialization of lenses and prisms (called adapters) and a common gener-
alization (called traversals). Section 3 introduces the notion of profunctor, the main
technical device on which we depend. Section 4 revisits the four varieties of optic
with new representations in terms of profunctors. Section 5 shows how the profunctor
representation supports modular construction of accessors for compound data struc-
tures in ways that the concrete representations do not. Section 6 summarizes prior
and related work, and Section 7 concludes.
The paper itself is a literate script; all the code is embedded in the paper, has been

explicitly type-checked, and is available for experimentation [33]. We do not make
essential use of any fancy Haskell features; all that is really needed are higher-order
functions, higher-kinded parametrized types, and some mechanism for separating
interfaces from implementations, all of which are available in other languages. For the
benefit of non-Haskellers, Appendix A summarises the Haskell notation and standard
functions that we use; Appendix B sketches an alternative implementation in Scala;
and Appendix C formally states and proves equivalences between the concrete and
profunctor optic representations.

2 Optics, concretely

We have already seen two distinct varieties of optic, namely lenses and prisms. It turns
out that they have a common specialization, which we call adapters, and a common
generalization, which we call traversals, both of which we introduce in this section.

5

Profunctor Optics

2.1 Adapters

When the component being viewed through a lens is actually the whole of the structure,
then the lens is essentially a pair of functions of types S→ A and B→ T; there is no
virtue in the update function taking the old S value as an argument as well, because
this will be completely overwritten. Dually, when the variant being accessed through
a prism is actually the sole variant, the prism is again essentially a pair of functions of
types S→ A and B→ T; there is no virtue in the matching function having a fallback
option, because the match will always succeed. This is illustrated in Figure 2. We
introduce an abstraction for such a pair of functions, which we call an adapter.

data Adapter a b s t= Adapter {from :: s→ a, to :: b→ t}

It is often the case that from and to are in some sense each other’s inverses; but we
will not attempt to enforce that property, nor shall we depend on it.

S

T

A

B

from

to

Figure 2 An adapter.

Although adapters look like rather
trivial data accessors, they are very use-
ful as ‘plumbing’ combinators, convert-
ing between representations. For ex-
ample, we introduced earlier the com-
posite optic π11 to access the A compo-
nent buried within a nested (A×B)×C
tuple. Now suppose that we want to access the A component in a different but isomor-
phic tuple type A× B× C as well. We do not need a separate lens in order to allow
this; it suffices to combine π11 with the isomorphism

flatten :: Adapter (a× b× c) (a′ × b′ × c′) ((a× b)× c) ((a′ × b′)× c′)
flatten= Adapter from to where

from ((x, y), z) = (x, y, z)
to (x, y, z) = ((x, y), z)

which serves as an adapter between the two tuple types.

2.2 Traversal

A traversable datatype is a container datatype (such as lists, or trees), in which the
data structures a finite number of elements, and an ordering on the positions of those
elements. Given such a traversable data structure, one can traverse it, visiting each of
the elements in turn, in the given order. When the container is polymorphic, one may
vary the type of the elements in the process; for example, turning a tree of integers
into a tree of characters. Moreover, because the ordering on positions is explicit, one
may safely apply an effectful operation to each element, for example performing I/O
or manipulating some mutable variable; the traversal of the whole structure sequences
the effects arising from the elements in an order determined by the positions of those
elements [12, 23].
In a pure language such as Haskell, we express a class of effects as a datatype of

effectful computations. The best known example of such a datatype is monads [39].

6

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

It turns out that we do not need the full expressive power of monads for traversals;
the more restrictive abstraction of applicative functors [23] suffices. The interfaces
modelling functors and applicative functors are represented using type classes:

class Functor f where
fmap :: (a→ b)→ f a→ f b

class Functor f ⇒ Applicative f where
pure :: a→ f a
(〈∗〉) :: f (a→ b)→ f a→ f b

These declarations introduce two classes Functor and Applicative of operations on
types, with the latter a subclass of the former. For F to be a functor, one has to provide
a function fmap of the declared type; one can think of the type F A denoting a certain
kind of ‘containers of As’, such as lists, and of fmap f as applying f to each element of
such a container. Similarly, one can think of applicative functor F as representing a
certain class of effects, and the type F A as the type of ‘computations that may have
effects of type F when run, and will yield a result of type A’; ordinary functions of
type A → F B can be thought of as ‘effectful functions’ from A to B, having effects
modelled by F. The pure operation lifts a plain value to a trivial computation that
actually has no effects and simply returns the given value; alternatively, one can think
of pure itself as an effectful version of the identity function. The operator 〈∗〉 acts to
combine computations: if m :: F (A→ B) is a computation that effectfully returns an
A→ B function, and n :: F A similarly a computation that effectfully returns an A, then
m 〈∗〉 n is the composite computation that runs m to get an A→ B function and runs n
to get an A argument, then applies the function to the argument to return a B result
overall, incurring the effects of both m and n.
As an example of a computation type, consider stateful computations represented

as state-transforming functions:

data State s a= State {run :: s→ a× s}

so that the computation that increments an integer counter and returns a given
boolean value is captured by the definition

inc :: Bool→ State Integer Bool
inc b= State (λn→ (b, n+ 1))

For any state type S, the type State S is an applicative functor:

instance Functor (State s)where
fmap f m= State (λs→ let (x, s′) = run m s in (f x, s′))

instance Applicative (State s)where
pure x = State (λs→ (x, s))
m 〈∗〉 n = State (λs→ let (f , s′) = run m s

(x, s′′) = run n s′

in (f x, s′′))

7

Profunctor Optics

in which mapping applies a function to the returned result, a pure computation leaves
the state unchanged, and sequential composition threads the state through the first
then through the second computation.
Now, for an applicative functor F, a traversal takes an effectful operation of type

A→ F B on the elements of a container, and lifts this to an effectful computation of
type S→ F T over the whole container, applying the operation to each element in turn.
We say that container type S with elements of type A is traversable when there exist
types B, T and a traversal function of type (A→ F B)→ (S→ F T) for each applicative
functor F (which should satisfy some laws [12], not needed here).
For example, consider the datatype

data Tree a= Empty | Node (Tree a) a (Tree a)

of internally labelled binary trees, in which constructor Empty represents the empty
tree and Node t x u the non-empty tree with root labelled x and children t, u. This
datatype is traversable; one of several possible orders of traversal is in-order:

inorder :: Applicative f ⇒ (a→ f b)→ Tree a→ f (Tree b)
inorder m Empty = pure Empty
inorder m (Node t x u) = ((pure Node 〈∗〉 inorder m t) 〈∗〉m x) 〈∗〉 inorder m u

which visits the root x after visiting the left child t and before visiting the right
child u. (The sequencing operation 〈∗〉 is declared to associate to the left, like function
application does, so the parentheses on the right-hand side of the second equation
are redundant; we will henceforth omit them.) Thus, effectfully traversing each of
the elements of the empty tree is pure, yielding simply the empty tree; and traversing
a non-empty tree yields the (pure) assembly of the results of recursively traversing its
left child, operating on the root label, and recursively traversing the right child, with
the effects occurring in that order. For example, the computation

countOdd :: Integer→ State Integer Bool
countOdd n= if even n then pure False else inc True

increments a counter when the argument is odd and leaves it unchanged when the
argument is even, and returns the parity of that argument; and so

inorder countOdd :: Tree Integer→ State Integer (Tree Bool)

performs an in-order traversal of a tree of integers, counting the odd ones, and
returning their parities.

2.3 Traversals as concrete optics

Traversal can be seen as a generalisation of lenses and of prisms, providing access not
just to a single component within a whole structure but onto an entire sequence of such
components. Indeed, the type (A→ F B)→ (S→ F T) of witnesses to traversability of
the container type S is almost equivalent to a pair of functions contents :: S→ An and

8

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

fill :: S× Bn→ T, for some n being the number of elements in the container. The idea
is that contents yields the sequence of elements in the container, in the order specified
by the traversal, and fill takes an old container and a new sequence of elements and
updates the old container by replacing each of the elements with a new one. Roughly
speaking, for singleton containers (n= 1) this specialises both to lenses and to prisms.
However, a factorization into two functions contents and fill is not quite right, because
the appropriate value of the exponent n depends on the particular container in S,
and must match for applications of contents and fill: one can in general only refill
a container with precisely the same number of elements as it originally contained.
However, the dependence can be captured by tupling together the two functions and
using a common existentially quantified length: the traversable type S is equivalent to
∃n . An × (Bn→ T). This fact is not obvious, but is well established [3, 14].
We can capture the result of that tupled pair of functions via the following datatype:

data FunList a b t= Done t |More a (FunList a b (b→ t))

This datatypewas introduced by van Laarhoven [19]. It is a so-called nested datatype [4],
because in the More case a larger value of type FunList A B T is constructed not from
smaller values of the same type, but from a value of a different type FunList A B (B→ T).
One may verify inductively that FunList A B T is isomorphic to ∃n . An × (Bn→ T): the
Done case consists of simply a T, corresponding to n= 0; and the More case consists
of an A and an An × (Bn→ (B→ T)) for some n, and by isomorphisms of products and
function spaces we have A× (An × (Bn→ (B→ T)))' An+1 × (Bn+1→ T).
The isomorphism between FunList A B T and T + (A × (FunList A B (B → T))) is

witnessed by the following two functions:

out :: FunList a b t→ t+ (a, FunList a b (b→ t))
out (Done t) = Left t
out (More x l) = Right (x, l)

inn :: t+ (a, FunList a b (b→ t))→ FunList a b t
inn (Left t) = Done t
inn (Right (x, l)) =More x l

Now, a traversal function of type (A→ F B)→ (S→ F T) for each applicative functor F
yields an isomorphism S ' FunList A B T. In order to construct the transformation
from S to FunList A B T using such a traversal function, we require FunList A B to be an
applicative functor:

instance Functor (FunList a b)where
fmap f (Done t) = Done (f t)
fmap f (More x l) =More x (fmap (f ·) l)

instance Applicative (FunList a b)where
pure = Done
Done f 〈∗〉 l′ = fmap f l′

More x l 〈∗〉 l′ =More x (fmap flip l 〈∗〉 l′)

The actual definitions may appear obscure, but in essence they make FunLists a kind of
sequence, with three operations corresponding to mapping, the empty sequence, and

9

Profunctor Optics

concatenation. We also require an operation of type A→ FunList A B B on elements,
which we call single as it parcels up an element as a singleton FunList:

single :: a→ FunList a b b
single x =More x (Done id)

We can use single as the body of a traversal, instantiating the applicative functor F
to FunList A B. This traversal will construct a singleton FunList for each element of a
container, then concatenate the singletons into one long FunList. In particular, this
gives t single :: S → FunList A B T as one half of the isomorphism S ' FunList A B T.
Conversely, we can retrieve the traversable container from the FunList:

fuse :: FunList b b t→ t
fuse (Done t) = t
fuse (More x l) = fuse l x

This motivates the following definition of concrete traversals:

data Traversal a b s t= Traversal {extract :: s→ FunList a b t}

S

T

An

Bn
extract

Figure 3 A traversal. Sole method extract
has type S→ An × (Bn→ T).

The situation is illustrated in Fig-
ure 3. The upper collection of left-to-
right arrows represents the contents as-
pect, extracting the sequence of A el-
ements from a container; the lower
collection of right-to-left arrows repre-
sents the fill aspect, generating a new
container from a fresh sequence of B
elements. However, it is more precise to think of these as one combined arrow extract
from S, generating both the As and the mapping back from the Bs to the T.
As another example, inorder single::Tree a→ FunList a b (Tree b) extracts the in-order

sequence of elements from a tree, and moreover provides a mechanism to refill the
tree with a new sequence of elements. This type matches the payload of a concrete
traversal; so we can define concrete in-order traversal of a tree by:

inorderC :: Traversal a b (Tree a) (Tree b)
inorderC = Traversal (inorder single)

3 Profunctors

The key to the design of a modular abstraction for data accessors is to identify what
they have in common. Any data accessor for a component of a data structure is
‘function-like’, in the sense that reading ‘consumes’ the component from the data
structure and writing ‘produces’ an updated component to put back into the data
structure. The type structure of such function-like things—henceforth transformers—is

10

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

A

B

A

B Bool

A

B B

(a) (b) (c)

Figure 4 A transformer of type P A B ‘consumes As and produces Bs’.

technically known as a profunctor. Profunctors can be represented by the following
type class:

class Profunctor p where
dimap :: (a′→ a)→ (b→ b′)→ p a b→ p a′ b′

This says that the two-place operation on types P is a Profunctor if there is a suitable
definition of the function dimap with the given type. Think of P A B as a type of
‘transformers that consume As and produce Bs’, with different instantiations of P
corresponding to different notions of ‘function-like’, as illustrated in Figure 4. One
can think of dimap f g h as ‘wrapping’ the transformer h in a preprocessor f and a
postprocessor g. The crucial point is that a transformer is covariant in what it produces,
but contravariant in what it consumes; hence the reversal of the arrow (a′→ a rather
than a→ a′) in the type of the preprocessor, the first argument of dimap. The term
‘profunctor’ comes from category theory, although much of the categorical structure
gets lost in translation.
Instances of the Profunctor class should satisfy two laws about the interaction

between dimap and function composition:

dimap id id = id
dimap (f ′ · f) (g · g′) = dimap f g · dimap f ′ g′

Note again the contravariance in the preprocessor argument in the second law.
The canonical example of transformers is, of course, functions themselves; and

indeed, the function arrow→ on types, for which (→) A B= A→ B, is an instance:

instance Profunctor (→)where
dimap f g h= g · h · f

The reader should see that the contravariance in the first argument is necessary. It is
instructive to verify for oneself that the definition of dimap for function types does
indeed satisfy the two profunctor laws.
Plain functions are, of course, not the only instantiation of the abstraction—if they

were, the abstraction would not be very useful. Functions that return a result together
with a boolean flag are another instance, as illustrated in Figure 4(b). So are functions
that return a pair of results, as illustrated in Figure 4(c). This pattern generalizes to
functions of the form A→ F B for some functor F:

data UpStar f a b= UpStar {unUpStar :: a→ f b}

11

Profunctor Optics

Any functor F lifts in this manner to a profunctor:

instance Functor f ⇒ Profunctor (UpStar f)where
dimap f g (UpStar h) = UpStar (fmap g · h · f)

(Indeed, the construction dualizes, to functions of the form F A → B, and the two
constructions may be combined for functions of the form F A→ G B; but we do not
need that generality for this paper.)
We will, however, have need of three refinements of the notion of profunctor,

concerning its interaction with product and sum types. For the first, we say that a
profunctor is cartesian if, informally, it can pass around some additional context in the
form of a pair. This is represented by an additional method first that lifts a transformer
of type P A B to one of type P (A × C) (B × C) for any type C, passing through an
additional contextual value of type C:

class Profunctor p⇒ Cartesian p where
first :: p a b→ p (a× c) (b× c)
second :: p a b→ p (c× a) (c× b)

For each instance P, the method first should satisfy two additional laws, concerning
coherence with product and the unit type:

dimap runit runit′ h = first h
dimap assoc assoc′ (first (first h)) = first h

(and symmetrically for second), where runit :: a × 1 → a and runit′ :: a → a × 1 are
witnesses to the unit type being a right unit of the cartesian product, and assoc :: a×
(b×c)→ (a×b)×c and assoc′ ::(a×b)×c→ a×(b×c) are witnesses to the associativity
of product. (Note the typing in the unit law, which instantiates C to 1: instead of
passing around trivial additional context, one may discard it then recreate it.) To
be precise, one might call such profunctors cartesianly strong, because first acts as
a categorical ‘strength’ with respect to cartesian product; we abbreviate this more
precise term to simply ‘cartesian’. The function arrow is obviously cartesian:

instance Cartesian (→)where
first h = cross h id
second h= cross id h

(where cross f g (x, y) = (f x, g y) applies two functions to a pair of arguments). So too
are functions with structured results, as captured by UpStar:

instance Functor f ⇒ Cartesian (UpStar f)where
first (UpStar unUpStar) = UpStar (rstrength · cross unUpStar id)
second (UpStar unUpStar) = UpStar (lstrength · cross id unUpStar)

where the so-called ‘right strength’

rstrength :: Functor f ⇒ ((f a)× b)→ f (a× b)
rstrength (fx, y) = fmap (, y) fx

12

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

distributes copies of a B-value over an F A structure, and symmetrically for left
strength—here, the function (, y) takes x to (x, y). But it is not always so obvious how
to thread the contextual values through a profunctor. In particular, there is no general
construction for the dual case of functions with structured arguments. For example,
when F is the functor Pair yielding pairs of elements, the dual case entails putting
together a function of type Pair A→ B with a Pair (A× C) to make a B× C; there are
two input Cs from which to choose the output, with neither being canonical. Worse,
when F =Maybe, there is not necessarily a C in the input at all.

Similarly, there is a refinement of profunctors that can be lifted to act on sum types:

class Profunctor p⇒ Cocartesian p where
left :: p a b→ p (a+ c) (b+ c)
right :: p a b→ p (c+ a) (c+ b)

Informally, if h :: P A B is a transformer of As into Bs, then left h :: P (A+C) (B+C) acts
on the As in a sum type A+ C, turning them into Bs and leaving the Cs alone.
For each instance P, the method left should satisfy two additional laws, concerning

coherence with sum and the empty type:

dimap rzero rzero′ h = left h
dimap coassoc′ coassoc (left (left h)) = left h

(and symmetrically for right), where rzero::a+0→ a and rzero′::a→ a+0 are witnesses
to the empty type 0 being a right unit of sum, and coassoc :: a+ (b+ c)→ (a+ b) + c
and coassoc′ :: (a+b)+ c→ a+(b+ c) are witnesses to the associativity of sum. (Again,
note the typing of the zero law, instantiating C = 0: instead of lifting to a trivial sum,
one may discard and then recreate the trivial missing information.) To be precise, one
might call such profunctors co-cartesianly strong, because the methods act as left and
right strengths for the co-Cartesian structure; but we will stick with the abbreviation
‘co-cartesian’.

The function arrow is obviously co-cartesian:

instance Cocartesian (→)where
left h = plus h id
right h= plus id h

(where plus f g takes Left x to Left (f x) and Right y to Right (g y)). So too are functions
with structured results, provided that there is an injection A→ F A of pure values into
that structure. For convenience, we capture that requirement here as the method pure
of the type class Applicative, since we have introduced this already:

instance Applicative f ⇒ Cocartesian (UpStar f)where
left (UpStar unUpStar) = UpStar (either (fmap Left · unUpStar) (pure · Right))
right (UpStar unUpStar) = UpStar (either (pure · Left) (fmap Right · unUpStar))

However, that constraint is stronger than necessary, because we do not need here
the 〈∗〉 method of the Applicative class. (Again, there is no similar construction for
functions with structured arguments.)

13

Profunctor Optics

The third refinement is a class of profunctors that support a form of parallel com-
position (in the sense of ‘independent’ rather than ‘concurrent’):

class Profunctor p⇒Monoidal p where
par :: p a b→ p c d→ p (a× c) (b× d)
empty :: p 1 1

Informally, if h :: P A B and k :: P C D are transformers of As into Bs and of Cs into Ds,
respectively, then par h k transforms A×C pairs into B×D pairs by acting independently
on each component of the pair; and empty is a trivial transformer of unit values into
unit values.
For each Monoidal instance P, the two operations par and empty should satisfy some

laws concerning coherence with the product structure: they should form a monoid,
up to monoidal isomorphisms on the value types:

dimap assoc assoc′ (par (par h j) k) = par h (par j k)
dimap runit runit′ h = par h empty
dimap lunit lunit′ h = par empty h

where lunit :: 1× a→ a and lunit′ :: a→ 1× a are the witnesses to the unit type being
the left as well as the right unit of cartesian product.
The function arrow is obviously monoidal:

instance Monoidal (→)where
par = cross
empty = id

For functions with structured results (that is, of the form A→ F B) to be monoidal, it
is necessary to be able to ‘zip’ together two F-structures. This can be done when F is
an applicative functor:

instance Applicative f ⇒Monoidal (UpStar f)where
empty = UpStar pure
par h k= UpStar (pair (unUpStar h) (unUpStar k))

where for the definition of par we make use of the lifting

pair :: Applicative f ⇒ (a→ f b)→ (c→ f d)→ (a, c)→ f (b, d)
pair h k (x, y) = pure (,) 〈∗〉 h x 〈∗〉 k y

to applicative functors of the pairing function (,) defined by (,) x y = (x, y).

4 Optics in terms of profunctors

Plain data accessors might be modelled simply as transformers, values of some type
that is an instance of the Profunctor type class as discussed above. However, such a

14

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

model will not address the problems of compositionality that motivated us in the first
place. Instead, we represent data accessors as mappings between transformers:

type Optic p a b s t= p a b→ p s t

Informally, when S is a composite type with some component of type A, and T similarly
a composite type in which that component has type B, and P is some notion of
transformer, then we can think of a data accessor of type Optic P A B S T as lifting a
component transformer of type P A B to a whole-structure transformer of type P S T.
We will retrieve equivalents of our original definitions of lens, prism, and so on by
placing various constraints on P, starting with requiring P to be a Profunctor. Crucially,
different varieties of optic all now have the same form—in particular, they are all
simply functions—and so they will compose straightforwardly; they may involve
different constraints on P, but those constraints simply conjoin.
The situation is somewhat analogous to that with real, imaginary, and complex

numbers. The concrete representations of optics are like having real numbers and
imaginary numbers but not arbitrary complex numbers. One can combine two real
numbers using addition to make a third, and combine two imaginary numbers to
make a third; but one cannot combine a real number and an imaginary number with
addition, because the result is in general neither real nor imaginary. But once one
invents complex numbers, now arbitrary combinations by addition are expressible.
Moreover, the complex numbers embed faithful representations of the real numbers
and of the imaginary numbers; the space of complex numbers is strictly richer than the
union of the spaces of real and of imaginary numbers. (The analogy only goes so far.
Composition of concrete lenses is not easily defined, and only becomes straightforward
in the profunctor representation. It is as if addition of real numbers becomes more
easily expressed by passage through the complex numbers.)

4.1 Profunctor adapters

Recall the concrete representation of adapters from Section 2.1:

data Adapter a b s t= Adapter {from :: s→ a, to :: b→ t}

The two methods from and to of an Adapter A B S T do not generally compose,
specifically when types A and B differ. However, if we could somehow transform As
into Bs, then we could make the two methods fit together; and moreover, we would
then be able to transform Ss into Ts in the same way. Which is to say, there is an
obvious mapping that takes an Adapter A B S T and a P A B and yields a P S T, provided
that P is a profunctor. This motivates the following datatype:

type AdapterP a b s t= ∀p . Profunctor p⇒ Optic p a b s t

That is, an optic of type AdapterP A B S T is simply a function from P A B to P S T that
works polymorphically in the profunctor type P. It will turn out, somewhat surprisingly,
that AdapterP A B S T is precisely equivalent to Adapter A B S T (see Appendix C for the
proof); we are therefore justified in using AdapterP as a profunctor representation of
adapters.

15

Profunctor Optics

The translations between the two representations are not difficult to construct. We
have already hinted at the translation from the concrete representation Adapter to the
profunctor representation AdapterP:

adapterC2P :: Adapter a b s t→ AdapterP a b s t
adapterC2P (Adapter o i) = dimap o i

This definition repays a little contemplation: given functions o :: S→ A and i :: B→ T,
then dimap o i has type P A B→ P S T for any profunctor P, as required.
The translation in the opposite direction takes a little more effort: what can we do

with an l of type AdapterP A B S T? This function has type P A B→ P S T for arbitrary
profunctor P; if we are to use it somehow to construct an Adapter A B S T, then it
had better be the case that Adapter A B is a profunctor, a suitable instantiation for P.
Happily, this is the case:

instance Profunctor (Adapter a b)where
dimap f g (Adapter o i) = Adapter (o · f) (g · i)

Informally, this dimap wraps the pair of functions o :: S → A and i :: B → T in a
preprocessor f :: S′→ S and postprocessor g :: T→ T′:

S′
f
−→ S

o
−→ A B

i
−→ T

g
−→ T ′

to yield a pair of functions of types S′→ A and B→ T′. It is straightforward to check
that this definition satisfies the two profunctor laws.
Now, we construct the trivial concrete adapter Adapter id id of type Adapter A B A B,

and use the profunctor adapter to lift that to the desired concrete adapter:

adapterP2C :: AdapterP a b s t→ Adapter a b s t
adapterP2C l= l (Adapter id id)

Again, it is a worthwhile exercise to verify the types: function l is applicable at arbitrary
profunctors P, but we use it here only for the specific profunctor P= Adapter A B; then
l transforms a P A B into a P S T.
Note the essential use of profunctors in the translation. For adapterC2P, it is tempting

to pick a simpler translation: given an Adapter A B S T, which is a pair of functions of
types S→ A and B→ T, and another function of type A→ B, then one can construct
a function of type S→ T; that is, one can translate from Adapter A B S T to the pure
function type (A → B) → (S → T). But this translation loses information, because
there is no obvious translation back from here to the profunctor representation—in
particular, it provides no way of constructing anything other than a pure function.
The proof that adapterC2P and adapterP2C are each other’s inverses, and hence that

Adapter A B S T and AdapterP A B S T are equivalent, can be found in Appendix C. For
the remaining varieties of optic, we present the constructions and discussion in a bit
less detail.

16

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

4.2 Profunctor lenses

Recall the concrete representation of lenses from Section 1:

data Lens a b s t= Lens {view :: s→ a, update :: b× s→ t}

The occurrence of the product type in the argument of update suggests that the
analogue of Lens will have something to do with cartesian profunctors. Indeed, we
define the profunctor representation of lenses as follows:

type LensP a b s t= ∀p . Cartesian p⇒ Optic p a b s t

That is, a profunctor lens LensP A B S T lifts a transformer on components P A B to a
transformer on structures P S T, for arbitrary cartesian profunctor P.
Concrete lenses are themselves cartesian profunctors:

instance Profunctor (Lens a b)where
dimap f g (Lens v u) = Lens (v · f) (g · u · cross id f)

instance Cartesian (Lens a b)where
first (Lens v u) = Lens (v · fst) (fork (u · cross id fst) (snd · snd))
second (Lens v u) = Lens (v · snd) (fork (fst · snd) (u · cross id snd))

(where fork f g x = (f x, g x) applies two functions to a common argument to return
a pair). The translations back and forth make crucial use of the lifting to products.
For the translation from the concrete representation to the profunctor representation,
we need to translate a concrete lens Lens v u :: Lens A B S T to a profunctor optic,
which is a function of type Optic P A B S T that has to work for an arbitrary cartesian
profunctor P. In other words, given v :: S→ A and u :: B× S→ T and a transformer
h :: P A B for some cartesian profunctor P, we have to construct another transformer
of type P S T. Now, first h has type P (A× C) (B× C) for any type C, and in particular,
for C = S. Then it suffices to wrap this transformer in a preprocessor S→ A× S and a
postprocessor B× S→ T, both of which are easy to construct:

lensC2P :: Lens a b s t→ LensP a b s t
lensC2P (Lens v u) = dimap (fork v id) u · first

For the translation in the opposite direction, we use the same approach as for adapters.
We are given the profunctor lens, l :: Optic P A B S T, which will work for arbitrary
cartesian profunctor P; we have to construct a concrete lens of type Lens A B S T.
We note that Lens A B is itself a cartesian profunctor, so l is applicable at the type
P= Lens A B. We therefore construct the trivial concrete lens Lens id fst :: Lens A B A B,
and lift it using l to a Lens A B S T as required:

lensP2C :: LensP a b s t→ Lens a b s t
lensP2C l= l (Lens id fst)

These definitions may seem somewhat mysterious; and indeed, they are surprising—at
least, they were to the authors. But it is not necessary to have a robust intuition for

17

Profunctor Optics

how they work. The important points are first, that lensC2P and lensP2C are inverses,
so the two representations are equivalent (see Appendix C for the proofs); and second,
that the profunctor representation supports composition of optics, which we will see
in Section 5.

4.3 Profunctor prisms

Recall the concrete representation of prisms from Section 1:

data Prism a b s t= Prism {match :: s→ t+ a, build :: b→ t}

Dually to lenses, the occurrence of the sum type for match suggests that the analogue
of Prism will have something to do with co-cartesian profunctors. Indeed, we define:

type PrismP a b s t= ∀p . Cocartesian p⇒ Optic p a b s t

That is, a profunctor prism PrismP A B S T lifts a transformer P A B on components to
a transformer P S T on structures, for arbitrary co-cartesian profunctor P.
Concrete prisms are themselves co-cartesian profunctors:

instance Profunctor (Prism a b)where
dimap f g (Prism m b) = Prism (plus g id ·m · f) (g · b)

instance Cocartesian (Prism a b)where
left (Prism m b) = Prism (either (plus Left id ·m) (Left · Right)) (Left · b)
right (Prism m b) = Prism (either (Left · Left) (plus Right id ·m)) (Right · b)

Again dually to lenses, the translations back and forth make crucial use of the lifting
to sums. For the translation from the concrete to the profunctor representation, given
the two functions match :: S→ T + A and build :: B→ T that constitute the concrete
prism, and a transformer h :: P A B for some co-cartesian profunctor P, we have to
construct another transformer of type P S T. Now, right h has type P (C+A) (C+B) for
any type C, and in particular for C = T. Then it suffices to wrap this transformer in
a preprocessor S→ T + A and a postprocessor T + B→ T, both of which are easy to
construct:

prismC2P :: Prism a b s t→ PrismP a b s t
prismC2P (Prism m b) = dimap m (either id b) · right

For the translation in the opposite direction, we use the lifting approach again. We
are given the profunctor lens l :: Optic P A B S T, which will work for an arbitrary
co-cartesian profunctor P. We note that Prism A B is itself a co-cartesian profunctor, so
l is applicable at the type P = Prism A B. We therefore construct the trivial concrete
prism Prism Right id :: Prism A B A B, and lift it using l to a Prism A B S T as required:

prismP2C :: PrismP a b s t→ Prism a b s t
prismP2C l= l (Prism Right id)

Again, the proof of the pudding is in the facts that these two translations are inverses,
so that the representations are equivalent (Appendix C), and that the profunctor
representation supports composition (Section 5).

18

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

4.4 Profunctor traversals

Recall the concrete representation of traversals from Section 2.3:

data Traversal a b s t= Traversal {extract :: s→ FunList a b t}

The key step in the profunctor representation of traversals is to identify a function
traverse that lifts a transformation k::P A B from As to Bs to act on each of the elements
of a FunList in order:

traverse :: (Cocartesian p, Monoidal p)⇒ p a b→ p (FunList a c t) (FunList b c t)
traverse k= dimap out inn (right (par k (traverse k)))

Informally, traverse k uses out to analyse the FunList, determining whether it is Done
or consists of More applied to a head and a tail; in the latter case (the combinator
right lifts a transformer to act on the right-hand component in a sum type), it applies
k to the head and recursively calls traverse k on the tail; then it reassembles the results
using inn. For this inductive definition to be well founded, it is necessary that the
FunList is finite, and therefore that the structures being traversed are finite too; this is
no additional limitation, because data structures supporting a well-behaved traversal
are necessarily finite anyway [3].
Traversals may then be represented as optics, in precisely the same form as lenses

and prisms only with a stronger type class constraint:

type TraversalP a b s t= ∀p . (Cartesian p, Cocartesian p, Monoidal p)⇒ Optic p a b s t

This definition makes TraversalP A B S T isomorphic to our earlier more direct notion
Traversal A B S T of traversals. For the translation from Traversal to TraversalP, we are
given Traversal h :: Traversal A B S T and a transformer k :: P A B on elements, for some
cartesian, co-cartesian, monoidal profunctor P, which we have to lift to a transformer
P S T on containers. We use traverse to lift k to obtain a transformer on FunLists, which
we then sandwich between preprocessor h :: S → FunList A B T and postprocessor
fuse :: FunList B B T→ T to obtain a transformer on actual containers:

traversalC2P :: Traversal a b s t→ TraversalP a b s t
traversalC2P (Traversal h) k= dimap h fuse (traverse k)

In the opposite direction, we have an optic l ::P A B→ P S T, applicable for an arbitrary
cartesian, co-cartesian, monoidal profunctor P, and an effectful operation m :: A→ F B
on elements for some applicative functor F, which we have to lift to a traversal S→ F T
over the whole container. Fortunately, Traversal A B is itself a cartesian, co-cartesian,
monoidal profunctor:

instance Profunctor (Traversal a b)where
dimap f g (Traversal h) = Traversal (fmap g · h · f)

instance Cartesian (Traversal a b)where
first (Traversal h) = Traversal (λ(s, c)→ fmap (, c) (h s))

19

Profunctor Optics

second (Traversal h) = Traversal (λ(c, s)→ fmap (c,) (h s))

instance Cocartesian (Traversal a b)where
left (Traversal h) = Traversal (either (fmap Left · h) (Done · Right))
right (Traversal h) = Traversal (either (Done · Left) (fmap Right · h))

instance Monoidal (Traversal a b)where
par (Traversal h) (Traversal k) = Traversal (pair h k)
empty = Traversal pure

We can therefore instantiate P to Traversal A B; it suffices to take single::A→ FunList A B B,
for which Traversal single is a trivial concrete traversal Traversal A B A B, and use l to
lift this to Traversal A B S T as required.

traversalP2C :: TraversalP a b s t→ Traversal a b s t
traversalP2C l= l (Traversal single)

These two translations are each other’s inverses, as shown in Appendix C. (We need
the Cartesian constraint for the proofs of equivalence, if not for these definitions.)
In order to apply a traversal, it is useful to define an additional combinator traverseOf

that turns a profunctor traversal into the kind of traversing function originally de-
scribed in Section 2.2:

traverseOf :: TraversalP a b s t→ (∀f . Applicative f ⇒ (a→ f b)→ s→ f t)
traverseOf p f = unUpStar (p (UpStar f))

5 Composing profunctor optics

Let us return now to the motivating examples from Section 1, where we saw that
concrete representations of optics do not support composition well. Things are, happily,
much better with the profunctor representation. For example, recall the concrete
representation π1 :: Lens a b (a× c) (b× c) of the lens onto the first component of a pair.
It is straightforward to translate this lens into the profunctor representation, with
πP1 = lensC2P π1 :: LensP a b (a× c) (b× c). It is instructive to simplify this definition
to first principles; expanding the definitions, we conclude that

πP1 :: Cartesian p⇒ p a b→ p (a× c) (b× c)
πP1 = dimap (fork fst id) (cross id snd) · first

The point here is that the definition of the profunctor lens is not complicated; however,
neither is it obvious. Crucially, though, this definition supports composition trivially:
since profunctor lenses are nothing but functions, they compose using function com-
position. In particular, the lens onto the left-most component of a nested pair, which
presented us with difficulties in Section 1, may be written directly in terms of πP1:

πP11 :: LensP a b ((a× c)× d) ((b× c)× d)
πP11 = πP1 ·πP1

20

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

Similarly, recall the prism the :: Prism a b (Maybe a) (Maybe b) onto an optional
value. Its concrete representation can again be directly translated to the profunctor
representation:

theP :: PrismP a b (Maybe a) (Maybe b)
theP= prismC2P the

or, unpacking the definitions,

theP= dimap (maybe (Left Nothing) Right) (either id Just) · right

(where maybe :: b → (a → b) → Maybe a → b deconstructs an optional value). And
again, it is a profunctor optic, so it is nothing but a function, and may be combined
with other optics using familiar function composition. For example, we may obtain
an optic onto the first component of an optional pair:

theP ·πP1 :: (Cartesian p, Cocartesian p)⇒ Optic p a b (Maybe (a× c)) (Maybe (b× c))

Note that in a sense the optic is constructed inside out—πP1 gives access to a com-
ponent inside a pair, and theP gives access to this pair inside a Maybe—whereas the
more natural naming is arguably of the form ‘first projection of the optional value’. By
composing the optics in the opposite order, we obtain instead a composite optic onto
the optional first component of a pair:

πP1 · theP :: (Cartesian p, Cocartesian p)⇒ Optic p a b (Maybe a× c) (Maybe b× c)

In both cases, we get the conjunction of the Cartesian constraint of lenses and the
Cocartesian constraint of prisms. Neither combination is purely a lens or purely a
prism; they are not expressible using the concrete representations.
We can act on the component in focus under the optic. Specifically, the function

arrow (→) is a profunctor, and a Cartesian, Cocartesian, and Monoidal one to boot; so
any optic may be applied to a plain function, and will modify the components in focus
using that function. For example, to square the integer in the left-hand component of
an optional pair, we have

(theP ·πP1) square (Just (3, True)) = Just (9, True)

Traversals fit neatly into the scheme too. Recall from Section 2.2 the concrete
representation inorderC :: Traversal a b (Tree a) (Tree b) of the in-order traversal of an
internally labelled binary tree. This is straightforwardly translated into the profunctor
representation:

inorderP :: TraversalP a b (Tree a) (Tree b)
inorderP= traversalC2P inorderC

and may then be composed with other profunctor optics, using ordinary function
composition. Thus, if the tree is labelled with pairs, and we want to traverse only the
first components of the pairs, we can use:

21

Profunctor Optics

inorderP ·πP1 :: TraversalP a b (Tree (a× c)) (Tree (b× c))

Once we have given such an optic specifying how to access the elements in the
tree, we can actually ‘apply’ the optic by turning it back into a traversal function
using traverseOf . For example, applying it to the body function countOdd will yield a
traversal of trees of pairs whose first components are integers, counting the odd ones
and returning their parities:

traverseOf (inorderP ·πP1) countOdd :: Tree (Integer× c)→ State Integer (Tree (Bool× c))

Similarly, we can compose inorderP with a prism, the, to count the odd integers in a
tree which optionally contains values at its nodes:

traverseOf (inorderP · the) countOdd :: Tree (Maybe a)→ State Integer (Tree (Maybe a))

These examples highlight the common pattern of programming with optics. We
compositionally describe which parts of the data we want to access, and separately
specify the operation we want to perform. The type system ensures that we can
construct only appropriate combinations.
As a slightly more extended example, consider a Book of contact details, consisting

of a Tree of Entrys, where each Entry has a Name and Contact details, the latter being
either a Phone number or a Skype identifier:

type Number= String
type ID = String
type Name = String
data Contact = Phone Number | Skype ID
data Entry = Entry Name Contact
type Book = Tree Entry

It is straightforward to define a prism to access the possible phone number in a Contact,
and a lens to access the Contact in an Entry—for example, by defining a concrete
prism and lens, respectively, and translating each to the profunctor representation:

phone :: PrismP Number Number Contact Contact
phone= prismC2P (Prism m Phone)where

m (Phone n) = Right n
m (Skype s) = Left (Skype s)

contact :: LensP Contact Contact Entry Entry
contact= lensC2P (Lens v u)where

v (Entry n c) = c
u (c′, Entry n c) = Entry n c′

These may be combined, in order to access the possible phone number in an Entry:

contactPhone :: TraversalP Number Number Entry Entry
contactPhone= contact · phone

22

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

and combined further with in-order traversal, in order to access all the phone numbers
in a Book of contacts:

bookPhones :: TraversalP Number Number Book Book
bookPhones= inorderP · contact · phone

If we have a function tidyNumber :: Number→ Number to normalize a phone number,
perhaps to add spaces, parentheses, and hyphens according to local custom, then we
can tidy a whole Book by tidying each phone number:

tidyBook :: Book→ Book
tidyBook= bookPhones tidyNumber

If we have a function output :: Number→ IO Number in the IO monad of input–output
actions, which prints out a phone number and returns a copy of it too, then we can
print each of the numbers in turn:

printBook :: Book→ IO Book
printBook= traverseOf bookPhones output

There is an applicative functor Const m for any monoid m, and in particular for the
list monoid; using this, we can extract a list of all the phone numbers in a book of
contacts:

listBookPhones :: Book→ [Number]
listBookPhones= getConst · traverseOf bookPhones (Const · (λx→ [x]))

6 Related work

Lenses were introduced by Foster, Pierce et al. [9] as a model of bidirectional trans-
formations. Their motivation was to take a linguistic approach to the so-called view–
update problem in databases [2], the problem there being, given a computed view
table (analogous to the view method of our Lens), to propagate a modified view back
as a corresponding update to the original source tables (analogous to our update).
A basic criterion for soundness of a bidirectional transformation is that it satisfies a

pair of round-trip laws. In our terminology, this criterion presupposes a monomorphic
lens Lens A A S S, in which the types do not change. Given Lens v u of this type, the first
law is that v (u (a, s)) = a; informally, that a modified view is faithfully stored, so that
it may later be retrieved. The second is that u (v s, s) = s; informally, that propagating
an unmodified view does not change the source. Such a lens is said to be well behaved.
(As we discuss in Section 7, well-behavedness is orthogonal to the question of whether
or not the profunctor representation matches the concrete one.)
In the simple case, the source factorizes cleanly into the view and its ‘complement’,

for example when the view is the left component of a pair; in such cases, more can
be said. Specifically, Lens v u will satisfy a third law, that u (a′, (u (a, s))) = u (a′, s);

23

Profunctor Optics

informally, a later update completely overwrites an earlier one. In that case, the lens
is said to be very well behaved; in the database community, this is called a constant
complement situation, because the complement is untouched by an update. This special
case received earlier attention from programming language researchers, for example
in the work of Kagawa [15] on representing mutable cells in pure languages, and of
Oles [29] on modelling block structure in Algol-like languages.
One can consider programming with optics as an application of datatype-generic

programming [11], that is, the construction of programs that are parametrized by the
shape of the data they manipulate. The parameter has traditionally been a functor; for
us, it is a profunctor. In particular, there is significant related work on datatype-generic
traversals. The essential structure of the generic traversal is already apparent in the
work of Meertens [24]. Other approaches, including Lämmel’s Scrap Your Boilerplate
(SYB) [21], Mitchell’s uniplate library [25], Bringert’s Compos library [5], McBride and
Paterson’s Traversable class [23], and O’Connor’s Multiplate [26], all provide traversal
functions of similar forms to our definition of traverse. In recent years, attention has
turned to the in-depth comparison and study of these different definitions [3, 12, 14].
The SYB approach [21] is of particular note due to the recognition of the need to

combine an effectful traversal with an operation that focusses in turn on each element
of a data structure. The SYB implemention of this is ad-hoc, using dynamic type
checking, but in our framework we can write the same programs by composing a
traversal with a lens. Thus, another way to view our work is as a generalisation of
effectful traversals.
More recent work has explored the so-called van Laarhoven representation [20, 26]

in terms of functions of type (A→ F B)→ (S→ F T) for various functors F, which is
the predominent representation currently used in Haskell. This representation shares
many properties with the profunctor representation we describe, but is slightly less
elegant (it requires instantiation of the functor F even when it is not needed—for
example, for simple adapters). Other representations of lenses have also been explored
[22], but these appear to lack extension to other varieties of optic at all.
As far as we are aware, prisms have not previously been described in the literature,

and are only folklore amongst functional programmers. Reid Barton is credited by
Edward Kmett [16] with the observation that there should exist a ‘dual’ to lenses
which works with sum types. The development of the idea was then led by Kmett,
Elliott Hird and Shachaf Ben-Kiki whilst working on the lens library [17]. Prisms are
an implementation of first-class patterns, unlike other proposals; for example, Tullsen
[37] recognised the close connection between data constructors and pattern matching.
Pattern matching is the method which is used to deconstruct values constructed by
data constructors; first-class patterns should also be able to re-build the values that
they match. Pattern synonyms [32] are also bidirectional in this sense, but are not
first-class. Scala has the closely related extractor objects [8] which have two special
methods unapply and apply which correspond to matching and building respectively.
What is unique to the framework we have described is the explicit connection

between these different kinds of generic functions. This is further highlighted by the
representation allowing us to seamlessly upcast and use more specific optics in places
where a less powerful optic would suffice—for example, using a lens as a traversal.

24

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

Bringing together these different styles of datatype-generic programming makes it
straightforward to construct heterogeneous composite data accessors, a use case that
is not possible in each framework individually.
There are several nascent implementations of profunctor-based optics. The most

well developed is the purescript library purescript-profunctor-optics [10], which pro-
vides indexed optics in addition to the optics that we have described. The optics
library [7] is a Javascript proof of concept implementation. Russell O’Connor’s Haskell
implementation mezzolens [27] was instrumental in our understanding.

7 Discussion

We have drawn together a series of folklore developments that together lead to a
modular framework for data accessors. This framework accommodates adapters,
which provide access via a change of representation; lenses, which provide access to a
component of a product structure, such as a field of a record; prisms, which provide
access to a component of a sum structure, such as one variant from a union; and
traversals, which provide access to a sequence of components, such as the elements
in a container datatype. Collectively, these four varieties of data accessor are called
optics. Crucially, the four varieties of optic have a similar representation, and this form
is closed under composition; this allows us to combine different varieties of optic,
such as a lens with a prism, which is not possible with more direct representations.
The particular representation we use is mappings between transformers, where

transformers are represented in terms of profunctors, a generalization of functions:

∀p . Profunctor p⇒ p a b→ p s t

In other words, it is a representation using higher-order functions rather than more
concrete datatypes. This choice of representation is the essential trick, both accommo-
dating the wide variety of apparently distinct optics, and straightforwardly supporting
combinations via function composition. That this representation is even adequate
comes as quite a surprise—it is salutary to reflect on Christopher Strachey’s observation
of half a century ago [34] that

many of the more interesting developments of programming and programming
languages come from the unrestricted use of functions, and in particular of functions
which have functions as results

and yet we are still finding new applications of higher-order functions.
It is interesting to note that the four representations we have chosen for the four

different varieties of optic form a lattice, as shown in Figure 5: adapters are special
kinds of lens and of prism, and lenses and prisms are each special kinds of traversal.
They all have the higher-order functional form quoted above, differing only in the
constraints imposed on the parameter p. A combination of different varieties of optic is
also of the same form, but collects all the constraints from the individual parts; that is,
it forms an upper bound in the lattice. Thus, the combination of an adapter with a lens
is another lens, and the combination of a traversal with anything is again a traversal.

25

Profunctor Optics

The lattice structure becomes apparent only in the profunctor representation, because
heterogeneous combinations are not otherwise expressible. The combination of a
lens and a prism is a traversal; but in fact, the combination needs only the Cartesian
and Cocartesian constraints of lenses and prisms respectively, and not the additional
Monoidal constraint of traversals, so does not use the full power of a traversal (indeed,
such a combination necessarily targets at most one component of a structure, and so
there is no need for sequencing of effectful operations). This means that there is a
fifth point in the lattice, the least upper bound of lenses and prisms but strictly below
traversals. It is as yet unclear to us whether that fifth point is a useful abstraction in
its own right, or a mere artifact of our representation; this question calls for further
work.

Adapter

Lens Prism

Traversal

Figure 5 The lattice of profunctor optics
(arrow X → Y denotes that X is
a subclass of Y).

Curiously, our presentation does not
depend at all on the ‘well-behavedness’
laws of lenses or their duals for prisms,
nor on the two functions making up
an adapter being each other’s inverses,
nor on the laws of traversals [12]. The
proofs of equivalence (in Appendix C)
do not use them; the abstractions ac-
commodate ill-behaved optics just as
well as they do well-behaved ones.
Identifying suitable well-behavedness
laws for profunctor optics is another
topic for future research. We conjecture that addressing this question will entail
consideration of sequential composition of profunctors (taking a P A B and a P B C to
a P A C). That might have other benefits too; in particular, given composition, one
can define par in terms of first and second, which should simplify the assumptions we
make.
We have taken the opportunity to judiciously rename some abstractions from

existing libraries, in the interests of tidying up. The names first, second, left, and right
were already popular in the Haskell Arrow library, so Kmett’s Profunctor library [18]
uses first′, second′, left′, right′ instead. What we have called an Adapter is conventionally
called an Iso, despite there being no requirement for it actually to form an isomorphism.
Our classes Cartesian and Cocartesian are conventionally (and asymmetrically) called
Strong and Choice. The conventional ordering of type parameters for optics, for example
from the mezzolens library [27], would be to have Lens s t a b and so on; we have
used the ordering Lens a b s t instead, so that we can conveniently apply the type
constructor just to the first two, as required for the profunctor instances in the
translation functions in Section 4. Our Traversal is not quite the same as the traverse
method of the Traversable type class in the Haskell libraries, because that type class
insists that the container datatype is polymorphic; ours allows us for example to access
a packed ByteString as a container of eight-bit Word8s, or an integer as a container of
digits—traversal still makes sense for monomorphic containers, it just cannot change
the types of the elements.

26

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

Although we have presented our constructions using Haskell as a vehicle, they do
not really depend in any essential way on Haskell. All that seems to be required are
higher-order functions (‘lambdas’ or ‘closures’), parametrized types (‘generics’ or
‘abstract types’) of higher kind (in particular, parametrization by profunctors), and
some mechanism for separating interfaces from implementations (‘abstract classes’
or ‘modules’). We feel that Haskell allows clear expression using those features—the
algorithmic language de nos jours—but it is possible to replicate our constructions in
other languages such as Scala; we sketch an implementation in Appendix B.

Acknowledgements Our primary thanks are due to the various people who have
contributed to the library development and online discussions whose outcomes we
have made use of in this paper, especially Edward Kmett, Russell O’Connor, Twan
van Laarhoven, Reid Barton, Shachaf Ben-Kiki, and Elliott Hird. We are grateful to
Paul Levy for suggesting the names ‘cartesianly strong’, ‘co-cartesianly strong’, and
‘monoidal’, and to Sam Staton, Guillaume Boisseau, and especially to James McKinna
for many helpful comments and encouraging discussions. This paper is a condensed
version of the first author’s undergraduate thesis [31]. The work has been partially
supported by the UK EPSRC-funded project A Theory of Least Change for Bidirectional
Transformations (EP/K020919/1).

References

[1] Joseph Abrahamson. ProfunctorLens.js snippet. June 2015. url: https://gist.
github.com/tel/5b05212bfd3ed2166b6d.

[2] François Bancilhon and Nicolas Spyratos. “Update Semantics of Relational
Views”. In: ACM Transactions on Database Systems 6.4 (1981), pages 557–575.
doi: 10.1145/319628.319634.

[3] Richard Bird, Jeremy Gibbons, Stefan Mehner, Janis Voigtländer, and Tom
Schrijvers. “Understanding Idiomatic Traversals Backwards and Forwards”. In:
Haskell Symposium. 2013, pages 25–36. doi: 10.1145/2578854.2503781.

[4] Richard Bird and Lambert Meertens. “Nested datatypes”. In: Mathematics of
Program Construction. Springer. ACM Press, 1998, pages 52–67. doi: 10.1007/
BFb0054285.

[5] Björn Bringert and Aarne Ranta. “A Pattern for Almost Compositional Func-
tions”. In: Journal of Functional Programming 18.5-6 (2008), pages 567–598.
doi: 10.1017/S0956796808006898.

[6] Travis Brown. cats library, v0.9.0. Jan. 2017. url: http://typelevel.org/cats/.

[7] Scott Christopher. optics-0.0.2 library. May 2016. url: https://github.com/
flunc/optics.

[8] Burak Emir, Martin Odersky, and John Williams. “Matching Objects with
Patterns”. In: European Conference on Object-Oriented Programming. Springer,
2007, pages 273–298. doi: 10.1007/978-3-540-73589-2_14.

27

https://gist.github.com/tel/5b05212bfd3ed2166b6d
https://gist.github.com/tel/5b05212bfd3ed2166b6d
http://dx.doi.org/10.1145/319628.319634
http://dx.doi.org/10.1145/2578854.2503781
http://dx.doi.org/10.1007/BFb0054285
http://dx.doi.org/10.1007/BFb0054285
http://dx.doi.org/10.1017/S0956796808006898
http://typelevel.org/cats/
https://github.com/flunc/optics
https://github.com/flunc/optics
http://dx.doi.org/10.1007/978-3-540-73589-2_14

Profunctor Optics

[9] J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce,
and Alan Schmitt. “Combinators for Bidirectional Tree Transformations: A
Linguistic Approach to the View Update Problem”. In: Principles of Programming
Languages. ACM Press, 2005, pages 233–246. doi: 10.1145/1040305.1040325.

[10] Phil Freeman. purescript-profunctor-lenses-2.2.0 library. url: https://pursuit.
purescript.org/packages/purescript-profunctor-lenses/2.2.0.

[11] JeremyGibbons. “Datatype-Generic Programming”. In: Spring School on Datatype-
Generic Programming. Edited by Roland Backhouse, Jeremy Gibbons, Ralf
Hinze, and Johan Jeuring. Volume 4719. Lecture Notes in Computer Science.
Springer-Verlag, 2007. doi: 10.1007/978-3-540-76786-2_1.

[12] Jeremy Gibbons and Bruno C. d S. Oliveira. “The Essence of the Iterator Pattern”.
In: Journal of Functional Programming 19.3-4 (2009), pages 377–402. doi:
10.1017/S0956796809007291.

[13] Jean-Baptiste Girardeau. Functional Java. 2014. url: http://www.functionaljava.
org/.

[14] Mauro Jaskelioff and Russell O’Connor. “A Representation Theorem for Second-
Order Functionals”. In: Journal of Functional Programming 25.e13 (2015). doi:
10.1017/S0956796815000088.

[15] Koji Kagawa. “Compositional References for Stateful Functional Programming”.
In: International Conference on Functional Programming. ACM Press, 1997,
pages 217–226. doi: 10.1145/258948.258969.

[16] Edward Kmett. “Comments on Simon Peyton Jones’ talk about lenses at Haskell
eXchange”. https://www.reddit .com/r/haskell/comments/1o1z8x/simon_
peyton_jones_on_lenses_at_the_haskell/ccoe67d/. 2013.

[17] Edward Kmett. lens-4.15.1 library. url: https://hackage.haskell.org/package/
lens-4.15.1.

[18] Edward Kmett. profunctor library. url: https://hackage.haskell.org/package/
profunctors.

[19] Twan van Laarhoven. “A Non-Regular Data Type Challenge”. Apr. 2009. url:
http://twanvl.nl/blog/haskell/non-regular1.

[20] Twan van Laarhoven. “CPS-Based Functional References”. July 2009. url:
http://www.twanvl.nl/blog/haskell/cps-functional-references.

[21] Ralf Lämmel and Simon Peyton Jones. “Scrap Your Boilerplate: A Practical
Design Pattern for Generic Programming”. In: Types in Languages Design and
Implementation. New York, NY, USA: ACM Press, 2003, pages 26–37. doi:
10.1145/640136.604179.

[22] Kazutaka Matsuda and Meng Wang. “Applicative Bidirectional Programming
with Lenses”. In: International Conference on Functional Programming. 2015,
pages 62–74. doi: 10.1145/2784731.2784750.

28

http://dx.doi.org/10.1145/1040305.1040325
https://pursuit.purescript.org/packages/purescript-profunctor-lenses/2.2.0
https://pursuit.purescript.org/packages/purescript-profunctor-lenses/2.2.0
http://dx.doi.org/10.1007/978-3-540-76786-2_1
http://dx.doi.org/10.1017/S0956796809007291
http://www.functionaljava.org/
http://www.functionaljava.org/
http://dx.doi.org/10.1017/S0956796815000088
http://dx.doi.org/10.1145/258948.258969
https://www.reddit.com/r/haskell/comments/1o1z8x/simon_peyton_jones_on_lenses_at_the_haskell/ccoe67d/
https://www.reddit.com/r/haskell/comments/1o1z8x/simon_peyton_jones_on_lenses_at_the_haskell/ccoe67d/
https://hackage.haskell.org/package/lens-4.15.1
https://hackage.haskell.org/package/lens-4.15.1
https://hackage.haskell.org/package/profunctors
https://hackage.haskell.org/package/profunctors
http://twanvl.nl/blog/haskell/non-regular1
http://www.twanvl.nl/blog/haskell/cps-functional-references
http://dx.doi.org/10.1145/640136.604179
http://dx.doi.org/10.1145/2784731.2784750

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

[23] Conor McBride and Ross Paterson. “Applicative Programming with Effects”.
In: Journal of Functional Programming 18.01 (2008), pages 1–13. doi: 10.1017/
S0956796807006326. (Visited on 2016-09-13).

[24] Lambert Meertens. “Functor Pulling”. In: Workshop on Generic Programming.
1998.

[25] Neil Mitchell and Colin Runciman. “Uniform Boilerplate and List Processing”.
In: Haskell Workshop. Haskell ’07. New York, NY, USA: ACM, 2007, pages 49–60.
doi: 10.1145/1291201.1291208.

[26] Russell O’Connor. “Functor is to Lens as Applicative is to Biplate: Introducing
Multiplate”. In: CoRR abs/1103.2841 (2011). Presented at WGP 2011. doi: arXiv:
1103.2841.

[27] Russell O’Connor. mezzolens-0.0.0 library. url: https://hackage.haskell.org/
package/mezzolens-0.0.0.

[28] Russell O’Connor. “Strong Profunctor Law”. http://lpaste.net/145709. Nov. 2015.

[29] Frank J. Oles. “Type Algebras, Functor Categories, and Block Structure”. In:
Algebraic Methods in Semantics. Edited by Maurice Nivat and John Reynolds.
Cambridge University Press, 1985, pages 543–573. doi: 10.7146/dpb.v12i156.7430.

[30] Simon Peyton Jones, editor. The Haskell 98 Language and Libraries: The Revised
Report. Cambridge University Press, 2003. isbn: 978-0521826143.

[31] Matthew Pickering. “Profunctor Optics: Making Sense of Data Accessors”.
Undergraduate thesis. University of Oxford, May 2016.

[32] Matthew Pickering, Gergő Érdi, Simon Peyton Jones, and Richard A. Eisenberg.
“Pattern Synonyms”. In: Haskell Symposium. ACM Press, 2016, pages 80–91.
doi: 10.1145/2976002.2976013.

[33] Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor Optics: Modu-
lar Data Accessors. Accompanying code. Apr. 2017. doi: 10.5281/zenodo.400437.

[34] Christopher Strachey. “Fundamental Concepts in Programming Languages”.
Lecture notes from the International Summer School in Computer Program-
ming, Copenhagen; eventually published in Higher-Order and Symbolic Compu-
tation 13:1/2 (2000), pages 11–49, doi: 10.1023/A:1010000313106. Aug. 1967.

[35] Julien Truffaut. Monocle library, v1.4.0. Jan. 2017. url: http://julien-truffaut.
github.io/Monocle/.

[36] Julien Truffaut. OpticsExp. Nov. 2016. url: https://github.com/julien-truffaut/
OpticsExp.

[37] Mark Tullsen. “First Class Patterns”. In: Practial Aspects of Declarative Lan-
guages. Volume 1753. Lecture Notes in Computer Science. Springer-Verlag,
2000, pages 1–15. doi: 10.1007/3-540-46584-7_1.

[38] Janis Voigtländer. “Free Theorems Involving Type Constructor Classes”. In: In-
ternational Conference on Functional Programming. Edited by Andrew Tolmach.
ACM Press, Sept. 2009, pages 173–184. doi: 10.1145/1596550.1596577.

29

http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1017/S0956796807006326
http://dx.doi.org/10.1145/1291201.1291208
http://dx.doi.org/arXiv:1103.2841
http://dx.doi.org/arXiv:1103.2841
https://hackage.haskell.org/package/mezzolens-0.0.0
https://hackage.haskell.org/package/mezzolens-0.0.0
http://lpaste.net/145709
http://dx.doi.org/10.7146/dpb.v12i156.7430
http://dx.doi.org/10.1145/2976002.2976013
http://dx.doi.org/10.5281/zenodo.400437
http://julien-truffaut.github.io/Monocle/
http://julien-truffaut.github.io/Monocle/
https://github.com/julien-truffaut/OpticsExp
https://github.com/julien-truffaut/OpticsExp
http://dx.doi.org/10.1007/3-540-46584-7_1
http://dx.doi.org/10.1145/1596550.1596577

Profunctor Optics

[39] Philip Wadler. “Monads for Functional Programming”. In: Program Design
Calculi: Proceedings of the Marktoberdorf Summer School. Edited by Manfred
Broy. 1992.

[40] Philip Wadler. “Theorems for Free!” In: Functional Programming Languages and
Computer Architecture. ACM. 1989, pages 347–359. doi: 10.1145/99370.99404.

30

http://dx.doi.org/10.1145/99370.99404

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

A Haskell background

We have used an idealization of Haskell [30] throughout as a lingua franca, although
our constructions do not really depend on anything other than higher-order functions
and some notion of interface and implementation. For the reader unfamiliar with
Haskell, we summarize here some conventions and useful standard operations. We
also explain our idealizations, so even those familiar with Haskell should skim this
section.
Haskell is a functional programming language, so of course revolves around func-

tions. The type A→ B consists of functions that take an argument of type A and return
a result of type B; for example, the function even of type Integer→ Bool determines
whether or not an Integer is even. Type declarations are written with a double colon:

even :: Integer→ Bool
even n= (mod n 2== 0)

The identity function is written id, and function composition with a centred dot, so
that (f · g) x = f (g x).
By convention, functions are curried wherever possible; for example, rather than

defining the modulus function to accept a pair of arguments:

mod :: (Integer, Integer)→ Integer

we make it take two separate arguments:

mod :: Integer→ Integer→ Integer

or equivalently, to take one argument and yield a function of the other:

mod :: Integer→ (Integer→ Integer)

Functions may be polymorphic; so identity and composition have the following
types:

id :: a→ a
(·) :: (b→ c)→ (a→ b)→ (a→ c)

Type variables (such as a above) are written with a lowercase initial letter, and are
implicitly universally quantified; specific types (such as Integer) are written with an
uppercase initial letter. We therefore use uppercase identifiers (such as A, B, C) for
specific types in examples in prose.
Pairs are written in parentheses, both as values and as types; for example, (3, True) ::

(Integer, Bool). However, we have used × for pair types in the paper, writing Integer×
Bool for (Integer, Bool). Two functions with a common source type may be combined
to yield a pair of results, via the function fork:

fork :: (a→ b)→ (a→ c)→ a→ (b, c)
fork f g x = (f x, g x)

31

Profunctor Optics

and two functions may act in parallel on the components of a pair, via the function
cross:

cross :: (a→ a′)→ (b→ b′)→ (a, b)→ (a′, b′)
cross f g (x, y) = (f x, g y)

Since pairs have projections fst :: (a, b)→ a and snd :: (a, b)→ b, the cross operation is
in fact an instance of fork:

cross f g= fork (f · fst) (g · snd)

Dually, sum types correspond to ‘variant’ types in Pascal or unions in C. In Haskell,
they are written with an algebraic datatype:

data Either a b= Left a | Right b

(In the paper, we have used the idealized notation A + B for Either A B.) This dec-
laration introduces a new two-parameter (polymorphic) datatype Either, and two
(polymorphic) constructors Left :: a→ Either a b and Right :: b→ Either a b; so values
of type Either A B are either of the form Left x with x :: A, or of the form Right y with
y :: B. Two functions with a common target type may be combined to act on a sum
type, via the function either:

either :: (a→ c)→ (b→ c)→ Either a b→ c
either f g (Left x) = f x
either f g (Right y) = g y

As an instance of this, we can act independently on the two variants of a sum, via the
function plus:

plus :: (a→ a′)→ (b→ b′)→ Either a b→ Either a′ b′

plus f g= either (Left · f) (Right · g)

A useful special case of sum types is sum with the unit type, which provides a
representation of optional values:

data Maybe a= Just a | Nothing

It is sometimes convenient to model a datatype as a record with named fields; for
example, had pairs not been built in, we might have defined instead

data Pair a b=MkPair {fst :: a, snd :: b}

This declaration introduces a new two-parameter datatype Pair, a constructor MkPair::
a→ b→ Pair a b, and two field extractors fst :: Pair a b→ a and snd :: Pair a b→ b. The
namespaces for types (such as Pair) and values (such as MkPair) are disjoint, and it is
idiomatic Haskell to name the constructor Pair rather than MkPair.
Algebraic datatypes find most use for recursive datatypes. For example, a polymor-

phic datatype of internally labelled binary trees may be defined by

32

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

data Tree a= Empty | Node (Tree a) a (Tree a)

which has a constant Empty representing the empty tree, and a ternary constructor
Node assembling a non-empty tree from two children and a root label. Haskell provides
a built-in polymorphic datatype [a] of lists; but if that had not been provided, we
could have defined instead

data List a= Nil | Cons a (List a)

Interfaces and implementations are typically modelled in Haskell by means of type
classes. A type class represents a set of types, characterized by their common support
for a particular collection of methods. For example, the standard type classes Eq and
Ord denote the classes of types that support equality and ordering functions:

class Eq a where
(==) :: a→ a→ Bool

class Eq a⇒ Ord a where
(¶) :: a→ a→ Bool

This declaration states that a type A is a member of the type class Eq if it supports
an equality test (==) :: A→ A→ Bool; and an Eq type A is a fortiori an Ord type if
it also supports the comparison (¶) :: A→ A→ Bool. Most of the standard types are
instances of these classes. New instances may be declared by providing a definition of
the necessary methods; for example, we could specify equality on optional values,
given equality on their elements, by:

instance Eq a⇒ Eq (Maybe a)where
Just x == Just y = (x == y)
Nothing== Nothing= True

== = False

(where the underscore is a wild-card pattern). To be precise, one typically declares
laws that instance methods should satisfy (such as being an equivalence relation for
Eq, and a preorder for Ord); but Haskell provides no way to state such laws other than
in comments. One can think of the type class as representing an interface, and the
instances as implementations of that interface.
Type classes may be used for type constructors as well as for concrete types. For ex-

ample, we make extensive use of the type class Functor, which represents polymorphic
container types. Informally, the type constructor F represents a polymorphic container
if a value of type F A contains elements of type A, on which one may operate with a
function of type A→ B, to yield a new value of type F B. Formally:

class Functor f where
fmap :: (a→ b)→ f a→ f b

For example, the Maybe type constructor is a functor:

33

Profunctor Optics

instance Functor Maybe where
fmap f (Just x) = Just (f x)
fmap f Nothing= Nothing

which should satisfy the following two laws:

fmap (f · g) = fmap f · fmap g
fmap id = id

An important result about polymorphic functions between functors is known collo-
quially as theorems for free [40]. This result entails that a function h of type ∀a . F a→
G a, for particular F and G that are instances of Functor, but crucially for all values of
the type parameter a, satisfies the property

h · fmapF f = fmapG f · h

where the occurrences of fmap have been annotated to indicate that on the left of the
equation it is the instance for F and on the right it is the one for G, as may be easily
be determined from the type of h. We call this property ‘the free theorem of the type
of h’, or sometimes just ‘the free theorem of h’ when we have a particular definition
of h in mind. The point is that it does not matter what that definition is, provided
that it has the stated type. For example, consider a function h :: [a]→ Maybe a. It
does not matter whether this returns the head of the list and Nothing for the empty
list, or the last element of the list similarly, or the fourth element when the list has
odd length at least 13 and Nothing for even-length and shorter lists; it still necessarily
satisfies the same property. (To be precise, the theorem may need a side condition
when h is allowed to be a partial function; but in this paper, we restrict attention to
total functions.)
Free theorems also apply to types involving constraints [38], essentially by following

the translation from type classes to dictionary-passing style—the functions being
mapped must preserve the methods of the class. For example, the function nub::Eq a⇒
[a]→ [a] removes duplicates from a list. The free theorem for a function h of type
[a]→ [a] would state that h · fmap[] f = fmap[] f ·h for any f , which is plainly false for
h= nub. Of course, nub has a more constrained than h; the expected theorem restricts
the claim to those f that preserve equality—that is, such that (f x == f y)⇔ (x == y).
This is in fact precisely the theorem that arises for free from the type of the function
nubBy :: (a → a → Bool) → [a] → [a], which is essentially the dictionary-passing
translation of nub.

B Alternative implementation

In this appendix, we sketch a parallel implementation in Scala of the concepts intro-
duced in the paper. This exercise demonstrates that the ideas are not limited to Haskell.
However, the constructions do require support for higher-kinded types (specifically,
for instances of the Profunctor class), which is not available in languages such as Java
and C#.

34

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

We require Scala’s support for higher-kinded types:

import scala.language.higherKinds

Abstractions that are represented with type classes in Haskell are traditionally im-
plemented using traits—a variant of classes allowing flexible mixin composition—in
Scala. The following definition introduces the Profunctor abstraction, here a two-
parameter type operation p. For some p to instantiate the Profunctor abstraction, it
must implement the dimap method. The type of dimap is parametrized by four type
variables a, b, c, d. The method itself takes two functions f and g of types c⇒ a and
b⇒ d respectively, and an input transformation h : p[a, b], which it lifts to an output
transformation of type p[c, d].

trait Profunctor[p[,]]{
def dimap[a, b, c, d](f : c⇒ a)(g : b⇒ d)(h : p[a, b]) : p[c, d]
}

Similarly, the Cartesian, Cocartesian, and Monoidal specializations each involve imple-
menting one or two methods. The Scala libraries provide a generic class Tuple2 of
pairs (in fact, the language also supports the Haskell syntax (a, b) as a shorthand for
Tuple2[a, b]), a generic class Either precisely matching Haskell’s Either, and a class
Unit with a single inhabitant corresponding to Haskell’s ().

trait Cartesian[p[,]] extends Profunctor[p]{
def first[a, b, c](h : p[a, b]) : p[Tuple2[a, c], Tuple2[b, c]]
}
trait Cocartesian[p[,]] extends Profunctor[p]{

def right[a, b, c](h : p[a, b]) : p[Either[c, a], Either[c, b]]
}
trait Monoidal[p[,]] extends Profunctor[p]{

def par[a, b, c, d](h : p[a, b])(k : p[c, d]) : p[Tuple2[a, c], Tuple2[b, d]]
def empty : p[Unit, Unit]
}

The four varieties of optic are each represented as abstract classes, each with a single
method called apply as the operative content. What is represented with a type class
constraint in Haskell turns up as an implicit parameter on the apply methods in Scala;
when there is a unique binding of the appropriate type in scope at the call site, the
actual parameter may be omitted and this binding will be used in its place. In the case
of Traversal, the implicit parameter is required to implement the mixin composition
of three traits, analogous to having three type class constraints in Haskell.

abstract class Adapter[p[,], a, b, s, t]{
def apply(h : p[a, b])(implicit prof : Profunctor[p]) : p[s, t]
}
abstract class Lens[p[,], a, b, s, t]{

def apply(h : p[a, b])(implicit prof : Cartesian[p]) : p[s, t]

35

Profunctor Optics

}
abstract class Prism[p[,], a, b, s, t]{

def apply(h : p[a, b])(implicit prof : Cocartesian[p]) : p[s, t]
}
abstract class Traversal[p[,], a, b, s, t]{

def apply(h : p[a, b])
(implicit prof : Cartesian[p] with Cocartesian[p] with Monoidal[p]) : p[s, t]

}

Here is a concrete class corresponding to the lens π1 we used in the paper, for
access to the left-hand component of a pair. It is defined by extending a suitable type
instantiation of the Lens trait, and providing an implementation of the apply method.
The three subsidiary definitions view, update, and fork are local to apply; the final line
of the definition of apply is the actual body. The value is obtained by applying of dimap
to first, both of which are methods of the Cartesian profunctor prof .

class PiOne[p[,], a, b, c] extends Lens[p, a, b, Tuple2[a, c], Tuple2[b, c]]{
def apply(f : p[a, b])(implicit prof : Cartesian[p]) : p[Tuple2[a, c], Tuple2[b, c]] = {

def view[a, c] : (Tuple2[a, c]⇒ a) =
(xy⇒ xy ._ 1);

def update[a, b, c] : (Tuple2[b, Tuple2[a, c]]⇒ Tuple2[b, c]) =
(zxy⇒ newTuple2(zxy ._ 1, (zxy ._ 2) ._ 2));

def fork[a, b, c](f : a⇒ b)(g : a⇒ c) : (a⇒ Tuple2[b, c]) =
(x⇒ newTuple2(f(x), g(x)));

prof .dimap(fork(view[a, c])(identity))(update[a, b, c])(prof .first(f))
}

}

Similarly, here is a class corresponding to the prism the from the body of the paper,
for access to the payload of an optional value. The Scala libraries provide a class
Option corresponding to Haskell’s Maybe type constructor. The local functions match
and either are defined using case analysis over one argument. (Scala uses match as a
keyword, so we have taken a liberty in using that word as an identifier.)

class The[p[,], a, b] extends Prism[p, a, b, Option[a], Option[b]]{
def apply(f : p[a, b])(implicit prof : Cocartesian[p]) : p[Option[a], Option[b]] = {

def match[a, b] : (Option[a]⇒ Either[Option[b], a]) = {
case Some(a)⇒ Right(a)
case None ⇒ Left(None)
};
def build[b] : (b⇒ Option[b]) = (b⇒ Some(b));
def either[a, b, c](f : a⇒ c)(g : b⇒ c) : (Either[a, b]⇒ c) = {

case Left(a) ⇒ f(a)
case Right(b)⇒ g(b)
};
prof .dimap(match[a, b])(either(identity[Option[b]])(build[b]))(prof .right(f))

36

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

}
}

Aswell as Haskell, there are implementations of variations of these ideas in Javascript
[1, 7] and Purescript [10]. There is a Scala library cats that implements profunctors
but has not been extended to optics [6], and a Scala library monocle of optics that
does not use profunctors [35]; there are some initial experiments towards a Scala
implementation of profunctor optics [36] that does not yet seem to be complete.
There is also a Java library called Functional Java [13] implementing optics without
using profunctors, so without their modularity benefits.

C Proofs of equivalence

We formalize here the statements made earlier about the equivalences between the
concrete and profunctor representations of the various kinds of optic, and provide
proofs of those equivalences.

Theorem 1. The functions adapterC2P and adapterP2C are each other’s inverses, and
so the types Adapter A B S T and AdapterP A B S T are isomorphic for all type parameters
A, B, S, T. �

Theorem 2. The functions lensC2P and lensP2C are each other’s inverses, and so the
types Lens A B S T and LensP A B S T are isomorphic for all type parameters A, B, S, T.�

Theorem 3. The functions prismC2P and prismP2C are each other’s inverses, and so
the types Prism A B S T and PrismP A B S T are isomorphic for all type parameters
A, B, S, T. �

Theorem 4. The functions traversalC2P and traversalP2C are each other’s inverses,
and so the types Traversal A B S T and TraversalP A B S T are isomorphic for all type
parameters A, B, S, T. �

C.1 Adapters

One of the key ingredients in the proofs of the theorems is the notion of profunctor
morphism.

Definition 5. A polymorphic function phi ::∀a b . P a b→ Q a b, for given profunctors
P, Q but for all types a, b, is a ‘profunctor morphism from P to Q’ if

dimapQ f g · phi= phi · dimapP f g

for all functions f , g, where we have annotated the two occurrences of dimap to indicate
which instances they are. �

In particular, the translation function adapterC2P from Section 4.1, when applied to
a given transformer of type P A B as its second argument, yields a profunctor morphism
from Adapter A B to P. To make this precise, consider

37

Profunctor Optics

flip adapterC2P :: Profunctor p⇒ p a b→ Adapter a b s t→ p s t

which is like adapterC2P but takes its arguments in a different order, since flip f x y =
f y x.
Then we may state:

Lemma 6. For given k :: P A B for some profunctor P and types A, B, the function
flip adapterC2P k :: Adapter A B s t→ P s t is a profunctor morphism from Adapter A B to
P. �

Proof. We have:

dimap f g (flip adapterC2P k (Adapter o i))
= [[flip]]

dimap f g (adapterC2P (Adapter o i) k)
= [[adapterC2P]]

dimap f g (dimap o i k)
= [[dimap composition]]

dimap (o · f) (g · i) k
= [[adapterC2P]]

adapterC2P (Adapter (o · f) (g · i)) k
= [[dimap for Adapter]]

adapterC2P (dimap f g (Adapter o i)) k
= [[flip]]

flip adapterC2P k (dimap f g (Adapter o i))

and so dimap f g · flip adapterC2P k= flip adapterC2P k · dimap f g as required. ♥

The second key ingredient is the free theorem of profunctor optics, obtained by
instantiating Wadler’s ‘theorems for free’ at the appropriate type [38, 40]:

Lemma 7. For any l of type ∀p . Profunctor p⇒ Optic p A B S T and any profunctor
morphism phi from profunctor P to profunctor Q, we have l · phi= phi · l. �

Both sides are of type P A B→ Q S T; the free theorem states that lifting the P A B to
P S T and then translating to Q S T coincides with first translating to Q A B and then
lifting to Q S T.

Proof (of Theorem 1). One direction is quite straightforward:

adapterP2C (adapterC2P (Adapter o i))
= [[adapterC2P]]

adapterP2C (dimap o i)
= [[adapterP2C]]

dimap o i (Adapter id id)
= [[dimap for Adapter]]

Adapter (id · o) (i · id)
= [[identity]]

Adapter o i

38

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

as required. For the other direction, we need to use Lemma 6:

adapterC2P (adapterP2C l) k
= [[adapterP2C]]

adapterC2P (l (Adapter id id)) k
= [[flip]]

flip adapterC2P k (l (Adapter id id))
= [[free theorem of l, and Lemma 6]]

l (flip adapterC2P k (Adapter id id))
= [[flip]]

l (adapterC2P (Adapter id id) k)
= [[adapterC2P]]

l (dimap id id k)
= [[dimap identity]]

l k

so adapterC2P · adapterP2C = id as required. ♥

C.2 Lenses

Lemma 8. The ‘free theorem’ [40] of first is that

dimap id h k= dimap g id l ⇒ dimap id (cross (h, f)) (first k) = dimap (cross (g, f)) id (first l)

�

Lemma 9. For given k :: P A B for some cartesian profunctor P and types A, B, the
function flip lensC2P k :: Lens A B s t→ P s t is a profunctor morphism from Lens A B to
P. �

Proof. We have:

dimap f g (flip lensC2P k (Lens v u))
= [[flip]]

dimap f g (lensC2P (Lens v u) k)
= [[lensC2P]]

dimap f g (dimap (fork (v, id)) u (first k))
= [[dimap composition]]

dimap (fork (v, id) · f) (g · u) (first k)
= [[products and fork]]

dimap (cross (id, f) · fork (v · f , id)) (g · u) (first k)
= [[dimap composition]]

dimap (fork (v · f , id)) (g · u) (dimap (cross (id, f)) id (first k))
= [[free theorem of first (Lemma 8), with g= id, h= id, and k= l]]

dimap (fork (v · f , id)) (g · u) (dimap id (cross (id, f)) (first k))
= [[dimap composition]]

dimap (fork (v · f , id)) (g · u · cross (id, f)) (first k)

39

Profunctor Optics

= [[lensC2P]]
lensC2P (Lens (v · f) (g · u · cross (id, f))) k
= [[dimap for Lens]]

lensC2P (dimap f g (Lens v u)) k
= [[flip]]

flip lensC2P k (dimap f g (Lens v u))

So dimap f g · flip lensC2P k= flip lensC2P k · dimap f g as required. ♥

We also need the following observation, due to O’Connor [28].

Lemma 10.

dimap (fork (id, id)) fst · first= id

�

Proof. We have:

dimap (fork (id, id)) fst · first
= [[products]]

dimap (fork (id, id)) (fst · cross (id, const ())) · first
= [[dimap composition]]

dimap (fork (id, id)) fst · dimap id (cross (id, const ())) · first
= [[free theorem of first]]

dimap (fork (id, id)) fst · dimap (cross (id, const ())) id · first
= [[dimap composition]]

dimap (cross (id, const ()) · fork (id, id)) fst · first
= [[products]]

dimap (, ()) fst · first
= [[coherence of first with unit type: dimap fst (, ()) = first]]

dimap (, ()) fst · dimap fst (, ())
= [[dimap composition]]

dimap (fst · (, ())) (fst · (, ()))
= [[products]]

dimap id id
= [[dimap identity]]

id

as required. ♥

Proof (of Theorem 2). As with adapters, one direction is quite straightforward:

lensP2C (lensC2P (Lens v u))
= [[lensC2P]]

lensP2C (dimap (fork (v, id)) u · first)
= [[lensP2C]]
(dimap (fork (v, id)) u · first) (Lens id fst)

40

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

= [[composition]]
dimap (fork (v, id)) u (first (Lens id fst))
= [[first for Lens]]

dimap (fork (v, id)) u (Lens fst (fork (fst · cross (id, fst), snd · snd)))
= [[dimap for Lens]]

Lens (fst · fork (v, id)) (u · fork (fst · cross (id, fst), snd · snd) · cross d, fork (v, id)))
= [[products]]

Lens v u

For the other direction, we have:

lensC2P (lensP2C l) k
= [[lensP2C]]

lensC2P (l (Lens id fst)) k
= [[flip]]

flip lensC2P k (l (Lens id fst))
= [[free theorem of l, and Lemma 9]]

l (flip lensC2P k (Lens id fst))
= [[flip]]

l (lensC2P (Lens id fst) k)
= [[lensC2P]]

l (dimap (fork (id, id)) fst (first k))
= [[Lemma 10]]

l k

so lensC2P · lensP2C = id as required. ♥

C.3 Prisms

Lemma 11. The free theorem of right is that

dimap id h k= dimap g id l ⇒ dimap id (plus (f , h)) (right k) = dimap (plus (f , g)) id (right l)

�

Lemma 12. For given k :: P A B for some co-cartesian profunctor P and types A, B, the
function flip prismC2P k ::Prism A B s t→ P s t is a profunctor morphism from Prism A B
to P. �

Proof. We have:

dimap f g (flip prismC2P k (PrismC m b))
= [[flip]]

dimap f g (prismC2P (PrismC m b) k)
= [[prismC2P]]

dimap f g (dimap m (either id b) (right k))
= [[dimap composition]]

41

Profunctor Optics

dimap (m · f) (g · either id b) (right k)
= [[sums and either]]

dimap (m · f) (either id (g · b) · plus g id) (right k)
= [[dimap composition]]

dimap (m · f) (either id (g · b)) (dimap id (plus g id) (right k))
= [[free theorem of right (Lemma 11), with g= id, h= id, and k= l]]

dimap (m · f) (either id (g · b)) (dimap (plus g id) id (right k))
= [[dimap composition]]

dimap (plus g id ·m · f) (either id (g · b)) (right k)
= [[prismC2P]]

prismC2P (PrismC (plus g id ·m · f) (g · b)) k
= [[dimap for PrismC]]

prismC2P (dimap f g (PrismC m b)) k
= [[flip]]

flip prismC2P k (dimap f g (PrismC m b))

So dimap f g · flip prismC2P k= flip prismC2P k · dimap f g as required. ♥

We also need the following result:

Lemma 13.

dimap Right (either id id) · right= id

�

Proof. Writing absurd :: 0→ a for the unique function from the empty type to any
other, we have:

dimap Right (either id id) · right
= [[sums]]

dimap (plus absurd id · Right) (either id id) · right
= [[dimap composition]]

dimap Right (either id id) · dimap (plus absurd id) id · right
= [[free theorem of right]]

dimap Right (either id id) · dimap id (plus absurd id) · right
= [[dimap composition]]

dimap Right (either id id · plus absurd id) · right
= [[coherence of right with empty type: dimap (either absurd id) Right= right]]

dimap Right (either id id · plus absurd id) · dimap (either absurd id) Right
= [[dimap composition]]

dimap (either absurd id · Right) (either id id · plus absurd id · Right)
= [[sums]]

dimap id id
= [[dimap identity]]

id

as required. ♥

42

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

Proof (of Theorem 3). As with adapters, one direction is quite straightforward:

prismP2C (prismC2P (PrismC m b))
= [[prismC2P]]

prismP2C (dimap m (either id b) · right)
= [[prismP2C]]
(dimap m (either id b) · right) (PrismC Right id)
= [[composition]]

dimap m (either id b) (right (PrismC Right id))
= [[right for PrismC]]

dimap m (either id b) (PrismC (either (Left · Left) (plus Right id · Right)) Right)
= [[dimap for PrismC]]

PrismC (plus (either id b) id · either (Left · Left) (plus Right id · Right) ·m) (either id b · Right)
= [[sums]]

PrismC m b

For the other direction, we have:

prismC2P (prismP2C l) k
= [[prismP2C]]

prismC2P (l (PrismC Right id)) k
= [[flip]]

flip prismC2P k (l (PrismC Right id))
= [[free theorem of l, and Lemma 12]]

l (flip prismC2P k (PrismC Right id))
= [[flip]]

l (prismC2P (PrismC Right id) k)
= [[prismP2C]]

l (dimap Right (either id id) (right k))
= [[Lemma 13]]

l k

so prismC2P · prismP2C = id as required. ♥

C.4 Traversals

This proof depends on the fact that FunLists are traversable:

travFunList :: Applicative f ⇒ (a→ f b)→ FunList a c t→ f (FunList b c t)
travFunList f (Done t) = pure (Done t)
travFunList f (More x l) = pure More 〈∗〉 f x 〈∗〉 travFunList f l

Indeed, the following lemma shows that FunLists are in a sense the archetypical
traversable containers: an application of traverse in the FunList applicative functor can
be expressed in terms of travFunList.

Lemma 14. For any h :: A→ FunList B C D, we have

43

Profunctor Optics

traverse (Traversal h) = Traversal (travFunList h)

�

Proof. We prove this by structural induction over FunLists. Both cases start in the same
way, so we capture the common reasoning first. Suppose that h :: S→ FunList A B T,
and let k = extract (traverse (Traversal h)) so that traverse (Traversal h) = Traversal k.
Then

traverse (Traversal h)
= [[traverse; k]]

dimap out inn (right (par (Traversal h) (Traversal k)))
= [[par for Traversal]]

dimap out inn (right (Traversal (pair h k)))
= [[right for Traversal]]

dimap out inn (Traversal (either (Done · Left) (fmap Right · pair h k)))
= [[dimap for Traversal]]

Traversal (fmap inn · either (Done · Left) (fmap Right · pair h k) · out)

so

extract (traverse (Traversal h)) = fmap inn · either (Done · Left) (fmap Right · pair h k) · out

We now prove that

extract (traverse (Traversal h)) = travFunList h

by structural induction over the FunList argument. Again, let k= extract (traverse (Traversal h)).
For the base case Done t, we have:

extract (traverse (Traversal h)) (Done t)
= [[first steps (above)]]

fmap inn (either (Done · Left) (fmap Right · pair h k) (out (Done t)))
= [[out]]

fmap inn (either (Done · Left) (fmap Right · pair h k) (Left t))
= [[sums]]

fmap inn (Done (Left t))
= [[fmap for FunList]]

Done (inn (Left t))
= [[out]]

Done (Done t)
= [[pure for FunList]]

pure (Done t)
= [[travFunList]]

travFunList h (Done t)

For the inductive step More x l, we assume the inductive hypothesis

extract (traverse (Traversal h)) l= travFunList h l

44

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

and then calculate:

extract (traverse (Traversal h)) (More x l)
= [[first steps (above)]]

fmap inn (either (Done · Left) (fmap Right · pair h k) (out (More x l)))
= [[out]]

fmap inn (either (Done · Left) (fmap Right · pair h k) (Right (x, l)))
= [[sums]]

fmap inn (fmap Right (pair h k (x, l)))
= [[pair]]

fmap inn (fmap Right (pure (,) 〈∗〉 h x 〈∗〉 k l))
= [[inn]]

pure More 〈∗〉 h x 〈∗〉 k l
= [[inductive hypothesis]]

pure More 〈∗〉 h x 〈∗〉 travFunList h l
= [[travFunList]]

travFunList h (More x l)

which completes the proof. ♥

Next, we show that traversal of the empty FunList is essentially the identity trans-
former, constructed from empty using first and the left unit isomorphism for products:

identity :: (Cartesian p, Monoidal p)⇒ p a a
identity = dimap lunit′ lunit (first empty)

Lemma 15.

dimap (const (Done t)) id (traverse k) = dimap id (const (Done t)) identity

(where const :: a→ b→ a yields a constant function). �

Proof. We have:

dimap (const (Done t)) id (traverse k)
= [[traverse]]

dimap (const (Done t)) id (dimap out inn (right (par k (traverse k))))
= [[dimap composition]]

dimap id inn (dimap (out · const (Done t)) id (right (par k (traverse k))))
= [[out (Done t) = Left t]]

dimap id inn (dimap (const (Left t)) id (right (par k (traverse k))))
= [[property of right: dimap Left id (right f) = dimap id Left identity]]

dimap id inn (dimap (const t) id (dimap id Left identity))
= [[dimap composition]]

dimap (const t) (inn · Left) identity
= [[free theorem of identity: dimap f id identity = dimap id f identity]]

dimap id (inn · Left · const t) identity

45

Profunctor Optics

= [[inn]]
dimap id (const (Done t)) identity

as required. ♥

Similarly, traversal of a singleton FunList is essentially a single application of the
traversal body.

Lemma 16. The free theorem of par is that

dimap (cross (f , f ′)) (cross (g, g′)) (par h h′) = par (dimap f g h) (dimap f ′ g′ h′)

�

Lemma 17.

dimap single id (traverse k) = dimap id single k

�

Proof. We have:

dimap single id (traverse k)
= [[traverse]]

dimap single id (dimap out inn (right (par k (traverse k))))
= [[dimap composition]]

dimap id inn (dimap (out · single) id (right (par k (traverse k))))
= [[out (single x) = Right (x, Done id)]]

dimap id inn (dimap (λx→ Right (x, Done id)) id (right (par k (traverse k))))
= [[either id id · Right= id]]

dimap id inn (dimap (λx→ Right (x, Done id)) (either id id · Right) (right (par k (traverse k))))
= [[dimap composition]]

dimap id inn (dimap (, Done id) Right (dimap Right (either id id) (right (par k (traverse k)))))
= [[Lemma 13]]

dimap id inn (dimap (, Done id) Right (par k (traverse k)))
= [[dimap composition]]

dimap (, Done id) (inn · Right) (par k (traverse k))
= [[products, dimap composition]]

dimap runit′ (inn · Right) (dimap (cross (id, const (Done id))) id (par k (traverse k)))
= [[free theorem of par (Lemma 16)]]

dimap runit′ (inn · Right) (par k (dimap (const (Done id)) id (traverse k)))
= [[Lemma 15]]

dimap runit′ (inn · Right) (par k (dimap id (const (Done id)) identity))
= [[free theorem of par (Lemma 16) again]]

dimap runit′ (inn · Right) (dimap id (cross (id, const (Done id))) (par k identity))
= [[dimap composition]]

dimap id (inn · Right · cross (id, const (Done id))) (dimap runit′ id (par k identity))
= [[(identity :: P 1 1) = empty (see below)]]

46

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

dimap id (inn · Right · cross (id, const (Done id))) (dimap runit′ id (par k empty))
= [[par and empty]]

dimap id (inn · Right · cross (id, const (Done id))) (dimap id runit′ k)
= [[dimap composition]]

dimap id (inn · Right · cross (id, const (Done id)) · runit′) k
= [[inn · Right · cross (id, const (Done id)) · runit′ = single]]

dimap id single k

Here, we used the fact that identity at the unit type is simply empty:

identity1

= [[identity]]
dimap lunit′ lunit (first1 empty)
= [[first at unit type]]

dimap lunit′ lunit (dimap runit runit′ empty)
= [[dimap composition]]

dimap (lunit′ · runit) (lunit · runit′) empty
= [[lunit′ · runit= id= lunit · runit′ :: 1→ 1]]

dimap id id empty
= [[dimap identity]]

empty

where we have written identity1 for identity :: P 1 1 and first1 for first :: P A B →
P (A× 1) (B× 1) as mnemonics for their more specialized types. ♥

The next lemma states that traversal of a FunList using a body that constructs a
singleton makes a structure of singletons, and unpacking each of these singletons
yields the original FunList. To prove this, we need the free theorem of 〈∗〉:

Lemma 18. The free theorem of 〈∗〉 is that

fmap (h·) fs= fmap (·k) gs ⇒ fmap f (fs 〈∗〉 xs) = gs 〈∗〉 fmap k xs

�

Lemma 19.

fmap fuse · travFunList single= id

�

Proof. We proceed by structural induction over the FunList argument. For the base
case Done t, we have:

fmap fuse (travFunList single (Done t))
= [[travFunList]]

fmap fuse (pure (Done t))
= [[pure for FunList]]

47

Profunctor Optics

fmap fuse (Done (Done t))
= [[fmap for FunList]]

Done (fuse (Done t))
= [[fuse]]

Done t

as required. For the inductive case More x l, we assume the inductive hypothesis that

fmap fuse (travFunList single l) = l

and then calculate:

fmap fuse (travFunList single (More x l))
= [[travFunList]]

fmap fuse (pure More 〈∗〉 single x 〈∗〉 travFunList single l)
= [[single]]

fmap fuse (pure More 〈∗〉More x (Done id) 〈∗〉 travFunList single l)
= [[pure and 〈∗〉 for FunList]]

fmap fuse (More x (Done More) 〈∗〉 travFunList single l)
= [[free theorem of 〈∗〉 (Lemma 18), with k= id]]

fmap (fuse·) (More x (Done More)) 〈∗〉 travFunList single l
= [[fmap for FunList]]

More x (Done ((fuse·) ·More)) 〈∗〉 travFunList single l
= [[little sublemma (see below)]]

More x (Done (flip fuse)) 〈∗〉 travFunList single l
= [[More x (Done (flip f)) 〈∗〉 l=More x (fmap f l)]]

More x (fmap fuse (travFunList single l))
= [[induction]]

More x l

which completes the proof. We used a little sublemma that

(fuse·) ·More= flip fuse

whose justification is simply a matter of expanding definitions. ♥

Then we need to show that the translation from concrete to profunctor traversals is
a profunctor morphism, as with the other three classes of optic.

Lemma 20. For given k :: P A B for some cartesian, co-cartesian, monoidal profunctor
P and types A, B, the function flip traversalC2P k::Traversal A B s t→ P s t is a profunctor
morphism from Traversal A B to P. �

Proof. We have:

dimap f g (flip traversalC2P k (Traversal h))
= [[flip]]

dimap f g (traversalC2P (Traversal h) k)

48

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

= [[traversalC2P]]
dimap f g (dimap h fuse (traverse k))
= [[dimap composition]]

dimap (h · f) (g · fuse) (traverse k)
= [[naturality of fuse]]

dimap (h · f) (fuse · fmap g) (traverse k)
= [[dimap composition]]

dimap (h · f) fuse (dimap id (fmap g) (traverse k))
= [[free theorem of traverse]]

dimap (h · f) fuse (dimap (fmap g) id (traverse k))
= [[dimap composition]]

dimap (fmap g · h · f) fuse (traverse k)
= [[traversalC2P]]

traversalC2P (Traversal (fmap g · h · f)) k
= [[dimap for Traversal]]

traversalC2P (dimap f g (Traversal h)) k
= [[flip]]

flip traversalC2P k (dimap f g (Traversal h))

In the middle, we used a specialization of the free theorem of traverse to

dimap id (fmap g) (traverse k) = dimap (fmap g) id (traverse k)

Thus

dimap f g · flip traversalC2P k= flip traversalC2P k · dimap f g

as required. ♥

Finally, we can proceed with the proof that the concrete and profunctor representa-
tions of traversals are equivalent.

Proof (of Theorem 4). As with the earlier proofs, one direction is fairly straightfor-
ward:

traversalP2C (traversalC2P (Traversal h))
= [[traversalC2P]]

traversalP2C (dimap h fuse · traverse)
= [[traversalP2C]]

dimap h fuse (traverse (Traversal single))
= [[Lemma 14: traversal on FunLists]]

dimap h fuse (Traversal (travFunList single))
= [[dimap for Traversal]]

Traversal (fmap fuse · travFunList single · h)
= [[Lemma 19: traversal with singletons]]

Traversal h

For the other direction, we have:

49

Profunctor Optics

traversalC2P (traversalP2C l) k
= [[traversalP2C]]

traversalC2P (l (Traversal single)) k
= [[flip]]

flip traversalC2P k (l (Traversal single))
= [[Lemma 20: flip traversalC2P k is a profunctor morphism]]

l (flip traversalC2P k (Traversal single))
= [[flip]]

l (traversalC2P (Traversal single) k)
= [[traversalC2P]]

l (dimap single fuse (traverse k))
= [[Lemma 17: traversal of a singleton]]

l (dimap id fuse (dimap id single k))
= [[dimap composition]]

l (dimap id (fuse · single) k)
= [[fuse · single= id]]

l (dimap id id k)
= [[dimap identity]]

l k

which completes the proof. ♥

50

Matthew Pickering, Jeremy Gibbons, and Nicolas Wu

About the authors

Matthew Pickering is a PhD student at the University of Bris-
tol. Contact him at matthew.pickering@bristol.ac.uk.

Jeremy Gibbons is Professor of Computing at the University
of Oxford. Contact him at jeremy.gibbons@cs.ox.ac.uk.

NicolasWu is a Lecturer in Computer Science at the University
of Bristol. Contact him at nicolas.wu@bristol.ac.uk.

51

mailto:matthew.pickering@bristol.ac.uk
mailto:jeremy.gibbons@cs.ox.ac.uk
mailto:nicolas.wu@bristol.ac.uk

	1 Introduction
	2 Optics, concretely
	2.1 Adapters
	2.2 Traversal
	2.3 Traversals as concrete optics

	3 Profunctors
	4 Optics in terms of profunctors
	4.1 Profunctor adapters
	4.2 Profunctor lenses
	4.3 Profunctor prisms
	4.4 Profunctor traversals

	5 Composing profunctor optics
	6 Related work
	7 Discussion
	A Haskell background
	B Alternative implementation
	C Proofs of equivalence
	C.1 Adapters
	C.2 Lenses
	C.3 Prisms
	C.4 Traversals

	About the authors

