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Abstract

We establish a tight NP-hardness result for the Set-Cover problem based on a strong
PCP theorem. Our work implies that it isNP-hard to approximate Set-Cover on instances
of size N to within (1−α) lnN for arbitrarily small α > 0. Our reduction establishes a tight
trade-off between the approximation accuracy α and the running time exp(NΩ(α)) assuming
Sat requires exponential time.

The reduction is obtained by modifying Feige’s reduction. The latter provides a lower
bound of exp(NΩ(α/ log logN)) on the time required for (1 − α) lnN -approximating Set-
Cover assuming Sat requires exponential time (note that N1/ log logN = No(1)). The
modification uses a combinatorial construction of a bipartite graph in which any coloring of
the first side that does not use a color for more than a small fraction of the vertices, makes
most vertices on the other side have all their neighbors colored in different colors.

In the conference version of this work, the Set-Cover result was conditioned on a con-
jecture we call “The Projection Games Conjecture” (PGC), an instantiation of the Sliding
Scale Conjecture of Bellare, Goldwasser, Lund and Russell to projection games. More pre-
cisely, the prerequisite was a quantitative version of this conjecture that was slightly beyond
what was known at the time of the paper’s writing. Shortly afterwords, Dinur and Steurer,
based on a result by the author and Raz, proved the quantitative version of the conjecture
sufficient for the Set-Cover result.

More broadly, in this paper we discuss the Projection Games Conjecture and its appli-
cations to hardness of approximation, e.g., to polynomial hardness factors for Closest-
Vector-Problem and to studying the behavior of CSPs around their approximability
threshold.

1 Set-Cover

In Set-Cover, given a collection of sets over the same base set, such that the sets cover all of
the base set, the goal is to find as few sets as possible that cover the entire base set:

Definition 1 (Set-Cover). The input to Set-Cover consists of a base set U , |U | = n and
subsets S1, . . . , Sm ⊆ U ,

∪m
j=1 Sj = U , m ≤ poly(n). The goal is to find as few sets Si1 , . . . , Sik

as possible that cover U , i.e.,
∪k

j=1 Sij = U .
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Set-Cover is a classic NP-hard optimization problem. It is equivalent to the Hitting-Set,
Hypergraph-Vertex-Cover and Dominating-Set problems, and is a special case of many
other problems, e.g., Group-Steiner-Tree and Group-Traveling-Salesman-Problem.

The greedy algorithm was shown to give a (lnn+1)-approximation for Set-Cover [Chv79].
Slav́ık analyzed the low order terms of the greedy algorithm, and showed that it in fact obtains an
approximation to within lnn− ln lnn+O(1) [Sla96]. Set-Cover also has a linear programming
based algorithm that gives approximation to within similar factors [Sri99].

Lund and Yannakakis proved that Set-Cover cannot be approximated in polynomial time
to within any factor better than (log2 n)/4, assuming NP ̸⊆ DTIME(npoly logn) [LY93]. By
adapting their construction, Feige changed the leading constant to the right constant, and
showed that Set-Cover cannot be approximated in polynomial time to within (1− α) lnn for
any α > 0, assuming NP ̸⊆ DTIME(nO(lg lgn)) [Fei98] (the improvement in the assumption is
due to the proof of the parallel repetition theorem [Raz98] in the time between the two results).
Under P ≠ NP, the best hardness factor known prior to this work is about 0.2 lnn [AMS06],
based on the PCP of [RS97, AS03].

The assumption NP ̸⊆ DTIME(nO(lg lgn)) in Feige’s work comes from the use of the parallel
repetition theorem. Parallel repetition is used by Feige not only to ensure very low error
1/(log n)O(1) for PCP, but also for its unique structure. It was assumed by some that the blow-
up incurred by parallel repetition was inherent to the problem. We show that this is not the
case. Moreover, the blow-up in our reduction is essentially optimal.

Theorem 2. [With [DS13]] For every 0 < α < 1, (exact) Sat on inputs of size n can be
reduced in polynomial time to approximating Set-Cover to within (1 − α) lnN on inputs of
size N = nO(1/α).

The theorem proves that approximating Set-Cover on inputs of size N better than (1 −
α) lnN is NP-hard. Interestingly, the blow-up of the reduction N = nO(1/α) is optimal (up
to the constant in the O(·)), assuming that Sat requires exponential time 2Ω(n) (“The Expo-
nential Time Hypothesis” [IP99]). This follows from a sub-exponential 2O(Nα+poly logN)-time
approximation algorithm for (1− α) lnN approximating Set-Cover [CKW09].

2 Projection Games and the Projection Games Conjecture

In the conference version of this work [Mos12], Theorem 2 was conditioned on a conjecture we
call “The Projection Games Conjecture” (PGC), or, more precisely, on a quantitative version
of this conjecture that was slightly beyond what was known at the time of the paper’s writing.
Shortly afterward, Dinur and Steurer [DS13], based on a result by the author and Raz [MR08],
proved the quantitative version of the conjecture sufficient for Theorem 2. Shortly after that,
the author [Mos14] gave an alternative, and arguably simpler, proof of the required theorem.
In this section we discuss the Projection Games Conjecture.

Most of the NP-hardness of approximation results known today (e.g., all of the results in
H̊astad’s paper [H̊as01]) are based on a PCP Theorem for projection games (also known as
Label-Cover) [AS98, ALM+98, Raz98, MR10]. The input to a projection game consists of:
(i) a bipartite graph G = (A,B,E); (ii) finite alphabets ΣA, ΣB; (iii) constraints (also called
projections) πe : ΣA → ΣB for every edge e ∈ E. The goal is to find assignments to the vertices
φA : A → ΣA, φB : B → ΣB that satisfy as many of the edges as possible. We say that an edge
e = (a, b) ∈ E is satisfied, if the projection constraint holds, i.e., πe(φA(a)) = φB(b). We denote
the size of a projection game by n = |A|+ |B|+ |E|. The size of the alphabet of the projection
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game is max {|ΣA| , |ΣB|}. A PCP Theorem for projection games with soundness error ε and
alphabet size k (where ε and k may depend on n) states the following:

It is NP-hard, given a projection game of size n with alphabets of size k, to distin-
guish between the case where all edges can be satisfied and the case where at most ε
fraction of the edges can be satisfied.

We can refine this statement by saying that there is a reduction from (exact) Sat to projection
games, which maps instances of Sat of size n to projection games of size N = n1+o(1) poly(1/ε).
Such PCPs are referred to as “almost-linear size PCP” because of the exponent of n, although
for small ε the blow-up may be super-linear.

The author and Raz proved the following:

Theorem 3 ([MR10]). There exists c > 0, such that for every ε ≥ 1/N c, Sat on input of size
n can be reduced to a projection game of size is N for N = n1+o(1) poly(1/ε). The projection
game is over an alphabet of size exponential in 1/ε, and has soundness error ε. The reduction
can be computed in linear time in the size and the alphabet size of the projection game. The
projection game is on a bi-regular graph whose degrees are poly(1/ε).

One cannot hope for a soundness error that is lower than 1/N . Hence, the dependence of ε in
N is as low as possible up to the identity of the constant c. On the other hand, the alphabet size
in Theorem 3 is not known to be tight. It can be shown that the alphabet size must be at least
1/ε where ε is the soundness error (assuming P ̸= NP). Moreover, certain PCP constructions
– while deficient in other parameters – have alphabets of size poly(1/ε), see, e.g., [Raz98]. This
motivates the conjecture that an alphabet size of poly(1/ε) could be achieved in Theorem 3 as
well:

Conjecture 1 (Projection Games Conjecture1, PGC). There exists c > 0, such that for every
ε ≥ 1/N c, Sat on input of size n can be efficiently reduced to a projection game of size N =
n1+o(1) poly(1/ε) over an alphabet of size poly(1/ε) that has soundness error ε.

In almost all applications, one wishes the size and the alphabet size to be at most polynomial
in n. This happens in Theorem 3 only when ε ≥ 1/(logN)b for a constant b > 0. The PGC, on
the other hand, gives polynomial size and alphabet size for any ε ≥ 1/N c.

The PGC is the Sliding Scale Conjecture of Bellare, Goldwasser, Lund and Russell [BGLR93]
instantiated for projection games (of almost-linear size). By “sliding scale” we refer to the idea
that the error can be decreased as we increase the alphabet size. Bellare et al conjectured that
polynomially small error could be achieved simultaneously with polynomial alphabet, even for
two queries. They did not formulate their conjecture for projection games – the importance
of projection games was not fully recognized when they published their work in 1993. Today,
focusing on the projection games version of the conjecture as in Conjecture 1 is folklore in the
PCP community.

Approximation algorithms for projection games were researched [Pel07, CHK09, MM13], and
the conjecture is consistent with the state of the art algorithm, giving 1/ε = O( 4

√
Nk) [MM13].

For PCPs with more than two queries (corresponding to games on hypergraphs, where the
edges carry general predicates rather than projections), soundness error approaching polynomial,
ε = 2−(logN)1−ϵ

for every ϵ > 0, is known [DFK+11]. Alas, these PCPs are not projection games,
and the number of queries depends on 1/ϵ.

1A slightly weaker version of the Projection Games Conjecture is one in which the size of the projection game
is polynomial N = poly(n, 1/ε) rather than almost-linear.
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Dinur and Steurer show how to achieve soundness error that is poly-logarithmic in N (for
any poly-logarithm) simultaneously with polynomial-sized alphabet, at the cost of increasing
the size. This suffices for the reduction to Set-Cover in Theorem 2 to go through. The idea is
to apply parallel repetition on Theorem 3, and Dinur and Steurer were the first to successfully
analyze parallel repetition for the relevant parameters:

Theorem 4 ([DS13]). There exists c > 0, such that for every ε ≥ 1/N c and every k ≥ 1, Sat
on input of size n can be reduced to a projection game on a bi-regular graph whose size is Nk

for N = n1+o(1) poly(1/ε). The projection game is over an alphabet of size exponential in 1/ε
and k, and has soundness error (2ε)k/2. The reduction can be computed in linear time in the
size and the alphabet size of the projection game. The projection game is on a bi-regular graph
whose degrees are poly(1/εk).

A similar theorem was later proved by the author [Mos14] via a combinatorial analysis of
parallel repetition.

The Projection Games Conjecture has a similar flavor to the Unique Games Conjecture
(UGC) of Khot [Kho02]: both assert that low soundness error2 for a special kind of 2-prover
games can be obtained for sufficiently large alphabets. Unique games are the special case of
projection games in which the projections πe are one-to-one. Unique games are easier than
general projection games. In particular, while there are constructions of projection games with
low soundness error for Sat, we do not know of any constructions of unique games with almost-
perfect completeness3 and bounded soundness error. The two conjectures, UGC and PGC, seem
unrelated: neither would imply the other.

The following variant of the PGC is useful for hardness of approximation:

Definition 5 (Linear projection game). A linear projection game is a projection game in which
the alphabets are of the form ΣA = Fa, ΣB = Fb, where F is a finite field, and a ≥ b are natural
numbers. The projections in the game are affine transformations Fa → Fb.

Conjecture 2 (Linear PGC). There exists c > 0, such that for every ε ≥ 1/nc, Sat on inputs
of size n can be efficiently reduced to a linear projection game of size N = n1+o(1) poly(1/ε)
and alphabet size poly(1/ε). Satisfiable instances of Sat are mapped to projection games where
1 − ε fraction of the edges can be satisfied, while unsatisfiable instances of Sat are mapped to
projection games where at most ε fraction of the edges can be satisfied.

Note that for linear projection games, one can efficiently distinguish the case where all edges
can be satisfied from the case where not all edges can be satisfied – by Gaussian elimination.
Therefore, it was necessary to modify the statement of Conjecture 1.

In Section 5 we discuss applications of the PGC and the linear PGC to proving polynomial
hardness factors for the Closest-Vector-Problem and to studying the behavior of Max-
3LIN and other CSPs around their approximability thresholds.

3 Preliminaries

For a set S and a natural number ℓ we denote by
(
S
ℓ

)
the family of all sets of ℓ elements from S.

2The unique games conjecture only asks for arbitrarily small constant soundness error ε, while the PGC asks
for polynomially small error.

3For unique games, if all the edges can be satisfied simultaneously, then one can find a satisfying assignment
in polynomial time. Hence, we consider the case where almost all edges can be satisfied simultaneously (“almost
perfect completeness”).
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We assume without loss of generality that the projection game in Conjecture 1 is bi-regular,
i.e., all the A vertices have the same degree, which we call the A-degree, and all the B vertices
have the same degree, which we call the B-degree. We note that any projection game can
be converted to bi-regular using a technique developed in [MR10] (“right degree reduction –
switching sides – right degree reduction”), and the cost in the soundness error and graph size
does not change the parameters as stated in Conjecture 1.

4 Set-Cover Hardness

4.1 The New Component

Feige uses the structure obtained from parallel repetition to achieve a projection game in which
the soundness guarantee is that very few B vertices have any two of their neighbors agree on a
value for them:

Definition 6 (Total disagreement). Assume a projection game (G = (A,B,E),ΣA,ΣB,Φ). Let
φA : A → ΣA be an assignment to the A vertices. We say that the A vertices totally disagree
on a vertex b ∈ B if there are no two neighbors a1, a2 ∈ A of b, e1 = (a1, b), e2 = (a2, b) ∈ E,
for which

πe1(φA(a1)) = πe2(φA(a2)).

Definition 7 (Agreement soundness). Assume a projection game (G = (A,B,E),ΣA,ΣB,Φ)
for deciding whether a boolean formula ϕ is satisfiable. We say that G has agreement soundness
error ε, if for unsatisfiable ϕ, for any assignment φA : A → ΣA, the A vertices are in total
disagreement on at least 1− ε fraction of the b ∈ B.

Feige used parallel repetition together with a coding theoretic “trick” to achieve agreement
soundness. We show a different way to achieve agreement soundness. Our construction centers
around the following combinatorial construction:

Lemma 4.1 (Combinatorial construction). For 0 < ε < 1, for a prime power D, and n that is
a power of D, there is an explicit construction of a regular graph H = (U, V,E) with |U | = n,
V -degree D, and |V | ≤ nO(1) that satisfies the following. For every partition U1, . . . , Ul of U
into sets, such that |Ui| ≤ ε |U | for i = 1, . . . , l, the fraction of vertices v ∈ V with more than
one neighbor in any single set Ui, is at most εD2.

Note that the combinatorial property could be achieved by a randomized construction, or
by a construction that has a V vertex per every possible set of D neighbors in U . However,
the first construction is randomized and the second – too wasteful with a size of ≈ |U |D. The
lemma can therefore be thought of as a derandomization of the randomized/full constructions.

Proof. (of Lemma 4.1) Associate U with a space Fm where F is a finite field of size |F| = D,
and m is a natural number. Let V be the set of all lines in Fm. Hence, |V | =

(|U |
2

)
/
(|F|
2

)
. We

connect a line v ∈ V with a point u ∈ U if u lies in v.
Let us show this construction satisfies the desired property. Fix a partition U1, . . . , Ul of U

into tiny sets, |Ui| ≤ ε |U | for i = 1, . . . , l. For every 1 ≤ i ≤ l, the number of V lines that have
at least two neighbors in Ui is at most

(|Ui|
2

)
. Thus the total number of V vertices with more
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than one neighbor in a single Ui is at most

l∑
i=1

(
|Ui|
2

)
≤

l∑
i=1

|Ui|2

2

≤ max {|Ui| | 1 ≤ i ≤ l} ·
l∑

i=1

|Ui|
2

≤ ε |U | · |U |
2

≤ ε |F|2 |V | .

We show how to take a projection game with standard soundness and convert it to a projection
game with total disagreement soundness, by combining it with the graph from Lemma 4.1.

Lemma 4.2. Let D ≥ 2 be a prime power and let n be a power of D. Let ε > 0. From
a projection game with soundness error ε2D2 and B-degree n, we can construct a projection
game with agreement soundness error 2εD2 and B-degree D. The transformation preserves the
alphabets of the game. The size is raised to a constant power.

Proof. Let G = (G = (A,B,E),ΣA,ΣB,Φ) be the original projection game. Let H = (U, V,EH)
be the graph from Lemma 4.1, where n, D and ε are as given in the current lemma. Let us
use U to enumerate the neighbors of a B vertex, i.e., there is a function E← : B × U → A that
given a vertex b ∈ B and u ∈ U , gives us the A vertex which is the u neighbor of b.

We create a new projection game (G = (A,B×V,E′),ΣA,ΣB,Φ
′). The intended assignment

to every vertex a ∈ A is the same as its assignment in the original game. The intended
assignment to a vertex ⟨b, v⟩ ∈ B × V is the same as the assignment to b in the original game.
We put an edge e′ = (a, ⟨b, v⟩) if E←(b, u) = a and (u, v) ∈ EH . We define πe′ ≡ π(a,b).

If there is an assignment to the original game that satisfies c fraction of its edges, then the
corresponding assignment to the new game satisfies c fraction of its edges.

Suppose there is an assignment for the new game φA : A → ΣA in which more than 2εD2

fraction of the vertices in B × V do not have total disagreement.
Let us say that b ∈ B is “good” if for more than an εD2 of the vertices in {b} × V the A

vertices do not totally disagree. Note that the fraction of good b ∈ B is at least εD2.
Focus on a good b ∈ B. Consider the partition of U into |ΣB| sets, where the set corresponding

to σ ∈ ΣB is:
Uσ = {u ∈ U | a = E←(b, u) ∧ e = (a, b) ∧ πe(φA(a)) = σ} .

By the goodness of b and the property of H, there must be σ ∈ ΣB such that |Uσ| > ε |U |. We
call σ the “champion” for b.

We define an assignment φB : B → ΣB that assigns good b’s their champions, and other
b’s arbitrary values. The fraction of edges that φA, φB satisfy in the original game is at least
ε2D2.

Next we consider a variant of projection games that is relevant for the reduction to Set-
Cover. In this variant the prover is allowed to assign each vertex ℓ values, and an agreement
is interpreted as agreement on one of the assignments in the list:
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Definition 8 (List total disagreement). Assume a projection game (G = (A,B,E),ΣA,ΣB,Φ).
Let ℓ ≥ 1. Let φ̂A : A →

(
ΣA
ℓ

)
be an assignment that assigns each A vertex l alphabet symbols.

We say that the A vertices totally disagree on a vertex b ∈ B if there are no two neighbors
a1, a2 ∈ A of b, e1 = (a1, b), e2 = (a2, b) ∈ E, for which there exist σ1 ∈ φ̂A(a1), σ2 ∈ φ̂A(a2),
such that

πe1(σ1) = πe2(σ2).

Definition 9 (List agreement soundness). Assume a projection game (G = (A,B,E),ΣA,ΣB,Φ)
for deciding membership whether a boolean formula ϕ is satisfiable. We say that G has list agree-
ment soundness error (ℓ, ε), if for unsatisfiable ϕ, for any assignment φ̂A : A →

(
ΣA
ℓ

)
, the A

vertices are in total disagreement on at least 1− ε fraction of the b ∈ B.

If a projection game has low error ε, then even when the prover is allowed to assign each A
vertex ℓ values, the game is still sound. This is argued in the next corollary:

Lemma 4.3 (Projection game with list agreement soundness). Let ℓ ≥ 1, 0 < ε′ < 1. A
projection game with agreement soundness error ε′ has list agreement soundness error (ℓ, ε′ℓ2).

Proof. Assume by way of contradiction that the projection game has an assignment φ̂A : A →(
ΣA
ℓ

)
such that on more than ε′ℓ2 fraction of the B vertices, the A vertices do not totally disagree.

Define an assignment φA : A → ΣA by assigning every vertex a ∈ A a symbol picked uniformly
at random from the ℓ symbols in φ̂A(a). If a vertex b ∈ B has two neighbors a1, a2 ∈ A that
agree on b under the list assignment φ̂A, then the probability that they agree on b under the
assignment φA is at least 1/ℓ2. Thus, under φA, the expected fraction of the B vertices that
have at least two neighbors that agree on them, is more than ε′. In particular, there exists
an assignment to the A vertices, such that more than ε′ fraction of the B vertices have two
neighbors that agree on them. This contradicts the agreement soundness of the game.

Summarizing the above:

Corollary 4.4. For any ℓ = ℓ(n) = poly log n, for any constant prime power D ≥ 2 and
constant 0 < α < 1, Sat on input of size n can be reduced to a projection game of size N =
poly(n) with alphabet size poly(n), where the B-degree is D, and the list agreement soundness
error is (ℓ, α).

Proof. Our starting point is the game from Theorem 4 with soundness error (2ε)k/2 so
√

(2ε)k/2 ≤
α/2(Dℓ)2. We apply Lemma 4.2 and Lemma 4.3.

4.2 Following Feige’s Reduction

In the remainder, we will show how to use Corollary 4.4 to obtain the desired hardness result
for Set-Cover. The reduction is along the lines of Feige’s original reduction.

For the reduction we rely on a combinatorial construction of a universe together with parti-
tions of it. Each partition covers the universe, but any cover that uses at most one set out of
each partition, is necessarily large:

Lemma 4.5 (Partition system, [NSS95]). For natural numbers m, D and 0 < α < 1, for
all u ≥ (DO(logD) logm)1/α, there is an explicit construction of a universe U of size u and
partitions P1, . . . ,Pm of U into D sets that satisfy the following: there is no cover of U with
ℓ = D ln |U | (1−α) sets Si1 , . . . , Siℓ, 1 ≤ i1 < · · · < iℓ ≤ m, such that set Sij belongs to partition
Pij .
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We will use the contrapositive of the lemma: if U has a cover of size at most ℓ, then this cover
must contain at least two sets from the same partition. The choice of parameters of interest to
us is: m is at most polynomial in n (m will be |ΣB| of the projection game), D is a sufficiently
large constant, and α is a small constant.

To see why ℓ = D ln |U | (1−α) is to be expected (this later determines the hardness factor we
get), think of the following randomized construction: each element in U corresponds to a vector
in [D]m, specifying for each of the m partitions, to which of its D sets it belongs. Consider a
uniformly random choice of such a vector. Fix any Si1 , . . . , Siℓ . The probability that a random
element is not covered by Si1 , . . . , Siℓ is (1−1/D)ℓ ≈ e−ℓ/D. When ℓ = D ln |U | (1−α), we have
e−ℓ/D ≥ 1/ |U |, and we expect one of the |U | elements in U not to be covered by Si1 , . . . , Siℓ . The
construction of “anti-universal sets” in [NSS95] de-randomizes this randomized construction.
This is the mapping from our notation to the notation in [NSS95]: m → n, D → b, ℓ → k, U is
the anti-universal set.

We now describe the reduction from a projection game G as in Corollary 4.4, to a Set-Cover
instance SCG .

Apply Lemma 4.5 for m = |ΣB| and D which is the B-degree of the projection game. The
parameter u will be determined later. Let U be the universe, and Pσ1 , . . . ,Pσm be the partitions
of U . We index the partitions by ΣB symbols σ1, . . . , σm. The elements of the Set-Cover
instance are B × U . Equivalently, each vertex b ∈ B has a copy of the universe U . Covering
this universe corresponds to satisfying the edges that touch b. There are m ways to satisfy the
edges that touch b – one for every possible assignment σ ∈ ΣB to b. The different partitions
covering U correspond to those different assignments.

For every vertex a ∈ A and an assignment σ ∈ ΣA to a we have a set Sa,σ in the Set-Cover
instance. Taking Sa,σ to the cover would correspond to assigning σ to a. Notice that a cover
might consist of several sets of the form Sa,· for the same a ∈ A, which is the reason we consider
list agreement. The set Sa,σ is a union of subsets, one for every edge e = (a, b) touching a.
Suppose e is the i’th edge coming into b (1 ≤ i ≤ D), then the subset associated with e is
{b} × S, where S is the i’th subset of the partition Pφe(σ).

If we have an assignment to the A vertices, such that all of b’s neighbors agree on one value for
b, then the D subsets corresponding to those neighbors and their assignments form a partition
that covers b’s universe. On the other hand, if one uses only sets that correspond to totally
disagreeing assignments to the neighbors, then by the definition of the partitions, covering U
requires ≈ ln |U | times more sets. Formally, we prove:

Claim 4.6. The following hold:

• Completeness: If all the edges in G can be satisfied, then SCG has a set cover of size |A|.

• Soundness: Let ℓ
.
= D ln |U | (1 − α) be as in Lemma 4.5. If G has agreement soundness

(ℓ, α), then every set cover of SCG is of size more than |A| ln |U | (1− 2α).

Proof. Completeness follows from taking the set cover corresponding to each of the A vertices
and its satisfying assignment.

Let us prove soundness. Assume by way of contradiction that there is a set cover C of SCG
of size at most |A| ln |U | (1− 2α). For every a ∈ A let sa be the number of sets in C of the form
Sa,·. Hence,

∑
a∈A sa = |C|. For every b ∈ B let sb be the number of sets in C that participate

in covering {b} × U . Then, denoting the A-degree of G by DA,∑
b∈B

sb =
∑
a∈A

saDA ≤ DA |A| ln |U | (1− 2α) = D |B| ln |U | (1− 2α).
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In other words, on average over the b ∈ B, the universe {b}×U is covered by at mostD ln |U | (1−
2α) sets. Therefore, by Markov’s inequality, the fraction of b ∈ B whose universe {b} × U is
covered by at most D ln |U | (1 − α) = ℓ sets is at least α. By the contrapositive of Lemma 4.5
and our construction, for such b ∈ B, there are two edges e1 = (a1, b), e2 = (a2, b) ∈ E with
Sa1,σ1 , Sa2,σ2 ∈ C where πe1(σ1) = πe2(σ2).

We define an assignment φ̂A : A →
(
ΣA
ℓ

)
to the A vertices as follows. For every a ∈ A pick

ℓ different symbols σ ∈ ΣA from those with Sa,σ ∈ C (add arbitrary symbols if there are not
enough). As we showed, for at least α fraction of the b ∈ B, the A vertices will not totally
disagree.

Proof of Theorem 2: Fix a constant 0 < α < 1 and a prime power D. For a sufficiently
large ℓ′ = Θ(log n), let G = (G = (A,B,E),ΣA,ΣB,Φ) be the projection game with list

agreement soundness (ℓ′, α) obtained from Corollary 4.4. We take u = |U | = Θ(|B|1/α), so
u ≥ (DO(logD) log |ΣB|)1/α as required for Lemma 4.5. Let ℓ = D lnu(1 − α) ≤ ℓ′. The
inapproximability ratio we get for Set-Cover from Claim 4.6 is (1−2α) ln |U |. Let N = |U | |B|
be the number of elements in SCG . We have lnN = (1 + α) ln |U |. The inapproximability ratio
is at least (1− 3α) lnN . Note that the reduction is polynomial in |A|, |ΣA|, |B|, |ΣB| and |U |.
Hence, the reduction is polynomial in n. This proves Theorem 2.

5 Applications of the Projection Games Conjecture

In this section we describe a few applications of the PGC to hardness of approximation.

5.1 The Closest Vector Problem

The Closest-Vector-Problem (CVP) is to find, given a basis b1, . . . , bn ∈ Rn and a point
x ∈ Rn, the closest point to x – with respect to the ℓ2 distance – in the lattice spanned by
b1, . . . , bn, i.e., in {

∑n
i=1 αibi |α1, . . . , αn ∈ Z}.

Lattice problems like CVP are quite natural and have been researched a lot. One of the
motivations for studying them comes from cryptography, where encryption systems believed
to be secure even against quantum adversaries were built assuming the worst-case hardness of
approximating lattice problems. The inapproximability factors known to be useful for cryp-
tography are as large as Θ̃(n) for constructing collision resistant hash functions and one way
functions [MR07], and Θ(n2) for public-key cryptography [Reg09], but it is unlikely that such an
approximation is NP-hard, as it (and in fact any approximation to within roughly

√
n) would

result in a collapse of the polynomial hierarchy [AR05]. For more details see [MG02, Reg10].
A central question is whether one can show that lattice problems areNP-hard to approximate

to within some polynomial factors ≪
√
n. The best existing NP-hardness result for CVP is

for a factor of exp((log n)1−α) for any constant α > 0 (and even for certain α = o(1)) [DKS98].
Assuming the PGC, we can obtain hardness of approximating CVP up to polynomial factors
by a reduction of Arora, Babai, Stern and Sweedyk [ABSS97]. We will state the theorem as
in [Kho10]:

Theorem 10 (CVP Hardness [ABSS97]). Given a projection game G = (G = (A,B,E),ΣA,ΣB,Φ)
one can construct in poly(N) time a lattice L in RN and a point x ∈ RN where N = |A| |ΣA|+
|B| |ΣB|, such that:
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• Completeness: If there is an assignment to the vertices of G that satisfies all of its edges,
then the distance between x and L is at most

√
2 |A| |B|.

• Soundness: If there is no assignment to the vertices of G that satisfies even ε fraction of
its edges, then the distance of x and L is at least 0.1

√
|A| |B| /ε.

Hence, assuming the PGC, there exists c > 0, such that approximating Closest-Vector-
Problem to within N c on an N -dimensional lattice is NP-hard.

5.2 Around the Approximability Thresholds of CSPs

Constraint Satisfaction Problems (CSP) are defined by a set of variables v1, . . . , vn, an alphabet
Σ, and constraints φ1, . . . , φm, each depending on q variables. The number q = O(1) is called the
arity of the CSP. The task is to find an assignment to the variables that maximizes the number of
satisfied constraints. One obtains specific CSPs by restricting the type of constraints. Examples
include Max-3Sat, where one is given 3CNF clauses on Boolean variables, and Max-qLin,
where one is given linear equations over GF (2).

CSPs were studied a lot in hardness of approximation, and for many of them we know sharp
approximability thresholds. In fact, assuming the Unique Games Conjecture, we know that all
CSPs over constant-sized alphabets have thresholds, where they pass from admitting polynomial
time algorithms to being NP-hard [Rag08]. For specific problems like Max-3Lin, we know even
sharper results:

Theorem 11 (Hardness of Max-3Lin [H̊as01, Kho01]). Linear projection games on inputs of
size n and soundness/completeness error ε can be reduced to distinguishing, given a Max-3Lin
instance of size N = n poly(1/ε), between the case that (1 − ε′) fraction of the equations can
be satisfied, and the case where no assignment satisfies more than (1/2 + ε′) fraction of the
equations, where ε = poly(ε′). The reduction is linear in N .

Hence, assuming the linear PGC, approximating Max-3Lin to within 1/2 + 1/N c for some
constant c > 0 is NP-hard.

Note that a random assignment to the variables satisfies half of the equations in expectation,
and one can always find in deterministic polynomial time an assignment that satisfies at least
half of the equations. The theorem says that approximating Max-3Lin transitions from being
easy to being hard within a window of ε′ at 1/2. The width ε′ determines how sharp the phase
transition is. Note that at 1/2+1/No(1) the approximation problem is (essentially) exponentially
hard assuming the exponential time hypothesis and the linear PGC.

Theorem 11 is proved by using the Hadamard code as in [Kho01] instead of the long code
as in [H̊as01]. The advantage of the reduction in [H̊as01] is that it allows one to start with
(non-linear) projection games. Its disadvantage is that it incurs a blow-up of N = n exp(1/ε).
Using [H̊as01] and Theorem 3, the current record, not assuming the linear PGC, is ε′ =
1/(log logN)O(1).

Results analogous to Theorem 11 hold for other CSPs as well, e.g., for Max-3Lin over larger
finite fields, for Max-3Sat and for other problems from H̊astad’s paper [H̊as01].

6 Open Problems

The main open problem is to prove (or disprove) the Projection Games Conjecture.
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We believe that many more hardness of approximation results could be proved based on the
PGC. Several concrete open problems are:

1. Prove a theorem similar to Theorem 11 for satisfiable instances of Max-3Sat.

2. Prove PGC-based hardness results for large families of CSPs similar to what is known
under the Unique Games Conjecture for all CSPs [Rag08]. A significant step in this
direction was recently taken by Chan [Cha13].

3. Prove a PGC-based hardness result for approximating Shortest-Vector-Problem
to within polynomial factors. Note that there is a quasi-polynomial reduction from
Closest-Vector-Problem to Shortest-Vector-Problem [Kho05, HR12] (see sur-
vey [Kho10]).

4. Prove a PGC-based hardness result for approximating Clique to within N/ poly logN .
Note that there is a quasi-polynomial reduction from Max-3Lin to Clique [Kho01,
KP06].

Another open problem is to show equivalence between the PGC and the linear PGC.
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