
1

The Linearity Monad

JENNIFER PAYKIN, University of Pennsylvania
STEVE ZDANCEWIC, University of Pennsylvania

We introduce a technique for programming with domain-speci�c linear languages using a monad that arises from the
theory of linear/non-linear logic. In this work we interpret the linear/non-linear model as a simple, e�ectful linear language
embedded inside an existing non-linear host language. We implement a modular framework for de�ning these linear EDSLs
in Haskell, allowing both shallow and deep embeddings. To demonstrate the e�ectiveness of our framework and the linearity
monad, we implement languages for �le handles, mutable arrays, session types, and quantum computing.

ACM Reference format:
Jennifer Paykin and Steve Zdancewic. 2016. �e Linearity Monad. 1, 1, Article 1 (January 2016), 26 pages.
DOI:

1 INTRODUCTION
For years, linear types have been used for e�ectful domain-speci�c languages with great success. For the domains
of memory management (Amani et al. 2016; Fluet et al. 2006; Po�ier and Protzenko 2013) and mutable state (Chen
and Hudak 1997; Wadler 1990), concurrency (Caires and Pfenning 2010; Mazurak and Zdancewic 2010), and
quantum computing (Selinger and Valiron 2009), linearity statically enforces properties, speci�c to each domain,
that are inexpressible in non-linear typing disciplines.

Consider the following interface for linear �le handles. Here, ⊸ (pronounced “lollipop”) denotes linear
implication, ⊗ (“tensor”) denotes the multiplicative linear product, and One denotes the multiplicative unit.

open ∶∶ String ⊸ Handle

read ∶∶ Handle ⊸ Handle ⊗ Char

write ∶∶ Handle ⊸ Char ⊸ Handle

close ∶∶ Handle ⊸ One

In this se�ing linearity rules out two speci�c kinds of errors.1 First, it ensures that �le handles cannot be used
more than once in a term, which means that once a handle has been closed, it cannot be read from or wri�en to
again. Second, linearity ensures that all open handles are eventually closed (at least for terminating computations)
since variables of type Handle cannot be dropped. Linearity allows us to think of a �le handle as a consumable
resource that gets used up when it is closed.

Linear types are useful in this domain because they statically enforce properties that are inexpressible using con-
ventional “unrestricted” types. �is principle extends to other domains as well. For mutable state, linear types en-
force a single-threadedness property that allows functional operations such as writeArray ∶∶ Array α ⊸ α ⊸ Array α

to be implemented as mutable updates (Wadler 1990). For concurrent session types, linearity statically enforces
the fact that every channel has exactly two endpoints that obey complementary communication protocols (Caires
1Note that linearity does not prevent all runtime errors: open could fail if there is a problem with the �le name, or read could fail with an
end-of-�le error, etc. �ese later errors depend on the state of the system external to the program, while the errors avoided by linear types
depend only on the program itself.

2016. �is is the author’s version of the work. It is posted here for your personal use. Not for redistribution. �e de�nitive Version of Record
was published in .

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:2 • Jennifer Paykin and Steve Zdancewic

and Pfenning 2010). For quantum computing, linear types enforce the “no-cloning” theorem by restricting
function spaces to linear transformations (Selinger and Valiron 2009).

Unfortunately, few mainstream programming languages o�er support for linear types, for two reasons. First,
linear typing disciplines are o�en domain-speci�c, meaning that new applications of linear types must be added
by the language designer, not the user. Second, linear type systems are o�en unwieldy, with linear typing
information bleeding into programs that are entirely non-linear. Language designers must take great care to
ensure that the costs of a linear system aren’t paid for programs that work entirely with unrestricted data.2

To see the problem of “linearity creep”, consider an ordinary, unrestricted function that concatenates a string
to itself, given by \s → s ++ s, of type String → String. In traditional presentations of linear types (Benton
et al. 1993) this function would have to be wri�en something like \s → let! s' = s in !s' ++ !s', of type
!String ⊸ !String. �e type !α , pronounced “bang α”, denotes that expressions of type α can be duplicated,
but the programmer must make such uses explicit by means of the binding let!. Conversely, to create a value of
type !String, the programmer must explicitly mark an expression with a !, as in !e, which guarantees that e
contains no free linear variables. For simple examples like this one, the explicit management of linearity isn’t
too bothersome, but it quickly becomes painful for larger code bases. �e problem is that !α presents the wrong
defaults, presenting linearity as the default and non-linearity as the exception; programmers expect the opposite.

linear EDSL

non-linear
host language
(e.g. Haskell)

⊣
LiftLower

Fig. 1. The linear/non-linear
programming model.

Over the years, various linear type systems have been introduced to mitigate
the problems of mixing linear and non-linear programming, using techniques
based on subtyping (Selinger and Valiron 2009), constraint solving (Morris 2016),
weights (McBride 2016), and kind polymorphism (Mazurak et al. 2010). To date, these
proposals have seen li�le adoption, at least in part because they are not compatible
with existing languages. In addition, in each of these cases the application domain
is �xed by the language designers and cannot be easily extended.

We propose a di�erent approach, inspired by Benton’s linear/non-linear (LNL)
logic (1994). �e linear/non-linear model, illustrated in Figure 1, describes a cat-
egorical adjunction between two separate type systems, one linear and the other
non-linear. In this paper we interpret the LNL model as an embedding of a simple
linear lambda calculus inside an existing non-linear programming language. �e
embedded language approach is easily extensible to di�erent application domains,
and the adjoint functors Lift and Lower form a straightforward interface between the
embedded and host languages: Lower inserts host language terms into the embedded
language, and Lift injects closed linear terms into the host language as suspended
computations.

When the host language supports monadic programming, as Haskell does, the
LNL interface reveals a connection with monads. It is already well-known that the ! modality from linear logic
forms a comonad on the linear category. In Figure 1, the ! modality corresponds to the composition Lower ○ Lift;
we can think of it as the perspective of looking “up” at the non-linear category from the linear one. In this work,
we propose to also look “down” at the linear category from the unrestricted world. �e adjoint structure of the
LNL model ensures that the result, the composition Lift ○ Lower, forms a monad (Benton and Wadler 1996).

�is structure, which we call the linearity monad, is the main focus of this work.

2A notable exception is the use of ownership types for safe memory management in languages like Rust (Matsakis and Klock 2014) and
Clean (Smetsers et al. 1994). Ownership types integrate well with nonlinear data, but they are weaker than full linear types.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Linearity Monad • 1:3

1.1 Contributions
In this paper we show how to realize the LNL structure as the embedding of a linear language inside of an
unrestricted language, using Lower and Lift to move between the two fragments (Section 2). For concreteness
we choose Haskell as the host language, since it already has good support for monadic programming; we expect
our techniques could be readily adapted to other host languages as well. Importantly, we aim for a design that
allows various application domains to be expressed modularly in the system.

In exploring this design space, we make the following contributions:
(1) We show how our realization of the LNL model as an embedded language gives rise to a linearity

monad (Section 5). �e relationship between linear types and monads is well-known from a categorical
perspective, but the consequences for programming have not been widely explored (Benton and Wadler
1996; Chen and Hudak 1997). We justify the monad laws and describe how the monad extends to a monad
transformer.

(2) We develop a framework for implementing linear EDSLs using higher-order abstract syntax in Haskell (Sec-
tions 3 and 4). �e framework employs Haskell’s type class mechanism to automatically discharge linearity
constraints, which requires careful structuring of the proof search space. We can instantiate the frame-
work with either a shallow embeddings of judgments as Haskell functions, or a deep embedding using
generalized algebraic data types (GADTs). �roughout, the framework uses the dependently-typed
features of the Glasgow Haskell Compiler3 (GHC) to enforce the linear use of typing judgments.

(3) Finally, we demonstrate the e�ectiveness of our framework by implementing numerous examples of
domain-speci�c linear languages in our framework (Section 6), including:
● Safe �le handles in the style of Mazurak et al. (2010);
● Mutable arrays in the style of Wadler’s “Linear types can change the world!” (1990);
● Session types in the style of Caires and Pfenning (2010); and
● �antum computing in the style of Selinger and Valiron (2009).

�e implementation and all of the examples described in this paper are included in the supplementary materials.

1.2 The File Handle Example
To see how the �le handle example plays out when implemented in our framework, we �rst express the desired
interface via the following type class:4

class HasFH (exp ∶∶ Ctx → LType → Type) where

open ∶∶ String → exp Empty Handle

read ∶∶ exp γ Handle → exp γ (Handle ⊗ Lower Char)

write ∶∶ exp γ Handle → Char → exp γ Handle

close ∶∶ exp γ Handle → exp γ One

�e parameter exp represents the typing judgment for a linear language: a Haskell value e of type exp γ σ

satis�es γ ⊢ e ∶ σ , where σ is a linear type and γ is a linear typing context. �e inhabitants of the class represent
inference rules: for any string s we have ⋅ ⊢ open s ∶∶ Handle, and for any γ ⊢ e ∶∶ Handle we have γ ⊢ close e ∶∶ One.

�e open and write operations, which take ordinary Haskell strings as input, demonstrate how linear operations
can take advantage of Haskell infrastructure. For example, the function that writes an entire string to a �le rather
than just a single character can be implemented as a fold over the string.
writeString ∶∶ HasFH exp ⇒ String → exp γ Handle → exp γ Handle

writeString s h = foldl write h s

3h�ps://www.haskell.org/ghc/
4Here, Type is the kind of Haskell types, LType is the kind of linear types, and Handle, One, and Lower Char all have kind LType.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://www.haskell.org/ghc/

1:4 • Jennifer Paykin and Steve Zdancewic

To write more substantial programs we use syntax for manipulating pairs σ ⊗ τ , units One, functions σ ⊸ τ ,
and lowered Haskell types Lower α . Each of these has an associated type class—HasTensor, HasOne, HasLolli, and
HasLower—that classi�es the introduction and elimination forms for that type. Consider the following function,
which reads a character from a �le and writes that same character back to the �le twice:
readWriteTwice ∶∶ (HasFH exp, HasTensor exp, HasLolli exp, HasLower exp) ⇒ exp Empty (Handle ⊸ Handle)

readWriteTwice = λ $ \h → read h `letPair` \(h,x) →
x >! \c →
writeString [c,c] h

�e λ constructx a linear function using higher-order abstract syntax, i.e., the identity function is λ (\x → x).
�e operation letPair decomposes the result of the read (γ ⊢ read h ∶ Handle ⊗ Lower Char) into variables
h ∶ Handle and x ∶ Lower Char. �e in�x bind operation >! (pronounced “let bang”) turns a linear expression of
type Lower Char into an ordinary character c ∶∶ Char, which can be duplicated like any other Haskell value.

1.2.1 The monad. In the readWriteTwice example we saw the linear Lower type that holds arbitrary Haskell
values. �e Lift operator is the opposite: an ordinary Haskell data type containing linear expressions. �e only
exception is that Lift only holds closed linear expressions, which we can think of as reproducible procedures
that produce linear results. In other words, a value of type Lift exp σ is a suspended linear computation. �e
composition of Lift and Lower makes up the linearity monad, which we write Lin.
data Lift exp σ = Suspend { force ∶∶ exp Empty σ }

data Lin exp α = Lin (Lift exp (Lower α))

�e linearity monad is o�en the outward interface to a linear program. Consider the following function that
takes in a �le name, opens a �le handle with that name, performs some operation, and closes the handle again.
withFile ∶∶ HasFH exp ⇒ String → Lift exp (Handle ⊸ Handle ⊗ Lower α) → Lin exp α

withFile name f = Lin . Suspend $ force f ∧ open name `letPair` \(h,a) →
close h `letUnit` a

Note, the in�x operator (∧) encodes linear application, and letUnit eliminates terms of type One. In the remainder
of this section we assume that HasFH exp also includes the constraints HasLolli exp, HasTensor exp, etc.

1.2.2 The linear monad type class. We can go a step further by recognizing that the intermediate operation in
withFile, i.e., the function of type Lift exp (Handle ⊸ Handle ⊗ Lower a), is a linear version of a state monad.
We can de�ne a type class for such LMonads, which have the usual monad operations, but operate on linear data:
class LMonad exp (m ∶∶ LType → LType) where

lreturn ∶∶ Lift exp (τ ⊸ m τ)

lbind ∶∶ Lift exp (m σ ⊸ (σ ⊸ m τ) ⊸ m τ)

We can reformulate the read and write operations so that they highlight the linear state monad, with
readM ∶∶ LState Handle (Lower Char) and writeM ∶∶ Char → LState Handle One. We then present the readWriteTwice
example using the LMonad operators, where =>>= is an in�x version of lbind:
readWriteTwiceM ∶∶ HasFH exp ⇒ Lift exp (LState Handle One)

readWriteTwiceM = Suspend $ readM =>>= \x → x >! \c →
writeM c =>>= \y → y `letUnit` writeM c

1.2.3 The monad transformer. Since readM always returns a lowered non-linear Char, and writeM always returns
a unit type, we rather inconveniently need to eliminate the results of a bind using >! and letUnit. We can avoid
this extra step by combining the linearity monad and the LMonad type class to form a monad transformer when
the result of the LMonad is a lowered type.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Linearity Monad • 1:5

linear non-linear

types σ ,τ ∶∶= σ ⊸ τ ∣ σ ⊗ τ ∣ ⋯ α , β ∶∶= α → β ∣ (α , β) ∣ ⋯
variables x ,y a,b
typing contexts γ ∶∶= ⋅ ∣ γ ,x ∶ σ Γ ∶∶= ⋅ ∣ Γ,a ∶ α
expressions e t
typing judgment γ ⊢ e ∶ σ Γ ⊢ t ∶ α

Fig. 2. Meta-variables for the purely linear and purely non-linear language fragments.

data LinT exp (m ∶∶ LType → LType) α = LinT (Lift exp (m (Lower α)))

For any m with an LMonad instance, we can give a Monad instance to LinT exp m.
Again, we can construct versions of read and write in this monad: readT ∶∶ LinT (LState Handle) Char and

writeT ∶∶ Char → LinT (LState Handle) (). Now the readWriteTwice function can be de�ned entirely in the
non-linear world, since the linearity monad hides all of the linear “plumbing.”
readWriteTwiceT ∶∶ HasFH exp ⇒ LinT exp (LState Handle) ()

readWriteTwiceT = do c ← readT

writeT c

writeT c

2 LINEAR/NON-LINEAR TYPES
Linear/non-linear (LNL) logic, introduced by Benton (1994), is a model of linear logic obtained by combining
two very simple type systems. One system is a entirely linear language, meaning that all variables are linear
and there is no unrestricted modality !σ . �e other system is an entirely non-linear lambda calculus, in which
resources are not tracked. We can think of these two systems independently, each containing their own syntax of
types, variables, typing contexts, and typing judgments, as shown in Figure 2.

�ese fragments may contain arbitrary extra features, such as operations for manipulating �le handles in
the linear language, as in the example from the introduction. Alternatively, the non-linear type system may
have algebraic data types, dependent types, etc. We assume only that the linear type system follows the usual
constraints of linear logic. As a starting point, consider the standard presentation of a linear lambda calculus
with application and abstraction, where we write γ ⊢ e ∶ τ for its typing judgment.

γ = x ∶ τ
γ ⊢ x ∶ τ

var
γ ′ = γ ,x ∶ σ γ ′ ⊢ e ∶ τ

γ ⊢ λx .e ∶ σ ⊸ τ
abs

γ = γ1 ⋓ γ2 γ1 ⊢ e1 ∶ σ ⊸ τ γ2 ⊢ e2 ∶ σ
γ ⊢ e1e2 ∶ τ

app

In the var rule, no other variables occur in the context besides the one being declared, meaning that linear
variables cannot be discarded (weakened) from a context. �e abs rule introduces a fresh linear variable into the
context as usual. In app, the relation γ = γ1 ⋓γ2 means that γ is the disjoint union of γ1 and γ2; it enforces the
fact that variables cannot be duplicated so as to occur on both sides of an application.

For the non-linear language, we start with unrestricted typing rules as in the simply-typed lambda calculus,
and write Γ ⊢ t ∶ α to denote its typing judgments.

�e linear/non-linear type system modi�es these two languages so that they interact in a predictable way. �is
modi�cation happens in three steps.

First, we extend the linear typing judgment so it can refer to non-linear variables. �e resulting judgment has
the form Γ;γ ⊢ e ∶ σ , where the variables in Γ are non-linear, the variables in γ are linear, and the result type σ
is also linear. �e revised typing rules are given in Figure 3. �e revised var rule allows arbitrary non-linear
variables, while the revised app rule allows non-linear variables to be used on both sides of the application.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:6 • Jennifer Paykin and Steve Zdancewic

linear non-linear

types σ ,τ ∶∶= ⋯ ∣ Lower α α , β ∶∶= ⋯ ∣ Lift τ
typing judgment Γ;γ ⊢ e ∶ σ Γ ⊢ t ∶ α

γ = x ∶ τ
Γ;γ ⊢ x ∶ τ

var
γ ′ = γ ,x ∶ σ Γ;γ ′ ⊢ e ∶ τ

Γ;γ ⊢ λx .e ∶ σ ⊸ τ
abs

γ = γ1 ⋓ γ2 Γ;γ1 ⊢ e1 ∶ σ ⊸ τ Γ;γ2 ⊢ e2 ∶ σ
Γ;γ ⊢ e1e2 ∶ τ

app

Γ ⊢ t ∶ α
Γ; ⋅ ⊢ put t ∶ Lower α

put
γ = γ1⋓ γ2 Γ;γ1 ⊢ e ∶ Lower α Γ,a ∶ α ;γ2 ⊢ e′ ∶ τ

Γ;γ ⊢ let! a = e in e′ ∶ τ
let!

Γ; ⋅ ⊢ e ∶ τ
Γ ⊢ suspend e ∶ Lift τ

suspend
Γ ⊢ t ∶ Lift τ

Γ; ⋅ ⊢ force t ∶ τ
force

Fig. 3. Typing rules for the combined linear/non-linear type system

Note that a non-linear variable is not a linear expression itself; the inference rule Γ,a ∶ α ; ⋅ ⊢ a ∶ α is not valid
because α is not a linear type. In order to use non-linear data in the linear world, the second step in creating the
linear/non-linear model is to extend the linear language with a new type: σ ,τ ∶∶= ⋯ ∣ Lower α .

As shown in Figure 3, terms of type Lower α are constructed from arbitrary non-linear terms via an operation
we call put. �us, every linear expression of type Lower α morally holds a non-linear value. �e elimination
form, let! a = e in e′, allows us to use that value non-linearly as long as we use it to construct another linear
expression. Otherwise, the linear variables used to construct e would be lost.

�e third step in creating a linear/non-linear system is to introduce the Lift connective, which embeds linear
expressions in the non-linear world: α , β ∶∶= ⋯ ∣ Lift τ . Of course, it is not always safe to treat linear expressions
non-linearly—that is the entire point of linear logic! However, when a linear expression doesn’t use any linear
variables, it is, in fact, safe to duplicate it. Consider the term open "filename" from the �le handle example;
multiple invocations will create di�erent handles to the �le. Such an expression can be thought of as an e�ectful
“suspended” computation that can be forced as many times as necessary, since running that computation doesn’t
consume any linear resources.

Also in Figure 3, the Lift type is introduced by suspend e, which internalizes a linearly-closed expression e as
a non-linear value; the corresponding elimination form, force, moves such a value back into the linear world.5

2.1 LNL as an Embedded Language
One contribution of this paper is the recognition that the LNL model lends itself well to describing a linear
language embedded in a non-linear one. �e embedded structure means that host language’s non-linear variables
are, by default, accessible to the linear sub-language. As a result, the linear embedding only needs to keep track
of the linear variables, since the non-linear variables are automatically handled by the host language. �is vastly
simpli�es the representation of the embedded language. �e Lower connective describes a simple way to use
arbitrary host language terms, making the whole host language accessible from within the linear fragment. �e
Lift connective exposes linear expressions to the rest of the host language without exposing linear variables.

In the rest of this paper, we use Haskell as the host language, exploiting the dependently-typed features
of GHC 8 to enforce linearity in the embedding. Haskell has been used as a host language for linear types
before (Eisenberg et al. 2012; Polakow 2015), and we draw on ideas from these previous embeddings (deferring a
5�e suspend and force notation is inspired by Call-By-Push-Value (Levy 2003), which separates pure and e�ectful computations into two
parts, much in the same way linear and non-linear type systems are separated in LNL. Indeed, the e�ectful linear/non-linear type system
presented in this paper can be thought of as the combination of CBPV and linear logic.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Linearity Monad • 1:7

more technical comparison to Section 7). �e next section describes these implementation details and how we
accomodate domain-speci�c linear types like �le handles in our linear/non-linear interpretation.

3 EMBEDDING A LINEAR TYPE SYSTEM IN HASKELL
To embed a linear language in Haskell, there are a number of design decisions to make. How will we encode
variables and typing contexts? How are linear expressions and their typing judgments represented? How can we
infer the typing contexts and ensure that variables are used linearly? �is section answers these questions by
building up successively more expressive linear languages. �e general strategy we use is to build Haskell data
structures for linear types and contexts, and then to impose constraints on those contexts using type classes. As
we will see, our design permits an extremely �exible representation of linear terms.

For the �rst iteration of our linear language, we will restrict linear types to the unit type and linear implication.

data LType = One ∣ Lolli LType LType

We use the in�x notation σ ⊸ τ as a synonym for Lolli σ τ .
We represent variables in our embedding as unary natural numbers (data Nat = Z ∣ S Nat) and typing contexts

as �nite maps from natural numbers to LTypes. �e operations we de�ne later rely heavily on the inductive
structure of both variables and contexts. �e �nite map is represented as a list [Maybe LType], where the variable
i maps to the type stored in the list at index i. �e Maybe type marks the presence (Just σ) or absence (Nothing)
of the variable in the context. As an example, consider the following sample derivation:

[Nothing, Nothing, Just (σ ⊸ τ)] ⊢ 2 ∶ σ ⊸ τ
var

[Just σ ⊢ 0 ∶ σ]
var

[Just σ , Nothing, Just (σ ⊸ τ)] ⊢ 2 0 ∶ τ
app

[Just σ] ⊢ λ 2. 2 0 ∶ (σ ⊸ τ) ⊸ τ
abs

[] ⊢ λ 0. λ 2. 2 0 ∶ σ ⊸ (σ ⊸ τ) ⊸ τ
abs

To enforce the desired linearity constraints, the application rule in this derivation satis�es the side condition that

[Nothing,Nothing,Just(σ ⊸ τ)] ⋓ [Just σ] = [Just σ,Nothing,Just (σ ⊸ τ)]

�e merge relation is not de�ned when two contexts hold the same variable, or, equivalently, when Just appears
at the same index in both contexts. Mathematically, the merge relation is de�ned as:

γ1 ⋓ [] = γ1

[] ⋓ γ2 = γ2

(Just σ : γ1) ⋓ (Nothing : γ2) = Just σ : (γ1 ⋓ γ2)

(Nothing : γ1) ⋓ (Just σ : γ2) = Just σ : (γ1 ⋓ γ2)

(Nothing : γ1) ⋓ (Nothing : γ2) = Nothing : (γ1 ⋓ γ2)

�is representation contains some redundancy: the lists [Just σ] and [Just σ, Nothing] both correspond to
the same context, 0 ∶ σ . So instead of using the built-in list type [Maybe LType], we say that a context Ctx is either
empty, or is a non-empty context NCtx, which ends in a Just σ .

data Ctx = Empty ∣ NEmpty NCtx data NCtx = End LType ∣ Cons (Maybe LType) NCtx

3.1 Relations on typing contexts
�e type system in Figure 3 uses three relations on contexts to enforce linearity. �e var rule says that γ ⊢ x ∶ σ
if γ is the context containing only the single binding x ∶ σ . We formulate this relation in Haskell as a multi-
parameter type class CSingleton x σ γ . �e class CSingletonN x σ γ records the same property, but for non-empty
contexts—we use this helper type class to inductively build up the relation.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:8 • Jennifer Paykin and Steve Zdancewic

class CSingleton (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) ∣ x σ → γ, γ → x σ

instance CSingletonN x σ γ ⇒ CSingleton x σ (NCtx γ)

class CSingletonN (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ NCtx) ∣ x σ → γ, γ → x σ

instance CSingletonN Z σ (End σ)

instance CSingletonN x σ γ ⇒ CSingletonN (S x) σ (Cons Nothing γ)

�e functional dependencies x σ → γ and γ → x σ tell GHC that the CSingleton relations are functional and
injective (Jones 2000). �ey are vital to linear type checking as they guide uni�cation: for any concrete context,
Haskell will automatically search for the proof that it forms a singleton context, and for any concrete variable
and type, Haskell will automatically infer the singleton context containing that variable.

To handle the side conditions on the abstraction and application rules, we introduce two additional type classes.
�e class CAdd x σ γ γ’ encodes the property that γ ′ = γ ,x ∶ σ , where x does not already occur in γ . �e class
CMerge γ1 γ2 γ says that γ1⋓γ2 = γ , or, in other words, that γ is the disjoint union of γ1 and γ2.

class CAdd (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) (γ' ∶∶ Ctx) ∣ x σ γ → γ', x γ' → σ γ, γ γ' → x σ

class CMerge (γ1 ∶∶ Ctx) (γ2 ∶∶ Ctx) (γ ∶∶ Ctx) ∣ γ1 γ2 → γ, γ1 γ → γ2, γ2 γ → γ1

Deriving these functional dependencies is not straightforward, and in the implementation we use a number of
helper classes to convince GHC that they hold. �e functional dependencies, which permit the typechecker to do
some amount of inversion, are the main reason we use type classes (which encode relations), rather than type
families (which encode functions) to describe the CSingleton, CAdd, and CMerge operations.

3.2 Typing judgments
A well-typed term γ ⊢ e ∶ τ in the linear lambda calculus is represented as a value e ∶∶ exp γ τ . �e parameter
exp ∶∶ Ctx → LType → Type is a typing judgment characterized via a type class interface, the members of which
correspond to the typing rules of the linear lambda calculus. For example:

class HasLolli (exp ∶∶ Ctx → LType → Type) where

λ ∶∶ (CSingleton x σ γ'', CAdd x σ γ γ', x ˜ Fresh γ) ⇒ (exp γ'' σ → exp γ' τ) → exp γ (σ ⊸ τ)

(∧) ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 (σ ⊸ τ) → exp γ2 σ → exp γ τ

�e HasLolli type class asserts that the typing judgment exp contains abstraction (λ) and application (∧) opera-
tions.6 �e application operator corresponds closely to the app inference rule given in Figure 3, where CMerge

encodes the disjoint union of contexts. �e abstraction operation, which we write λ, uses higher-order abstract
syntax, which means that it covers both the variable and abstraction rules at once. Let’s take a look at the type of
λ without the type class constraints:

(exp γ'' σ → exp γ' τ) → exp γ (σ ⊸ τ)

�is type says that, in order to construct a linear function σ ⊸ τ , it su�ces to provide an ordinary Haskell
function from expressions of type σ to expressions of type τ . In order to ensure that this function uses its
argument exactly once, we have the following constraints, where ˜ is equality on types:

(CSingleton x σ γ'', CAdd x σ γ γ', x ˜ Fresh γ)

�e last constraint says that x is a particular variable that is fresh in γ : we de�ne Fresh γ to be the smallest
natural number that is unde�ned in γ . �e middle constraint says that the body of the function, of type exp γ' τ ,
satis�es the relation γ ′ = γ ,x ∶ σ . �e �rst constraint says that the argument of the function, of type exp γ'' σ ,
really is a variable, since γ ′′ = x ∶ σ .

6�e linear abstraction function λ should not be confused with Haskell’s usual anonymous function abstraction, wri�en \a → t.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Linearity Monad • 1:9

�e HOAS encoding leads to very natural-looking code. �e identity function is just λ (\x → x), while
composition is de�ned as follows:7

compose ∶∶ HasLolli exp ⇒ exp Empty ((τ2 ⊸ τ3) ⊸ (τ1 ⊸ τ2) ⊸ (τ1 ⊸ τ3))

compose = λ $ \g → λ $ \f → λ $ \x → g ∧ (f ∧ x)

We do not have to add any special infrastructure to handle polymorphism; Haskell takes care of it for us.

3.3 Units, pairs, and sums
It easy to extend the language for other operators of linear logic, such as units, pairs ⊗, and sums ⊕. For the
linear multiplicative unit, we have the following class:
class HasOne exp where

unit ∶∶ exp Empty One

letUnit ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 One → exp γ2 τ → exp γ τ

For the operators ⊗ and ⊕, we need to �rst extend the syntax of linear types. We could add constructors for
tensor products, etc., directly to the LType de�nition, but doing so would commit to a particular choice of linear
connectives. Instead, we build in a way to extend linear types by introducing MkLType:
data LType = One ∣ Lolli LType LType ∣ MkLType (ext LType)

Extensions, denoted with the meta-variable ext, are paramaterized by a type. �e multiplicative product ⊗ can
be encoded as an extension TensorExt using GHC data type promotion (Eisenberg and Stolarek 2014), as follows:

data TensorExt ty = MkTensor ty ty type σ ⊗ τ = MkLType (MkTensor σ τ)

Multiplicative products are pairs whose components come from disjoint typing contexts.
γ1 ⊢ e1 ∶ τ1 γ2 ⊢ e2 ∶ τ2 γ = γ1⋓ γ2

γ ⊢ e1⊗ e2 ∶ τ1⊗ τ2
γ1 ⊢ e ∶ σ1⊗ σ2 γ2,x1 ∶ σ1,x2 ∶ σ2 ⊢ e′ ∶ τ γ = γ1⋓ γ2

γ ⊢ let (x1,x2) = e in e′ ∶ τ

We overload the constructor (⊗) to construct multiplicative pairs. �e HOAS version of the elimination form,
which we write letPair, has a structure that mirrors the type of λ.
class HasTensor exp where

(⊗) ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 τ1 → exp γ2 τ2 → exp γ (τ1 ⊗ τ2)

letPair ∶∶ (CMerge γ1 γ2 γ, CAdd x1 σ1 γ2 γ2', CAdd x2 σ2 γ2' γ2''

, CSingleton x1 σ1 γ21, CSingleton x2 σ2 γ22, x1 ˜ Fresh γ2, x2 ˜ Fresh γ2')

⇒ exp γ1 (σ1 ⊗ σ2) → ((exp γ21 σ1, exp γ22 σ2) → exp γ2'' τ) → exp γ τ

�e variables x1 and x2 are represented in the higher-order abstract syntax by arguments exp γ21 σ1 and
exp γ22 σ2 respectively, where γ21 = [x1 ∶ σ1] and γ22 = [x2 ∶ σ2]. �e continuation of the letPair is in the
context γ2′′ = γ2,x1 ∶ σ1,x2 ∶ σ2. �e result is that we are able to bind pairs in a natural way, as in λ $ \x → x

‘letPair‘ \(y,z) → z ⊗ y, of type σ ⊗ τ ⊸ τ ⊗ σ .8
In the implementation we also provide interfaces for additive sums, products, and units.

3.4 The Lift and Lower types
�e LNL connective Lower can be added to the linear language just like any other linear connective. �e only
di�erence is that Lower takes an argument of kind Type—the kind of Haskell types.
7�e ($) operator is Haskell notation for ordinary function application.
8It would certainly be more natural to write λ $ \(y,z) → z ⊗ y directly, but type checking for nested pa�ern matching is a di�cult
problem we leave for future work. We can however de�ne a top-level pa�ern match λpair, and write our example as λpair $ \ (y,z) →
z ⊗ y. We discuss the issue of type checking and nested pa�ern matching more in Section 7.1.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:10 • Jennifer Paykin and Steve Zdancewic

curry ∶∶ HasMILL exp ⇒ Lift exp ((σ1 ⊗ σ2 ⊸ τ) ⊸ σ1 ⊸ σ2 ⊸ τ)

curry = Suspend . λ $ \f → λ $ \x1 → λ $ \x2 → f ∧ (x1 ⊗ x2)

uncurry ∶∶ HasMILL exp ⇒ Lift exp ((σ1 ⊸ σ2 ⊸ τ) ⊸ σ1 ⊗ σ2 ⊸ τ)

uncurry = Suspend . λ $ \f → λ $ \x → x `letPair` \(x1,x2) → f ∧ x1 ∧ x2

type Bang τ = Lower (Lift τ)

dup ∶∶ HasMELL exp ⇒ Lift exp (Bang τ ⊸ Bang τ ⊗ Bang τ)

dup = Suspend . λ $ \x → x >! \a → put a ⊗ put a

drop ∶∶ HasMELL exp ⇒ Lift exp (Bang τ ⊸ One)

drop = Suspend . λ $ \x → x >! _ → unit

Fig. 4. Examples of linear code. HasMILL exp is a synonym for (HasLolli exp, HasTensor exp, HasOne exp), and
HasMELL exp is a synonym for (HasMILL exp, HasLower exp).

data LowerExp ty = MkLower Type type Lower α = MkLType (MkLower α)

Figure 3 introduces the syntax put to introduce terms of type Lower α and let! a = e in e′ to eliminate them. In
Haskell we write the let! operator in higher-order abstract syntax as (>!).
class HasLower exp where

put ∶∶ α → exp Empty (Lower α)

(>!) ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 (Lower α) → (α → exp γ2 τ) → exp γ τ

Figure 3 also introduces syntax for the Lift type, a non-linear type carrying linear expressions with no free
linear variables. We de�ne Lift in Haskell as an ordinary (record) data type:
data Lift exp τ = Suspend { force ∶∶ exp Empty τ }

3.5 Examples
Figure 4 presents some simple examples of linear programs. First we de�ne operations to curry and uncurry linear
functions. For convenience, we de�ne synonyms for classes of constraints, such as HasMILL for multiplicative
intuitionistic linear logic connectives (⊸, ⊗, and One) and HasMELL for multiplicative exponential linear logic
connectives (the MILL connectives plus Lower). Figure 4 also encodes the !τ operator from linear logic as the
composition of Lower and Lift and shows that terms of type Bang τ can in fact be duplicated and discarded.

4 EVALUATION AND IMPLEMENTATION
Our goal in embedding a linear language in Haskell is not just to represent programs in those languages, but to
actually run those programs. In this section we de�ne both deep and shallow embeddings that implement the
HasLolli and HasFH type classes of the previous sections. In both cases, a correct implementation is expected to
validate a number of coherence laws (akin to the monad laws) that we explain below.

We focus on large-step semantics rather than a small-step semantics, which would be both less e�cient and,
in the case of a shallow embedding, less appropriate. Consequently, we de�ne a separate type of value for
every linear type using data families9. We also adopt environment semantics, evaluating open linear terms
within an accompanying evaluation context. As a consequence we do not have to de�ne an explicit substitution
function, which is slow and type-theoretically challenging as it requires extensive manipulation of typing contexts.
Evaluation is e�ectful—for example �le handles will be implemented using Haskell’s primitive libraries, which
9h�ps://wiki.haskell.org/GHC/Type families

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://wiki.haskell.org/GHC/Type_families

The Linearity Monad • 1:11

means in this domain case evaluation will take place in the IO monad. Di�erent domains (see Section 6) have
di�erent e�ects, so we need to ensure that the e�ect is a parameter of the framework.

Every implementation will thus have three connected components: a typing judgment exp ∶∶ Ctx → LType → Type;
a value judgment val ∶∶ LType → Type, and a (monadic) e�ect m ∶∶ Type → Type. We structure these three compo-
nents as data and type families indexed by a signature sig ∶∶ Type.
data family LExp (sig ∶∶ Type) (γ ∶∶ Ctx) (τ ∶∶ LType) ∶∶ Type

data family LVal (sig ∶∶ Type) (τ ∶∶ LType) ∶∶ Type

type family Effect (sig ∶∶ Type) ∶∶ Type → Type

An evaluation context, which can be thought of as a store, is a �nite map from variables to values. It is indexed
by a signature indicating which values will be carried, as well as a typing context specifying the domain. �at is,
an evaluation context of type ECtx sig γ maps variables x ∶ σ ∈ γ to values of type LVal sig σ . �e structure of
an evaluation context mirrors the structure of the typing context it is indexed by.
data ECtx (sig ∶∶ Type) (γ ∶∶ Ctx) where

ENothing ∶∶ ECtx sig Empty

ENEmpty ∶∶ ENCtx sig γ → ECtx sig (NEmpty γ)

data ENCtx (sig ∶∶ Type) (γ ∶∶ NCtx) where ⋯
Now evaluation is given as a type class on signatures.

class Eval sig where

eval ∶∶ Monad (Effect sig) ⇒ ECtx sig γ → LExp sig γ τ → Effect sig (LVal sig τ)

4.1 A deep embedding
First we consider a deep embedding, where linear lambda terms are de�ned as a GADT in Haskell. �e LExp data
type bears a strong resemblance to the HasLolli type class, although without higher-order abstract syntax.
data Deep

data instance LExp Deep γ τ where

Var ∶∶ CSingleton x τ γ ⇒ LExp Deep γ τ

Abs ∶∶ CAdd x σ γ γ' ⇒ LExp Deep γ' τ → LExp Deep γ (σ ⊸ τ)

App ∶∶ CMerge γ1 γ2 γ ⇒ LExp Deep γ1 (σ ⊸ τ) → LExp Deep γ2 σ → LExp Deep γ τ

It is therefore quite easy to instantiate the HasLolli type class, although we must use explicit type application10

(e.g., @x) to specify which variable should be used in the Var and Abs constructors.
instance HasLolli (LExp Deep) where

λ ∶∶ ∀ x σ γ γ' γ''. (CSingleton x σ γ'', CAdd x σ γ γ', x ˜ Fresh γ)

⇒ (LExp Deep γ'' σ → LExp Deep γ' τ) → LExp Deep γ (σ ⊸ τ)

λ f = Abs @x (f $ Var @x)

(∧) = App

Values are de�ned by induction on LType. A value of type σ ⊸ τ is a closure containing an evaluation context
paired with the body of the abstraction, while a value of type Lower α is the underlying Haskell value, and so on.
data instance LVal Deep One = VUnit

data instance LVal Deep (σ ⊗ τ) = VPair (LVal Deep σ) (LVal Deep τ)

data instance LVal Deep (σ ⊸ τ) where

VAbs ∶∶ CAddCtx x σ γ γ' ⇒ ECtx Deep γ → LExp Deep γ' τ → LVal Deep (σ ⊸ τ)

10h�ps://ghc.haskell.org/trac/ghc/wiki/ExplicitTypeApplication

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://ghc.haskell.org/trac/ghc/wiki/ExplicitTypeApplication

1:12 • Jennifer Paykin and Steve Zdancewic

data instance LVal Deep (Lower α) = VPut α

Next we de�ne evaluation as an interpreter. When the expression is an abstraction we return the closure.
instance Eval Deep where

eval ∶∶ Monad (Effect Deep) ⇒ ECtx Deep γ → LExp Deep γ τ → Effect Deep (LVal Deep τ)

eval γ (Abs e) = return $ VAbs γ e

If the expression is a variable, we know that the typing context γ must contain only a single variable, x ∶∶ σ . In
that case we want to return the value stored in the evaluation context, which we access via a lookup operation.

eval γ Var = return $ lookup γ

In the application case, �rst we evaluate e1 to obtain a closure, then evaluate e2. We evaluate the body of the
closure under its evaluation context extended with the value of e2.

eval γ (App (e1 ∶∶ LExp γ1 τ1) (e2 ∶∶ LExp γ2 τ2)) = do let (γ1,γ2) = split @γ1 @γ2 γ

VAbs γ' e1' ← eval γ1 e1

v2 ← eval γ2 e2

eval (add @(Fresh γ2) v2 γ') e1'

�is operation uses two additional helper functions to manipulate contexts in a way similar to lookup. �e
function add takes an evaluation context for γ and a value of type σ , and produces an evaluation context for
γ ,x ∶ σ . �e use site must specify x , which in this case is Fresh γ2. Similarly, split @γ1 @γ2 takes an evaluation
context for γ where CMerge γ1 γ2 γ , and outputs two evaluation contexts for γ1 and γ2 respectively.

�ese helper functions are readily de�ned by induction over the structure of the relations CSingleton, CMerge,
and CAdd, so we amend the declarations of these type classes to include these functions. �ey are instantiated
when the instances for each class are given.
class CSingleton (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) ∣ x σ → γ, γ → x σ where

lookup ∶∶ ECtx γ → LVal σ

class CAdd (x ∶∶ Nat) (σ ∶∶ LType) (γ ∶∶ Ctx) (γ' ∶∶ Ctx) ∣ x σ γ → γ', x γ' → σ γ where

add ∶∶ LVal σ → ECtx γ → ECtx γ'

class CMerge (γ1 ∶∶ Ctx) (γ2 ∶∶ Ctx) (γ ∶∶ Ctx) ∣ γ1 γ2 → γ, γ1 γ → γ2, γ2 γ → γ1 where

split ∶∶ ECtx γ → (ECtx γ1, ECtx γ2)

4.2 Modularly extending the deep embedding
To naively extend the syntax of the deep embedding, we would need to modify the LExp Deep data type with
each new constructor. However, this is not modular; every time a programmer wanted to use the embedding in a
di�erent domain, she would have to rede�ne the data type and the entire evaluation function. Instead, we want a
solution that lets modularly extend the LExp Deep data type. We do this using the same trick of open recursion
that we used for extending linear types.
data instance LExp Deep γ τ where

Var ∶∶ CSingleton x σ γ ⇒ LExp Deep γ σ

Dom ∶∶ Domain Deep dom ⇒ dom (LExp Deep) γ τ → LExp Deep γ

Notice that we elide Abs and App from our de�nition now; they can be de�ned independently as domains.
�e Dom constructor takes an expression from a recursively-paramaterized data structure dom. For example, �le

handles use the following domain, which closely resembles the HasFH type class.
data FHDom (exp ∶∶ Ctx → LType → Type) ∶∶ Ctx → LType → Type where

Open ∶∶ String → FHDom exp Empty Handle

Read ∶∶ exp γ Handle → FHDom exp γ (Handle ⊗ Lower Char)

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Linearity Monad • 1:13

Write ∶∶ exp γ Handle → Char → exp γ Handle

Close ∶∶ exp γ Handle → exp γ One

When used by the Dom constructor, the parameter exp is replaced by LExp Deep, tying the knot. It is trivial to
de�ne the HasFH operators by wrapping their constructors with Dom, e.g., open = Dom . Open.

�e type class Domain Deep dom de�nes evaluation particularly for that domain, from which we can give a
complete instance of Eval for the deep embedding.

class Domain sig dom where

evalDomain ∶∶ Monad (Effect sig) ⇒ ECtx sig γ → dom (LExp sig) γ τ → Effect sig (LVal sig τ)

instance Eval Deep where

eval γ Var = return $ lookup γ

eval γ (Dom e) = evalDomain γ e

All that remains now is to de�ne an instance of Domain for �le handles. First we de�ne values of type Handle

to be Haskell’s time of built-in IO �le handles, and we de�ne the e�ect of the embedding to be IO.

data instance LVal Deep Handle = VHandle IO.Handle

type instance Effect Deep = IO

We implement evaluation using IO primitives to open and read from �les (and similarly for Write and Close).

instance Domain Deep FHDom where

evalDomain _ (Open s) = VHandle <$> IO.openFile s IO.ReadWriteMode

evalDomain γ (Read e) = do VHandle h ← eval γ e

c ← IO.hGetChar h

return $ VHandle h `VPair` VPut c

4.3 A shallow embedding
Next we consider a shallow embedding, where an expression exp γ τ is represented as a monadic function from
evaluation contexts for γ to values of type τ . Evaluation in the shallow embedding is just unpacking this function.

data Shallow

data instance LExp Shallow γ τ = SExp { runSExp ∶∶ ECtx γ → Effect Shallow (LVal τ) }

instance Eval Shallow where eval γ f = runSExp f γ

Values in the shallow embedding are almost all the same as those in the deep embedding, except that a value
of type σ ⊸ τ in the shallow embedding is represented as a function from values of type σ to values of type τ ,
instead of as an explicit closure.

data instance LVal Shallow (σ ⊸ τ) = VAbs (LVal Shallow σ → Effect Shallow (LVal Shallow τ))

We can show that the shallow embedding simulates all the features of our linear language by instantiating the
type classes for HasLolli, HasLower, HasFH, etc. Unsurprisingly, all of these constructions mirror the evaluation
functions from the deep embedding. For example, here we give the instantiation of HasLower:

instance Monad (Effect Shallow) ⇒ HasLower (LExp Shallow) where

put a = SExp $ _ → return $ VPut a

e >! f = SExp $ \γ → do let (γ1,γ2) = split γ

VPut a ← runSExp e γ1

runSExp (f a) γ2

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:14 • Jennifer Paykin and Steve Zdancewic

4.4 Laws and correctness
In Haskell we o�en associate type classes with mathematical laws that characterize the properties of correct
instances of those classes. In this se�ing, such laws describe an equational theory on the embedded language.
For example, the laws for the type Lower α are as follows:

put a >! f =β f a e ∶∶ exp γ (Lower α) =η e >! put

(�e astute reader may recognize a similarity to the monad laws, which we will discuss in depth in Section 5.)

Proposition 4.1. For the shallow embedding, the β and η equalities for Lower α hold.

Proof Sketch. We start with the β rule. Unfolding de�nitions, we see that:

put a >! f = (SExp $ _ → return $ VPut a) >! f

= SExp $ \γ → let (γ1,γ2) = split γ

in (_ → return $ VPut a) γ1 >>= \(VPut a) → runSExp (f a) γ2

Since γ1 :: SCtx Empty we know that γ1=SEmpty and γ2=γ . Recall that the instance of HasLower (LExp Shallow)

assumes that Effect Shallow is a monad. By the monad laws, this is therefore equal to the desired result:

(return (VPut a) >>= \(VPut a) → f a γ) = runSExp (f a) γ

�e proof of the η rule is similarly obtained by unfolding de�tions and applying the monad laws. �

For the deep embedding, the situation is less straightforward. Clearly LetBang (Put a) f is not syntactically
equal to f a, but they are semantically equal under evaluation.

De�nition 4.2. An interpretation instance for Eval sig is correct for HasLower if, for all evaluation contexts γ :
● for all a ∶∶ α and f ∶∶ α → LExp sig τ , we have eval γ (put a >! f) = eval γ (f a); and
● for all e ∶∶ LExp sig (Lower α), we have eval γ e = eval γ (e >! put).

It is the immediate consequence of Proposition 4.1 that the Eval instance for Lower α is correct. We can prove
a similar result for the deep embedding, although we omit the proof.

Proposition 4.3. �e interpretation instance for Eval Deep is correct for HasLower.

5 THE MONAD
Benton (1994) originally proposed linear/non-linear logic as a proof theory for understanding linear logic. �rough
the Curry-Howard correspondence we have interpreted it as a type system, but we can also draw on the categorical
interpretation also explored by Benton. Illustrated back in Figure 1, the LNL categorical model consists of two
categories, one corresponding to the linear language, and the other corresponding to the non-linear language.

In our implementation, the non-linear category is hask, the idealized category of Haskell types and terms. �e
linear category, which we call linear, has objects that are elements of LType. Morphisms in linear between σ
and τ consist of values of type LExp sig Empty (σ ⊸ τ).

�e operators Lift and Lower are functors between these two categories. For any Haskell function α → β we
have a linear morphism Lower α ⊸ Lower β , and similarly for any linear morphism σ ⊸ τ we have a Haskell
function Lift σ → Lift τ .11

11Note that we do not give an instance of the standard type class Functor, which only describes endofunctors on hask.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Linearity Monad • 1:15

fmapLower ∶∶ (HasLolli (LExp sig), HasLower (LExp sig)) ⇒ (α → β) → LExp sig Empty (Lower α ⊸ Lower β)

fmapLower f = λ $ \x → x >! put . f

fmapLift ∶∶ HasLolli (LExp sig) ⇒ LExp sig Empty (σ ⊸ τ) → Lift sig σ → Lift sig τ

fmapLift f s = Suspend $ f ∧ force s

Back in the linear/non-linear model, Lift and Lower form a (symmetric monoidal) adjunction Lower ⊣ Lift,
which is what allows non-linear variables to occur in linear typing judgments. Mac Lane (1978) famously says
that “adjoint functors arise everywhere”, but they seem to have found less ground in Haskell than their close
cousin, the monad. Every adjunction F ⊣G gives rise to a monad, G ○ F , as well as a comonad, F ○G. As is usual
in linear logic, the type operator Bang sig τ = Lower (Lift sig τ) (from Section 3.5) forms a comonad, and its
dual Lift sig (Lower α) forms a monad—the linearity monad discussed in Section 1.

We write the linearity monad as Lin sig α . For convenience, we de�ne accessor functions suspendL and forceL
to move directly between the monad and the linear category.
newtype Lin sig α = Lin (Lift sig (Lower α))

suspendL = Lin . Suspend

forceL (Lin e) = force e

We can de�ne a monad instance for Lin sig using only the Lift and Lower connectives.12

instance HasLower (LExp sig) ⇒ Monad (Lin sig) where

return a = suspendL $ put a

e >>= f = suspendL $ forceL e >! forceL . f

Theorem 5.1. If the β and η laws for the HasLower type class hold for the signature sig, then the monad laws
hold for Lin sig: (1) pure a >>= f = f a; and (2) e >>= pure = e.

Proof. For (1), by expanding the instance de�nition for Lin sig we see that
pure a >>= f = suspendL $ forceL (pure a) >! forceL . f

= suspendL $ forceL (suspendL $ put a) >! forceL . f

= suspendL $ put a >! forceL . f

�e β equality rule for >! states that put a >! g = g a, and so the code above is equal to suspendL (forceL $ f a),
which is η-equivalent to f a itself.

Similarly for (2), buy unfolding de�nitions we see that e >>= pure is equal to suspendL (forceL e >! put). By
η-equality for Lower this is equal to suspendL (forceL e), the η-expanded form of e. �

When we evaluate the body of an expression in Lin sig α , the result is always an e�ectful lowered Haskell
value LVal sig (Lower α). It is thus possible to extract the underlying value of type α , meaning that we get a
result in Effect sig α . We call this operation run.
run ∶∶ Eval sig ⇒ Lin sig a → Effect sig a

run e = eval EEmpty (forceL e) >>= \(VPut a) → return a

Terms in the linearity have no linear input and no linear output, so they consist of operations that look
non-linear to the end user, but are implemented in a linear domain. For example, let us revisit our �le handle
example from the introduction. Recall the function withFile, which opens a �le, performs some transformations,
and closes the �le again.
withFile ∶∶ HasFH (LExp sig) ⇒ String → Lift sig (Handle ⊸ Handle ⊗ Lower a) → Lin sig a

withFile s f = suspendL $ force f ∧ (Open s) `letPair` \(h,a) → Close h `letUnit` a

12�e appropriate Functor and Applicative instances can be found in the implementation.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:16 • Jennifer Paykin and Steve Zdancewic

�e run operation seamlessly connects the embedded linear language with its e�ectful implementation in
Haskell. When applied to the result of withFile, for example, we obtain a program in IO that manipulates
primitive IO �le handles.

5.1 Monads in the linear category
�e withFile operation exposes a common pa�ern: it takes in a linear morphism of type σ ⊸ σ ⊗ τ . Just like the
state monad in Haskell, this type forms a monad in the linear category. To make this observation formal, we �rst
de�ne a type class of linear monads.
class LMonad sig (m ∶∶ LType → LType) where

lreturn ∶∶ LExp sig γ τ → LExp sig γ (m τ)

lbind ∶∶ LExp sig 'Empty (m σ ⊸ (σ ⊸ m τ) ⊸ m τ)

When convenient, we may use the notation e =>>= f for lbind ∧ e ∧ f. �e laws for monads in linear are
essentially the same as for those in hask: lreturn e =>>=f = f ˆ e and e =>>=lreturn = e.

To make an instance declaration for linear state, we �rst a�empt to de�ne a type synonym LState σ τ for
σ ⊸ σ ⊗ τ and give it an LMonad instance. �is approach fails for a rather silly reason: LState σ is a partially
de�ned type synonym, which are not allowed in Haskell. �e ordinary solution would be to de�ne a newtype,
but newtypes (and regular algebraic data types) produce Types, not LTypes.

Our solution is to use a trick called defunctionalization (Eisenberg and Stolarek 2014). �e Singletons library13

provides a type-level arrow k1 ↝ k2 that describes unsaturated type-level functions between kinds k1 and k2. To
de�ne a defunctionalized arrow, we �rst de�ne an empty data type for the unsaturated version of LState, and
then de�ne a type instance for the (in�x) type family (@@), which has kind (k1 ↝ k2) → k1 → k2.
data LState' (σ ∶∶ LType) ∶∶ LType ↝ LType

type instance LState' σ @@ τ = σ ⊸ σ ⊗ τ

We can then de�ne LState σ τ = LState’ σ @@ τ . Instead of de�ning the LMonad type class for m ∶∶ LType → LType,
we instead de�ne it for defunctionalized arrows m ∶∶ LType ↝ LType.
class LMonad sig (m ∶∶ LType ↝ LType) where

lreturn ∶∶ LExp sig γ τ → LExp γ (m @@ τ)

lbind ∶∶ LExp sig 'Empty (m @@ σ ⊸ (σ ⊸ m @@ τ) ⊸ m @@ τ)

With this boilerplate out of the way, we can de�ne our monad instance.
instance HasMILL (LExp sig) ⇒ LMonad sig (LState' σ) where

lreturn e = λ $ \s → s ⊗ e

lbind = λ $ \st → λ $ \f → λ $ \s → st ∧ s `letPair` \(s,x) → f ∧ x ∧ s

Figure 5 illustrates how we can write transformations over �le handles in a monadic way.

5.2 The monad transformer
We saw in Section 1.2 that when an LMonad returns a lowered Haskell type, as is the case of readM and takeM

above, we can push the monadic programming style a step further: the adjunction Lower ⊣ Lift also makes an
LMonad transformer. In particular, given an LMonad of type LType ↝ LType, we can de�ne a Haskell monad LinT m.
As we did for Lin, it is convenient to have versions of suspend and force.
newtype LinT sig (m ∶∶ LType ↝ LType) (α ∶∶ Type) = LinT (Lift sig (m @@ (Lower α)))

suspendT ∶∶ LExp sig Empty (m @@ (Lower α)) → LinT sig m α

forceT ∶∶ LinT sig m α → LExp sig Empty (m @@ (Lower α))

13h�ps://hackage.haskell.org/package/singletons

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://hackage.haskell.org/package/singletons

The Linearity Monad • 1:17

readM ∶∶ HasFH (LExp sig) ⇒ LExp sig Empty (LState Handle (Lower Char))

writeM ∶∶ HasFH (LExp sig) ⇒ Char → LExp sig Empty (LState Handle One)

takeM ∶∶ HasFH (LExp sig) ⇒ Int → LExp sig Empty (LState Handle (Lower String))

takeM n ∣ n ≤ 0 = lreturn ""

∣ otherwise = readM =>>= λ $ \x → x >! \c →
takeM (n-1) =>>= λ $ \y → y >! \s → lreturn $ put (c : s)

Fig. 5. Examples of functions on file handles using the linear state monad. takeM reads the first n characters from a handle.

takeT ∶∶ HasFH (LExp sig) ⇒ Int → LinT (LState' Handle) String

takeT n ∣ n ≤ 0 = return ""

∣ otherwise = do c ← readT

s ← take (n-1)

return $ c:s

writeString ∶∶ HasFH (LExp sig) ⇒ String → LinT sig (LState' Handle) ()

writeString s = mapM_ writeT s

withFile ∶∶ HasFH (LExp sig) ⇒ String → LinT sig (LState' Handle) a → Lin sig a

withFile s f = suspendL $ forceT f ∧ (open s) `letPair` \(h,a) → close h `letUnit` a

Fig. 6. Examples of functions on file handles using the linear state monad li�ed through the monad transformer.

We can de�ne the Monad instance just as we did for Lin:

instance (LMonad m, HasLower (LExp sig)) ⇒ Monad (LinT sig m) where

return = suspendT . lpure . put a

x >>= f = suspend $ forceT x =>>= λ $ \y → y >! (force . f)

Proposition 5.2. If m satis�es the LMonad laws, then LinT sig m satis�es the Monad laws.

�e proof is straightforward by unfolding de�nitions and applying the LMonad laws.
Now our interface to read and write can be speci�ed relative to the monad transformer.

readT ∶∶ HasFH (LExp sig) ⇒ LinT sig (LState' Handle) Char

writeT ∶∶ HasFH (LExp sig) ⇒ Char → LinT sig (LState' Handle) ()

In Section 5.2 we de�ne a series of operations in the li�ed linear state monad. First we have the monad transformer
version of take, as well as a version of the function writeString from Section 1.2, which writes an entire string
to a �le. In addition, we can restructure the operation withFile to use the monad transformer as its intermediate
state. Pu�ing all of these parts together we can actually evaluate our linear code:

main = run $ do withFile "foo" $ writeLine "Hello world"

withFile "foo" $ takeT 7

> "Hello w"

6 EXAMPLES
In this section we present three additional application domains in the linear/nonlinear framework: arrays, session
types, and quantum computing.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:18 • Jennifer Paykin and Steve Zdancewic

6.1 Arrays
In his paper “Linear types can change the world!”, Wadler (1990) argues that mutable data structures like arrays
can given a pure functional interface if they are only accessed linearly. To understand why, consider a non-linear
program with functional arrays:

let arr1 = write 0 arr "hello" in let arr2 = write 0 arr "world" in arr1[0]

If write updates the array in place, the program returns "hello" instead of "world", as we would expect. Linear
types force us to serialize the operations on arrays so that reasonable equational laws still hold, even when
performing destructive updates.

Here we expand Wadler’s example to describe slices of an array. Consider an operation slice i, which splits
an array into two disjoint sub-arrays determined by the index i. As long as the operations on each slice are
restricted to their domains, the implementation of slice can just alias the same array. Furthermore, as long as we
keep track of when two slices alias the same array, we can merge slices back together with zero cost.

To implement linear arrays in the LNL framework, we �rst add a new type for arrays of non-linear values.
data ArraySig ty = ArraySig Type Type type Array token α = MkLType ('ArraySig token α)

�e token argument to an array keeps track of the array being aliased. Constructing a new array will result in an
array with an existentially quanti�ed token, as required by the following type:
data SomeArray exp α where SomeArray ∶∶ exp Empty (Array token α) → SomeArray exp α

�e linear interface to arrays can allocate new arrays and drop the pointer to existing arrays; once all slices of
an array have been dropped, garbage collection can deallocate the array. Each array is associated with a set of
valid indices, which can be obtained via the operation domain. �e operation slice takes an index and an array,
and outputs two aliases to that same array with domains partitioned around the index. Dually, join takes two
aliases to the same array and combines their bounds. �e usual read and write operations will fail at runtime if
their arguments are not in the domain of their slice.
class (HasLolli exp, HasTensor exp, HasOne exp, HasLower exp) ⇒ HasArray exp where

alloc ∶∶ Int → α → SomeArray exp α

drop ∶∶ exp γ (Array tok α) → exp γ One

domain ∶∶ exp γ (Array tok α) → exp γ (Array tok α ⊗ Lower [Int])

slice ∶∶ Int → exp γ (Array tok α) → exp γ (Array tok α ⊗ Array tok α)

join ∶∶ CMerge γ1 γ2 γ ⇒ exp γ1 (Array tok α) → exp γ2 (Array tok α) → exp γ (Array tok α)

read ∶∶ Int → exp γ (Array tok α) → exp γ (Array tok α ⊗ Lower α)

write ∶∶ Int → exp γ (Array tok α) → α → exp γ (Array tok α)

6.1.1 Implementation. We can implement the HasArray signature in the shallow embedding. A value of type
Array tok α will be a pair of a domain of valid indices (of type [Int]) as well as a primitive Haskell array; in this
case, an IOArray. Since we use IOArrays, the e�ect of this language will be in IO.
data instance LVal Shallow (Array tok α) = VArray [Int] (IO.IOArray Int α)

type instance Effect Shallow = IO

�e implementation of alloc, read, and write call to the primitive operations on IOArrays. �e implementation
of drop simply returns a unit value—it does not explicitly deallocate the array, which would be inappropriate
when dropping partial slices. �e slice operation partitions the bounds of its input array according to its index.

slice i e1 e = SExp $ \γ → do

VArray bounds arr ← runSExp e γ

return $ VPair (VArray (filter (< i) bounds) arr) (VArray (filter (≥ i) bounds arr))

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Linearity Monad • 1:19

�e join operation evaluates its arguments and combines the two resulting bounds.14

join e1 e2 = SExp $ \γ → do let (γ1,γ2) = split γ

VArray bounds1 arr ← runSExp e1 γ1

VArray bounds2 _ ← runSExp e2 γ2

return $ VArray (bounds1 ++ bounds2) arr

6.1.2 Arrays in the li�ed statemonad. We can li� domain, read, and write into the linear state monad transformer
with the following signatures, where we write LStateT σ α for LinT (LState' σ) α .
domainT ∶∶ HasArray (LExp sig) ⇒ LStateT (Array tok α) Int

readT ∶∶ HasArray (LExp sig) ⇒ Int → LStateT (Array tok α) α

writeT ∶∶ HasArray (LExp sig) ⇒ Int → α → LStateT (Array tok α) ()

We can also derive a li�ed operation that combines slicing and joining. �e function sliceT takes an index and
two state transformations on arrays. �e resulting state transformation takes in an array, slices it around the
input index, and applies the two state transformations to the two sub-arrays.
sliceT ∶∶ HasArray (LExp sig) ⇒ Int

→ LStateT sig (Array tok α) () → LStateT sig (Array tok α) () → LStateT sig (Array tok α) ()

sliceT i st1 st2 = Suspend . λ $ \arr → slice i arr `letPair` \(arr1,arr2) →
forceT st1 ∧ arr1 `letPair` \(arr1,res) → res >! _ →
forceT st2 ∧ arr2 `letPair` \(arr2,res) → res >! _ →
join arr1 arr2 ⊗ put ()

6.1.3 �icksort. We will use the LStateT interface to implement an in-place quicksort. �icksort relies on a
helper function partition that chooses a pivot value and swaps elements of the array until all of values than the
pivot value occur to the le� of the pivot in the array, and all values greater than or equal to the pivot occur to the
right. �e partition function returns to us the index of the pivot a�er all the swapping occurs; if the list is too
short to successfully partition, it returns Nothing. We omit the de�nition here but it uses the simple operation
swap, which swaps two indices in the array.
swap ∶∶ HasArray (LExp sig) ⇒ Int → Int → LStateT sig (Array tok α) ()

swap i j = do a ← readT i

b ← readT j

writeT i b ≫ writeT j a

partition ∶∶ (HasArray (LExp sig), Ord α) ⇒ LStateT sig (Array tok α) (Maybe Int)

�e quicksort algorithm slices its input according to the partition and recurses. �e base case occurs when
partition returns Nothing.
quicksort ∶∶ (HasArray (LExp sig), Ord α) ⇒ LStateT sig (Array tok α) ()

quicksort = partition >>= \case Nothing → return ()

Just pivot → sliceT pivot quicksort quicksort

6.1.4 Related work. Mutable state and memory management is one of the most common applications of linear
type systems in the literature. Wadler (1990) formalizes the connection between mutable arrays and linear logic,
and Chen and Hudak (1997) expand on this connection to show that when mutable abstract data types treat their
data linearly in a precise way, they can be automatically transformed into monadic operations. �eir monad
14As an aside, the structure of sliced arrays lends itself naturally to concurrency in the style of separation logic, and in the code base we
implement join so that it evaluates its two sub-arrays concurrently.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:20 • Jennifer Paykin and Steve Zdancewic

corresponds more closely to Haskell’s IO monad than the linearity monad described in this paper; it formally
justi�es Haskell’s treatment of mutable update. Going beyond arrays, linear types have informed the use of
regions (Fluet et al. 2006), uniqueness types (Barendsen and Smetsers 1993) and borrowing (Noble et al. 1998), all
of which seek to safely manage memory usage in an unobtrusive way.

6.2 Session types
Session types are a language mechanism for describing communication protocols between two actors. A session
is a channel with exactly two endpoints. Caires and Pfenning (2010) draw a Curry-Howard connection between
session types and intuitionistic linear types, which we implement in this section.

Consider a protocol for an online marketplace: the marketplace will receive a request for an item in the form
of a string, followed by a credit card number. A�er processing the order, the marketplace will send back a receipt
in the form of a string. In this case the session protocol for the marketplace would be:
type MarketplaceProtocol = Lower String ⊸ Lower Int ⊸ Lower String ⊗ One

In Caires and Pfenning’s formulation, a channel with session protocol σ ⊸ τ will receives a channel of type
σ , then continues with the protocol τ . A channel with protocol σ ⊗ τ will send a channel of type σ and then
continues as τ . �e Curry-Howard formulation means that we do not have to de�ne a new syntax for session-
typed programming, since we can just reuse the syntax we already have for ⊗ and⊸. Consider the following
implementation of MarketProtocol
marketplace ∶∶ HasMELL exp ⇒ Lift exp MarketplaceProtocol

marketplace = Suspend . λ $ \x → x >! \item →
λ $ \y → y >! \cc →
(put $ "Processed order for " ++ item) ⊗ unit

A consumer interacts with the opposite end of the protocol, and then the two actors can be plugged together to
form a complete transaction.
buyer ∶∶ HasMELL exp ⇒ Lift exp (MarketplaceProtocol ⊸ Lower String)

buyer = Suspend . λ $ \c → c ∧ put "Tea" `letin` \c →
c ∧ put 1234 `letin` \c →
c `letPair` \(receipt,c) →
c `letUnit` receipt

transaction ∶∶ HasMELL exp ⇒ Lin exp String

transaction = supendL $ marketplace ∧ buyer

Using some simple aliases like send for (⊗) and recv f for λ (>! f), the marketplace implementation starts to
seem much more like a process than a λ term, but these details are super�cial.
marketplace = Suspend . recv $ \item →

recv $ \cc →
send (put $ "Processed order for " ++ item) done

6.2.1 Implementation. Although we use the same syntax as the pure linear lambda calculus, we really want
an implementation that communicates data over channels. Since session-typed channels change their protocol
over time, we implement them with a pair of untyped channels. We use a pair so that an actor will never send
data and then receive that same data the next time they receive from the channel. Every time we construct a
UChan, we also construct its swap, which corresponds to the other end of the channel.
type UChan = (Chan Any, Chan Any)

newU ∶∶ IO (UChan,UChan)

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Linearity Monad • 1:21

newU = do c1 ← IO.newChan

c2 ← IO.newChan

return ((c1,c2),(c2,c1))

�ese channels are untyped, but we will send and receive data of arbitrary types along them using unsafeCoerce.
�is is appropriate (and safe!) because the session protocols—enforced by the linear types— ensure that each
time a value of type α is sent on the channel, the recipient will coerce it back to that same type α .
sendU ∶∶ UChan → a → IO ()

sendU (cin,cout) a = writeChan cout $ unsafeCoerce a

recvU ∶∶ UChan → IO a

recvU (cin,cout) = unsafeCoerce <$> readChan cin

�e �nal operation on untyped channels is linkU, which takes as input two channels, and forwards all communi-
cation between them in both directions.

We de�ne a new signature for sessions. Since we are using IO channels under the hood, the e�ect of the
signature is IO. All values with this signature, no ma�er the type, are UChans.
data Sessions

data instance LVal Sessions τ = Chan UChan

type instance Effect Sessions = IO

We use a variant of the shallow embedding to encode expressions, which we represent as a function from
evaluation contexts and an extra UChan to IO (). �e extra UChan is the output channel of the expressions; an
expression of type σ ⊗ τ will send a value σ on its output channel, for example.
data instance LExp Sessions γ τ = SExp {runSExp ∶∶ SCtx Sessions γ → UChan → IO ()}

To evaluate an expression, we �rst construct a new channel with newU, which outputs the two endpoints of the
new channel. �en we call runSExp on the expression with one of the endpoints, and return the other endpoint.
instance Eval Sessions where

eval e γ = do (c,c') ← newU

forkIO $ runSExp e γ c

return $ Chan c'

In the implementation we provide instances for HasLolli, HasTensor, HasOne, and HasLower, the last of which
we illustrate here. To construct an expression of type Lower τ via put a, we simply send the Haskell value a over
the output channel.

put a = SExp $ _ c → sendU c a

To implement e >! f, we spawn a new channel and pass one end to e. �en we wait for a value from the other
end, to which we apply f.

e >! f = SExp $ \ρ c → do let (ρ1,ρ2) = split ρ

(x,x') ← newU

forkIO $ runSExp e ρ1 x

a ← recvU x'

runSExp (f a) ρ2 c

6.2.2 Related work. Session types have gained popularity in recent years as a model of concurrency. �e
connection to intuitionistic linear logic was �rst highlighted by Caires and Pfenning (2010), though connections
have also been drawn with classical linear logic, which highlights the duality between sending and receiving on
a channel (Lindley and Morris 2015; Wadler 2014).

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:22 • Jennifer Paykin and Steve Zdancewic

6.3 �antum computing
�antum computing is the study of computing with qubits, entanglement, and other quantum-mechanical forces
that are not expressible on classical (e.g., non-quantum) machines. Mathematically, quantum computations are
expressed as linear transformations (speci�cally unitary transformations) and as a result, non-linear computations
such as copying a quantum value are prohibited. Selinger and Valiron (2009) introduce a linear lambda calculus
for describing quantum computations that they call the quantum lambda calculus. �e details of quantum
computation are beyond the scope of this paper; see Selinger and Valiron’s presentation for a gentler introduction.

�e quantum lambda calculus consists of a linear lambda calculus extended with a type for qubits (the quantum
equivalent of a bit) and three additional operations:

class HasMELL exp ⇒ HasQuantum exp where

new ∶∶ Bool → exp Empty Qubit

unitary ∶∶ Unitary σ → exp γ σ → exp γ σ

meas ∶∶ exp γ Qubit → exp γ (Lower Bool)

�e new operation creates a qubit in a so-called “classical” state, corresponding to either 0 (False) or 1 (True).
�ese qubits can be put into probabilistic states by applying unitary transformations, which correspond to the
class of valid quantum computations. We assume there exists some universal set of unitary transformations
Unitary σ , each of which corresponds to a linear transformation σ ⊸ σ . For example:

data Unitary σ where

Hadamard ∶∶ Unitary Qubit

CNOT ∶∶ Unitary (Qubit ⊗ Qubit)

⋯
Finally, meas performs quantum measurement, which probabilistically outputs a boolean value.

6.3.1 A dependently typed �antum Fourier Transform. We can take advantage of GHC’s dependent types to
describe a dependent quantum Fourier transform (QFT) (Paykin et al. 2017). First, we de�ne a Nat-indexed type
family describing the n-ary tensor of a linear type.

type family (σ ∶∶ LType) ∏ (n ∶∶ Nat) ∶∶ LType where

σ ∏ Z = One

σ ∏ (S (S n)) = σ ⊗ (σ ∏ S n)

�e quantum fourier transform depends on an operation rotations,which we omit here. �e quantum fourier
transform is de�ned recursively as follows:

fourier ∶∶ HasQuantum exp ⇒ Sing n → LStateT (Qubit ∏ n) ()

fourier SZ = return ()

fourier (SS SZ) = suspendT . λ $ unitary Hadamard ⊗ put ()

fourier (SS m@(SS _)) = suspendT . λpair $ \(q,qs) → forceT (fourier m) ∧ qs `letin` \qs →
forceT (rotations (SS m) m) ∧ (q ⊗ qs)

where rotations ∶∶ Sing m → Sing n → Lift exp (Qubit ∏ S n ⊸ Qubit ∏ S n)

�e Sing n data family is a runtime representation of the natural number n, from the singletons library, with
constructors SZ ∶∶ Sing Z and SS ∶∶ Sing n → Sing (S n). �e operation λpair combines abstraction and letPair

to match against the input to the λ.

6.3.2 Implementation. We implement the quantum signature using the deep embedding rather than the
shallow, as in the future we are interested in compiling and optimizing quantum computations. Next we de�ne a
domain to plug into the deep embedding:

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

The Linearity Monad • 1:23

data QuantumExp exp ∶∶ Ctx → LType → Type where

New ∶∶ Bool → QuantumExp exp Empty Qubit

Meas ∶∶ exp γ Qubit → QuantumExp exp γ (Lower Bool)

Unitary ∶∶ Unitary σ → exp γ σ → QuantumExp exp γ σ

As is usual with the deep embedding, it is easy to show that it satis�es the HasQuantum class.
�ere are many computational models available for simulating quantum computations, and our implementation

chooses one based on density matrices (Nielsen and Chuang 2010). We will not go into the details of this simulation
here, but the outward-facing interface has three (monadic) operations, where the monad describes transformations
between density matrices. �bits are identi�ed with integers that index into the matrix.

newM ∶∶ Bool → DensityMonad Int

applyUnitaryM ∶∶ Mat (2 ∧ m) (2 ∧ m) → [Int] → DensityMonad ()

measM ∶∶ Int → DensityMonad Bool

Values of type Qubit are integer qubit identi�ers, and DensityMonad is the e�ect.

data instance LVal Deep Qubit = QId Int type instance Effect Deep = DensityMonad

�e implementation is completed with a Domain instance, which we omit here.

6.3.3 Related work. Other approaches to higher-order quantum computing in Haskell have been proposed.
�e �antum IO monad (Altenkirch and Green 2009) features a monadic approach to quantum computing that
separates reversible (e.g., unitary) computations from those containing measurement. Unlike the quantum lambda
calculus, the �antum IO monad is not type safe and may fail at runtime. �ipper (Green et al. 2013) is a scalable
quantum circuit language embedded in Haskell and has a similar problem, although two closely related core
calculi have been proposed that use linear types for safe quantum circuits (Paykin et al. 2017; Ross 2015).

7 DISCUSSION AND RELATED WORK

7.1 Design of the embedded language
�e embedding described in this paper is very similar to the work of Eisenberg et al. (2012) and Polakow (2015),
who also describe embeddings of linear lambda calculi in Haskell using dependently-typed features of GHC to
enforce linearity. We adapt features from both embeddings: Polakow introduces higher-order abstract syntax
(HOAS) for linear types, but to achieve this he uses a non-standard typing judgment γin/γout ⊢ e ∶ τ that threads
an input context into every judgment. Eisenberg et al. use the standard typing judgment γ ⊢ e ∶ τ but without
HOAS, which makes linear programming more awkward.

In this paper we combine the two representations to get a HOAS encoding of the direct-style typing judgment.
Doing so has some drawbacks, however; as expressions become more complex, the type class mechanism starts to
show its weaknesses. For example, lambda abstractions can be used in either the le�-hand side or the right-hand
side of an application, but not both: the expression λ $ \x → (λ $ \y → y) ˆ x type checks in Haskell, but
not (λ $ \x → x) ˆ (λ $ \y → y). �e problem is that Haskell cannot infer that both sides of the application
are typed in the empty context; knowing γ1⋓γ2 = Empty is not enough to infer that γ1 = γ2 = Empty. Although
inconvenient, we �nd that this problem can o�en be circumvented by writing helper functions, e.g., id ˆ id.

Although we did not �nd this property prohibitively restrictive while writing our examples, it does represent a
tradeo� in the design space. For example, one challenge we have not yet been able to overcome is type checking
nested linear pa�ern matches. Polakow (2015)’s representation of typing judgments as a threaded relation
γin/γout ⊢ e ∶ τ may be be�er at type checking, but we �nd it less natural than the direct style. In future work

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

1:24 • Jennifer Paykin and Steve Zdancewic

many possibilities exist to enhance type checking for the direct style, including more robust type classes or a
type checker plugin that uses an external solver to search for the intermediate typing contexts.15

Eisenberg et al. and Polakow use !α as an embedded connective, which, compared to the linear/non-linear
decomposition of ! that we present in this paper, is less connected to regular Haskell programming and requires
signi�cantly more maintenance in the linear system. With regards to applications, Eisenberg et al. are focused on
the domain of quantum computing, while Polakow focuses on a pure linear lambda calculus. Our paper shows
that the same principles can be applied to a variety of domains and a variety of implementation techniques

7.2 Deep versus shallow embeddings
�e prior work by Eisenberg et al. and Polakow describe only shallow embeddings, which should be more
e�cient than deep embeddings (although we have not performed a thorough performance analysis). However,
the shallow embedding is not “adequate,” because it is possible to write down terms of type LExp Shallow γ τ

that do not correspond to anything in the linear lambda calculus. For example, SExp (γ → VPut ()) has type
LExp Shallow γ (Lower ()) for any context γ . However, there are two di�erent consumers of our framework:
DSL implementers and users of the DSL. Implementers have access to unsafe features of the embedding, and so
they must be careful to only expose an abstract linear interface (e.g., one not containing the SExp constructor) to
the clients of the language to enforce the linearity invariants.

In the deep embedding, linear expressions are entirely syntax so by de�nition all terms of type LExp Deep γ τ

correspond to real linear expressions. �is may be bene�cial from a soundness perspective, although of course
the language implementer could make an error in de�ning the evaluation function. �e deep embedding also
makes it possible to express program transformations and optimizations in that language.

7.3 Further integration with Haskell
A recent proposal suggests how to integrate linear types directly into GHC based on a model of linear logic
that uses weighted type annotations instead of !α or the adjoint decomposition considered here, which would
allow the implementation of e�cient garbage collection and explicit memory management.16 Compared to our
approach, the proposal requires signi�cant changes to GHC and is for a �xed domain, whereas our approach
works out of the box and is extensible to numerous domains.

�e proposal is also adamant about eliminating code duplication, meaning that data structures and operations
on data structures should be parametric over linear versus non-linear data. It is certainly a drawback of our work
that the user may have to duplicate Haskell code in the linear fragment, as we saw when de�ning the linear
versions of the monad type classes in Section 5. Future work might address this by using Template Haskell17 to
de�ne data structures and functions with implementations in both the linear and non-linear world. Likewise,
support for other features such as nested pa�ern matching could make our framework more accessible.

7.4 Conclusion and future work
In this paper we present a new perspective on linear/non-linear logic as a programming model for embedded
languages that integrates well with monadic programming. We develop a framework in Haskell to demonstrate
our design, and implement a number of domain-speci�c languages. We expect the techniques presented in this
paper to extend to many areas not covered here, such as a�ne and other substructural type systems as well as
bounded linear logic. In addition, the ideas presented here are not speci�c to Haskell, but could be applicable in
even richer languages like Coq or Agda.

15h�ps://ghc.haskell.org/trac/ghc/wiki/Plugins/TypeChecker
16h�ps://ghc.haskell.org/trac/ghc/wiki/LinearTypes
17h�ps://wiki.haskell.org/Template Haskell

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

https://ghc.haskell.org/trac/ghc/wiki/Plugins/TypeChecker
https://ghc.haskell.org/trac/ghc/wiki/LinearTypes
https://wiki.haskell.org/Template_Haskell

The Linearity Monad • 1:25

REFERENCES
�orsten Altenkirch and Alexander S. Green. 2009. �e �antum IO Monad. Cambridge University Press, 173–205. DOI:h�p://dx.doi.org/10.

1017/CBO9781139193313.006
Sidney Amani, Alex Hixon, Zilin Chen, Christine Rizkallah, Peter Chubb, Liam O’Connor, Joel Beeren, Yutaka Nagashima, Japheth Lim,

�omas Sewell, Joseph Tuong, Gabriele Keller, Toby Murray, Gerwin Klein, and Gernot Heiser. 2016. Cogent: Verifying High-Assurance File
System Implementations. In Proceedings of the Twenty-First International Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16). ACM, New York, NY, USA, 175–188. DOI:h�p://dx.doi.org/10.1145/2872362.2872404

Erik Barendsen and Sjaak Smetsers. 1993. Conventional and uniqueness typing in graph rewrite systems. In Foundations of So�ware Technology
and �eoretical Computer Science: 13th Conference Bombay, India, December 15–17, 1993 Proceedings, Rudrapatna K. Shyamasundar (Ed.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 41–51. DOI:h�p://dx.doi.org/10.1007/3-540-57529-4 42

Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. 1993. A term calculus for Intuitionistic Linear Logic. In Typed Lambda
Calculi and Applications, Marc Bezem and JanFriso Groote (Eds.). Lecture Notes in Computer Science, Vol. 664. Springer Berlin Heidelberg,
75–90. DOI:h�p://dx.doi.org/10.1007/BFb0037099

Nick Benton and Philip Wadler. 1996. Linear logic, monads and the lambda calculus. In Proceedings of the Eleventh Annual IEEE Symposium on
Logic in Computer Science, 1996. LICS ’96. 420–431. DOI:h�p://dx.doi.org/10.1109/LICS.1996.561458

P. N. Benton. 1994. A mixed linear and non-linear logic: proofs, terms and models (preliminary report). Technical Report 352. Computer
Laboratory, University of Cambridge.

Luı́s Caires and Frank Pfenning. 2010. Session Types as Intuitionistic Linear Propositions. In CONCUR 2010 - Concurrency �eory, Paul
Gastin and François Laroussinie (Eds.). Lecture Notes in Computer Science, Vol. 6269. Springer Berlin Heidelberg, 222–236. DOI:
h�p://dx.doi.org/10.1007/978-3-642-15375-4 16

Chih-Ping Chen and Paul Hudak. 1997. Rolling your own mutable ADT—a connection between linear types and monads. In Proceedings of the
24th ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’97. Association for Computing Machinery (ACM).
DOI:h�p://dx.doi.org/10.1145/263699.263708

Richard Eisenberg, Benoıt Valiron, and Steve Zdancewic. 2012. Typechecking Linear Data: �antum Computation in Haskell. (2012).
Richard A. Eisenberg and Jan Stolarek. 2014. Promoting Functions to Type Families in Haskell. In Proceedings of the 2014 ACM SIGPLAN

Symposium on Haskell (Haskell ’14). ACM, New York, NY, USA, 95–106. DOI:h�p://dx.doi.org/10.1145/2633357.2633361
Ma�hew Fluet, Greg Morrise�, and Amal Ahmed. 2006. Linear Regions Are All You Need. In Programming Languages and Systems. Springer

Science + Business Media, 7–21. DOI:h�p://dx.doi.org/10.1007/11693024 2
Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoı̂t Valiron. 2013. �ipper: A Scalable �antum Programming

Language. In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’13). ACM,
New York, NY, USA, 333–342. DOI:h�p://dx.doi.org/10.1145/2491956.2462177

Mark P. Jones. 2000. Type Classes with Functional Dependencies. In Programming Languages and Systems: 9th European Symposium on
Programming, ESOP 2000, Gert Smolka (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 230–244. DOI:h�p://dx.doi.org/10.1007/
3-540-46425-5 15

Paul Blain Levy. 2003. Call-By-Push-Value: A Subsuming Paradigm. In Call-By-Push-Value. Springer Science Business Media, 27–47. DOI:
h�p://dx.doi.org/10.1007/978-94-007-0954-6 2

Sam Lindley and J. Garre� Morris. 2015. A Semantics for Propositions as Sessions. In Proceedings of Programming Languages and Systems,
24th European Symposium on Programming, ESOP 2015 (Lecture Notes in Computer Science), Jan Vitek (Ed.), Vol. 9032. Springer Berlin
Heidelberg, London, UK, 560–584. DOI:h�p://dx.doi.org/10.1007/978-3-662-46669-8 23

Saunders Mac Lane. 1978. Categories for the working mathematician. Vol. 5. Springer Science & Business Media.
Nicholas D. Matsakis and Felix S. Klock, II. 2014. �e Rust Language. In Proceedings of the 2014 ACM SIGAda Annual Conference on High

Integrity Language Technology (HILT ’14). ACM, New York, NY, USA, 103–104. DOI:h�p://dx.doi.org/10.1145/2663171.2663188
Karl Mazurak and Steve Zdancewic. 2010. Lolliproc: To Concurrency from Classical Linear Logic via Curry-Howard and Control. SIGPLAN

Not. 45, 9 (Sept 2010), 39–50. DOI:h�p://dx.doi.org/10.1145/1932681.1863551
Karl Mazurak, Jianzhou Zhao, and Steve Zdancewic. 2010. Lightweight linear types in system f°. In Proceedings of the 5th ACM SIGPLAN

workshop on Types in language design and implementation - TLDI '10. Association for Computing Machinery (ACM). DOI:h�p://dx.doi.org/
10.1145/1708016.1708027

Conor McBride. 2016. I Got Plenty o’ Nu�in’. In A List of Successes �at Can Change the World: Essays Dedicated to Philip Wadler on the
Occasion of His 60th Birthday, Sam Lindley, Conor McBride, Phil Trinder, and Don Sannella (Eds.). Springer International Publishing,
207–233. DOI:h�p://dx.doi.org/10.1007/978-3-319-30936-1 12

J. Garre� Morris. 2016. �e Best of Both Worlds: Linear Functional Programming Without Compromise. In Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming (ICFP 2016). New York, NY, USA, 448–461. DOI:h�p://dx.doi.org/10.1145/
2951913.2951925

M.A. Nielsen and I.L. Chuang. 2010. �antum Computation and�antum Information: 10th Anniversary Edition. Cambridge University Press.

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

http://dx.doi.org/10.1017/CBO9781139193313.006
http://dx.doi.org/10.1017/CBO9781139193313.006
http://dx.doi.org/10.1145/2872362.2872404
http://dx.doi.org/10.1007/3-540-57529-4_42
http://dx.doi.org/10.1007/BFb0037099
http://dx.doi.org/10.1109/LICS.1996.561458
http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1145/263699.263708
http://dx.doi.org/10.1145/2633357.2633361
http://dx.doi.org/10.1007/11693024_2
http://dx.doi.org/10.1145/2491956.2462177
http://dx.doi.org/10.1007/3-540-46425-5_15
http://dx.doi.org/10.1007/3-540-46425-5_15
http://dx.doi.org/10.1007/978-94-007-0954-6_2
http://dx.doi.org/10.1007/978-3-662-46669-8_23
http://dx.doi.org/10.1145/2663171.2663188
http://dx.doi.org/10.1145/1932681.1863551
http://dx.doi.org/10.1145/1708016.1708027
http://dx.doi.org/10.1145/1708016.1708027
http://dx.doi.org/10.1007/978-3-319-30936-1_12
http://dx.doi.org/10.1145/2951913.2951925
http://dx.doi.org/10.1145/2951913.2951925

1:26 • Jennifer Paykin and Steve Zdancewic

James Noble, Jan Vitek, and John Po�er. 1998. Flexible alias protection. In ECOOP’98 — Object-Oriented Programming: 12th European
Conference Brussels, Belgium, July 20–24, 1998 Proceedings, Eric Jul (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 158–185. DOI:
h�p://dx.doi.org/10.1007/BFb0054091

Jennifer Paykin, Robert Rand, and Steve Zdancewic. 2017. QWIRE: A Core Language for �antum Circuits. In Proceedings of the 44th ACM
SIGPLAN Symposium on Principles of Programming Languages (POPL 2017). ACM, New York, NY, USA, 846–858. DOI:h�p://dx.doi.org/10.
1145/3009837.3009894

Je� Polakow. 2015. Embedding a full linear Lambda calculus in Haskell. In Proceedings of the 8th ACM SIGPLAN Symposium on Haskell, Haskell
2015, Vancouver, BC, Canada, September 3-4, 2015. 177–188. DOI:h�p://dx.doi.org/10.1145/2804302.2804309

François Po�ier and Jonathan Protzenko. 2013. Programming with permissions in Mezzo. ACM SIGPLAN Notices 48, 9 (nov 2013), 173–184.
DOI:h�p://dx.doi.org/10.1145/2544174.2500598

Neil J. Ross. 2015. Algebraic and Logical Methods in �antum Computation. Ph.D. Dissertation. Dalhousie University.
Peter Selinger and Benoı̂t Valiron. 2009. �antum Lambda Calculus. Cambridge University Press, 135–172. DOI:h�p://dx.doi.org/10.1017/

CBO9781139193313.005
Sjaak Smetsers, Erik Barendsen, Marko van Eekelen, and Rinus Plasmeijer. 1994. Guaranteeing safe destructive updates through a type systemwith

uniqueness information for graphs. Springer Berlin Heidelberg, Berlin, Heidelberg, 358–379. DOI:h�p://dx.doi.org/10.1007/3-540-57787-4 23
Philip Wadler. 1990. Linear types can change the world!. In IFIP TC 2 Working Conference on Programming Concepts and Methods, Sea of

Galilee, Israel. North Holland, 347–359.
Philip Wadler. 2014. Propositions as sessions. Journal of Functional Programming 24 (2014), 384–418. Issue Special Issue 2-3. DOI:

h�p://dx.doi.org/10.1017/S095679681400001X

Received April 2017

, Vol. 1, No. 1, Article 1. Publication date: January 2016.

http://dx.doi.org/10.1007/BFb0054091
http://dx.doi.org/10.1145/3009837.3009894
http://dx.doi.org/10.1145/3009837.3009894
http://dx.doi.org/10.1145/2804302.2804309
http://dx.doi.org/10.1145/2544174.2500598
http://dx.doi.org/10.1017/CBO9781139193313.005
http://dx.doi.org/10.1017/CBO9781139193313.005
http://dx.doi.org/10.1007/3-540-57787-4_23
http://dx.doi.org/10.1017/S095679681400001X

	Abstract
	1 Introduction
	1.1 Contributions
	1.2 The File Handle Example

	2 Linear/Non-Linear types
	2.1 LNL as an Embedded Language

	3 Embedding a linear type system in Haskell
	3.1 Relations on typing contexts
	3.2 Typing judgments
	3.3 Units, pairs, and sums
	3.4 The Lift and Lower types
	3.5 Examples

	4 Evaluation and Implementation
	4.1 A deep embedding
	4.2 Modularly extending the deep embedding
	4.3 A shallow embedding
	4.4 Laws and correctness

	5 The monad
	5.1 Monads in the linear category
	5.2 The monad transformer

	6 Examples
	6.1 Arrays
	6.2 Session types
	6.3 Quantum computing

	7 Discussion and Related Work
	7.1 Design of the embedded language
	7.2 Deep versus shallow embeddings
	7.3 Further integration with Haskell
	7.4 Conclusion and future work

	References

