Enter prise Service Chain

Dr. Leszek Rychlewski, BiolnfoBank Institute
Jacek Zemto, BiolnfoBank Institute
Maciej Kazmierczyk, BiolnfoBank Institute

Abstract

Enterprise Service Chain (ESC) is a block chairba®ftware tool facilitating high
volumes of simple transactions. In most casesettragsactions involve sending tokens
between accounts, as is done with other crypteocres. The name is derived from the
concept of the Enterprise Service Birswhich a crypto currency is used as the protocol
of communication.

In ESC, the accounts are organized in hierarclfésilion. Each account is bound to a
local node and can be addressed by an unsignegeirgealler than 2°32. The number
of nodes is limited to 2"16. Blocks of transacti@ns created in regular intervals based
on the ‘Proof of Stake’ principle, whereby a smiled number of VIP nodes decide on
the composition of transactions included in theckldAfter each block is closed the set of
VIP nodes is selected based on the highest suokens$ stored in accounts of the nodes
(delegated Proof of Stake VIP nodes have total authority over nodes amduaats. If a
consensus between VIP nodes is reached, other @ednedes can be partially
paralyzed and their accounts modified.

Each node collects transactions signed by localatds, combines them into a message
and submits the message to the block chain netWuétes that submit conflicting
messages (double spend) are penalized heavilyigmom from the master VIP node is
needed to restart the double spending node. Mes$age two different nodes can be
processed in parallel without conflicts. All typafstransactions, except one, require
submission via local node. The only exception esghrticularly slow transaction of
‘recovery of funds’ that is needed in the caseohl node failure or dispute. Hierarchical
organization of accounts enables the incorporaifdknow Your Customer’ (KYG)
procedures during account creation. In contrastdst other crypto currencies, there is
no intention to incorporate functionality that fiteites launderingof assets.

All transactions and messages are consecutivelyoared and can be processed in
parallel within a block. Numbering reduces the siftenessage and transaction
identifiers, and as a result also the networkitafn account can send funds to many
accounts in a single transaction, requiring 6 bfgeshe target account and 8 bytes for
the amount.

! https://en.wikipedia.org/wiki/Enterprise_serviceisb

2 http://bytemaster.github.io/bitshares/2015/01/@égated-Proof-of-Stake-vs-Proof-of-Work/
® https://en.wikipedia.org/wiki/Know_your_customer

* https://en.wikipedia.org/wiki/Money_laundering

Enterprise Service Chain 1

The main objective of the software is to achievephocessing of a continuous flow of
transactions in the range of 10k to 100k transastfer second. At this volume it is
unrealistic to expect new nodes added to the n&ttedbe able to process all transactions
from the first (genesis) block before actively papating in the network. Because of

this, the concept of a genesis block has been dbppd nodes have the choice to start
from the current database snapshot, or to dowrttaagdactions from the last stored state.
To speed up the synchronization from the last stdd& nodes can ignore the
verification of some signatures if the message® leen already verified by VIP nodes.
To facilitate instant connection, the current stitall accounts is included in the block

(it is hashed into the block hash). Changes inMiirenode sets are also reflected in the
block hash to facilitate the verification of thetwerk state by the account holders
(clients of nodes) without the need to calculageghms of all account balances.

Essentially all transactions and account maintemaeguire fees. Less than 10% of fees
are sent to accounts of node managers. The rergaenvenues are distributed as
dividends across all account holders. The cashsflioam dividends can be used to
estimate the value of the tokens managed by ES€tdkens can therefore be viewed as
shares of stocks of ESC as an enterprise. Fed®preonstant to stabilize the valuation.

The main features of the Enterprise Service Chambe summarized as follows:

- Delegated Proof of Stake as the block consensubanéesn to reduce network
maintenance costs;

- Compact account and transaction identifiers, acgeddransaction set and parallel
processing of transactions to facilitate high teati®n volumes;

- Nodes are heavily penalized for double spends =i transactions can be trusted
almost instantly;

- A small set of VIP nodes is responsible for netwiotkgrity, to facilitate
incorporation of slow nodes with reduced transacfimcessing capabilities;

- A hash of all accounts is part of the block enaplimsstant synchronization with
the block chain;

- Hierarchical organization of accounts and nodetites KYC, AML>, elD°
supply and governance;

- Dividend payments are made to account holders add managers to support the
growth of the economy of the ESC system.

Introduction

The motivation for the development of ESC is thsibess case of a distributed payment
system for advertisements on web pages. In an stasyof thousands of advertisers and
thousands of publishers displaying ads from allegtilsers there are millions of resulting
individual payments. A central institution managthg cash flow can reduce the number
of payments back to thousands, but the institutamise on the ads market charge large
fees — often close to 50% of the payment volumetfeir servicé Alternative

® http://www.investopedia.com/terms/a/aml.asp
® https://en.wikipedia.org/wiki/Electronic_identifition
” http://www.iab.net/media/file/PwC_IAB_Programmattudy.pdf

Enterprise Service Chain 2

approaches of ad exchange markets are prone fic fratid, with estimates reaching
27% of traffic to be fake. The gobal financial l@s®2016 resulting from online
advertisement fraud was estimated at $7.8G

Micropayments can be implemented to address tbislggm, with stable advertiser —
publisher partnerships being created automatiedtlr an initial testing period that
requires negligible funds and thus negligible riBkis approach requires frequent
processing of a large quantity of micro transaion

The block chain concept was intended to bypasd garties in payment networks, but
the currently available implementations fail toesfthe transaction volumes required by
the advertisement industry. The most popular anst tested block chain (Bitcoin) offers
only few transactions per second and efforts toeimee this number have encountered
diverse problems, due to properties intrinsic ®dahypto currency’s design.

A review of crypto currency systems has resultethénconclusion that available
implementations focus on features that are oéliglevance for the business case of high
volume micro transactions, and may in fact hintleBuich features include:

a. Extended Privacy:

- In most crypto currencies, anybody can creategelaumber of accounts without
additional costs.

- Some crypto currencies introduce additional funelay that facilitates money
laundering by providing built-in procedures for g senders and receivers of
funds.

b. Extended Functionality:

- Some crypto currencies provide the possibility esigning and introducing
automated procedures (smart contracts) to manags tf funds stored on the
block chain.

c. Incentives for Miners:

- Most crypto currencies are based on ‘proof of wavkich offers owners of
computing hardware the possibility to obtain tokesthiout direct exchange of
fiat.

ESC was designed to provide tools for legal payraadtlegal transactions. The
introduction of extended privacy would support Ioesis models based on fake traffic,
and could potentially attract other criminal adias such as ransom payments provoked
by malicious software Extended functionality provided by some blockicis offers no
advantages for simple payment networks and comtsswbstantial risks of forks due to
intentional or unintentional errdfsin “smart contracts”. Application of smart contisic
requires that autharsand all users of the contract must be at leastrast as the

contract to detect and predict failures unlessradPof Block Chain Author” is

8 http://www.cnbc.com/2017/03/15/businesses-cout@lb64-billion-to-online-advert-fraud-in-2017.html
® http://www.nbcnews.com/tech/security/total-paidivere-ransom-how-exploit-spread-n759531

10 https://blog.ethereum.org/2016/07/20/hard-fork-pteted/

M http://www.steptoeblockchainblog.com/2017/06/myasrtontract-just-ate-14-million-now-what-re-
thinking-indemnification-for-smart-contract-riskgdige=1

Enterprise Service Chain 3

implemented. Such functionality can have devagyagifect on the speed of transaction
processing and makes any optimization of the pgicgprocedures very difficult. The
choice of ‘proof of work’ as consensus mechanissitha economical disadvantage that
all coins (tokens) available in the block chain s indirectly bought through
investments in hardware or running costs. Minesrathing hardware to the system for
as long as they earn revenue, and due to globgbetition, the profit margins are
squeezed to levels where essentially all acquiogtsare worth as much as the costs of
acquisition. This makes the maintenance of a paysystem with a lot of stored and
growing value very expensive. The revenues frormteaance don't go to the nodes that
keep the1r21etwork alive, but to relatively few mignipools, which leads to “node

bleeding™“.

After the review of crypto currencies, two implertaions were selected as a potential
basis for customizations to meet the needs of ajiime micro payment system. The
first choice “Bitshares” is based on the “Delegd®edof of Stake” consensus
mechanism. It has extended functionality includangptentially useful built-in

distributed trading platform, and claims high tractson throughput capabilities of 100k
per second. After initial analysis, the candidasswropped because: (1) by design
“Bitshares” requires the processing of the whotecklchain when connecting a node, (2)
we had problems compiling and connecting the nodke network, probably due to
built-in time latency limits that stop synchronimpat when overly large transactions are
encountered, and (3) the source code has overlR@3kand safely making any
modifications would require a long learning peridtie second choice “Cryptonite” had
the required feature of having a hash of all act®imthe block chain and the option to
forget old transactions. However, it was also dempas a candidate because: (1) after
compilation and launch of a new block chain, segatemm violations were observed on
some wallet transactions, and (2) because “ProwWark” rathern than “Proof of Stake”
is used as consensus mechanism and rewritingdbld cequire complete redesign of the
software.

As a result, the ESC software was written fromtstravith the initial decision to use as
few third-party packages as possible. The currergion is written in C++, uses
Ed25519 software for signatures and makes useasfttibraries. The current (academic
proof of concept) version of the softwitaas fewer than 15k lines of (admittedly
messy) C++ source code and compiles in secondsstiineture of the code will be
improved in the coming months before any new magtitions.

I mplementation

The block chain network consists of registered so&ach node has an id, and
themaximum number of nodes is 2716. Each node nesnagrounts - a maximum of
2732-1 accounts. New node registration requirgarssaiction from an account managed
by a registered node. Each node has a weight,spmneling to the sum of balances on

12 https://bravenewcoin.com/news/the-decline-in-bitsefull-nodes/
13 https://github.com/adshares/esc

Enterprise Service Chain 4

accounts managed by the nodes. The 32 fbuéth the highest weights represent the
VIP nodes. VIP nodes select the transactions irclud a block based on a Delegated
Proof of Stake consensus mechanism. The VIP notfetiae highest weight is assigned
the master VIP node status. The master VIP nodéhlegsower to change the secret key
of nodes that committed a double spend (networkeyi Nodes use their secret keys to
authenticate themselves when connecting to othéggsiand to sign all messages
submitted to the network. Therefore a node witlinaalid (changed) key is unable to
connect to the network.

The block chain consists of blocks calculated atipfined intervals of 1024 secofts
When a new block period starts, VIP nodes excharfgemation about the set of
messages included in the last block. This inforomais expressed as the hash of all
message hashes. Only VIP nodes participate inelleet®on procedure. The submission
of the proposed hash by a VIP node is delayed di#pgion the weight of the node (the
sum of account balances managed by the node).ddecan send its proposal if it can
not accept any proposal from other higher-weightesaread from the network (usually
because of missing messages), otherwise the ngule &iproposal read from the
network. A node can only sign one hash (vote), mils® it will commit a double spend.
The weight of the vote is equal to the weight @& tiode. The nodes collect votes (signed
hashes) until there is a hash with enough vote hw¢gum of weights of votes) so that no
other hash can have higher weight or until a timéoreached (256 secortfs After a
winning hash has been selected, all VIP nodes leddcthe new block and send their
signature of the new block to the network. Alsahis case, only one signature from each
node is legal. In most cases all VIP nodes shdglian identical block. In case of
disagreements, nodes with different block signatwi disconnect from each other
resulting in a fork. To connect again to the netn@node must initiate a synchronization
procedure starting from an older block with a noddhe target block chain. This process
currently requires manual intervention.

The Block includes:
1. current time (uint32_t) (“now”)
2. number of messages in block (uint32_t) (“msg”)
3. number of nodes (uint32_t even though there caylmmPl”"16 nodes so uint16_t
would suffice) (“nod”)
4. dividend for the current period (uint32_t) (pergghns many blocks) (“div”)
5. hash of accounts (char[32]) (“nodhash”)
6. hash of public keys of VIP nodes (char[32]) (fiksly is from the master VIP
node, other keys are sorted by node id) (“viphash”)
7. hash from the previous block (char[32]) (“oldhash”
8. hash of all transaction messages in this blockr[888 (“msghash”)
9. final new hash of the block (char[32]) (“newhash”)
The new hash is calculated as follows:

4 compile parameter
15 compile parameter
16 compile parameter

Enterprise Service Chain 5

newhash=hash2(msghash,hash2(oldhash,hash2(vipasish(hodhash,sha256(now,msg,
nod,div))))), where hash2(a,b) = sha256(a,b) if asiha256(b,a) otherwise.

The addition of the viphash as a separate brantifeihash tree of the block enables
account holders to monitor the changes in the caitipo of VIP nodes without
monitoring the weights of all nodes. Assuming ttfzdnges in the weights of heaviest
nodes are slow, the changes in the compositioneo¥/tP node sets will be small, and
each block will not exclude more than a few old VilBles from this set. Since the new
set in a new block is signed by a majority of oldPWiodes, the changes in the VIP set
can be validated simply by collecting the blocknsityres from VIP nodes without the
need to process all transactions (with a matchasiHree rooted at “msghash”), and
without the need to download the states of all sq@éth a matching hash-tree rooted at
“nodhash”). In the current implementation, a nolilent (account holder) downloads
missing blocks, signatures of the latest block sigdatures of all blocks where changes
in VIP sets occurred.

Nodehash is the root of hashes of all nodes. Tk bha node is calculated as sha256
checksum of following elements of the node:

public key (used to sign messages) (char[32])

XOR of hashes of all accounts (see below) (cha)[@Bhsh”)

last message hash (char[32]) (“msha”)

id of last message (uint32_t) (“msid”)

time last message sent (uint32_t)

weight (sum of balances of accounts) (uint64_t)

status (32 bits defining the state of the node)tBa t)

number of accounts (uint32_t).

The node enumerates messages sent to the netwbrkamisecutive numbers starting
from 1. The message id is incremented only for agss with regular transactions (not
for messages with votes or block signatures). Messthat represent votes are treated
separately. The id of the last message is stor&uisid”. The number of messages a
node can send in its lifetime is currently limited2*32. Assuming a message frequency
lower than 1 Hz, the size of this variable will mepresent a problem for any node in this
century. The new message is signed with the nque/ate key, and the message
includes the hash of the previous message. Thisaaely node generates its private block
chain, with the block hashes stored as “msha”.dlbek chain can be used for forensic
analysis or for auditing purpose, without the needownload all messages submitted to
the network by all nodes during the investigatedoge Instead of a hash tree of all
accounts, an exclusive OR (XOR) is calculated ubaghes of all accounts. The
(cryptographic) hash of an account is construateadway that can not be inverted
(collision resistant). The XOR of such hashes fé@ant to validate the integrity of the
data. The advantage of the XOR approach is thapdate of a single account requires
only an update of the hash of the account, and wdyXOR operations are required to
update the account hash of the node. If a hashaoeéd be used the update would
require up to 32 hash operations (depending ondih@er of accounts managed by the
node) and would create a more severe computatspesld bottleneck than the signature
verification. The disadvantage of the XOR approadhat it is impossible to generate a

ONoORrWNE

Enterprise Service Chain 6

short hash path (branch) that is rooted in thelkbfocthe purpose of proving the state of
the account. In the current implementation, a dedat user transaction is needed to
obtain the proof. This is accomplished by storimg &ccount state in a transaction and
creating a hash path to this transaction rootéthatjhash”.

Each account managed by a node has a fixed datafsi28 bytes. The fixed size of the
account enables efficient storage of account aefiat binary files. The data includes
following variables:
id of last transaction (uint32_t) “msid”
time of last transaction (uint32_t) “mtim”
public key (char[32])
hash of last transaction (char[32]) “hash”
block time of last outgoing transaction (uint32‘lpath”
cousin account id (uint32_t) “user”
cousin node id (uint1l6_t) “node”
status of the account (uint16_t)
block time of last incoming transaction from di#fet node (uint32_t) “rpath”

10 balance of the account (uint64_t)

11.hash of the account (char[32]) “csum”
The transaction id (“msid”) of the account act¢hesmessage id of the node and is
calculated as the number of previously submittadgactions plus one (“msid” starts
with 1). The time of last transaction represenéstiime as provided by the account
holder. The time must be larger than the time efgtevious transaction, but it does not
need to correspond to global clock time. The ‘hafslast transaction’ field is computed
using current transaction data and the hash giénaous transaction as input. As in the
case of the message hash of the node (“msha’has$ie of the account represents a
private block chain and can be used for auditing@se. Using this hash, the account
holder can prove that the provided set of transastis a complete set of all outgoing
transaction associated with the account. The a¢aata is used as input for the
calculation of the account hash “csum”, which ergplthe sha256 hashing function. The
account data must be collision resistant (any teamants must not have the same data)
otherwise the XOR of account hashes would not piproof of correctness of all
accounts. To achieve this, the first message hiate @account incorporates a reference
to the node id and the account id.
The account data includes additional variablesaghipy “rpath”, “node”, “user”)
representing information about changes to the adcmiseen by the network. These
variables are used internally to manage dividenanaats and account maintenance fees,
along with the special transaction of recoveringdsifrom an account in case of node
failure or dispute.

©CoNoOOOR~WNE

The account holder can send the following traneastto the network:
1. “send_one”: send funds to one account includingg@ional 32 byte memo
2. “send_many”: send funds to many accounts. Thifiéaper than executing many
“send_one” transactions, but does not offer théoapb provide a memo.
3. “broadcast”: broadcast a binary string of data thi#itbe loaded by all nodes and
provided to clients upon request. This is a metbfoaldvertising on the network.

Enterprise Service Chain 7

4. “create_account” request a local or remote nod®eate an additional account
with the same public key

5. “create_node”: request the network to create a aodecreate a management
account with the same public key as the issuinguatic

6. “retrieve_funds”: request retrieval of all fundsrn a remote account on a remote
node with the same public key. This special tratisads deliberately very slow
(in the order of weeks) and can be used if the temode fails or refuses to send
transactions from the remote account.

7. “change_account_key”: changes the public key oftteunt

8. “change_node_key”: changes the node key used nonsggsages and connect to
the network. This transaction can be issued owimnfthe management account
(account id = 0).

9. “set_account_status”: changes the status of a &malunt, subject to approval by
the node (i.e. the node can refuse to forwardtthissaction)

10.“set_node_status”: changes the status of a nodee ®ds of the status field
require approval by the network (through voting)l aome are restricted only to
local changes. This transaction can be issuedfoomy the management account
(account id = 0).

11."log_account”: request a transaction with a copyhefaccount data for the
purpose of creating a proof of state

The set of transactions is fixed and intentionsaitall. This design choice enables more
efficient optimization of transaction processingpBnding the set of transactions in the
future would require the update of all nodes thiatess all transactions (a hard fork).
Additional transactions are defined for the commanon between the node and the
account holder (client). These transactions enabieeving the account state (balance),
the account history, the broadcast files, transadiash paths and blocks with signatures
and VIP node keys. These transactions are nobp#re network protocol and can be
extended at will.

All network transactions require a fixed fee plugea proportional to the size of the
moved funds. Moving funds to accounts on remote=rasl two times as expensive as
local transactions (within one node).

Optimization consider ations

Many design choices have been made with the gaatlgéving a high transaction
throughput. The target of 10k transactions persg@¢thOkHz) was defined as the
minimum requirement. The potential to achieve adaation frequency of 100kHz has
been set as desired target. The minimum targeh&number of account has been set to
1M with the desired target of 100M (and the potdndf 1G accounts).

At a frequency of 100kHz and with 100M accountsesalbottlenecks are expected:
1. CPU based limits. A single CPU core can perfornuadol5k-30k Ed25519
signature verifications per second. Because theébeuwf transactions collected
since the hypothetical genesis block would be hitge unrealistic to require

Enterprise Service Chain 8

nodes to perform a complete block-chain scan wiealsonizing. This results in
the requirement to store a hash of all accoun#s i@ast some blocks. After one
block (1024 seconds) the network has completed bvetransactions so there is
the potential that all accounts have been updaieerefore delaying the update
of the account hash until only after multiple blsd¢iave been completed would
reduce the amount of CPU work needed for hashioguaver, hashing the set of
100M accounts would require several minutes anddvmean that during the
block a large fraction of the block time is spentaalculating the block hash.
Because the hash input data during the hash ttedat#on is small, replacing
sha256 with a higher throughput hashing functiarclisas BLAKE) would not
make a significant difference. To ensure a smauatfsition flow between all
blocks the decision was made to update the acdwmstt after every transaction.
Hashing both accounts of a transaction is expeot@ttrease the CPU
requirements of processing a transaction only 9g,20ith the majority of this
computational cost attributed to signature vertfama

Disk based limits. Regular hard drives (HDDs) wiindle only a few hundreds of
updates per second. The only option to achievarsaction frequency of 10kHz
using regular HDDs is to keep the databases in RRdv/achieve this, the
memory occupied by the account data must be siirtadl.choice of 128 bytes per
account means that a RAM volume of around 12Gleéslad to avoid having to
keep updates of 100M account on disks, which seefeasible requirement for
all nodes willing to access the network. Increasirgnumber of accounts to 1G
would require larger RAM or use of SSD disks thaat bandle 100k IOPS. Such
disks are currently available at a cost of belowEdLko.

Internet based limits. A regular transaction segdimds from one account to
another requires at least 64 bytes to store thragige. If the target account is
represented as a hash and the transferred amauia®8 bytes, then the size of
a transaction takes over 100 bytes to store. AkH@@ bandwidth of 10Mbyte/s
or almost 100Mbits/s is needed just to transpa@tttansaction data. This
estimation does not include the overhead needethéocommunication between
peers to inform about available transaction invantad continuous use of
100Mbits/s bandwidth makes setting up a node atehmrmblematic.

To address all 3 bottlenecks, the following degsigoices have been made:

1.

2.

3.

The use of Ed25519 signatures instead of secp2&fkatures enables the
application of a batch verification procedure afnsactions contained in a
message, which promises a speed increase of 1080%ednces the CPU
bottleneck.

Transactions are grouped in messages submitteddssnMessages from
different nodes can be processed independentlghwdrovides the benefit of
exploiting multi-core or multi-processor architerets. This reduces the CPU
bottleneck. Parallel processing of messages athaes the effect of disk
latencies and thus the disk bottleneck.

Transactions between accounts on different nodes higher fees. This should
lead to clustering of activities of a certain typihin dedicated nodes, and also

Enterprise Service Chain 9

increase the chance of updating accounts stordéidecsame file page. This
reduces the disk bottleneck.

4. Accounts have a small fixed size (128B) and are aliglned with the standard
4kB file page size. This eliminates the need ofliegindexes from the disk
before accessing the account data and limits thebeu of disk seeks.

5. Using XOR of account hashes instead of a haslofraecount hashes makes the
effect of hashing of accounts negligible on the Gieformance, and eliminates
the need of additional disk seeks to find the neagimg hashes for the hash tree
update.

6. Using enumeration of accounts, messages and ttaorsaenables the storage of
a message id, a transaction id and the accouatltéss) each in a 64bit digit
(uint64_t). Grouping of transactions in messagektha small message id size
reduces the bandwidth needed for the update ohtowe changes between nodes.
It also reduces the size of the message needaxbtoilde the set of messages
included in a proposed block.

7. Introduction of account creation and maintenanes feill promote the reuse of
accounts and limit the number of accounts useddieat, which will reduce the
required disk space and the disk bottleneck.

8. Introduction of the one-to-many transaction redubesnumber signature
verifications needed for a single movement of furBkcause the target account
and amount can be expressed in 14 bytes (amobyte8; target node: 2 bytes;
target account: 4 bytes) the bandwidth neededftormthe network about the
movement is also reduced compared to standardoeoyptencies that report the
target account as a 25 byte-long hash.

9. The designation of a small set of VIP nodes fordigaoff of blocks provides
many options to further reduce the processing reqénts of other nodes in the
network. The signatures of transactions are valaty the VIP nodes so there is
no strict need for all nodes to verify them. Thisajly reduces the CPU
requirements but does not affect the disk and nétwandwidth limits. To
reduce the disk bottlenecks, weak nodes can dézidmore the information
about other nodes completely and just rely on thenbdes to select fully
validated messages. From these messages, a weakvoattl only need to
extract the incoming transactions affecting loc@ns. A weak node would then
remain a functional node for its clients and transmy transaction, but it would
not be able to inform its clients about the stafesccount on other nodes. This
operation mode would reduce the disk bottleneckwmuld not affect the
network bottleneck. A reduction of the network bmiteck is possible if a peer
performs a screening of messages sent to the wehk and filters out messages
that do not affect the accounts of the weak notie.Weak node can still validate
the integrity of its data based on the “nodhasbbd{thash of node states) stored in
each block. This radical approach would make itasgible for the clients of the
node to request any remote transaction transnottedthe network. Currently,
only the CPU bottleneck is reduced, and nodedligabehind with signature
verification ignore it for messages validated istdalocks.

Results

Enterprise Service Chain 10

A cluster of computing nodes with 24 cores of Inebn E5-2650 v3 2.3GHz and
196GB of RAM was used for the tests. The initigkt&f cryptographic functions showed
that one core of the cluster nodes is capablerdémaing 16 200 signature checks in
single check mode and 35 300 checks in batch gatifin mode.

The nodes had a file server mounted synchronowsy MFS which degraded the
performance dramatically. To eliminate the probtefrdisk 10 latencies, all files where
kept on a local RAM disk. The network consiste@ afodes, with 8 threads dedicated to
message processing and 16 threads for processiog iEquests (communication with
clients sending wire transfers). The use of 8 tisdar signature verifications poses a
CPU-based limit for transaction processing of &*3B0 Hz = 282 400 Hz (in batch
verification mode). Four types of wire transfergeveested with 1, 10, 100 and 1000
recipients respectively. The senders and recipightse chosen randomly from the
account databases. In these tests, the senderabatish of 1000 transactions. The tests
were conducted on two database sizes: a small adhe8w 10 000 accounts and larger
one with 8 * 100 000 accounts. The performancemeasured with modified network
parameters, with a shortened block length of 32rs&x to reduce the time needed to
accumulate results. The results are presenteckitatile below:

db size recipients transactions/s updates/s
80 000 1 144 308 144 308
80 000 10 99 803 998 030
80 000 100 16 084 1608 360
80 000 1 000 1549 1549 250
800 000 1 119 672 119 672
800 000 10 66 702 667 022
800 000 100 10 231 1023 050
800 000 1 000 1189 1188 667

Initial results indicate that the nodes can reatrfasaction processing speed of over
100 kHz. The results show that on a small databiage account update speeds of over 1
MHz can be reached, but the speed drops with isgrgalatabase sizes. This is due to
the fact that transfers between different nodekepein RAM and are committed at
block end. At high transfer speeds, most databessuats are already updated after 1
second. After the end of a block, the nodes comathibter-node transfers but the
number of such commits is not larger than the nurabaccounts. Local node wires are
committed immediately, and due to the network deslg8 of all wires are local, so the
minimum expected update speed at large databasisialso above 100 kHz
(1.5MHz/8).

Discussion

VisaNet handles an average of 150 million transastevery day and is capable of
handling more than 24 kHz (transactions per secbas&d on a test conducted by IBM

Enterprise Service Chain 11

in 2010". Reports from 2015 indicate a maximum throughpéokHz'. In 2012
Mastercard reported in its annual repoa capacity of 160M transactions per hour which
translates to 44 kHz. The reported throughputierBESC platform is therefore
competitive with global payment networks, whilsvimg the advantage of keeping a
distributed ledger. The hierarchical structurehaf ESC network offers the option to add
weak nodes to the network that do not verify aghsitures, or even that ignore many
transactions.

The hierarchical structure of ESC helps to implenmetworks compatible with the
cross-border elD concept promoted for example byEhropean Commissith Most
crypto-currencies implement schemes that do ntricethe creation of new accounts. In
ESC each account is linked to a node that hasapabdlity of modifying the status bits
of the account. This helps to implement authoritieprotocols that can provide reliable
information about revocation of a state of an aaton any crypto-currency it is easy for
the account holder to prove that a status has é&sgned to the account in the past (for
example by pointing to the transaction assignirgstiatus). However, it is difficult to
prove that the status has not been revoked. Tefstirtgis is a similar problem to the
detection of double-spend and requires eithersaddithird party or the scanning of all
transactions. In ESC, all (full-)nodes are capatblproviding reliable information about
the status of all accounts, and can act as suithinteparties. As an example, a node
could offer elDs for businesses operating in thesgliction of the node (e.g. a node
representing a micro-nation) and assign a bankywgittus to the account of the business
if the business filed for bankruptcy protection.

ESC was designed to provide an infrastructuredst transactions and extended
governance. ESC was not designed to provide extiefuchetionality, for example in the
forms of automated procedures (“smart contractsi$. difficult to implement such
procedures on the network level without sacrificepged but it is not difficult to
implement them on the node level. Nodes can easpiement two factor authentication
or multi signature wallets. Nodes can also implenesichanges of the main token with
other tokens. Nodes could be responsible to gueeahe authenticity of listed tokens
(for example Fiat) that they offer in trades. Ttwsild be used by micro nations to offer
shares of companies registered in their jurisdictar digital currencies minted by the
nations. Nodes could also offer additional servieash as loans or insurances to local
users, and in this way promote local economic gnowb improve the security of local
procedures and transactions, a node could be dumlitether nodes that are respected by
the network. In the case of serious disputes, dehizving node could be excluded from
the network by the VIP nodes. This would not neaelysmean a complete loss of the
ability to continue business for local users, batld require the implementation of other
means to exchange locally and globally acceptegtsiss

7 https://usa.visa.com/run-your-business/small-tessrtools/retail.html

18 https://usa.visa.com/dam/VCOM/download/corporatelim/visa-fact-sheet-Jun2015.pdf
19 http://s2.g4cdn.com/242125233/files/doc_finandaisual/MA-2012-Annual-Report.PDF
2 https://ec.europa.eu/cefdigital/wiki/display/CEFDTAL/elD

Enterprise Service Chain 12

Recently a similar project (EOS.6 based on delegate proof of stake has been
announced. The EOS.IO project aims at combininglighiprocessing with user defined
procedures (smart contracts). There are similariietween EOS.IO and ESC, but the
main difference is that ESC tries to separate titeraated procedures, advanced user
management (permissions, mandatory delays in ttdosg, recovery of stolen keys,
etc.) and complicated governance models from te hanctionality that is mandatory
to facilitate a high speed block-chain. The sepamatill enable independent
development of enhanced functionality without tleechof hard forks. The design
choices made in ESC focus on speed and interopigyatiith other block chains. The
interoperability objective is for example one oé tieasons to keep much larger block
(over 15 minutes vs. 3 seconds in EOS.I0). Theilddtaomparison between the two
block chains would require lengthier discussiorhwiite additional difficulty that EOS.10
is still a concept with no published implementation

Acknowledgements

The project was funded by the grant PICO-2015-PL.

2 https://github.com/EOSIO/Documentation/blob/ma3technical WhitePaper.md

Enterprise Service Chain 13

