
Magdeburger Journal zur Sicherheitsforschung

Gegründet 2011 | ISSN: 2192-4260
Herausgegeben von Stefan Schumacher

Erschienen im Magdeburger Institut für Sicherheitsforschung

This article appears in the special edition »In Depth Security – Proceedings of the DeepSec Conferences«.
Edited by Stefan Schumacher and René Pfeiffer

Malicious Hypervisor Threat

Phase Two: How to Catch the Hypervisor

Mikhail Utin, PhD

In this article we’re addressing the matters discussed at DeepSec 2014 (Utin M. 2014) and 2016 (Utin M. 2016)
including the current status of the Malicious Hypervisor (MH) project and the available information con-
cerning it. The first part of our research - Phase 1 – was our analysis of a few publicly available documents
concerning the MH threat, caused by the exploitation of virtualization and the out-of-band management vul-
nerabilities. The second part - Phase 2 – is about identifying Malicious Hypervisor activity, the discussion of
discovery methods and, finally, the testing results of our HyperCatcher MH identification software. The matter
of the MH threat is still evolving and we’re planning on to address that in the future in Phase 3. Unfortunately,
there is no end to the story of virtualization, vulnerabilities and threats. It has started by the implementation
of mainframe OS virtualization in a PC environment. The technology was thus transferred from closed and
secure mainframe architecture to an open and diverse Internet world without any thought of possible security
implications.

Citation: Utin, M. (2017). Malicious Hypervisor Threat: Phase Two: How to Catch the Hypervisor. Magdeburger
Journal zur Sicherheitsforschung, 13, 754–771. Retrieved May 28, 2017, from http://www.sicherheitsforschung-
magdeburg.de/uploads/journal/MJS_051_Utin_Hypervisor.pdf

http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_051_Utin_Hypervisor.pdf
http://www.sicherheitsforschung-magdeburg.de/uploads/journal/MJS_051_Utin_Hypervisor.pdf


Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 755

1 The research history

The driving idea for our MH threats research has its
roots in two really different sources - Stephen King’s
novel »Cell« (King 2005) and a Russian scientists blog
post on a hackers’ site describing an MH attack with
the potential to completely destruct a computer sys-
tem (Xakep.ru 2011). Besides all the futuristic com-
ponents of Stephen King’s novel, its idea of exploita-
tion of mobile phone technology and networks rang
the bell. In the novel the broadcast of a signal kills
the human brain and creates millions of zombies. . .
But who says that it is impossible to reach millions of
computers at once and kill them, exploiting a security
hole?
We completely depend on computing technology.
Approximately 40 million servers worldwide do
everything from growing vegetables to electronic
banking. Everything is under computer control.
Roughly one half of all servers belong to US organ-
izations. How many of them malfunctioning would
it take to disable first the US and then the world eco-
nomy? Taking into account all the interdependencies
of modern economy likely no more than 10%!
The fast development and production of information
technology leaves security well behind, thus violating
a fundamental principle – system development must
start together with security development. A typical
example is »cloud computing« (Utin, M. 2015). To
plug a security hole in a widely used technology re-
quires years of redevelopment and likely the search
for new ideas. That complicates and over complicates
computer systems without making them significantly
secure. Multiplying functions, controls, codes, etc. in-
creases the systems entropy raising the risk of various
problems. Further below we will discuss how Intel
IPMI’s (Intelligent Platform Management Interface)
(Scribed.com 2016) out-of-band management techno-
logy combined with virtualization (i.e. MH) may af-
fect computers - thus turning the fiction of King’s
novel »Cell« into a grim reality.
Coincidentally, while reading »Cell«, we received a
copy of a blog post of a Russian scientist– while work-
ing on his virtualization project , he found an embed-
ded hypervisor in the Intel motherboards Baseboard
Management Controller (BMC) system management
software (Xakep.ru 2011). His post was a sort of out-
cry.
BMC is the implementation of Intel IPMI and exists
in 99% of all servers. That exactly fitted the dooms
day scenario of »Cell« – complete computer control
up to its destruction plus possible unlimited distribu-
tion of malware via BMC BIOS embedded software to
computers around the globe. The post was published
on the blog at the end of 2011. It described events
approximately between 2007 and 2010. The post is
shocking, not only because it claims that for the first
time an embedded hypervisor was found in the wild,
but also that such software comes from the inside of
motherboards of the main manufacturer of computer
processors and chips – the Intel Corporation. The

reason why this article was not known in the secur-
ity research community was simply because the blog
post was written in Russian. It was more than clear
that such an embedded hypervisor cannot come out
of nowhere, or could be the effort of a Black Hat team.
Substantial efforts have been made, it is even possible
that research on the matter has been published.
In his post the purpose of such an hypervisor or in-
formation about its payload – malicious or not - hasn't
been taken into account. Anyway, the Russian scient-
ist considered it a security threat. We, due to its silent
existence, not disclosed by the company and the »par-
ent« project (see below) - regard the hypervisor as a
»malicious« component and will therefore refer to it
as Malicious Hypervisor (MH).
We shortly found a publication of Michigan Univer-
sity (MU) (King, Samuel T. et al 2006) which describes
the proof of concept of the development of malware,
utilizing software virtualization. This malicious soft-
ware modifies the boot record, reboots the system and
modifies already installed OS (Windows or Linux) to
run as a virtual guest OS. Finally, MH was developed
to provide complete control over the guest OS, install
additional virtual guests to run various exploitation
tools and at the same time almost invisible from the
above it now guest OS. Because of the time correla-
tion and other details which we'll discuss below, we
believe that the MH found in Intel motherboards has
been initially developed in the MU lab.
At the same time, the idea of embedding an MH with
whatever purpose in BMC BIOS seemed very risky
and ineffective for its distribution. Thus we started to
search for better »options of delivery«. We were not
overly surprised when we found yet another MU re-
search (Bonkoski, A. et al 2013) describing the vulner-
ability of out-of-band management software, which
can be easily hacked over the management network
interface. The article analyses various aspects of this
problem, but to us the possibility of MH distribution
to hundreds of thousands vulnerable computers over
the Internet seems most important.
As the result of our 2013 – 2014 research our general
understanding of the MH threat was as follows:

1. MH is the most advanced threat to high end com-
puting systems utilizing virtualization.

2. There are no means reliably identifying the pres-
ence of MH.

3. MH instances have been found in the most se-
cure place of high end computing systems – BMC
BIOS.

4. MH instances can be easily distributed over In-
ternet, by compromising vulnerable IPMI/BMC
embedded software.

However, details of the research are important to un-
derstand the magnitude of the MH threat.



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 756

2 Details of MH Phase 1 research

Our research has been based on publicly available in-
formation. That includes three publications, which
we briefly described above, and various related in-
formation of Internet research. We refer to these three
publications as »Cases«:
Case #1 - Russian blog post (Xakep.ru 2011) »Chinese
Add-ons: True Stories of virtualization, information
security and computer spying« which we translated
from Russian with the help of Google Translate and
then edited manually. We tried to keep in line with
the style of the unknown author, his technical consid-
erations and emotions. All proves to us that the paper
is genuine and not a crafted spammer’s document to
blame Intel Corporation in whatever is the name for
such an activity of embedding and distribution. We
will share our thoughts below. Events described in the
post involved various people and organizations. Its
URL has changed a couple of times since we verified
the leaked text and the post may not be available any-
more at the place where we found it at the time of this
writing: https://xakep.ru/2011/12/26/58104/
Case #2 - US MU Virtual-Machine Based Rootkit
(VMBR) research »SubVirt: Implementing malware
with virtual machines“ which was done approxim-
ately in 2005 to 2006 (Wang, Yi-Min et al 2006). The
project was supported in part by grants of the Na-
tional Science Foundation, CCR-0098229 and CCR-
0219085, by ARDA grant NBCHC030104, by Intel and
by Microsoft. The latter research team is listed as au-
thors of the paper.
What is ARDA? It is now called DARPA (Defense Ad-
vanced Research Projects Agency). So, there are three
VIP parties involved – the US government (defense
agencies), IT software giant Microsoft and IT hard-
ware giant Intel. It means the research was and is also
»VIP«.
According to some Internet bloggers, the project in-
formation was initially available on the Microsoft site
but has been removed later. We think it is now con-
fidential or even classified.
Case #3 - US MU IPMI/BMC vulnerability research
(Bonkoski A. et al 2013) »Illuminating the Security
Issues Surrounding Lights-Out Server Management«
conducted approximately in 2012 and 2013 (published
2013).
Interestingly, and that reflects the understanding of IT
vendors and customers of the importance of the »sys-
tem management network interface«, nobody gave a
thought to its security until 2013. Well, let’s say a
vast majority of both vendors and customers didn't.
How often vendors were issuing security updates for
the system management BIOS? For old motherboards
once in a while, say twice a year. It’s a different mat-
ter now, when it comes to new systems – sometimes,
they are updated each month. What has changed?
This research has become well known and US CERT
issued an IPMI related alert (US CERT 2013). How-
ever, there is another part in this security equation –

vendors’ personnel. The most of them are unaware of
the threat and alert and do not perform system man-
agement software updates. Partially because phys-
ical server running a bunch of virtual systems should
be offloaded of virtual guests, updated and then re-
booted. This must be done for each physical server
and causes system administrators a lot of headache,
because it’s a manual process and cannot be auto-
mated as user OS update.
Therefore, we think that because of the »human
factor« the situation concerning server management
vulnerability did not change significantly.
Our research process is illustrated in Fig. 1. It shows
how we moved on historically from one case to an-
other. How important is Case #1? First of all, it con-
firms that MH is not a theory but reality. What if any-
body questioned the reality of the Russian scientist’s
findings? If we had »No Case #1« situation, we'd still
have the same MH/IPMI threat and risks – virtualiz-
ation vulnerability multiplied by IPMI/BMC vulner-
ability. The Case #2 of VMBR is relatively known but
never discussed as a significant threat, although the
MH is above system BIOS level and below OS and
thus can alter any part or piece of OS and applica-
tions. So far, we have not came across any discussion
of this threatening MH/IPMI combination.

2.1 Case #1 – Russian blog post

The Russian scientist’s post describes how he found
MH in Intel motherboards’ BMC flash memory con-
taining system management software. He identified
it while developing his own virtualization software
(hypervisor) for high performance computer systems.
Kraftway, the customer concerned, is one of Russia’s
biggest IT companies, working closely with the Rus-
sian government. It supplied Intel motherboards with
hardware assisted virtualization for the project.
While the development/testing system worked, the
production system failed. The system has been
hanging on the boot because another virtualization
software was interfering with its own. That was
what we now call »nested hypervisor«. The invest-
igation finally revealed that the problem was loc-
ated in the production motherboards, labeled »As-
sembled China«. Testing system boards had »As-
sembled Canada« labels. The scientist updated BMC
embedded software in »Assembled China« mother-
boards from the Intel download site, and the produc-
tion system finally worked.
He also observed that the process of improving MH
in »Assembled China« motherboards caused less and
less problems until the problem was completely gone
as it was no BMC embedded virtualization software
anymore. However, he was sure that now invisible
software is still running on the motherboards, but
working just fine as »nested hypervisor«. There were
a few experiments described in the post to measure
the execution time of specific commands. From his
point of view, they proved that an MH existed and ran



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 757

Fig 1. The process of Phase 1 MH research

his virtualization seamlessly. Unfortunately, there are
no details provided in the blog post explaining the ex-
periments and thus we cannot confirm provided res-
ults.
The scientist considered that the MH in motherboards
represents a certain threat to the security of the Rus-
sian state. It also violates the law on encryption limit-
ation because BMC embedded software is encrypted
in the flash memory. Thus, he arranged two meet-
ings with the Russian Federal Security Services (FSB)
and gave a thorough presentation on MH technology
and the threats and advantages of MH based exploits.
He also gave a presentation for the information secur-
ity team of GasProm (Russian natural gas production
company) concerning the possibility of complete de-
struction of computer systems utilizing MH.
Unfortunately, his efforts to ring the MH threat alarm
bell were in vain. He naively expected praises and
openly expressed interest from FSB. But things don't
work like that. The FSB definitely did not pass on the
information and missed out on the opportunity to de-
velop its own (or get an existing) MH solution to dis-
tribute silent control to points of interest.
So, basically, that was the end of the story. How-
ever, we would like to investigate some facts which
appeared in the post but were not of interest to the
author.

2.2 Case #1 – misleading labels

According to the post, the scientist worked with two
shipments of motherboards – the one for testing,
labeled as »Assembled Canada«, and the other one for
production, labeled as »Assembled China«.
Our search through Intel Corporation’s public in-
formation did not reveal any assembling factories in
Canada and China. In fact, no such factories were
in existence in 2007. Thus, both labels were fake.
They have been placed on motherboards for a differ-
ent purpose – possibly to distinguish whether embed-

ded software was altered.
However, Intel Corporation does have a facility in
Vancouver, Canada, which deals in flash memory and
its embedded software.
Considering the known circumstantial evidence, we
may think that both, the testing boards labeled »As-
sembled Canada« and the production boards labeled
»Assembled China« came from Canada. Testing
boards contained a pre-production version of BMC
embedded software, so it’s logical to assume them
passing through the Vancouver facility. Thus, the
»Canada« part of the label was correct. Concerning
the production boards labeled »Assembled China« we
consider two options:
1) the BMC software has been altered in the Van-
couver facility or outside, at a »parallel« site, using
the same kind of equipment, technology, develop-
ment software, etc. So, we have either a company
supported project of silently embedding a virtualiza-
tion solution in its system management software (we
consider such add-on as malicious though) or
2) a huge leak concerning confidential information of
the company, including secret encryption keys, devel-
opment software, management software code, equip-
ment, etc. and the interception of the motherboards in
question, altering the software and shipping it to the
destination of interest.
Intel Corporation and other computer equipment
manufacturers never disclosed their codes of system
management software. It is considered strictly con-
fidential. The software functionality is known in gen-
eral, but, considering Case #1, it is not clear what else
is embedded in a BMC/IPMI flash memory. We know
that for the time being it was a hypervisor with un-
known functionality. However, we do not know if this
“BMC hypervisor« was a sort of pilot testing effort,
if the hypervisor is still present in the BMC manage-
ment software as a »feature«, and what its functions
were or are.



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 758

2.3 Case #2 – MU »Virtual Machine (VM)
Based Rootkit (VMBR)« research

The purpose of the project SubVirt was to create an
ideal malware, and the MU team exploited virtualiz-
ation technology for that purpose. Quote: »Our pro-
ject, which is called SubVirt, shows how attackers can
use virtual-machine technology to address the lim-
itations of current malware and rootkits. We show
how attackers can install a Virtual-Machine Monitor
(VMM) underneath an existing operating system and
use that VMM to host arbitrary malicious software.
The resulting malware, which we call a Virtual Ma-
chine Based Rootkit (VMBR), exercises qualitatively
more control than current malware, supports general
purpose functionality, yet can completely hide all its
state and activity from intrusion detection systems
running in the target operating system and applica-
tions.«
The purpose of the research is clear, but there remains
a question – how does the ideal malware fit in with
the business of the project sponsors (NSF, Microsoft
and Intel)? So far, we never heard of any of them
being involved in any hacking activity. If that still
holds true ARDA/DARPA would be the only inter-
ested party.
What have MU team done to attract defense agen-
cies?

1. They used so called Virtual Machine Introspec-
tion (VMI) techniques enabling the VM service to
understand and modify events within guest OS
and its applications. That means complete con-
trol over the OS and its applications by malicious
services within VMM or its malicious guests.

2. The Team designed and developed two proof-of-
concept VMBRs based on VMware and Windows
Virtual PC (currently obsolete). VMBR installs it-
self beneath the originally installed target OS and
then runs the OS as guest. The installation re-
quires the modification of the Master Boot Record
to boot VMBR before the OS and then the reboot
of the system. The VMBR is stored on free space
on the system hard drive. All these operations
require administrative privileges.

3. VMBR has malicious services as payload. How-
ever, to avoid detection by the target OS, VMBR
installs attacking virtual host and use its OS to
run malicious services. There are two classes of
services. The first class does not communicate
with the target OS. For instance, spam relays,
DoS zombie agent, etc. The second class observes
data or events in the target system and applic-
ations utilizing VMI. Examples are key logging,
network packets capture, etc.

4. In general the research considers two ways of
MH identification – from above VMBR and be-
low. The research does not really consider a
solution to identify VMBR from below, with the
exception that yet another »Security Hypervisor
(SH)« is installed before VMBR. However, such

SH software should come from an even lower
level, which is system management software in
. . . BMC. So, we are getting exactly the same
scenario that was later identified in the Russian
case, in which the scientist was trying to install
his hypervisor while it was already running MH
from BMC.
Finally, the SH concept has been used to imple-
ment a »Secure Boot« system.
Does that mean that the purpose of the MH em-
bedded in BMC in Case #1 is meant as protection
from another MH installation? However, SH is
not protected from the »rootkit« coming from the
same level – via the out-of-band network man-
agement interface. That possibly makes the ex-
ploitation even easier – the hypervisor is legitim-
ately installed and just needs to be hacked . . .
Concerning the identification from the above, the
research generally considers that MH consumes
computer resources (CPU, memory, disks, I/O
devices) thus MH activity can be identified. The
problem is that MH can intercept identification
activity and alter the system’s status or hide its
activity.

5. Future trends towards hardware assisted virtual-
ization were analyzed. Execution of virtualiza-
tion commands at CPU level will make it more
difficult to identify MH activity. That also in-
cludes inserting VMBR (i.e. MH) between VMM
and an already virtualized OS. This solution –
VMM and several virtual OS/hosts - is currently
dominating and possibly is used in 99% of IT sys-
tems. It is the authors opinion that VMM running
as SH may help to improve the protection against
VMBR, but that has yet to be proved.

2.4 Case #3 – Michigan University
»Illuminating the Security Issues
Surrounding Lights-Out Server
Management« research

Here is the quote explaining the purpose of the re-
search (Bonkoski, A. 2013): »This paper examines
the security implications of the Intelligent Platform
Management Interface (IPMI), which is implemented
on server motherboards using an embedded Base-
board Management Controller (BMC).We consider
the threats posed by an incorrectly implemented IPMI
and present evidence that IPMI vulnerabilities may
be widespread. We analyze a major OEM’s IPMI im-
plementation and discover that it is riddled with text-
book vulnerabilities, some of which would allow a re-
mote attacker to gain root access to the BMC and po-
tentially take control of the host system. Using data
from Internet-wide scans, we find that there are at
least 100,000 IPMI-enabled servers (across three large
vendors) running on publicly accessible IP addresses,
contrary to recommended best practice.«
». . . at least 100,000 IPMI-enabled servers. . . « What is
the reason for such insecurity? In our opinion there



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 759

are two reasons.
Firstly, vendors traditionally considered the interface
of the management network as the »backyard« of the
system. All attention has been focused on secur-
ing the data interface and the frontend system. The
backend was not really important . . . While the fron-
tend had an automated update system, the backend
had not. When the frontend had an OS firewall,
the backend had no such thing. The backend OS is
Linux, and it’s a »bare bone« system minimized to
take as little as possible of BMC flash memory. While
standard Linux systems run SELinux and an internal
firewall, a system management OS does not. How-
ever, system management software includes various
GUI applications accessible via HTTP/HTTPS. While
Linux may be considered a relatively secure code, ap-
plications, and HTTP servers in particular, are tradi-
tionally full of bugs. In short, this is the first reason
– vendors didn't pay appropriate attention to the
backend system security.
The second reason is more fundamental. We can-
not agree with the statement of Case #3 ». . . threats
posed by an incorrectly implemented IPMI. . . «. It is
not about implementation. IPMI is a standard, which
should include, but has nothing related to security. It
is an IT solution for system management, and from
its draft until now DOES NOT INCLUDE SECURITY
parts. In short, IPMI is the result of a very common
IT approach - first comes system design and devel-
opment and then, eventually, somebody may think
about security. We have IPMI »technology« vulner-
ability when the IT technology solution lifecycle does
not include security components. We will consider
that below.

2.5 Cases Summary

By itself MH based on MU VMBR is very threaten-
ing, being capable to intrude a computer system, op-
erate silently, while staying completely invisible for
available anti-malware tools. It can be tasked to des-
troy the system as well. However, the penetration
in working OS and the installation of malicious soft-
ware requires administrator/root account level. Not
a problem these days. Elevation of privileges (or priv-
ilege escalation) attacks have been around for a long
time. To stay in the system long term MH needs to
modify the boot process and save itself on the systems
hard drive. Modern protection like »Secure Boot«
may make that more difficult.
A more promising approach is the utilization of IPMI
vulnerability by exploiting BMC and its memory for
the MH penetration. Research (Bonkoski, A. 2013)
proved that hundreds of thousand of systems of vari-
ous vendors could be easy exploited and malicious
software like MH could be installed in BMC RAM
and then likely in flash memory. The vulnerability has
an associated CERT alert TA13-207A (US CERT 2013),
which describes the risk as follows (quote): »Attack-
ers can use IPMI to essentially gain physical-level ac-
cess to the server. An attacker can reboot the system,

install a new operating system, or compromise data,
bypassing any operating system controls.«
MU VMBR (Case #2) proved the concept of the most
advanced malware. MU IPMI/BMC (Case #3) re-
search explains how such malware can be distributed.
Therefore, we have to conisder an extremely danger-
ous combination of two threats – MH and IPMI/BMC.
The latter enables massive delivery and installation of
extremely dangerous malicious software. Such soft-
ware could be developed within one to two years by
a qualified team of three or four people and distrib-
uted to millions of computers. Considering the fact of
cyber terrorism, and taken into account that terrorist
groups often show a very high level of qualification,
it seems possible that an MH/IPMI cyber terrorism
solution will be developed. This may bring us to the
scenario of “Cell“.
While IPMI/BMC software vulnerabilities may help
to get the MH into a computer system, the manage-
ment interface can be successfully used for the silent
download of MH into BMC’s flash memory, instead of
having it preinstalled in motherboards as in the Rus-
sian Case #1. That could be done by a backdoor em-
bedded in BMC, which silently downloads BMC BIOS
with MH. The utilization of each method actually de-
pends on the purpose of an MH installation. If the
MH is used for »protection«, it may be embedded in
each motherboard, and if for unidentified purposes,
then it can be downloaded.

3 Correlation between Case #1 and
Case #2 hypervisors

First of all, the MU VMBR research was and still is
the most significant in the field of the MH, providing
both concepts and practical examples of implement-
ation. Its code may be definitely used in any future
MH development.
And there is definitely a time correlation between the
publishing of Michigan University’s VMBR research
(2006) and the Russian Case #1 of 2007 – 2008. One or
two years should be sufficient to organize the process
of embedding MH in motherboards and to develop
a version working with hardware assisted virtualiza-
tion.
One of VMBR project sponsors was Intel Corporation
and thus had access to the entire research and soft-
ware code. The latter, supposedly, was finally embed-
ded in the BMC software.
The VMBR research considers only one out of all pos-
sible scenarios, for how to install malicious VMBR in
an already virtualized customer environment having
the customers VMM (hypervisor) and virtual guest
OS. The VMBR is installed between VMM and guest
OS instead of below VMM. That happened in Russian
Case #1- the already running embedded hypervisor
(in our terms - MH) installed a new customer hyper-
visor above itself.
The installation of a hypervisor above VMM may hap-



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 760

pen only if this VMM has been installed as a »security
hypervisor« with system management privileges from
BMC software.
VMBR in MU Case #2 was developed as a software
virtualization component and thus as not being able to
work with hardware assisted virtualization provided
by new CPUs. Initially, the MH in Russian Case #1
was also not able to work with hardware assisted vir-
tualization properly and to seamlessly support »nes-
ted hypervisors«. That was eventually fixed.
Considering such correlation, it is very likely that
VMBR code has been used to develop the MH iden-
tified in the Russian Case #1.

4 How many MH instances do
exist?

We assume that there are at least two MH instances
– the original VMBR code instance working as a soft-
ware virtualization component only, and a newer ver-
sion working with hardware assisted virtualization,
which has been identified in the Russian Case #1.
Both can be used successfully. The first MH will
work with computers not having virtualization sup-
port and the second with high end workstations and
servers. Thus two instances should cover all com-
puters in use which has been manufactured within
the last ten years and the ones which will be manufac-
tured within the next five years. Of course, changes
in hardware assisted virtualization will have to be ad-
dressed, but such an upgrade is not a major issue.
There is also a high likelihood of one more MH in-
stance, one »Made in Russia«. In his blog post the
scientist described his meetings with the Russian gov-
ernment authorities from FSB (former KGB) and him
informing them about the treats and advantages of
this particular malware. He was disappointed that
the secret service people expressed no interest and
dismissed the threat. And then there were his two
presentations at GasProm, which, although technic-
ally successful, seemed to have failed to raise atten-
tion as well. These experiences basically were his
main reason to publish the case. However, the scient-
ist was naive to expect the FSB or other security pro-
fessionals to shake hands and promise to work with
him on the MH case. He released all the information
they needed and thus became irrelevant to the future
plans of secret services.
It seems likely that a new instance of the MH was de-
veloped in Russia within a couple of years or less, and
available around 2011 to 2012. But if that’s the case,
we should not expect anything like the MU VMBR re-
search publication. There is this one rule of the Rus-
sian security services - classify all just in a case.

5 Technology vulnerability vs.
software vulnerability

People who are involved in security research, re-
spectively the search of software code vulnerabilit-
ies, know how difficult it is to discuss with soft-
ware vendors code weaknesses, which are not pure
bugs but often referred to by vendors as »features«.
Such «features« affect the software security as well,
but there is a strong resistance to admit this fact. The
reason for such cover-ups is pretty obvious – vendors
want to keep face. On the other hand, the reasons for
having bugs and features in software code are com-
plex:

1. Competition – success on the IT marketplace re-
quires speeding-up the development and testing
of code and that obviously generates more bugs
and flaws in the design;

2. Complexity of IT software – complexity requires
more time for design and development, thus af-
fects competition (see above);

3. Globalization – to cut expenses and get ahead
in competition, companies outsource design and
development and export cheap labor from devel-
oping countries. That may cut expenses but at the
same time may cause more bugs, simply because
cheap labor often means less quality, caused by
less experience and education. Thus, we are get-
ting a lower quality software product with more
bugs and features.

4. Lawlessness – there is no general information se-
curity law in the US, which would require a Se-
curity Development Lifecycle for all IT systems
like the Certification and Accreditation (C&A)
process for the US government information sys-
tems (which is often violated anyway). Many
thanks to various IT lobbies. It is up to the
software vendor whether to implement security
measures and to which extent.

No one takes responsibility for bad code at all. Every
software on the market states this in its legal dis-
claimer.
Below we are discussing features which cause signific-
ant security vulnerabilities in almost all server class
computers.
As we discussed, the above threats employ two tech-
nologies – virtualization and out-of-band manage-
ment. VMBR or any other MH can affect only com-
puter systems running virtualization solutions. If
there is no virtualization, you're not at risk. Quite the
same can be said when it comes to out-of-band man-
agement – if there is no IPMI implementation there
is no IPMI/BMC problem with its associated threats
and risks. Below we'll prove that when we talk about
such problems we actually talk about the vulnerability
of technology. Because this point of view was objected
by the Intel Corporation Production Security we need
to prove our case.
Here are two definitions of vulnerability from Wikipe-



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 761

dia (Wikipedia 2016a):

1. General - »Vulnerability refers to the inability (of
a system or a unit) to withstand the effects of a
hostile environment.« To put it simply – vulner-
ability is the inability to resist a threat.

2. In computing - »In computer security vulnerability
is a weakness which allows an attacker to reduce
a system’s information assurance. Vulnerability
is the intersection of three elements: a system sus-
ceptibility or flaw, attacker access to the flaw, and
attacker capability to exploit the flaw.«

The latter definition does not mean software bugs and
related vulnerabilities. Computer system vulnerabil-
ity may be caused not by bugs but by system features,
by incorrectly designed functionalities. In our MH
case we do not talk about software bugs as well. MH is
a computer technology vulnerability. And that’s what’s
usually not discussed.
Here is our definition of computer technology vulnerab-
ility: It is the inability of a technology implemented in a
computer system to resist a threat when there is the techno-
logy flaw, attacker access to the flaw and attacker capability
to exploit the flaw.
We can formulate that MH exploits modern operating
systems inability to resist involuntary virtualization
after OS (or hypervisor) is installed and functioning.
Operating systems do not have protecting mechan-
isms against malicious virtualization, neither does the
computer system itself. Basically the flaw is the lack of
any protection mechanisms designed to guard against
malicious virtualization. Old mainframe systems had
such protection – there was no access on the system
level to install software from an outside source.
Similarly to computer security vulnerability, virtualiza-
tion vulnerability is the intersection of three elements
- there is modern OS susceptibility to MH inflicted
virtualization, MH administrator level access to OS
gained by various means, and then the MH’s capabil-
ity to use various exploitation tools.
The case of IPMI/BMC is also very similar – it is an
IPMI technology vulnerability of seamless and un-
protected system level access to computer resources,
which is usually utilized by the computer manage-
ment system. And then there’s also the BMC tech-
nology vulnerability of unprotected implementation
of system management software embedded in BMC
like in the Russian Case #1. Here, again, we have
both technologies susceptibility, attacker access to
first management system and then to computer in-
ternals, and, finally a wide range of exploitation tech-
niques and tools. CERT alert TA13-207A (US CERT
2013) describes exactly the same scenario.
The vulnerability of software code has to be ad-
dressed by the software vendor, if the vendor agrees
that such a vulnerability exists. But what about tech-
nology vulnerability? In particular, when such techno-
logy has been used for years and is likely to be used
in the near future.
We think that vendors should take care of such vul-

nerabilities, especially when their technology has an
underlying standard like IPMI.
Microsoft was one of the sponsors of the MU VMBR
research, its team is even listed as a research parti-
cipant in the paper (King, Samuel T. et al 2006). That
means that the discovered vulnerability of its Win-
dows OS and underlying computing technology was
known to Microsoft since 2006. Since then, Microsoft
developed its own virtualization solution Hyper-V,
which may be susceptible to an MH attack. How-
ever, we have never seen a Microsoft publication ad-
dressing virtualization vulnerability. It looks like all
major IT vendors share the same opinion, expressed
by Microsoft Hyper-V Program Manager Ben Arm-
strong (Mackie, Kurt 2013) that UEFI (Unified Extens-
ible Firmware Interface) and »secure boot« will pro-
tect from rootkit (i.e. MH) attacks.
We do not share such optimism as expressed by IT
vendors’ management, considering the following:

1. A MH initiated from BMC can run at so called
»ring -2« System Management Mode (SMM)
privilege, which is the highest in the system
(hardware virtualization has »ring -1« and kernel
– »ring 0«). Therefore it can alter any information
used for »secure boot«.

2. So far we have not seen any publications of real
life UEFI and »secure boot« testing utilizing the
MH instance for attacking. Such a publication
would support the vendors’ security claims. For
instance, a hypervisor embedded in Intel mother-
boards could be used . . .

3. There are two papers of Invisible Things Lab
Company which explain attacking Intel TXT
(Trusted Execution Technology) using two differ-
ent methods – SMM flaw attack (Wojtczuk, Rafal
2009) and exploiting a bug in SINIT module (Wo-
jtczuk, Rafal 2011).

4. We had a problem running backup software
when we installed it in »secure boot«. It was
not a software problem, but for reasons unknown
one file signature was not recognized while sig-
natures by the same vendor for other files were
recognized. The vendor advised to disable »se-
cure boot« while installing the software. Such ex-
perience does not encourage our trust in the boot
solution. It may be buggy or has a »feature« - as
we discussed above.

The second IT VIP sponsor - Intel Corporation - also
never issued a report about working on fixing a vul-
nerability of its hardware assisted virtualization and
IPMI/BMC vulnerability. Now, after the acquisition
of McAfee, the company is involved in the informa-
tion security business as well.
Intel Corporation is the major player on the comput-
ing technology market and provides the following
products, which are related to our case:

• A line of CPUs (approximately 94% or CPU mar-
ket)

• Chip sets for motherboards



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 762

• Motherboards
• CPU hardware assisted virtualization solution

(Intel VT)
• Computer System Management Software (CSMS)
• OS to run CSMS (Linux)

Intel was the key player in the IPMI standard devel-
opment. Its first version was published in September
1998 (Scribed.com. 2016). Intel also implemented its
own version of server management software utilizing
IPMI/BMC.
We considered that it is necessary for us to know
about the corporations position concerning the tech-
nology vulnerabilities in question (virtualization and
IPMI/BMC). We sent an official letter to Intel manage-
ment, explaining our position on both vulnerabilities
and our concerns over existing MH instances and the
possibility of yet another development designed for
cyber-terrorism purposes.
We did not have any illusions about if the IT giant will
agree that vulnerabilities exist and that the cumulat-
ive effect of exploiting both vulnerabilities could be
devastating. All we requested in our official letter was
an explanation of the corporations opinion. Intel Pro-
duction Security Team Lead (STL) responded and we
had a few emails exchanged and one phone conver-
sation. While we tried to encourage Intel to be in-
volved in the research of possible solutions, our tech-
nical discussion with STL went to questionable tech-
nical statements like »We address BMC threats by dis-
abling the management network interface by default«
or » A future version of IPMI (Redfish) will have se-
curity«. We responded to the first statement that it
undermines the purpose of such management which
is the remote control of servers. We cannot imagine
server administrators moving into a data center and
managing servers one by one over the local serial line
interface! Finally, we received an email basically dis-
missing the technology vulnerabilities case. The com-
plete text is quoted below.
Quote:

“Hi Mikhail,
We’d like to thank you for raising your

concerns to Intel regarding Intelligent Plat-
form Management Interface (IPMI) and Vir-
tualization Technology (VT). We take the se-
curity of our products and infrastructure ser-
iously and work continuously on the secur-
ity of both. We have carefully reviewed all
the information you have provided as well
as the resources you have directed us to.

Intel published the first IPMI specification
in 1998. Since that time it has worked with
many other companies to extend the spe-
cification. As you know, security depends
on how the specification is implemented and
deployed by the system owner. As you’ve
pointed out there are risks if vulnerabilities
exist in the implementation or if the system
is not deployed properly. At this point we
have not received any new information from

you that Intel implementations of IPMI have
a vulnerability.

Many parties in the industry, including In-
tel, provide detailed guidance regarding the
proper use of this technology in order to help
ensure systems follow good security prac-
tices. At this point we have not received any
new information that VT has a vulnerabil-
ity. If you are aware of one please do let us
know. Additionally, if you’d like us to facil-
itate a discussion between you and a system
provider for whom you’ve identified a vul-
nerability we’d be happy to make the con-
nection.

Regards,
Intel PSIRT«

In short, Intel Production Security’s opinion is:

1. (1) There is no IPMI vulnerability. Problems are
caused by incorrect implementation.
In fact, US CERT issued its alert not about a bug but
about IPMI/BMC (US CERT 2013) »Alert TA13-
207A. The Risks of Using the Intelligent Platform
Management Interface (IPMI). US CERT, July 26,
2013«. And, as we wrote above, the IPMI stand-
ard, which explains implementation, does not in-
clude any consideration of security.

2. There is no vulnerability in VT. But the Russian
Case is an example of such a vulnerability – The
Russian scientist’s post claims that his hypervisor
has been installed above the hypervisor from the
Intel motherboard, which acted as MH. This is a
pure exploitation of a user virtualization solution
which is based on Intel VT. During our email ex-
change we forwarded the post of the Russian sci-
entist (Xakep.ru 2011) to the STL of Intel Produc-
tion to make sure the company is aware of such
public information in case it wants to object or
discuss it.

But our opinion concerning technology vulnerabilities in
Intel solutions and then products was dismissed.

6 Phase 2 MH research - detection

IT industry’s various publications frequently mention
the »rootkit« hypervisor (i.e. MH) as a threat. How-
ever, there is almost nothing to propose as a protect-
ive measure except »secure boot« and implementing
its technologies like UEFI and TXT. Our doubts about
this procedure have been expressed above. The most
important doubt, so far, is the lack of testing of this
sort of protection. It seems that for now we need to
take care of security ourselves.
In short, that was our understanding after Phase 1 and
its presentation (Utin, M. 2014). Our resources were
limited and we cannot develop a “secure hypervisor«
embedded in BMC BIOS. What we realistically were
capable of was to start MH detection.



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 763

6.1 Detection methods

As we described above, MU VMBR research also in-
cludes general research on the identification methods.
A realistic method is running MH identification soft-
ware above the hypervisor, for instance within the
installed operating system and catch hypervisor spe-
cific activity. One of the described ideas was the hy-
pervisor detection by resources consumption (King,
Samuel T. 2006). In the Russian Case #1 research
the scientist used the same method and measured
the increase of commands’ execution time (Xakep.ru
2011).
There is thorough research on the matter of hyper-
visor identification including the classification and
analysis (Korkin, Igor 2015) of various methods. The
author considers Signature, Behavior, Trusted Hyper-
visor and, as above, Time based identification. Within
the latter method he proposes »Detection by Un-
conditionally Interrupted Instructions« through the
method of Instruction Execution Time. It utilizes
the measurement of the execution of a number of
CPUID instructions in Time Stamp hardware counter
(TSC).
The main problem is that a MH, which completely

controls virtualized OS via VMI, can identify such
intelligence activity and either block or alter its res-
ults. This is our main concern with all methods lis-
ted above. The author then is proving by experiments
and collected statistics that his proposed advanced
method is resistant to the MHs attempts to alter the
mean execution time.
Experiments were performed on six PCs having dif-
ferent CPU models and running three Windows OS
(Windows 7, XP and Live CD XP). The team also used
their own design of a hypervisor »with secure system
monitoring functions« and the Acronis Disk Director
hypervisor as MH.
The most important question, however, is the
method’s practicality. The paper describes thorough
experiments collecting results over ten days to gain
statistically stable results by running the identification
software within the general purpose OS, which was
Windows. We have seen similar results of increasing
deviation in Linux OS as well. Utilization of computer
resources is always a non-stationary random process.
There are two different methods to deal with this: 1)
by running the identification software for very long
time to average results (as above) or 2) for a short
time while processes causing non-stationary fluctu-
ations are sleeping. It is usually possible to identify
silent time for servers and then to run a detection soft-
ware. To do that, the minimal time for statistically
stable results should be known. For the experiments
above, unfortunately, the minimal time has not been
identified.

6.2 Our ideas and methods

From the very beginning of our research, we put
aside what may be considered as the »mainstream

efforts« of MH identification, which we described
above. We finally managed to significantly change
the time based method to make it simple and effect-
ive. Our methods, which we'll partially describe be-
low, are US patent pending. The following, however,
is not a complete description of what we have done
and what exactly was implemented. We would like
to challenge the security community to find different
ways of implementing and innovating our approach
– »no mainstream« solutions. Our main goal is to en-
courage the community to continue the research and
possibly to find better methods following the require-
ment of simplicity and practicality.
From the very beginning we made simplicity and prac-
ticality the cornerstones of our identification method.
Basic ideas were very simple:

1. If a hypervisor exists in the system, it should
consume additional CPU resources; therefore,
we can use a performance based identification
method of Time Difference Identification (TDI).
We expected such additional consumption (over-
head) around 1% of what is needed to run an OS
without an underlying hypervisor. This estima-
tion is based on common sense. 10% would be
absurd for a modern virtualization environment
when one hypervisor usually runs around 10 vir-
tualized OS. However an additional cosumption
of 0.1% seems simply impossible, because a hy-
pervisor is after all an OS and with all functional-
ities its resource consumption can't be that low.
We would like to mention that, unfortunately,
software vendors do not provide overhead val-
ues for a hypervisor’s CPU.

2. As a software which emulates computer hard-
ware, MH may react differently on resources re-
quests (operations) coming from a user program
compared to how the operating system would
natively respond. As it has been identified, that
causes random high level execution time devi-
ation. We called this method »Deviation Dif-
ference Identification (DDI)«. Special operations
will likely increase execution time as well and we
can thus use the hybrid TDI+DDI method.

3. Our next step was to come up with an idea of
how to identify a 1% difference in tests. We de-
cided to use a 100% CPU utilization while run-
ning the identification software. In this case the
hypervisor CPU overhead will create an increase
in execution time. If our identification software
execution time without hypervisor (clean sys-
tem) is Tc, then with a hypervisor (Th) we will
hopefully get 1.005Tc < Th < 1.01Tc.

4. What to run as identification software? The main
problem here is MH’s possible capability to dis-
cover identification activity and thus alter identi-
fication results. The best way to avoid this is not
to access any system points that the hypervisor
utilizes in its activity. We opted for a application
software for general purpose, performing vari-
ous intensive calculations in computer memory,
utilizing very basic CPU commands only, and not



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 764

special commands used in other methods includ-
ing CPUID like in the research discussed above
(Korkin, Igor 2015). The idea behind is to mas-
querade identification activity as well. Thus, the
MH will be unable to recognize whether it is run-
ning a general purpose application software or
one which does identification.
In short we don't do identification by instructions ex-
ecution time but rather have a program to execute,
which does not directly cross the path of the MH.

5. We will run our identification software multiple
times to get more stable statistics. Thus the pro-
gram should run long enough to execute a suffi-
ciently large number of CPU commands but also
short enough to permit its cycling and a reason-
able final testing time.

6.3 Testing process

In the case of TDI we need to find a difference in
execution time between the same system with and
without a hypervisor. Thus, we need to have two test
phases.
First phase - A clean system testing. It can be done
either on the same model, when we're sure it’s clean
(for instance right after its production) or, if possible,
by disabling virtualization via computer BIOS. Not
all systems, however, support virtualization manual
control via BIOS. Disabling virtualization support in
BIOS, however, may be intercepted by the MH and
considered as an identification attempt. The MH can
then block changes but provide output as the virtual-
ization was disabled.
Instead of a »clean« system we can use a statistical
variant – considering that »clean« systems are more
common and MH infected are unusual. We can then
create a database of the testing of multiple systems’
and compare results for the same model.
For TDI testing, we need to plan for a database sup-
porting such testing and keeping results for all com-
puter system models in use.
DDI testing, in general, also requires two phases if
we are going to use the difference of execution time.
However, we were able to discover a specific effect
of virtualization which made it possible to test only
once. This will be discussed below.
We decided to use a specially built Linux OS environ-
ment to run our identification software. The reason
was to significantly decrease the deviation of testing
results associated with general purpose OS running
user applications in either Windows or Linux. Such
testing requires the reboot of the currently running
system and boot our software. We assume that cor-
rectly developed MH should sustain such a reboot
and virtualize our booted OS and detection applica-
tion. Or, this is also possible, to reboot after installing
our software.
While general purpose OS (Linux, Windows, etc.) in-
creases results deviation, such effect may be com-

pensated by higher values of results in the methods
of DDI or TDI+DDI.
Then we faced the question of which hypervisor we
should use for the development testing. We under-
stood that we can't test multiple hypervisor instances,
simply because of our lack of time and resources.
Thus we decided to use the most advanced and ma-
ture VMware hypervisor. Our results proved that the
VMware code is very efficient – the time increase (hy-
pervisor overhead) is only about 0.7%.
Here is our development testing environment:

• Two high end Lenovo notebook computers sup-
porting Intel hardware virtualization

• VMware ESXi 5.5.0 as hypervisor software with
VMKernel Build 2068190

• Desktop computer running VMware vSphere
Client 5.5 to run our identification software

• Bootable Ubuntu Linux OS CD with Hyper-
Catcher identification software.

We have done our first tests, which took significant
time, utilizing general purpose Linux CentOS 6.x Live
CD OS. However, the testing results after statistical fil-
tration showed a high deviation and thus it was dif-
ficult to distinguish the time increase. Full featured
OS runs a lot of processes including GUI, updates, se-
curity, etc. To decrease the deviation we switched to
Linux CentOS 7.0 Minimal Installation without GUI
and finally to a special build Ubuntu 14.04. The exe-
cution time deviation decreased approximately by the
order of magnitude.
We finally developed a three steps testing procedure
which we named »run«. Its first step is to execute
basic identification software a few thousand times to
decrease the deviation; this is a cycle. We then calcu-
late the average value for all CPU cores - this is the
result of the execution cycle. However, the deviation
was still high and required the next step of statistical
filtering. We did several cycles in a trial to find the
average execution time value for this trial and the de-
viation. We then had to add yet another step in stat-
istical filtration by executing several trials in one run.
The average time value was used to calculate the time
increase of TDI testing. The deviation proves that the
execution time random value is inside three standard
deviation intervals.
If the deviation is still high, it’s possible to add a
fourth step of statistical filtering by executing a few
runs in this test. However, as of today we use the
three steps filtration.
During the TDI development testing we identified
that some operations significantly change results.
Firstly,they increase the time difference. But the most
significant change is in the deviation: it increases sev-
eral times comparing to the deviation without the hy-
pervisor in some trials but not always. Thus, our idea
of forcing the hypervisor to change its behavior was
correct. This testing is called, as we mentioned above,
Deviation Difference Identification (DDI).



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 765

6.4 Testing results

Tables 1, 2 and 3 below represent such results. Each
test used three steps filtration. Table 1 shows the res-
ult for execution time without hypervisor. We did only
ten runs to accumulate statistics because the deviation
is really low. Tables 2 and 3 represent the total of
40 runs for the testing with a hypervisor. We did 40
runs to show the behavior of time execution devi-
ation. In Table 1 AvTc shows the average execution
time and AvDc states the average standard deviation.
In Table 2 and 3 AvTh shows the average execution
time with a hypervisor and AvDh the average standard
deviation.

6.4.1 Hypervisor identification by time difference
(TDI)

Therefore, in the test without hypervisor (Table 1) we
have an average execution time of AvTc=5.5005 and
an average deviation of AvDc=0.0008 (approximately
0.001)
The average execution time by four tests with hyper-
visor (Tables 2 and 3) is AvTh=5.5984
The time difference AvTh – AvTc=5.5984-5.5005=0.0979
or 1.8%.
Average deviation by four tests with hypervisor:
AvDh=0.0202
The maximum sum of average deviations is AvDc +
AvDh = 0.0212.
It is possible to identify the hypervisor by the TDI
method because the time difference of 0.0979 is more
than four times the maximum sum of average stand-
ard deviations: 0.0979 > 4x 0.0230.

6.4.2 Hypervisor identification by deviation
increase (DDI)

Each of the four tests show deviations which have
a value of more than 0.01. That’s more than ten
times higher than the deviation without hypervisor
AvDc=0.001:

• Test 1: there are 4 high deviation values (0.0312,
0.0190, 0.0337, 0.0423). The first high value is in
the second run.

• Test 2: there are 7 high deviation values (0.0328,
0.0544, 0.0255. 0.0224, 0.0277, 0.0471, 0.0151). The
first high value is in the first run.

• Test 3: there are 5 high deviation values (0.0283,
0.0649. 0.0189, 0.0153, 0.0399 ) and the first high
value is in the first run

• Test 4: there are 5 high deviation values (0.0283,
0.0649, 0.0189, 0.0153, 0.0399) and the first high
value is in the second run.

Therefore, statistically, based on the experiment
above, we can say that an identification of high devi-
ation value will always happen, highly likely within
1 – 5 runs. The probability that the first run will have
a high value of deviation is 50%. The probability that

the second run will have a first time high value is 75%,
and the third run 87.5%. The probability that the MH
will be found in at least one run in a 10-runs test is
about 99.9%.

6.4.3 Is there a hypervisor? The DDI testing report.

While we are not dismissing the value of TDI testing,
we currently consider the DDI method as superior.
Mostly because it does not require »clean« system res-
ults for comparison. Concerning the testing time, the
test can be stopped when the first high time deviation
is identified. You can not be sure when exactly, but it’s
likely this will occur within 4 – 5 runs.
Most of the values above are much higher than 0.01.
The lowest value is 0.0151, that’s 15 times more than
the deviation without the hypervisor AvDc=0.001.
We can consider 0.01 as a boarder value. Any value
higher means that a hypervisor is present. The fol-
lowing thresholds are suggested:

• Values lower than 0.002 should be considered as
no hypervisor

• Between 0.002 and 0.005 - there is some likeli-
hood that a hypervisor exists

• Between 0.005 than 0.01 a hypervisor is possible
• Above 0.01 – a hypervisor is identified

The drawing in Fig. 1 below shows a sample of de-
viation distribution in a DDI testing of 8 runs. The
following screenshots Fig. 2 and Fig. 3 are results
of two tests running HyperCatcher v.1.0. Each test
had five runs. Yellow crosses show the runs’ execu-
tion time deviation values and indicate if hypervisor
was present. Blue crosses are trial deviations and for
indication that the testing is in progress.
Screenshots were taken from VMware »mhhost« vir-
tual machine console running MH identification soft-
ware final production HyperCatcher version 1.0.

7 Conclusion for Phase 1 and Phase
2 MH research

1. The blog publication of the Russian Case #1
(Xakep.ru 2011) provided us with circumstantial
evidence that a VMBR hypervisor as described
in the MU research of Case #2 (King, Samuel T.
2006) was embedded in the Intel motherboards
BMC flash memory, subsequently improved and
finally working with another one as »nested hy-
pervisors«. The purpose of such a project is not
known to us and, because the hypervisor has
been embedded without customer notification,
we consider it being malicious.

2. The combination of the MH embedded in BMC
flash memory or downloaded in it together with
a vulnerability of IPMI (US CERT 2013 and
Bonkoski, Anthony J. 2013) can be used to exploit
millions of computers worldwide. Thus, the risk
exposure is very high.



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 766

Run# Exec. Time Tci Deviation Dci
1 5.5013 0.00081
2 5.4992 0.00062
3 5.5017 0.00093
4 5.4987 0.00033
5 5.5024 0.00060
6 5.5035 0.00135
7 5.5006 0.0017
8 5.5002 0.00082
9 5.4981 0.00057
10 5.4998 0.00088

AvTc=5.5005 AvDc=0.0008
Table 1 – Testing phase without hypervisor

Run # Test #1 Test #2
Exec. Time
Thi

Deviation
Dhi

Exec.
TimeThi

Deviation
Dhi

1 5.5553 0.0069 5.6109 0.0328
2 5.6209 0.0312 5.5591 0.0034
3 5.5507 0.0023 5.5641 0.0070
4 5.5492 0.0082 5.5918 0.0544
5 5.5651 0.0058 5.6125 0.0255
6 5.5584 0.0076 5.5774 0.0224
7 5.7345 0.0190 5.5662 0.0037
8 5.6233 0.0018 5.5771 0.0277
9 5.6185 0.0337 5.7033 0.0471
10 5.6997 0.0423 5.5723 0.0151

AvTh1=5.6076 AvDh1=0.0159 AvTh2=5.5935 AvDh2=0.0239
Table 2. First two tests (each has ten runs) with hypervisor

Run # Test #3 Test #4
Exec. Time
Thi

Deviation
Dhi

Exec. Time
Thi

Deviation
Dhi

1 5.6352 0.0283 5.5614 0.0042
2 5.6642 0.0649 5.5652 0.0200
3 5.5637 0.0039 5.5527 0.0019
4 5.5438 0.0082 5.5607 0.0060
5 5.5660 0.0019 5.5862 0.0424
6 5.5593 0.0189 5.5969 0.0288
7 5.5572 0.0052 5.6439 0.0420
8 5.7767 0.0153 5.7073 0.0459
9 5.5868 0.0399 5.6006 0.0255
10 5.5516 0.0086 5.5452 0.0010

AvTh3=5.6005 AvDh3=0.0195 AvTh4=5.5920 AvDh=0.0217
Table 3. Additional two tests (each of ten runs) with hypervisor

We highlighted in bold runs with a deviation of >= 0.01.
Deviation values fall into two big groups:
Group 1: less than 0.01 – here we have 18 values
Group 2: more than 0.01 – here we have 22 values.
Statistically, it’s close to 50% probability to fall into each of those groups.



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 767



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 768

Fig. 2 – The output of HyperCatcher 1.0 software #1



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 769

Fig. 3 – The output of HyperCatcher 1.0 software #2



Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 770

3. We introduced a definition of computing techno-
logy vulnerability and used this category to ex-
plain risks beyond and above bugs or software
flaws. It is not easy to convince major IT vendors
(in our case the Intel Corporation) of the fact that
technology solutions may be vulnerable, thus
creating security risks. Therefore we should not
expect vendor initiatives to fix technology vulner-
abilities.
A mandatory implementation of a Security De-
velopment Life Cycle would prevent us from
technology vulnerabilities in the future.

4. To address the identification of MH activity we
designed and developed a software outside of
mainstream MH research. It is efficient and pre-
cise, can identify an MH within minutes and with
99.9% accuracy.
Now we have a first layer of protection: The de-
tection of MHs. Still, it’s only one, yet a very im-
portant step towards full protection.

5. Our software identification activity cannot be de-
tected by a MH, because we use a general pur-
pose application for this purpose. We changed
the execution time method to measure our pro-
grams runtime instead of measuring various sys-
tem and hypervisor related operations. There are
two methods of MH detection and each works
efficiently and reliably. The HyperCatcher v.1.0
is a first production version utilizing both meth-
ods and can run either as boot loaded software or
within an installed guest OS. The software does
not require any specific skills to use – it identifies
a MH automatically.

6. We hope to see more security research in detect-
ing and protecting against the MH threat. We
hope that the security community will take the
lead, fixing the technology vulnerabilities we dis-
cussed.

8 About the Author

Mikhail A. Utin, CISSP. PhD completed his basic en-
gineering education in 1975 in Computer Science and
Electrical Engineering. His career in Russia included
working for several research and engineering organ-
izations. Doctorate / PhD in Computer Science (1988)
from then Academy of Science of the USSR. From
1988 to 1990 he founded an information technology
company and successfully worked in t he emerging
Russia’s private sector. He had several USSR patents
and published numerous articles. Immigrated in the
US with family in 1990 to escape from political tur-
moil and hoping to continuing his professional ca-
reer. Worked in the US in information technology
and information securit y for numerous companies
and organizations including contracting for US gov-
ernment DoN and DoT. Together with colleagues he
formed the private company Rubos, Inc. for IT secur-
ity consulting and research in 1998. The company is

a member of ISSAs New England chapter. (ISC)2 cer-
tified professional for ten years. Published articles on
the Internet and in professional journals, and reviews
articles submitted to the (ISC)2 Information Security
Journal: A G lobal Perspective. Current research focus
on information security governance, regulations and
management, and the relationship between regula-
tions, technology, business activities and businesses’
security stat us. Most of the research is pioneer-
ing work never discussed by the information security
community.
This paper has been published on behalf of Rubos Inc.
team that made this research possible

9 Bibliography

• Utin, M. (2014). A Myth or Reality – BIOS-based
Hypervisor Threat (DeepSec 2014). https://
deepsec.net/docs/Slides/2014/A_Myth_or_Reality_
__BIOS-based_Hypervisor_Threat_-_Mikhail_Utin.
pdf

• Utin, M. (2016). Malicious Hypervisor Threat –
Phase Two: How to Catch the Hypervisor (Deep-
Sec 2016). https://deepsec.net/docs/Slides/
2016/Malicious_Hypervisor_Threat_Mikhail_Utin.
pdf

• King, S. Cell (novel). (2006). Wikipe-
dia. The free Encyclopedia. On-line; ac-
cessed 15-October-2016. Retrieved from ht-
tps://en.wikipedia.org/wiki/Cell_(novel)

• Xakep.ru (2011). Chinese Add-ons: True Stories
of virtualization, information security and com-
puter spying. Translated from Russian, Copy-
right © DeepSec GmbH and Rubos, Inc., 2014.

• Utin, M. (2015). From Misconception to failure
– Security and Privacy in US Cloud Computing
FedRAMP Program. In S. Schumacher and R.
Pfeiffer, R. (Editors). In Depth Security: Pro-
ceedings of the DeepSec Conferences (Pages 255-
314). Magdeburg: Magdeburger Institut für Sich-
erheitsforschung.

• Scribed.com. (2016). Intelligent Platform Man-
agement Interface Implementer’s Guide; Draft-
Version 0.7, 9/16/98. [On-line; accessed 15-
October-2016]. Retrieved from https://www.
scribd.com/document/4026738/Intelligent-Platform-
Management-Interface-Implementer-s-Guide-Draft-
Version-0-7

• King, Samuel T., Chen Peter M. (University
of Michigan),Wang, Yi-Min, Verbowski, Chad,
Wang, Helen J., Lorch, Jacob R. (Microsoft Re-
search) (2006). SubVirt: Implementing malware
with virtual machines.. IEEE Symposium on Se-
curity and Privacy, Berkley/Oakland, CA, USA,
21-24 May, 2006.

• Bonkoski, Anthony J., Bielawski, Russ, Halder-
man, Alex J. Illuminating the Security Issues
Surrounding Lights-Out Server Management .
Michigan University. (2013). 7Th USENIX Work-

 https://deepsec.net/docs/Slides/2014/A_Myth_or_Reality___BIOS-based_Hypervisor_Threat_-_Mikhail_Utin.pdf
 https://deepsec.net/docs/Slides/2014/A_Myth_or_Reality___BIOS-based_Hypervisor_Threat_-_Mikhail_Utin.pdf
 https://deepsec.net/docs/Slides/2014/A_Myth_or_Reality___BIOS-based_Hypervisor_Threat_-_Mikhail_Utin.pdf
 https://deepsec.net/docs/Slides/2014/A_Myth_or_Reality___BIOS-based_Hypervisor_Threat_-_Mikhail_Utin.pdf
https://deepsec.net/docs/Slides/2016/Malicious_Hypervisor_Threat_Mikhail_Utin.pdf
https://deepsec.net/docs/Slides/2016/Malicious_Hypervisor_Threat_Mikhail_Utin.pdf
https://deepsec.net/docs/Slides/2016/Malicious_Hypervisor_Threat_Mikhail_Utin.pdf
https://www.scribd.com/document/4026738/Intelligent-Platform-Management-Interface-Implementer-s-Guide-Draft-Version-0-7
https://www.scribd.com/document/4026738/Intelligent-Platform-Management-Interface-Implementer-s-Guide-Draft-Version-0-7
https://www.scribd.com/document/4026738/Intelligent-Platform-Management-Interface-Implementer-s-Guide-Draft-Version-0-7
https://www.scribd.com/document/4026738/Intelligent-Platform-Management-Interface-Implementer-s-Guide-Draft-Version-0-7


Magdeburger Journal zur Sicherheitsforschung // Ausgabe 13, Jahrgang 7, Band 1 (2017) 771

shop on Offensive Technologies, August 13, 2013,
Washington, DC. Retrieved from https://www.
usenix.org/conference/woot13/workshop-program/
presentation/bonkoski

• US CERT (2013). Alert TA13-207A. The Risks
of Using the Intelligent Platform Management
Interface (IPMI). US CERT, July 26, 2013. [On-
line; accessed 15-October-2016]. Retrieved from
https://www.us-cert.gov/ncas/alerts/TA13-207A

• Wikipedia. (2016a) Vulnerability – Wikipe-
dia. The free Encyclopedia. [On-line; ac-
cessed 15-October-2016]. Retrieved from ht-
tps://en.wikipedia.org/wiki/Vulnerability

• Mackie, Kurt (2013). News. Microsoft Profiles
Hyper-V Improvements in Windows Server 2012
R2. 10-June-2013. [On-line; accessed 15-October-
2016]. Retrieved from https://redmondmag.
com/articles/2013/06/10/windows-sever-2012-
r2-hypervisor.aspx

• Wojtczuk, Rafal and Joanna Rutkowska (2009).
Attacking Intel Trusted Execution Technology.
Black Hat DC. February 18 – 19, 2009. DC, USA.

• Wojtczuk, Rafal and Joanna Rutkowska (2011).
Attacking Intel TXT via SINIT code execution
hijacking. November 2011. [On-line; ac-
cessed 15-October-2016]. Retrieved from ht-
tps://invisiblethingslab.com

• Korkin, Igor (2015). Two Challenges of Stealthy
Hypervisor Detection: Time Cheating and Data
Fluctuations. CDFSL 2015.

https://www.usenix.org/conference/woot13/workshop-program/presentation/bonkoski
https://www.usenix.org/conference/woot13/workshop-program/presentation/bonkoski
https://www.usenix.org/conference/woot13/workshop-program/presentation/bonkoski
https://redmondmag.com/articles/2013/06/10/windows-sever-2012-r2-hypervisor.aspx
https://redmondmag.com/articles/2013/06/10/windows-sever-2012-r2-hypervisor.aspx
https://redmondmag.com/articles/2013/06/10/windows-sever-2012-r2-hypervisor.aspx

	1 The research history
	2 Details of MH Phase 1 research
	2.1 Case #1 – Russian blog post
	2.2 Case #1 – misleading labels
	2.3 Case #2 – MU »Virtual Machine (VM) Based Rootkit (VMBR)« research
	2.4 Case #3 – Michigan University »Illuminating the Security Issues Surrounding Lights-Out Server Management« research
	2.5 Cases Summary

	3 Correlation between Case #1 and Case #2 hypervisors
	4 How many MH instances do exist?
	5 Technology vulnerability vs. software vulnerability
	6 Phase 2 MH research - detection
	6.1 Detection methods
	6.2 Our ideas and methods
	6.3 Testing process
	6.4 Testing results
	6.4.1 Hypervisor identification by time difference (TDI)
	6.4.2 Hypervisor identification by deviation increase (DDI)
	6.4.3 Is there a hypervisor? The DDI testing report.


	7 Conclusion for Phase 1 and Phase 2 MH research
	8 About the Author
	9 Bibliography

