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Abstract. A brief historical introduction to the subject of additive combinatorics
and a list of challenging open problems, most of which are contributed by the leading
experts in the area, are presented.

In this paper we collect assorted problems in additive combinatorics, including those

which we qualify as classical, those contributed by our friends and colleagues, and those

raised by the present authors. The paper is organized accordingly: after a historical

survey (Section 1) we pass to the classical problems (Section 2), then proceed with

the contributed problems (Sections 3–6), and conclude with the original problems (Sec-

tion 7). Our problem collection is somewhat eclectic and by no means pretends to be

complete; the number of problems can be easily doubled or tripled. We tried to include

primarily those problems we came across in our research, or at least lying close to the

area of our research interests.

1. Additive combinatorics: a brief historical overview

As the name suggests, additive combinatorics deals with combinatorial properties of

algebraic objects, typically abelian groups, rings, or fields. That is, one is interested in

those combinatorial properties of the set of elements of an algebraic structure, where

the corresponding algebraic operation plays a crucial role. This subject is filled with

many wondrous and deep theorems; the earliest of them is, perhaps, the basic Cauchy-

Davenport theorem, proved in 1813 by Cauchy [16] and independently rediscovered in

1935 by Davenport [24, 25]. This theorem says that if p is a prime, Fp denotes the finite

field with p elements (notation used throughout the rest of the paper), and the subsets

A, B ⊆ Fp are non-empty, then the sumset A + B := {a + b : a ∈ A, b ∈ B} has at least

min{p, |A|+ |B|−1} elements. The analogue of this theorem for the set Z of integers is

the almost immediate assertion (left as a simple exercise to the interested reader) that

|A + B| ≥ |A| + |B| − 1 holds for any finite non-empty subsets A, B ⊆ Z.

The Fp-version of the problem is considerably more difficult, and all presently known

proofs of the Cauchy-Davenport theorem incorporate a non-trivial idea, such as the

transform method (sometimes called the “intersection-union trick”), the polynomial

method, or Fourier analysis. The situation becomes even more complicated when one
1
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considers subsets of a general abelian group. An extension of the Cauchy-Davenport

theorem onto this case was provided by Kneser whose celebrated result [56, 57] asserts

that if A and B are finite, non-empty subsets of an abelian group with |A + B| <

|A|+ |B|−1, then A+B is a union of cosets of a non-zero subgroup. Further refinement

of Kneser’s theorem was given by Kemperman in [55].

Over a century passed between Cauchy’s paper [16] and the next major result in the

subject, proved by Schur [83] in the early 1900’s. Schur’s theorem states that for every

fixed integer r > 0 and every r-coloring of the set N of natural numbers, there is a

monochromatic triple (x, y, z) ∈ N × N × N with x + y = z. This theorem, followed

by van der Waerden’s theorem [95] and its generalization due to Rado [73], eventually

developed into the whole area of arithmetic Ramsey theory. In this context we mention

an important extension of van der Waerden’s theorem by Hales and Jewett [50], and a

different proof of the Hales-Jewett theorem by Shelah [84], leading to primitive recur-

sive bounds for the van der Waerden numbers W (r, k) (defined to be the least integer

N such that every r-coloring of [1, N ] possesses a monochromatic k-term arithmetic

progression).

Schur’s theorem would follow immediately if for any set A ⊆ N of positive upper

density there were triples (a1, a2, a3) ∈ A × A × A with a1 + a2 = a3. The simple

example of the set of all odd naturals shows that this is not the case, for the equality

x + y = z cannot hold with x, y, z ∈ N all odd. The situation changes drastically if

we are looking for triples (a1, a2, a3) ∈ A × A × A, satisfying a1 + a2 = 2a3; in other

words, for arithmetic progressions of length 3, contained in A. In this case no obvious

counterexample can be constructed; perhaps, this is what led Erdős and Turán [32] to

conjecture that for every ε ∈ (0, 1] and N sufficiently large, any subset of [1, N ] with

at least εN elements contains a three-term arithmetic progression. (Indeed, Erdős and

Turán conjectured that for any integer k ≥ 3 and N large enough, a subset of [1, N ]

with at least εN elements necessarily contains a k-term arithmetic progression.) Roth

[75] gave an ingenious proof of this conjecture using Fourier analysis, opening the flood

gates to applying Fourier methods in additive combinatorial problems.1

At first sight, the above conjecture of Erdős and Turán may appear rather weak, for

the following reason. Suppose that N is a large positive integer, and take a random

integer subset A ⊆ [1, N ] with about εN elements, where ε ∈ (0, 1]. How many three-

term arithmetic progressions would we expect A to contain? The number of pairs

(x, y) ∈ A×A such that x < y are of the same parity is about ε2N2/4, and (x+y)/2 ∈ A

holds for about ε3N2/4 pairs; that is, A contains about ε3N2/4 arithmetic progressions.

1Though Fourier analysis (exponential sums) was used by Hardy, Ramanujan, Littlewood, and
others, to deal with Waring’s and similar problems, Roth addressed sets of arbitrary structure with
density constraints, an altogether different type of problem.
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This exceeds 1 if ε3N3 > 4N , and hence one can naıvely expect that a subset of [1, N ]

with at least CN 1/3 elements (where C is a sufficiently large absolute constant) is

guaranteed to contain a three-term arithmetic progression. Perhaps this simple heuristic

is what motivated Erdős and Turán [32] to ask whether for some fixed ε > 0 and all

sufficiently large N , any subset of [1, N ] with at least N 1−ε elements contains a three-

term arithmetic progression.

Behrend [6] showed that the answer to the Erdős and Turán question is negative, by

constructing for some absolute constant c > 0 and any sufficiently large integer N a sub-

set of [1, N ], free of three-term arithmetic progressions, with at least N exp(−c
√

log N)

elements. Showing that the heuristic above is false, this result exhibits sets in which

the number of arithmetic progressions differs substantially from what one expects from

a random set of the same density. This profoundly alters the way we think about

arithmetic progressions.

We now return to the line of research which stems from the Cauchy-Davenport the-

orem; specifically, to sumset estimates. In the early 1930s, Schnirelmann showed [81]

that the set of primes forms an asymptotic basis of N of finite order; in other words,

there is an integer n such that any sufficiently large integer can be represented as a sum

of at most n primes. As a technical tool, he introduced the notion of a lower density of

a set A of non-negative integers (often called now “the Schnirelmann density” — not

to be confused with the lower asymptotic density), which he defined by

d(A) := inf{|A ∩ [1, N ]|/N : N ∈ N}.

A simple yet important lemma from Schnirelmann’s paper states that if A and B are

sets of non-negative integers with 0 ∈ A∩B, then d(A+B) ≥ d(A) +d(B)−d(A)d(B).

A famous conjecture, proposed jointly by Schnirelmann himself and Landau, is that

the last inequality can be replaced with the much stronger statement: namely, either

A + B contains all positive integers, or d(A + B) ≥ d(A) + d(B). Having attracted

much attention (including that of such distinguished mathematicians as Besicovich,

Brauer, Khinchin, Landau, and Schur, who have established some partial results), this

conjecture was eventually solved by Mann in 1942, see [68]. This activity has spanned

much interest; it is enough to mention that Davenport rediscovered Cauchy’s result as

an Fp-analog of the Landau-Schnirelmann conjecture, and that the theorem of Kneser,

mentioned above, has appeared as an auxiliary result in his proof of the analog of

Mann’s theorem for the asymptotic density.

In the middle 1950s Freiman initiated a systematic study of sumsets of finite integer

sets and more generally, of finite subsets of torsion-free abelian groups. In particular,

Freiman introduced the basic notion of local isomorphism, and as a culmination of his



4 ERNIE CROOT AND VSEVOLOD F. LEV

research proved in 1964 (see [35]) the result which is now often referred to as “Freiman’s

theorem.” To discuss this fundamental theorem, we start with a few simple observations.

If P ⊆ Z is a (finite) arithmetic progression, then the sumset P + P is an arithmetic

progression, too, and |P + P | = 2|P | − 1 holds; conversely, it is easy to show that if

P ⊆ Z is a finite set with |P + P | = 2|P | − 1, then P is an arithmetic progression.

Slightly more sophisticated are sets of the form

{a0 + x1d1 + x2d2 : 0 ≤ x1 < X1, 0 ≤ x2 < X2},
where a0 and d1, d2, X1, X2 > 0 are fixed integers. Just like arithmetic progressions,

these sets have “small doubling”: it is not difficult to see (though this is not completely

obvious as |P | 6= X1X2 in general) that if P is a set of the above indicated form, then

|P + P | ≤ 4|P | holds. To further generalize this construction, consider the sets

{a0 + x1d1 + · · · + xrdr : 0 ≤ xi < Xi; i ∈ [1, r]},
where a0 and r, d1, . . . , dr, X1, . . . , Xr > 0 are fixed integers. A set of integers, repre-

sentable in this form, is called a generalized arithmetic progression of rank (or dimen-

sion) r and volume X1 · · ·Xr. Again, it is not difficult to see that if P is a generalized

arithmetic progression of rank r, then |2P | ≤ 2r|P |. Consequently, if A is a finite

set of integers, contained in a generalized arithmetic progression P of rank r so that

|A| ≥ α|P | with α ∈ (0, 1], then

|2A| ≤ |2P | ≤ 2r|P | ≤ (α−12r)|A|.
This shows that dense subsets of generalized arithmetic progressions have small dou-

bling, and Freiman’s theorem says that they are the only finite integer sets with the

small doubling. More precisely, Freiman’s theorem (in its now-standard form due to

Ruzsa) says that for every c ≥ 2 there exist C > 0 and r ∈ N such that if A is a finite

set of integers with |A + A| < c|A|, then A is contained in a generalized arithmetic

progression of rank at most r and volume at most C|A| (so that the density of A in this

generalized arithmetic progression is at least C−1). Ruzsa [78] gave Freiman’s theorem

a final shape and a new elegant proof, and Chang [17] greatly refined the dependence of

C and r on c. Green and Ruzsa [48] extended Freiman’s theorem to arbitrary abelian

groups.

The 1960’s and early 1970’s saw several new developments in the subject, two of

which are the Hales-Jewett theorem [50] and the Szemerédi proof of the general Erdős-

Turán conjecture [89]. The Hales-Jewett theorem, which arguably is the most versatile

result of Ramsey theory, is often stated in terms of combinatorial lines. For integers

N, d ≥ 1, a combinatorial line in the cube [1, N ]d is a subset of the cube of the form

L = {x + jv : j = 0, . . . , N − 1} with some x ∈ [1, N ]d and v ∈ {0, 1}d. Clearly,

if x = (x1, . . . , xd) and v = (v1, . . . , vd), then for L to be contained in [1, N ]d it is
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necessary and sufficient that for each i ∈ [1, d] we have either vi = 0 (in which case all

points of L agree in the ith coordinate), or xi = 1. For instance, a typical example of

a combinatorial line for N = 5 and d = 8 is the set

{(1, 3, 5, 3, 1, 1, 1, 4),

(2, 3, 5, 3, 2, 2, 1, 4),

(3, 3, 5, 3, 3, 3, 1, 4),

(4, 3, 5, 3, 4, 4, 1, 4),

(5, 3, 5, 3, 5, 5, 1, 4)}.

The Hales-Jewett theorem says that for any integers r, N ≥ 1 there exists d0(r, N)

such that if d > d0(r, N) is an integer, then every r-coloring of [1, N ]d possesses a

monochromatic combinatorial line. Alternatively, the Hales-Jewett theorem can be

stated in terms of words over a finite alphabet.

Note, that van der Waerden’s theorem is a simple consequence of the Hales-Jewett

theorem. To see this, fix an integer N ≥ 2 and, writing all integers in [0, N d − 1] in the

base-N form, associate them with the points of the cube [0, N − 1]d. It is immediate

then that a combinatorial line in [0, N − 1]d corresponds to a progression in [0, N d − 1]

of length N .

The density version of the Hales-Jewett theorem, due to Furstenberg and Katznelson

[41], asserts that for any fixed real ε ∈ (0, 1] and integer N ≥ 1 there exists d0(ε, N)

so that if d ≥ d0(ε, N) is an integer, then any subset of the cube [1, N ]d of density at

least ε contains a combinatorial line. Unfortunately, the Furstenberg-Katznelson proof

provides no bound for d0(ε, N) in terms of ε and N .

Szemerédi’s proof of the aforementioned Erdős-Turán conjecture (“for any fixed in-

teger k ≥ 3, every subset of N of positive lower density contains a k-term arithmetic

progression”), besides establishing a wonderful result, brought with it a powerful new

tool, the Szemerédi Regularity Lemma, which has greatly affected graph theory, com-

binatorics in general, and additive combinatorics in particular. Hypergraph versions of

the regularity lemma, studied by Kohayakawa, Nagle, Rödl, Schact, and Skokan [58],

Gowers [44], and Tao [92], have just recently led to a new proof of Szemerédi’s theorem.

In the late 1970’s Furstenberg [39] gave a new remarkable ergodic-theoretic proof

of Szemerédi’s theorem. The proof was later generalized in various directions, leading

to the multidimensional Szemerédi theorems of Furstenberg and Katznelson [40], and

to the polynomial Szemerédi theorem of Bergelson and Leibman [7]. Here we confine

ourselves to stating the following corollary of the latter theorem: if k is a positive integer,

f1, . . . , fk are polynomials with rational coefficients such that f1(0) = · · · = fk(0) = 0,

and S ⊆ N is a set of positive upper density, then there are infinitely many pairs
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(m, n) ∈ Z × Z with

n + f1(m) ∈ S, . . . , n + fk(m) ∈ S.

No combinatorial proof of the results just mentioned is presently known.

Besides the growth of ergodic-theoretic methods, the 1980’s and 1990’s have seen the

further expansion of Fourier methods and the emergence of sum-product inequalities.

Three famous results from this period, the proofs of which use Fourier analysis, are

the theorems of Szemerédi [90], Heath-Brown [51], and Bourgain [11] on three-term

arithmetic progressions. Szemerédi and Heath-Brown made the initial breakthrough

showing that if N ∈ N is large enough and A ⊆ [1, N ] satisfies |A| > N/ logc N (for a

certain absolute constant c > 0), then A contains a three-term arithmetic progression.

Bourgain showed that A ⊆ [1, N ] contains a three-term progression whenever |A| >

CN
√

log log N/ log N , which is considerably stronger than the results of Szemerédi and

Heath-Brown’s (as their value of c is much smaller than 1/2). These results gave one the

hope to settle the case k = 3 of a famous problem of Erdős and Turán, presented below

as Problem 2.3; for, it is easy to show that if the assumption of Bourgain’s theorem can

be relaxed to |A| > CN/ logc N with some c > 1, then any subsets of N whose sum of

reciprocals diverges contains a three-term arithmetic progression.

Given a set A of elements of a ring, let A · A := {a1a2 : a1, a2 ∈ A}. The history of

sum-product inequalities began with the following conjecture of Erdős and Szemerédi

(cf. Problem 2.4): for every ε > 0 there exists c > 0 such that if A ⊆ N is finite, then

max{|A + A|, |A · A|} > c|A|2−ε.

This conjecture remains the central unsolved problem in the subject, though a lot of

progress has been made on it. Erdős and Szemerédi [31] themselves proved that for

some δ > 0 there exists c > 0 such that

max{|A + A|, |A · A|} > c|A|1+δ

holds for every finite subset A ⊆ N. Nathanson [70] showed that one can take δ = 1/31,

and Ford [33] later improved this to δ = 1/15. Perhaps the most elegant result in

this direction is due to Elekes [28], who used the Szemerédi-Trotter theorem [91] on

point-line incidences to prove that

|A + A||A · A| ≥ c|A|5/2;

this improves Ford’s result, leading to δ = 1/4. The most recent and strongest result is

due to Solymosi [85], who showed that any value, smaller than 3/11, can be taken for

δ.

From the year 2000 to the present, there has been a tremendous explosion of new and

deep results in additive combinatorics. There are too many of them to list in this short
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summary; instead of attempting this, we just focus on the three most famous: Gow-

ers’ new proof of Szemerédi’s theorem [43], the Bourgain-Katz-Tao [15] and Bourgain-

Glibichuk-Konyagin [14] sum-product estimates in finite fields, and the Green-Tao proof

[49] that the set of primes contains arbitrarily long arithmetic progressions.

Gowers’ proof of Szemerédi’s theorem was a phenomenal breakthrough, partly be-

cause it substantially improved the dependence between the density of a subset A ⊆
[1, N ], and the largest integer k such that A is guaranteed to contain a k-term arith-

metic progression. As Gowers has shown, for every k ≥ 3 there exists c > 0 such that

if N is sufficiently large and A ⊆ [1, N ] satisfies |A| ≥ N(log log N)−c, then A contains

a k-term arithmetic progression. Another reason for Gower’s argument to be of great

importance is that it introduced into the subject new tools and ideas, the use of which

has expanded well beyond just additive combinatorics. This includes, in particular, the

concept of the Gowers uniformity norm and a strong version of an important theorem

of Balog and Szemerédi [5], sometimes called now the Balog-Szemerédi-Gowers theo-

rem. A slightly relaxed form of Gowers’ version of the Balog-Szemerédi theorem is as

follows: if γ ∈ (0, 1) and A is a finite subset of an abelian group such that the equation

x1 +x2 = x3 +x4 has at least γ|A|3 solutions in the elements of A, then there is a subset

A0 ⊆ A with |A0| ≥ γc|A| and |A0 + A0| ≤ γ−d|A0|, where c and d are positive absolute

constants.

The Bourgain-Katz-Tao and Bourgain-Glibichuk-Konyagin estimates expanded the

Erdős-Szemerédi sum-product problem onto the finite field setting. They show that for

every ε > 0 there exists δ > 0 such that if p is a sufficiently large prime and A ⊆ Fp

satisfies |A| ≤ p1−ε, then

max{|A + A|, |A · A|} ≥ |A|1+δ.

The proof, using among other ideas the Balog-Szemerédi-Gowers theorem, is itself a

centerpiece in many new, remarkable results in the area. For example, Bourgain [12]

has used sum-product estimates to bound the size of certain exponential sums, involving

sparse polynomials of high degree. Such bounds were thought to be out of reach of any

method that currently exists, including those coming from arithmetic geometry and

analytic number theory.

Our survey would be incomplete without mentioning the crowning achievement of

the last years, which required the combination of ideas from different areas, as well as

the invention of new ideas; namely, resolving by Green and Tao the old conjecture that

the set of prime numbers contains arbitrarily long arithmetic progressions. In their

proof, Green and Tao introduced the concept of quasi-randomness and used the results
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of Goldston, Pintz, and Yilidrim [42] to show that functions like

f(n) :=
1

log2 n

(
∑

d|n : d<Nθ

µ(d) log(n/d)

)2

,

restricted to certain arithmetic progressions, are “quasirandom to a high degree.” It

is easily seen, on the other hand, that if g denotes the indicator function of the set of

primes, then f majorizes g, at least in the range (N θ, N ]; that is, if n is in this range,

then f(n) ≥ g(n). Furthermore, one can show that g(n) “eats up a positive proportion

of the mass of f(n)”; more precisely,
∑

n≤N

f(n) < c
∑

n≤N

g(n)

holds for some positive constant c (depending on θ). Green and Tao showed that

these properties (quasi-randomness, majorization, and “eating positive proportion of

the mass”) imply that the primes contain arithmetic progressions of any prescribed

length.

Just recently, Tao and Ziegler [93] have proved the even more general result that the

primes contain arbitrarily long “polynomial progressions”; specifically, if f1, . . . , fk are

any polynomials with integer coefficients such that f1(0) = · · · = fk(0), then there exist

infinitely many integers m, n ∈ N such that m, m + f1(n), m + f2(n), . . . , m + fk(n) are

all simultaneously prime.

The story of additive combinatorics is far from over. It continues to thrive to a large

extent due to the many excellent problems that researchers have brought to the subject;

some of these problems are listed below.

2. Classical problems

2.1. Dense progression-free integer sets. For a large positive integer N , what is the

largest size of a subset of the interval [1, N ], free of three-term arithmetic progressions?

The present records are due to Behrend (who constructed in [6] a progression-free

set A ⊆ [1, N ], satisfying |A| > N exp(−c
√

log N) with an absolute constant c > 0)

and Bourgain (who proved in [11] that if A ⊆ [1, N ] is progression-free, then |A| <

CN
√

log log N/ log N with an absolute constant C). Narrow the gap between these

estimates.

2.2. Dense progression-free sets in abelian groups. The question of how large a

progression-free set can be emerges naturally in abelian groups, other than the group

of integers. Just as an example, consider the additive group of the finite field Fq with

q = 3r elements, where r is a positive integer. What is the largest size of a subset of this
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group, free of three-term arithmetic progressions? How does this quantity behave as r

grows? (The finite geometry interpretation of this problem stems from the observation

that x, y, z ∈ Fq form an arithmetic progressions if and only if they lie on a line.)

It follows from a result of Meshulam [69] (see also [9]) that if A ⊆ Fq is progression-

free, then |A| ≤ 2 · 3r/r. On the other hand, it is easy to construct a progression-free

set A ⊆ Fq such that |A| = 2r: just fix arbitrarily a basis {e1, . . . , er} of Fq over F3 and

let A := {ε1e1 + · · ·+ εrer : ε1, . . . , εr ∈ {0, 1}}. The best known lower bound is due to

Edel [27], who has constructed progression-free sets in Fq of size (2.217...)r by finding

a particular example in rather large dimension and then taking a product of several

copies of it.

It would be of much interest to improve Meshulam’s estimate, to show that any

progression-free subset of Fq has size o(3r/r), and/or to determine whether there is an

absolute constant c < 3 such that any progression-free subset of Fq has size, smaller

than cr.

2.3. Arithmetic progressions in sets with diverging reciprocals. (Erdős-Turán)

Suppose that A ⊆ N has the property that the sum of the reciprocal of the elements

of A diverges:
∑

a∈A 1/a = ∞. Must A contain k-term arithmetic progressions for all

k ≥ 3? Even the case k = 3 is open.

2.4. Sum-product estimate for integers. (Erdős-Szemerédi) Prove (or disprove)

that for every ε > 0 there exists c > 0 (depending on ε) such that if A is a finite set of

integers, then

max{|A + A|, |A · A|} > c|A|2−ε.

See Section 1 for comments on this problem.

2.5. Quantitative Hales-Jewett theorem. Obtain reasonable bounds for the Hales-

Jewett theorem and for the density version of it.

See Section 1 for the discussion on the Hales-Jewett theorem.

2.6. Van der Waerden’s numbers. For k ∈ N, the van der Waerden number W (k) =

W (2, k) is defined to be the least positive integer N such that for any 2-coloring of [1, N ]

there is a monochromatic k-term arithmetic progression with the elements in [1, N ].

What is the order of growth of W (k)? Say, is it true that W (k) ≤ 2k2
?

Berlekamp [8] proved that if p is a prime, then

W (p + 1) ≥ p2p,

and from the work of Gowers [43] we know that

W (k) ≤ 2222
2k+9

.
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2.7. Just bases in N. (Erdős-Turan) A set B ⊆ N is called a basis of order 2 if any

positive integer is representable as a sum of two elements of B. Does there exist a basis

B of order 2 such that the number-of-representations function νB(n) := |{(b1, b2) ∈
B × B : b1 + b2 = n}| is uniformly bounded by a constant, independent on n? Erdős

conjectured that the answer is negative.

We refer the reader to [76] for exciting partial results towards the solution of this

problem and its finite analogues.

2.8. Difference sets in quadratic residues. Given a prime p ≡ 1 (mod 4), how

large can a set A ⊆ Fp be given that the difference between any two elements of A is

a quadratic residue modulo p? In other words, what is the clique number of the Paley

graph over Fp?

The existence of a set, possessing the property in question and of size (0.5+o(1)) log2 p,

is established in [20]. In [46] the lower bound c log p log log log p is proved for infinitely

many primes p. Finding a reasonable upper bound is an old problem on which noth-

ing is known beyond the estimate |A| <
√

p. A simple elementary proof is as follows.

Suppose that |A| >
√

p. Then for any x ∈ Fp there exist a1, b1, a2, b2 ∈ A such that

a1x + b1 = a2x + b2 and a1 6= a2. Consequently, x = (b1 − b2)/(a2 − a1) and since any

x ∈ Fp has a representation of this form, the set of all non-zero elements of A − A is

not contained in a multiplicative subgroup of Fp.

This is probably a very hard problem: just observe that the estimate |A| < pε would

imply that the least quadratic non-residue modulo p is smaller than pε.

One can consider the sumset A+A instead of the set of differences, or ask the question

for the multiplicative subgroups of Fp, other than the subgroup of quadratic residues,

in the following spirit: given a proper subgroup H of the multiplicative group of Fq,

what is the largest size of a subset A ⊆ Fp with A−A ⊆ H? One can also ask whether

there exists A ⊆ Fp such that A + A = H, or such that the symmetric difference of

A + A and H is small.

2.9. Large sum-free subsets of integer sets. What is the largest constant c with

the property that any finite, sufficiently large set A of integers contains a sum-free

subset of size at least c|A|?
Recall, that a subset A of an additively written group is called sum-free, if A ∩ (A +

A) = ∅; that is, the equation x + y = z has no solutions in the elements of A. (Thus,

Schur’s theorem, discussed in the Introduction, says that the set of positive integers

cannot be partitioned into finitely many sum-free subsets.) Alon and Kleitman showed

in [2], as a slight improvement of a result of Erdős from [29], that any finite set A of

non-zero integers contains a sum-free subset with at least
⌈
|A|+1

3

⌉
elements. Bourgain
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[10], using an elaborate Fourier analysis technique, improved this further to
⌈
|A|+2

3

⌉
.

There is no indication that the factor 1/3 is best possible here, though it is shown in

[2] that it cannot be replaced by a number, larger than 12/29.

3. Contributed problems, I: sets, free of particular structures

3.1. Dense subsets of Fp with few arithmetic progressions. (Contributed by

B. Green) For a prime p, what is the least number of three-term arithmetic progressions

that a subset A ⊆ Fp with |A| = (p− 1)/2 can have? What happens if |A| = δp, where

δ < 0.5?

As it follows from a result by Varnavides [94], this number is at least cp2 with some

c = c(δ) > 0, and Croot [22] has recently shown that it is in fact cp2(1+o(1)) as p → ∞.

It seems to be a difficult problem to determine the order of magnitude of the constant

c(δ) as δ → 0.

3.2. Uniform sets in Z/NZ with few four-term arithmetic progressions. (Con-

tributed by I. Ruzsa) Is it true that for any fixed k ≥ 1 and sufficiently small c > 0,

there exist integers N1, N2, . . . and sets A1 ⊆ Z/N1Z, A2 ⊆ Z/N2Z, . . . such that for all

i ≥ 1

(i) |Ai| ≥ cNi;

(ii) Ai is αi-uniform, where limi→∞ αi = 0;

(iii) Ai has at most ckN2
i arithmetic progressions of length 4?

Recall that A ⊆ Z/NZ is said to be α-uniform if, letting Â(u) =
∑

a∈A e2πiau/N , one

has ∑

u∈Z/NZ

u6=0

|Â(u)|4 ≤ αN4.

3.3. Large product-free sets in finite groups. (Contributed by V. Sós) How large

can be a product-free subset of a finite group?

A subset A of a group is called product-free if the equation xy = z has no solutions

in the elements of A (cf. Problem 2.9). Babai and Sós proved in [4] that any finite

group G contains a product-free subset with at least c|G|4/7 elements, where c is a

positive absolute constant; Kedlaya improved this to c|G|11/14 in [54]. As shown by

Alon and Kleitman [2], any finite abelian group G contains a product-free subset of size

at least 2|G|/7, and this is the best possible bound. In the non-abelian case, already

the alternating groups An are of interest; Green conjectures that the largest size of a

product-free subset of An is o(|An|) (as n → ∞).

Recently, Gowers [45] has shown that any product-free subset of the group G =

PSL2(p) has fewer, than c|G|8/9 elements, for a suitable absolute constant C. (The group
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PSL2(p), short for projective special linear group, is the quotient group SL2(p)/{I,−I};

here SL2(p) is the multiplicative group of 2× 2 matrices over Fp with unit determinant,

and I is the 2 × 2 identity matrix over Fp.)

3.4. Sets, free of solutions of a linear equation. (Contributed by Y. Stanchescu)

Fix an integer t ≥ 1 and suppose that A ⊆ [1, N ] has the property that none of the

t2 equations mx + ny = (m + n)z with 1 ≤ m, n ≤ t has a non-trivial solution in the

variables x, y, z ∈ A. How large can A be under this assumption?

A small modification (cf. [88]) of Behrend’s construction yields a set A ⊆ [1, N ] with

|A| = N exp(−C(t)
√

log N), possessing the property under consideration. On the other

hand, one evidently has |A| ≤ r3(N), where r3(N) is the largest size of a subset of

[1, N ], free of three-term arithmetic progressions.

3.5. Sequences, locally free of arithmetic progressions. (Contributed by G. Frei-

man) Fix an integer s ≥ 3 and suppose that A = {a1, a2, . . .} is a strictly increasing

sequence of non-negative integers, such that no segment of this sequence of the form

(ai+1, ai+2, . . . , ai+s) for i = 0, 1, . . . contains a three-term arithmetic progression. How

large can the density of A be under this assumption?

The contributor observes that for s = 4 one can take

A = {0, 1, 3, 4, 6, 7, 9, 10, . . .}
(the set of all non-negative integers, congruent to 0 or 1 modulo 3) with the density

2/3; similarly, for s = 8 one can take

A = {0, 1, 3, 4, 9, 10, 12, 13, 18, 19, 21, . . .}
(the set of all non-negative integers, congruent to 0, 1, 3, or 4 modulo 9) with the density

4/9.

Konyagin indicates that if n(s) denotes the smallest positive integer N such that

there exists an s-element subset of [1, N ], free of three-term arithmetic progressions,

then the upper asymptotic density of A does not exceed s/n(s); on the other hand,

there exists A with the property in question and with the lower asymptotic density at

least s/(2n(s)).

3.6. Van der Waerden related numbers. (Contributed by R. Graham) Define

W ∗(k) to be the size of the smallest set A of integers such that any 2-coloring of A

has a monochromatic k-term arithmetic progression; thus, W ∗(k) ≤ W (k) (the “clas-

sical” van der Waerden number). Is W (k) − W ∗(k) unbounded as k → ∞? Is it true

that

lim
k→∞

W ∗(k)

W (k)
= 1?
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The contributor offers $100 for the answer to the first question. He also remarks that

W ∗(3) = W (3) = 9 and W ∗(4) ≤ 27, while W (4) = 35.

3.7. The plane analogue of Problem 2.3. (Contributed by R. Graham) Suppose

that a set A ⊆ Z × Z has the property that
∑

(x,y)∈A
1

x2+y2 = ∞. Must A contain the

four vertices of a square, i.e. four points of the form (x, y), (x + d, y), (x, y + d), and

(x + d, y + d) with x, y ∈ Z, d ∈ N?

The contributor conjectures that the answer is positive and offers $1000 for the proof

(or disproof) of this conjecture. More generally, he conjectures that any set A with the

above property contains a k × k square grid, for any integer k ≥ 2.

3.8. The number of monochromatic solutions. (Contributed by R. Graham) Let

E be a set of homogeneous linear equations which is partition regular; that is, E has a

non-trivial monochromatic solution for any r-coloring of Z. For positive integer N and

r, what is the minimum number fE(N, r) of monochromatic solutions to E which can

occur for an r-coloring of [1, N ]?

It follows from general results of Frankl, Graham, and Rödl [34] that a positive

fraction (depending only on E and r) of all solutions are monochromatic. However, it

seems to be difficult to determine exactly the best possible constant.

It is known that if r = 2 and E consists of a single equation x + y = z, then

fE(N, r) = N2(1 + o(1))/22 (Robertson-Zeilberger [74], Schoen [82]). On the other

hand, when r = 2 and E consists of the equation x + y = 2z (corresponding to three-

term arithmetic progressions), then we only know that

189

4096
N2(1 + o(1)) < fE(N, 2) <

117

2192
N2(1 + o(1));

here the lower bound is due to Parrilo, Robertson, and Saracino (preprint), and the

upper bound is due to these authors and independently to Butler, Costello, and Graham

(unpublished). Note that a random 2-coloring of [1, N ] would have N 2(1 + o(1))/16

monochromatic three-term arithmetic progressions, and that

189

4096
=

1

21.671957...
<

117

2192
=

1

18.73504 . . .
<

1

16
.

There is some evidence that the upper bound is actually the truth here.

Let, again, E be the single equation x + y = 2z. Alon reports that he can prove the

existence of an absolute constant c such that

fE(N, r) ≤ r−c log rN2

holds for all r, N ∈ N; thus, for large r the number of monochromatic triples can be

much smaller than one has for the random coloring.
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3.9. Partition regularity of the Pythagorean equation. (Contributed by R. Gra-

ham) Is the equation

x2 + y2 = z2

partition regular? This is an old problem of Erdős and Graham [30] for which we

have little evidence either way. It is perhaps the simplest question involving partition

regularity of homogeneous nonlinear equations. The contributor offers $250 for resolving

this problem.

4. Contributed problems, II: sumsets

4.1. Sequences with locally small sumsets. (Contributed by V. Sós) Let A be

strictly increasing infinite sequence of integers, and denote by An the set of n smallest

elements of A. What can be said about the structure of A given that

|An + An| < Cn

holds for any positive integer n and an absolute constant C?

4.2. Covering vector spaces with subset sums. (Contributed by G. Martin) A

consequence of the Cauchy-Davenport theorem (see the Introduction) is that given any

prime p and any multiset A of p − 1 non-zero elements of Fp, any element of Fp is

representable as a subset sum of A. What is the natural generalization of this assertion

onto finite-dimensional vector spaces over Fp? That is, what are natural conditions that

guarantee that the set of subset sums is the whole vector space (even when the multiset

under consideration is not too large)?

Let A be a subset of the r-dimensional vector space V over Fp, and let Σ(A) denote the

set of all subset sums of A. To avoid the situation where Σ(A) is trapped in or heavily

concentrated on subspaces, it is natural to bring into consideration the quantities

σj(A) = max
W≤V

dim(W )=j

|A ∩ W |; j ∈ [1, r].

Given the numbers α1, . . . , αr−1 > 0, find a “reasonable” estimate (as a function of

α1, . . . , αr−1) for the size of the largest set A such that Σ(A) 6= V and

σ1(A) ≤ α1, σ2(A) ≤ α2, . . . , σr−1(A) ≤ αr−1.

In particular, if σj(A) < jp for all j = 1, . . . , r − 1, does Σ(A) 6= V imply |A| ≤ rp− 2?

4.3. Sumsets of progression-free sets. (Contributed by G. Freiman) Given that

n is a positive integer and A ⊆ Z is an n-element set, free of three-term arithmetic

progressions, how small can |2A| be?

Freiman [36] proved that |2A|/n tends to infinity, and Ruzsa [77] proved that this

quotient is at least 0.5(n/r3(n))1/4, where r3(N) denotes the largest size of a subset of
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[1, N ], free of three-term arithmetic progressions. On the other hand, it is immediate

that if N is so chosen that r3(N) = n (which is possible for any given n), then there is

an n-element set A, free of three-term arithmetic progressions and such that |2A|/n <

2N/n = 2N/r3(N). Thus, for instance, Behrend’s construction yields a set A with

|2A|/n = O(ec
√

log n), where c is an absolute constant.

4.4. Sumsets of no-three-points-on-a-line sets. (Contributed by G. Freiman) Given

that n is a positive integer and A ⊆ Z×Z is an n-element set, no three points of which

are collinear, how small can |2A| be?

As above, denote by r3(N) the largest size of a subset of [1, N ], free of three-term

arithmetic progressions. Using results of [77] (see previous problem), Stanchescu showed

in [88] that |2A| ≥ 0.5n(n/r3(n))1/4, and on the other hand, that there there are

arbitrarily large n ∈ N and corresponding n-element sets A ⊆ Z × Z, free of collinear

triples, such that |2A| ≤ n exp(C
√

ln n) (with an absolute constant C).

4.5. Freiman’s theorem for distinct set summands. (Contributed by T. Tao) Is

it true that for any K > 1 there exists C > 0 with the following property: if A and B

are finite, non-empty integer sets, satisfying |A + B| < K|A| and |B| ≤ |A|, then there

is a generalized arithmetic progression P of rank at most C and a set X ⊆ Z so that

B ⊆ P, A ⊆ X + P , and |X + P | < C|A|?
The case |A| = |B| is, essentially, Freiman’s theorem (in conjunction with the “cover-

ing lemma” of Ruzsa, implicit in [77]), and the case where |A| and |B| are of the same

order of magnitude follows easily.

As the contributor indicates, using Plünnecke’s inequalities (cf. [77]) one can establish

a weaker assertion, with the requirement that P is an arithmetic progression relaxed to

a hypothesis of the sort |P + P | ≤ c(K, ε)|A|ε|P |.

4.6. Doubling the squares. (Contributed by B. Green and T. Tao) How small can

|2A| be for an n-element subset A of the set of squares of integers?

The contributors indicate that this problem is implicit in a paper of Chang [18] on

Rudin’s problem (“are the squares a Λ(p)-set?”), and that a result from [18] implies that

|2A| ≥ cn(ln n)1/12 with an absolute constant c > 0 (see comments on Problem 6.5).

4.7. Small doubling in binary spaces. (Contributed by I. Ruzsa) Is it true that for

any K > 1, r ∈ N, and any subset A ⊆ F
r
2, satisfying |A + A| ≤ K|A|, there exists

a linear subspace V ⊆ F
r
2 such that |V | < Kc|A| and |A ∩ V | ≥ K−c|A|, with some

absolute constant c > 0?

The contributor has shown that the problem can be equivalently restated as follows:

is it true that any function f : F
r
2 → F

∞
2 can be written as a sum of a linear function
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and a function, whose image has size, polynomial in the cardinality of the set

{f(x + y) + f(x) + f(y) : x, y ∈ F
r
2} ?

4.8. Grows of higher sumsets. (Contributed by T. Tao) For a finite set A ⊆ Z and

real K > 0, how fast |nA| can grow (as n → ∞) given that |2A| < K|A|? Estimate the

quantity

f(n, K) := sup{|nA|/|A| : A ⊆ Z if finite and |2A| < K|A|}.

Plünnecke-Ruzsa inequalities [77] imply that f(n, K) ≤ Kn.

4.9. Balog-Szemerédi theorem for distinct set summands. (Contributed by T. Tao)

Let m and n be positive integers with m ≥ n, and let K, δ > 0. Suppose that A and

B are finite sets of integers with |A| = m and |B| = n, and that G ⊆ A × B satisfies

|G| ≥ δmn. Does

|{a + b : a ∈ A, b ∈ B, (a, b) ∈ G}| < Km

imply anything about the structure of A and B? In particular, does it imply that there

are A′ ⊆ A and B′ ⊆ B with |A′| ≥ cm, |B′| ≥ cn such that |A′ + B′| ≤ Cm, where c

and C depend only on δ and K?

The case m = n is the Balog-Szemerédi’s theorem. For λ > 1 and n ≤ m ≤ λn the

assertion is easy to derive with the constants c and C, depending on λ (in addition to

the dependence on δ and K).

4.10. Sumset and difference set. (Contributed by G. Freiman) For a finite set A ⊆ Z

and a subset G ⊆ A × A, set

A
G
+A := {a′ + a′′ : (a′, a′′) ∈ G}, A

G
−A := {a′ − a′′ : (a′, a′′) ∈ G}.

Estimate |A
G
−A| from above in terms of |A

G
+A| and |A| and describe those sets A with

the largest possible value of |A
G
−A|.

The contributor indicates that, writing n := |A|, we have

(i) If |A
G
+A| = 1, then |A

G
−A| ≤ n; moreover, if equality is attained, then A is

symmetrical;

(ii) if |A
G
+A| = 2, then |A

G
−A| ≤ 2n− 1; moreover, if equality is attained, then A is

an arithmetic progression.

For the (much more delicate) complete solution in the case |A
G
+A| = 3, see [38].
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4.11. Recognizing sumsets algorithmically. (Contributed by A. Granville) Given

a finite subset of an abelian group, can one give an efficient algorithm to determine

whether it is of the form A + A, where A is yet another subset of the group?

A strong necessary condition for a subset S of an abelian group to be of the indicated

form is that the difference set S−S contains many “popular differences”; more precisely,

there exist an integer K >
√

2|S|−0.5 and a subset D ⊆ S−S with |D| ≥
√

K|S| such

that any element of D has at least K representations as a difference of two elements

of S. To see that this condition is necessary, assuming that S = A + A let K := |A|
and D := A − A. From |S| ≤

(|A|
2

)
+ |A| we derive that K >

√
2|S| − 0.5, and the

well-known “Ruzsa triangle inequality” (see [79]) gives |A−A|2 ≥ |A + A||A|, implying

|D| ≥
√

K|S|. Finally, for any a′, a′′ ∈ A the number of representations of a′ − a′′ as

a difference of two elements of S is |(S − a′) ∩ (S − a′′)|, which is at least K = |A| as

both S − a′ and S − a′′ contain A.

A simple algorithm, exponential in the size of the subset under investigation, stems

from the observation that if S = A + A, then for any a ∈ A we have

2a ∈ S, S − 2a = (A − a) + (A − a), and A − a ⊆ S − 2a.

Consequently, to check whether S is a sumset one can run through the elements of S

one-by-one, for every s ∈ S computing the sumsets of all 2|S| subsets of S − s and

comparing these sumsets to the set S − s. No better algorithm is known even when the

underlying group is torsion-free, cyclic, or when it is the additive group of a finite field.

4.12. Large sets in Fp which are not sumsets. (Contributed by B. Green) For a

prime p, what is the largest size of a subset of Fp, which is not of the form A + A (with

A ⊆ Fp)?

Improving contributor’s original estimate

p − p2/3+ε < max
S⊆Fp :
S 6=A+A

|S| < p − 1

9
log p

(for any fixed ε > 0 and p large enough), Alon proves in [1] that

p − C
p2/3

(log p)1/3
< max

S⊆Fp :
S 6=A+A

|S| < p − c
p1/2

(log p)1/2

with some absolute constants c, C > 0 for all sufficiently large p; as indicated in [1], the

upper bound is likely to be close to the truth.

5. Contributed problems, III: combinatorial and finite geometry

5.1. Small Besicovich sets in finite geometries. (Contributed by T. Tao) Let F

be a finite field, and suppose that A ⊆ F × F × F is a Besicovich set; i.e. A contains a
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line in every direction. It is known from the work of Wolff that |A| ≥ |F|5/2; prove that

in fact |A| ≥ |F|5/2+ε holds for some ε > 0.

5.2. Small sets, determining all possible directions. (Contributed by A. Granville)

Given a finite field F and an integer r ≥ 1, find the smallest size of a subset E ⊆ F
r

which determines all directions in F
r. That is, determine the smallest size of a subset

A ⊆ F
r with the property that for any d ∈ F

r there exist a1, a2 ∈ A such that a1 − a2

is a scalar multiple of d.

Let q := |F|. It is immediate that if A ⊆ F
r determines all (qr − 1)/(q− 1) directions

in F
r, then |A| ≥

√
2 q(r−1)/2, and Konyagin indicates that this estimate can be matched

up to the constant factor, as follows. Writing F
r = F

r−1⊕F, find a subset D ⊆ F
r−1 with

|D| < Cq(r−1)/2, where C is an absolute constant, so that any element of F
r−1 can be

represented as a difference of two elements of D. (The existence of such a subset follows

from a general result, proved in [62], and also is not difficult to establish directly.) Now

the set D ⊕ {0, 1} determines all directions in F
r.

5.3. Szemerédi-Trotter in Fp × Fp. (Contributed by T. Tao) Find an analogue for

the Szemerédi-Trotter theorem [91] for Fp × Fp. More precisely, determine whether for

any prime p and any system of n points and l lines in Fp ×Fp, assuming that the values

of n and l are in some “reasonable” range, the number I of point-line incidences satisfies

I � (nl)2/3 + n + l

(with an absolute implicit constant). In particular, if both n and l are about log p, is it

true that I = O((nl)2/3)?

If n and l are both large, then the estimate in question may fail: say, for n = p2 we

have I = pl, which is not bounded by (nl)2/3 + n + l if l/p → ∞. For n = l = p a paper

by Bourgain, Katz, and the contributor [15] shows that the trivial bound (nl)3/2 can be

improved to (nl)3/2−ε for some explicit, but very small ε > 0.

5.4. Sets in F
2
p with many equidistant pairs. (Contributed by T. Tao) For a prime

p, how many pairs of points at distance 1 apart can there be in a p-element subset of

Fp × Fp? That is, how large can be the set

{((x1, y1), (x2, y2)) ∈ A × A : (x1 − x2)2 + (y1 − y2)
2 = 1}

for a p-element subset A ⊆ Fp × Fp?

As shows the set A = {(x, 0) : x = 0, . . . , p − 1}, there can be just 2p pairs of points

at distance 1. A simple upper bound is p3/2, which can be established as follows. For

u ∈ Fp ×Fp, let Au denote the set of all those a ∈ A which are at the distance 1 from u.

Then the intersection of any two distinct sets Au contains at most two elements, and

the union of these sets for all u ∈ A has at most |A| = p elements. With a minor effort
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(hint: show first that |A| ≥ |Au1 ∪ · · · ∪ Aun | ≥ |Au1 | + · · · + |Aun| − O(n2)) holds for

any pairwise distinct u1, . . . , un ∈ A, then choose n ≈ √
p and average over all n-tuples

(u1, . . . , un)), it can be derived that
∑

u∈A |Au| ≤ p3/2. It remains to notice that the

sum at the left-hand side is the number of pairs in question.

Iosevich and Rudnev proved in [53] some results on this and related problems when

|A| is much larger, than p.

5.5. A Szemerédi-Trotter type problem. (Contributed by J. Bourgain) Find a

lower bound for the size of a set A ⊆ R
3, given that there is a system of n2 lines, no

n of which are co-planar, and such that every line contains n points from A. Is it true

that |A| ≥ n3−ε for any ε > 0 and all sufficiently large n?

5.6. Joints in R
3. (Contributed by T. Tao) Given a system of lines in R

3, define a

joint as point, where three non-coplanar lines form our system meet. For a positive

integer n, what is the largest possible number of joints in a system of n lines?

The contributor remarks that there are configurations with as many as cn3/2 joints

(with an absolute constant c), and the trivial upper bound is
(

n
2

)
. Same question can

be asked with R replaced by a finite field.

5.7. Structure Szemerédi-Trotter. (Contributed by T. Tao) Given n lines and n

points in R
2, the number of point-line incidences by the Szemerédi-Trotter theorem is

O(n4/3). Suppose that the number of incidences is, indeed, of this order; what can be

said then about the structure of our configuration of points and lines?

5.8. Sets in Z
r with small difference set. (Contributed by Y. Stanchescu) Let

r ∈ N, and suppose that A ⊆ Z
r is a finite set, not contained in a hyperplane of

dimension smaller than r. Determine the smallest possible value of |A−A| as a function

of |A| and r.

Freiman, Heppes, and Uhrin proved in [37] that |A−A| ≥ (r+1)|A|− 1
2
r(r+1) holds

for every r ∈ N, and this inequality is best possible for r ∈ {1, 2}. The contributor

showed in [86] that for r = 3 the best possible estimate is |A − A| ≥ 4.5|A| − 9, and

conjectured in [87] that for r ≥ 4 one has

|A − A| ≥
(

2r − 2 +
1

r − 1

)
|A| − Cr,

with a constant Cr, depending on r. As shown in [87], the last inequality, if true, is

best possible.
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6. Contributed problems, IV: miscellany

6.1. Non-vanishing transversals. (Contributed by N. Alon, cf. [3]) Is it true that for

any n ∈ N and any collection of finite sets A1, . . . , An ⊆ Z with min{|A1|, . . . , |An|} ≥
n + 1 one can select the elements a1 ∈ A1, . . . , an ∈ An so that

∑
i∈I ai 6= 0 for every

non-empty subset I ⊆ [1, n]?

If true, this is best possible: there are “many” collections A1, . . . , An with |A1| =

· · · = |An| = n which do not admit such a choice of a1, . . . , an. On the other hand,

it is shown in [3] that for any ε > 0 there is C > 0 such that the answer is positive,

provided that min{|A1|, . . . , |An|} ≥ n + 1 is replaced with the stronger assumption

min{|A1|, . . . , |An|} ≥ Cn1+ε.

6.2. Sumsets of a multiplicative subgroup. (Contributed by J. Bourgain) Given

δ ∈ (0, 1), what is the smallest integer k ≥ 1 such that for any prime p and any subgroup

H ≤ F
×
p with |H| > pδ one has kH(:= H + · · · + H) = Fp?

It is known [14] that one can take log k > δ−C with a sufficiently large absolute

constant C, and Glibichuk and Konyagin have recently shown (work in progress) that

k > C41/δ suffices.

6.3. Exponential sums over multiplicative subgroups. (Contributed by J. Bour-

gain) Let p be a prime. How large H ≤ F
×
p is to be in order for

∣∣∣∣∣
∑

x∈H

e2πiax/p

∣∣∣∣∣ = o(|H|)

to hold for all a ∈ F
×
p ?

6.4. Sets in Z/qZ with few sums and products. (Contributed by M.-C. Chang) Is

it true that for any ε > 0 there exists δ > 0 with the following property: if A ⊆ Z/qZ

(with a sufficiently large integer q) satisfies max{|A + A|, |A · A|} < qε|A|, then either

|A| > q1−δ, or there exists d | q, d > 1 such that the canonical image of A in Z/dZ has

at most qδ elements?

6.5. A quadratic diophantine equation. (Contributed by M.-C. Chang) What is

the largest possible number of solutions of the equation

x2
1 + x2

2 = x2
3 + x2

4

where the variables x1, . . . , x4 attain values from an integer set A with prescribed size?

In [18] it is shown that this number of solutions is O(|A|3/(ln |A|)1/12), which readily

implies that for any finite set S of squares one has |S + S| � |S|(ln |S|)1/12 (cf. Prob-

lem 4.6). It is also conjectured in [18] that for any fixed ε > 0 the number of solutions

is O(|A|2+ε) (with the implicit constant depending on ε).
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For a thorough discussion on this and related problems see [19].

6.6. A mixed sumset problem. (Contributed by I.  Laba) Given an integer n ≥ 1,

how small can |A + αA| be for an n-element set A ⊆ R and transcendental α?

Konyagin and  Laba showed in [59] that |A + αA| ≥ cn log n/(log log n) with an

absolute constant c > 0. On the other hand, an example due to Green (also presented

in [59]) shows that |A + αA| � nec
√

log n is possible.

6.7. Hypergraph regularity. (Contributed by T. Tao) Is there a hypergraph regu-

larity lemma for subsets of pseudorandom sparse hypergraphs of large density? If so, it

would give a new proof that there are arbitrarily long arithmetic progressions among the

primes, which may possibly extend to a more general situation. The following analogue

for graphs is known: If |A| = |B| = N , G0 ⊆ A × B is “sparsely c(ε, δ)-quasirandom”,

G ⊆ G0, |G| > δ|G0|, then there exist equitable partitions

A = A1 ∪ · · · ∪ As, B = B1 ∪ · · · ∪ Bt,

where s, t < C(ε, δ), such that for (1 − ε)st of the pairs (i, j) the restriction of G to

Ai × Bj is ε-regular relative to G0.

The contributor remarks that, despite being a generalization of the already rather

difficult hypergraph regularity lemmas, if done correctly the proof of such a result may

be easier than that of the existing regularity lemmas. This is because the induction

used to prove such lemmas may be cleaner.

6.8. Product sets in SL2(Fp). (Contributed by A. Venkatesh) Let p be a prime, and

suppose that A ⊆ SL2(Fp) satisfies |A| ∼ p5/2. Does it follow that, writing A · A :=

{a′a′′ : a′, a′′ ∈ A}, one has

|A · A| > p5/2+δ

for some fixed δ > 0 and all sufficiently large p?

Helfgott [52] showed, among other things, that if |A| < p3−δ with δ > 0, and A is

not contained in any proper subgroup of SL2(Fp), then |A · A · A| > c|A|1+ε, where

c > 0 and ε > 0 depend only on δ and A · A · A is defined in the natural way. He has

also shown that there is an absolute constant C such that if A is a set of generators

of SL2(Fp), then every element of SL2(Fp) is a product of at most O((log p)C) elements

from A ∪ A−1.

7. Original problems

7.1. Polynomials with large image modulo a prime. (The first named author;

inspired by, and very similar to a problem of J. Bourgain) Given ε ∈ (0, 1/2], classify
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all those polynomials P ∈ Z[x, y] for which there exists δ = δ(ε) > 0 with the following

property: for all primes p > p0(ε), if A ⊆ Fp satisfies |A| ≤ pε, then

|{P (a′, a′′) : a′, a′′ ∈ A}| ≥ |A|1+δ.

Bourgain [13] has shown that P (x, y) = x(x + y) has the above property, and it

is implicit in the work of Pudlak [72] that the property holds for P (x, y) = x2 + y.

(The first-named author has a different, though perhaps related, proof of this result of

Pudlak).

7.2. Arithmetic progressions in sumsets of dense sets. (Cf. [23] ) Let `(A) denote

the maximum length of an arithmetic progression, contained in the set A ⊆ Z. Given

a real θ ∈ [0, 1) and an integer N ≥ 1, estimate

min{`(A + A) : A ⊆ [1, N ], |A| ≥ N 1−θ}.
In [23] it is shown that this minimum is at least 2/θ + O(1), and also that it is less

than exp(Cθ−2/3−o(1)) as N → ∞ and θ is fixed (with an absolute constant C).

7.3. Arithmetic progressions in large subsets of thin sumsets. (J. Solymosi and

the first named author) Is it true that for every ε ∈ (0, 1] there exists δ > 0 with the

following property: if A is a finite set of integers with n := |A| sufficiently large and

|A + A| ≤ n1+δ, then any subset S ⊆ A + A satisfying
∑

s∈S

|{(a′, a′′) ∈ A × A : a′ + a′′ = s}| ≥ εn2

contains a three-term arithmetic progression?

7.4. Inverse problem for square-like sets. (C. Elsholtz and the first named author)

Given an integer N ≥ 1, classify all sets A ⊆ [1, N ] such that |A| > N 1/3+ε, and A

occupies at most 2p/3 residue classes modulo p for every prime p <
√

N . Must any

such A essentially be contained in the set of values of a quadratic polynomial? By

“essentially” we mean that all, but N o(1) elements of A, lie in such a set.

Both the above properties can be weakened, and still the problem would be interesting

and difficult; for example, the 2p/3 can be replaced with (1− δ1)p, and the 1/3 + ε can

be replaced with N δ2 (though this would mean there are more possibilities than just

quadratic polynomials to consider).

Naively, one may think that such sets A cannot exist, upon applying the following

heuristic: if A occupies at most 2/3 of the residue classes mod p for k different primes

p, then one would expect that A has size at most (2/3)kN , which can be made smaller

than 1 by choosing k > c log N , for a certain c > 0. However, this simple heuristic does

not give accurate predictions, as it follows by considering the set of all squares in [1, N ].
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7.5. Arithmetic progressions in non-abelian groups. (The first named author)

For a group G define r3(G) to be the largest size of a subset of G, containing no three-

term arithmetic progressions. (In this context, a three-term arithmetic progression is a

triple of the form (a, ad, ad2) with a, d ∈ G, d 6= 1.) For finite abelian groups G known

upper and lower bounds for r3(G) are appallingly far apart. Can one exhibit an infinite

family of finite non-abelian groups G and give lower and upper bounds for r3(G) which

are within a constant factor? Does there exist an infinite family of non-abelian groups

G for which r3(G) > |G|/ logK |G|, with an absolute constant K?

Gowers considers in [45] several related problems, and in particular the following one.

Fix θ ∈ (0, 1]. Do there exist infinitely many primes p such that if G = PSL2(p) (see

Problem 3.3 for the definition) and A, B, C ⊆ G satisfy min{|A|, |B|, |C|} > θ|G|, then

A × B × C contains a triple (a, da, d2a) with a, d ∈ G? Note that the similar property

fails for abelian groups with a “large” cyclic component, at least for small θ; for example,

if N is a positive integer, A = B = (0, N/4) ⊆ Z/NZ, and C = (N/2, 3N/4) ⊆ Z/NZ,

then A×B×C does not contain any triple of the form (a, a+d, a+2d) with a, d ∈ Z/NZ.

Letting b = da and c = d2a one sees that Gowers’s question is equivalent to asking

whether there is a solution to c = ba−1b with (a, b, c) ∈ A×B×C. Replacing A with the

set of its inverses, one can further restate the question to seek triples (a, b, c) ∈ A×B×C

with c = bab.

It is worth noting that writing arithmetic progressions as (a, da, d2a) (as in Gower’s

paper) is equivalent to writing them as (a, ad, ad2); indeed, writing δ = a−1da we find

that (a, da, d2a) = (a, aδ, aδ2).

Two further questions in the spirit of Gowers’s problem are the following. Given

K > 0, do there exist infinitely many groups G such that for any subset A ⊆ G with

|A| ≥ |G|/ logK |G| there are a, b, c ∈ A, satisfying c = ba−1b? Do there exist infinitely

many groups G and subsets A ⊆ G with |A| > |G|/ logK |G| for which there are no

such a, b, c ∈ A? This second question is equivalent to the question above of whether

r3(G) > |G|/ logK |G|.

7.6. Arithmetic progressions and the Fourier transform. (The first named au-

thor) If the L1-norm of the Fourier transform of a large subset of Fp is small, must the

set contain a three-term arithmetic progression? More precisely, is it true that for any

fixed C, D > 0, if p is a sufficiently large prime, then any set A ⊆ Fp with

|A| > p/ logC p,
∑

z∈Fp

|Â(z)| < p logD p

contains a three-term arithmetic progression? (Here Â is defined as in the Problem 3.2;

that is, Â(z) =
∑

a∈A e2πiaz/p.)
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7.7. The Fourier spectrum of functions restricted to subsets. (The first named

author) Given a prime p, for a function f : Fp → R set f̂(z) :=
∑

u∈Fp
f(u)e2πiuz/p. Fix

ε ∈ (0, 1] and A, B > 0. Is it true for all sufficiently large primes p that if f, g : Fp → [0, 1]

satisfy f̂(0) = ĝ(0) > p/(log p)A and

max{|f̂(z) − ĝ(z)| : z ∈ F
×
p } < p exp(−

√
log p),

then for every function h : Fp → [0, 1] with h(u) ≤ f(u) (u ∈ Fp) and ĥ(0) ≥ εf̂(0)

there is a function h0 : Fp → [0, 1] such that h0(u) ≤ g(u) (u ∈ Fp) and

max{|ĥ0(z) − ĥ(z)| : z ∈ F
×
p } < p/(log p)B?

Roughly, what we are asking is as follows: assuming that the Fourier spectrums of

f, g : Fp → [0, 1] are very close, must each function h : Fp → [0, 1], majorized by f

(with a positive fraction of the mass of f), have a partner function h0 : Fp → [0, 1],

majorized by g, such that the Fourier spectrums of h and h0 are close? In this problem

exp(−
√

log p) can be replaced with any function, decaying to 0 faster, than any power

of log p.

7.8. Covering subsets of Fp by arithmetic progressions. (Cf. [63]) For an integer

n ≥ 2 and prime p, let ln(p) denote the smallest integer l such that any n-element

subset of Fp is contained in an arithmetic progression of length l. It is conjectured in

[63] that if n is fixed and p → ∞, then

ln(p) = 2n− 1
n−1 p1− 1

n−1 (1 + o(1));

prove (or disprove) this conjecture.

If n = 2 the assertion is immediate, for n = 3 it is established in [63], for n ≥ 4 it is

shown in [63] that

p1− 1
n−1 (1 + o(1)) < ln(p) < 2n− 1

n−1 p1− 1
n−1 .

7.9. Arithmetic and geometric progressions in Fp. (The second named author)

For a prime p, an element λ ∈ Fp, and a subset A ⊆ Fp, set λ ∗ A = {λa : a ∈ A}.

Does there exist ε > 0 with the property that for any sufficiently large prime p there is

λ ∈ Fp such that every subset A ⊆ Fp with |A| < p/2 satisfies

|A ∪ (A + 1) ∪ (λ ∗ A)| > (1 + ε)|A|?

A positive answer would lead to a simple construction of good expanders. (For the

construction to be be effective, though, one has to specify λ effectively.)

There are reasons to believe that λ = O(1) does not work.
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7.10. Large sum-free sets in ternary spaces. (Cf. [67]) We say that the sum-free

subset A of an abelian group G is induced if there is a non-zero subgroup H < G

such that A is the full inverse image of a sum-free subset of the quotient group G/H

under the canonical homomorphism G → G/H. (See Problem 2.9 for the definition of

a sum-free subset.)

For an integer r ≥ 1, how large can a sum-free subset A ⊆ F
r
3 be given that A is

not contained in an induced sum-free subset? In [67] examples of such subsets with

|A| = (3r−1 + 1)/2 are constructed, and it is conjectured that if A ⊆ F
r
3 is sum-free and

satisfies |A| > (3r−1 + 1)/2, then A is contained in an induced sum-free subset; prove

(or disprove) this conjecture.

As shown in [67], the conjecture holds true for r ≤ 4 at least.

We mention that for all finite abelian groups G, the largest size of a sum-free subset

of G is known; see [47]. In contrast, “primitive” sum-free subsets (those not contained

in induced sum-free subsets) remain mostly unexplored, with the exception of the ele-

mentary abelian 2-groups. Observe, that a sum-free subset A is induced if and only if

it is periodic; that is, A is a union of cosets of a non-zero subgroup.

7.11. General properties of the sum spectrum. (Cf. [65]) Given two finite integer

sets A and B, write

νA,B(n) := |{(a, b) ∈ A × B : a + b = n}|; n ∈ Z.

The spectrum of ν defines a partition of the integer |A||B| which can be visualized using

a Ferrers diagram; that is, an arrangement of |A||B| square boxes in bottom-aligned

columns such that the height of the leftmost column is the largest value attained by ν,

the height of next column is the second largest value of ν, and so on. It is not difficult

to show that if rk denotes the height of the kth column of the diagram (that is, the kth

largest value attained by ν), then

r2
k ≤ rk + rk+1 + rk+2 + · · · . (∗)

for any k ≥ 1. What are the general properties shared by the functions ν for all finite

sets A, B ⊆ Z, other than that reflected by this inequality?

Notice that for any t ∈ N, the length of the tth row of the above described diagram

(counting the rows from the bottom) is Nt := |{n : ν(n) ≥ t}|. From a well-known result

of Pollard [71] it follows that N1 + · · ·+ Nt ≥ t(|A|+ |B| − t) for any t ≤ min{|A|, |B|},

and this can be derived also as a corollary of (∗).

7.12. Scherk’s theorem for restricted addition. (Cf. [66]) Is there an analog of

Scherk’s theorem for the restricted sumset

A+̇B := {a + b : a ∈ A, b ∈ B, a 6= b}?
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It is conjectured in [66] that for any finite subsets A and B of an abelian group, satisfying

A ∩ (−B) = {0}, one has

|A+̇B| ≥ |A| + |B| − 3;

prove (or disprove) this conjecture.

Solving a problem by Moser, Scherk proved in [80] that if A and B are finite subsets of

an abelian group such that A∩(−B) = {0}, then |A+B| ≥ |A|+|B|−1. (The condition

A ∩ (−B) = {0} means that there is a unique representation of the sort 0 = a + b with

a ∈ A and b ∈ B; specifically, that with a = b = 0.) The estimate of Scherk’s theorem is

best possible: equality is attained, for instance, if A and B are arithmetic progressions

with the same difference, the order of which is at least |A| + |B| − 1.

The conjecture reduces to the special case B ⊆ A by considering the sets A∗ = A∪B

and B∗ = A ∩ B. We have verified computationally this case (and hence the general

conjecture) for all cyclic groups of order up to 25, and in the case B = A for cyclic

groups of order up to 36. The conjecture holds true also for torsion-free abelian groups,

for cyclic groups of prime order, and for elementary abelian 2-groups.

7.13. Sumsets, restricted by an injective mapping. (Cf. [64]) Let p be a prime.

For A, B ⊆ Fp and τ : A → B set A
τ
+B := {a + b : a ∈ A, b ∈ B, b 6= τ(a)}. Is it true

that for any prime p, any non-empty subsets A, B ⊆ Fp with |A| + |B| < p, and any

injective mapping τ : A → B, one has

|A
τ
+B| ≥ |A| + |B| − 3?

If true, this would extend a result of Dias da Silva and Hamidoune [26], establishing

a well-known conjecture of Erdős and Heilbronn [30, p. 95]. For discussion and some

partial results see [64] where it is shown, in particular, that |A
τ
+B| ≥ |A| + |B| −

2
√

min{|A|, |B|} − 1 for any (not necessarily injective) mapping τ .

7.14. Popular differences. (The second named author) Let A be a finite non-empty

subset of an abelian group G, and write D := A − A. Given that any d ∈ D has at

least |A|/2 representations of the form d = a′ − a′′ with a′, a′′ ∈ A, is it necessarily true

that D is either a subgroup, or a union of three cosets?

If any d ∈ D has strictly more than |A|/2 representations, then D is a subgroup: in-

deed, by the pigeonhole principle for any d1, d2 ∈ D there exists a pair of representations

d1 = a′
1 − a′′

1 , d2 = a′
2 − a′′

2 such that a′′
1 = a′′

2, and it follows that d1 − d2 = a′
1 − a′

2 ∈ D.

If any d ∈ D is only guaranteed to have at least |A|/2 representations, then the

argument above doesn’t work, and in fact, the conclusion is not true either. To see

this, consider the set A := H ∪ (g + H), where H < G is a finite subgroup and

g ∈ G is so chosen that the order of g in the quotient group G/H is at least 4. Then
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D = (−g + H) ∪ H ∪ (g + H) is not a subgroup; at the same time, it is easily seen

that any d ∈ D has at least |H| = |A|/2 representations of the form d = a′ − a′′. The

question is whether this example is essentially unique.

7.15. The maximal length of an integer set. (Cf. [60]) Is it true that for n ≥ 7,

any n-element set of integers is isomorphic (in Freiman’s sense) to a subset of [0, 2n−2]?

For any integer n ≥ 2 the set {0, 1, 2, 4, . . . , 2n−2} is “linear” (has Freiman’s dimension

one) and not contained in an arithmetic progression with difference larger than 1, hence

it is not isomorphic to a set of integers of length smaller than 2n−2. It is conjectured

in [60] that this is the extremal case; that is, in any class of isomorphic n-element sets

there is a set of length at most 2n−2.

Note, that all Sidon sets with the same number of elements are isomorphic to each

other, and it is well-known that for N large enough the interval [0, N ] contains a Sidon

set of cardinality about
√

N . Thus, any n-element Sidon set is isomorphic to a subset

of [0, n2(1 + o(1))]. For n ≤ 6, however, this n2(1 + o(1)) turns out to be larger, than

2n−2: more precisely, [0, 2n−2] does not contain an n-element Sidon set. This explains

the restriction n ≥ 7 above.

7.16. Weighted distances on the unit circle. (Cf. [61]) Suppose that we are given

r ≥ 1 complex numbers z1, . . . , zr with |z1| = · · · = |zr| = 1, to which correspond real

weights p1, . . . , pr ≥ 0, normalized by the condition p1 + · · · + pr = r. We want to find

yet another complex number z with |z| = 1, which should be as far as possible from all

points zj in the sense that the product
∏r

j=1 |z − zj|pj is to be maximized. Prove (or

disprove) that for any system of points zj and weights pj as above, there exists z such

that
r∏

j=1

|z − zj|pj ≥ 2.

The constant 2 in the right-hand side is easily seen to be best possible. The assertion

is established in [61] in a variety of special cases: in particular if all weights pj equal

each other, and also if zj are equally spaced on the unit circle. It can be re-stated as

an assertion about the maximum possible value of a polynomial on the unit circle.

7.17. Hamiltonicity of addition Cayley graphs. (The second named author) Is it

true that any connected addition Cayley graph, induced on a finite cyclic group by its

4-element subset, is hamiltonian?

Recall, that the addition Cayley graph, induced on a finite abelian group G by its

subset S ⊆ G, is the graph with the vertex set G and the edge set {(g1, g2) ∈ G ×
G : g1 +g2 ∈ S}. It is easy to see that for this graph to be connected it is necessary and

sufficient that S is not contained in a coset of a proper subgroup of G, save, perhaps, for



28 ERNIE CROOT AND VSEVOLOD F. LEV

the non-zero coset of a subgroup of index 2. Computations suggest that if G is cyclic,

|S| ≥ 4, and the graph under consideration is connected, then it is hamiltonian. On the

other hand, there exist non-hamiltonian (though 2-connected) addition Cayley graphs

on finite cyclic groups, generated by 3-element subsets.
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