
Using Programming Language Concepts to Teach General Thinking
Skills

Martin Rinard
Department of Electrical Engineering and Computer Science

Computer Science and Artificial Intelligence Laboratory
Massachusetts Institute of Technology

Cambridge, MA 021139

1. Introduction
Programming languages have traditionally been seen as of
interest only to software developers (who need to use lan-
guages to pursue their chosen profession). But the field has
developed in response to an unprecedented situation in hu-
man history — the need to communicate with entities (i.e.,
computers) that are capable of carrying out very sophisti-
cated computations involving prodigious amounts of infor-
mation, but only if every aspect of the computation and
information representation is specified explicitly and com-
pletely. Because of the need to make everything explicit and
precise, concepts that arise in almost all human endeavors
are present with unique precision, sophistication, clarity, and
therefore accessibility. The availability of immediate, auto-
mated feedback through appropriate interaction with a com-
puter enhances the accessibility of the concepts and pro-
motes a fully rigorous approach that makes it difficult for
a student to slide by with only a partial understanding. In
this white paper I focus on three fundamental concepts:

• Multiple Formal Perspectives: Each programming lan-
guage embodies a particular perspective on computation.
Researchers have developed a wide range of languages,
each with its own perspective. Because these languages
are interactively explorable on a computer and have a pre-
cise semantics, studying programming languages is the
ideal context in which to develop an understanding of
1) how different perspectives are appropriate for differ-
ent problems and 2) that the perspective one employs can
influence or even determine the outcome of a particular
endeavor.

• Automation and Translation: Computers provide an
unprecedented potential to automate tasks. Advances in
automation correspond directly to advances in our ability
to effectively manage the activities of our society. The
drive to automate also fosters new, more general, and
more productive ways of thinking about classes of prob-
lems.

Much of the automation in programming languages deals
with the translation of computer programs from one lan-
guage into another. Advances in programming languages
often correspond directly to advances in the automation
of tasks previously performed by programmers. Automa-
tion and translation therefore provide an appropriate con-
text for the exploration of which tasks should be auto-
mated and which should be left to humans. Understand-
ing translation also provides students with a much deeper
understanding of computation and an important systems
building tool.

• Abstraction: Programming languages has produced a
larger, more precise, and more sophisticated range of ab-
stractions than any other field. It is therefore the ideal
context in which to build an understanding of abstrac-
tions. This understanding is a core prerequisite for a suc-
cessful career in computer science. It can also be one of
the keys to understanding unstated assumptions in other
fields, which in turn opens the door to new ways of con-
ceptualizing and eliminating limitations in these fields.

In addition to providing reasoning skills and specific tech-
niques that students will be able to draw on for their entire
careers, a solid understanding of and ability to appropriately
draw on these concepts can dramatically increase a person’s
ability to conceptualize, understand, and reason about vari-
ous aspects of the intellectual and physical world in which
we all live. Acquiring this understanding can therefore be
an important (and in some cases even critical) component of
the education of virtually any student, whether that student
chooses to pursue a career involving any aspect of computer
technology or not. Indeed, developing an understanding and
mastery of these concepts in a rigorous context (such as the
one that programming languages provides) may be more im-
portant for someone who pursues a career based largely on
the humanities than for a practicing scientist or engineer.
Through his or her daily work activities, a scientist or en-
gineer will acquire at least a rough working understanding
of the capabilities and limitations of formal reasoning as ap-



plied to his or her area of specialization. But someone who
focuses exclusively on the humanities can easily fall into the
trap of failing to appreciate or even recognize the need for a
formal and precise approach when it is appropriate. An ef-
fective education can eliminate this shortcoming and enable
the student to bring a deeper and ultimately more produc-
tive understanding to whatever endeavor he or she winds up
pursuing.

2. Multiple Formal Perspectives
Each programming language provides a perspective — an
identification of basic concepts that people use to formulate
and solve problems in a domain of interest. Programming
languages are typically designed to specify computations on
a digital computer and therefore (potentially in combination
with their implementation) have a completely precise formal
semantics. Understanding that such a thing is possible and
in some cases desirable is already an important intellectual
leap. Students should acquire this understanding as part of
an introductory class in computer science when they write
computer programs.

The additional contribution that a programming lan-
guages class can make is understanding that there are multi-
ple possible perspectives, and that the perspective one uses
can make an enormous difference in the result one achieves.
Specifically, the perspective affects and can even shape the
following activities:

• Problem Choice: Because the perspective provides a
way of thinking, it influences the problems one perceives
and attempts to solve.

• Problem Formulation: Once one has identified a prob-
lem, the perspective plays an important role in how the
problem is formulated — which parts of the problem one
pays attention to and develops, which parts one ignores
or even remains oblivious to.

• Problem Solution: There is a continuum of program-
ming languages ranging from general-purpose languages
(such as Java and C++) designed to support virtually any
computation through to domain-specific languages de-
signed to support only a very narrowly focused class of
computations. There are also general-purpose languages
(such as Prolog, Scheme, or ML) whose basic concepts
and approaches differ significantly from other more pop-
ular general-purpose languages. It is well known that
some languages work much better for solving certain
classes of problems than others. When a language and
a problem domain work well together, the solutions are
more compact, easier to understand, and (as discussed
further below) more reliable. Indeed, a large enough mis-
match can make it impossible to satisfactorily solve a the
problem.

• Errors: People working with a language and perspec-
tive that matches the basic concepts of the problem do-

main make many fewer errors than people working with
a language that is less well matched. The reason is that
working through a translation from the concepts in the
problem domain to the concepts in the problem solution
imposes a cognitive burden. Errors are often the result
of this burden overwhelming the cognitive capacity of
the person developing the solution. One of the reasons
why programs written in general-purpose programming
languages tend to have more errors than programs writ-
ten in domain-specific languages is that general-purpose
languages almost always impose a more complex con-
cept translation than domain-specific languages (which
ideally impose no concept translation at all).

2.1 Intellectual Importance
Understanding that perspectives can have such a powerful
impact on results is an important realization. Most peo-
ple adopt their perspectives unconsciously, to the point that
much of the time they are not explicitly aware that they have
a perspective at all. Knowing that alternate and potentially
different or better perspectives are always available is a key
stage in one’s intellectual development. It helps people bet-
ter understand the limitations of their reasoning, more read-
ily listen to others that may have different perspectives, and
integrate a multiple perspective approach explicitly into the
way they choose, formulate, and solve problems. A person
with this understanding can operate more effectively in a
range of contexts that occur in all aspects of life, not just
the professional activities of a computer scientist.

Given that this is such an important and general concept
with such broad applicability, why is it best taught in the
context of a programming language class (or, for that matter,
in the context of computer science at all)? The reason is that
the combination of programming languages and automated,
immediate feedback via execution on a computer helps to
make the concept precise, immediate, and accessible to stu-
dents. For example, solving the same problem using two dif-
ferent languages with different (mis)matches to the concepts
in the domain can make the importance of the perspective
painfully obvious. This experience can prepare the student
to then better comprehend the concepts associated with the
presence of multiple perspectives when they are introduced
as a topic of reflection after the exercise.

Activities in the humanities, in contrast, tend to be much
more abstract, indirect, and imprecise. The feedback cycle is
longer and the evaluation less clear cut. Because the evalua-
tion is delayed and not automated, students can often cut cor-
ners and miss key details with no immediate consequences
or feedback. The result is that students are less prepared to
understand the significance of multiple perspectives, must
make more of an intellectual leap to develop this understand-
ing, and can more easily come away from the experience
without having grasped the concept. Other fields of com-
puter science and engineering tend to come with one spe-
cific perspective that works well in that field — indeed, one



of the primary purposes of education in that field is typi-
cally to transmit that perspective to students. Programming
languages is close to unique in its heavy emphasis on mul-
tiple perspectives (as embodied precisely and concretely in
different languages) as a central motif of the field. It is there-
fore the ideal field in which to explore this broad and general
concept.

2.2 Pragmatic Applications
Understanding the importance of perspectives on solution
effectiveness will be central to the success of students who
choose to pursue careers in computer science or other areas
with a strong technical component. Many tasks now involve
the use of multiple programming languages, each with their
own strengths and weaknesses, and understanding how to
partition the problem across the languages is crucial to de-
veloping an effective solution. Even a problem as common
as building a database-backed web service may involve the
use of a scripting language, a database interface language,
a traditional general-purpose programming language, and a
hypertext preprocessor. Understanding how to operate effec-
tively in these kinds of multilingual environments (and the
potentially even more complex multilingual environments of
the more sophisticated systems our students will develop in
the future) will be crucial to the career success of our stu-
dents.

One effective strategy is to organize the development of
a system around a set of domain-specific languages engi-
neered for that purpose. This approach can be dramatically
more productive than the standard approach of using off-the-
shelf languages that may not be as well suited to the task.
This approach, however, requires a very talented developers.
It is not clear how many of our students can be educated to
this level of skill. There are two reasons why it is important
to expose all students to this approach. First, it helps to en-
sure that students who do have the inherent potential to use
this approach become exposed to the ideas they need to real-
ize this potential. And second, it helps students who do not
have this potential to be better able to work effectively in
such an environment.

3. Automation and Translation
The emergence of automated systems with the capability, so-
phistication, and scale of modern computers is a landmark
accomplishment in technology. The result is a dramatic in-
crease in the inherent range of accomplishment potentially
available to our species. But to realize this potential, we must
understand which tasks to automate and which tasks are bet-
ter left to humans. Note that this division will have a direct
impact on our self-image as human beings and our concep-
tion of our place in the universe. Societies have a need to
identify things that place humans apart. The discovery or de-
velopment of other entities that can perform activities previ-
ously believed to be the exclusive province of humans can

affect our perception of what it means to be human. Be-
fore the development of calculators, for example, the abil-
ity to do arithmetic quickly and accurately had great value
and was perceived as something that set humans apart from
other entities. A person could command respect in society
because he or she had this ability. But as soon as a cheap au-
tomated alternative was available, this ability was devalued
to the point that it was no longer considered to be a particu-
larly valuable or distinctive human attribute at all.

3.1 Intellectual Importance
The development of every computer program has compo-
nents that are today identified as human, valuable, and cre-
ative (identifying the problem to solve, creating the design to
solve the problem, and building the solution) and others that
are identified as appropriate for automation (the tasks asso-
ciated with compiling the program into a executable repre-
sentation). Moreover, the development of programming lan-
guages as a field has been driven in large part by the transfer
of activities from the human domain to the automated do-
main. The emergence of high-level languages such as For-
tran, for example, was predicated on the development of au-
tomated techniques such as allocating values to machine reg-
isters for computation and laying out data structures such as
arrays in memory. Finally, there is an effective way to eval-
uate whether or not a specific division of tasks between hu-
mans and the automated system is productive — either the
resulting system works or it doesn’t.

3.1.1 Obtaining Automation
Programming languages therefore provides a rich context in
which to explore questions relating to the division of tasks
between automated systems and humans. The field supports
historical approaches that look backward in time (how did
certain tasks become automated and what was the impact of
the automation), speculative approaches that look forward
in time (what new programming language constructs can
we develop with automated support in the implementation),
and integrated approaches that combine the two. The precise
nature of programming languages and computer programs
allows questions to be posed with great precision. Because
each language has an implementation, students can interact
with the computer to quickly gain a comprehensive under-
standing of the automation and its value. Once students have
explored questions related to the division of automation in
programming languages, they are then prepared to see sim-
ilar issues in other fields and work effectively to automate
appropriate aspects of those fields.

3.1.2 Thinking Generally and Comprehensively
Automating various aspects of tasks also develops key think-
ing skills. In most fields practitioners and researchers deal
with a single specific problem at a time. They therefore de-
velop thinking skills oriented around obtaining insightful
point solutions for clearly defined problem instances. But



to develop an automated system, one must think more gen-
erally and comprehensively to anticipate all of the impor-
tant cases that can arise. This is a fundamentally different
way of thinking. Mastering this kind of thinking can provide
an enormous amplification effect as tasks that previously
required human attention are shifted to an automated sys-
tem. A common result is a dramatic increase in the scale of
progress in the field — in some cases, it is possible to replace
years of human effort with days or minutes of computing.
Another advantage is the increased insight that comes from
obtaining a more general perspective on the field. This gen-
eral perspective can lead to new breakthroughs as the sim-
ilarities between different problems become apparent and
suggest new directions of understanding and exploration.

Programming languages is ideally placed as a field for
exploring these issues. Existing languages provide the con-
cepts and intellectual stimulation people need to automate
various aspects. Moreover, the design of programming lan-
guages is the ultimate in general thinking — one is not sim-
ply using a building a system that automates some aspect of a
given problem, but instead building a general tool that people
can use to solve a variety of automation tasks. In this sense,
the field of programming languages occupies a unique posi-
tion within the entire field of human intellectual endeavor.

3.1.3 Planning Versus Improvisation
Translation inherently involves questions of when activities
should happen. In almost every programming language im-
plementation some activities take place before the program
runs, which others take place only when the program runs.
Understanding the tradeoffs involved in selecting where to
place each activity can provide great insight into the greater
issue of planning versus improvisation (two components of
almost any human activity). Programming languages pro-
vides a productive educational environment for exploring
this tradeoff, in part because it makes the trade-offs so obvi-
ous and easily accessible. A comparison of the time required
to interpret a program versus the time required to run a com-
piled version provides an immediate and concrete illustra-
tion of the power of planning and setting things up ahead of
time. On the other hand, understanding that other tasks sim-
ply cannot be performed without information that is avail-
able only when the program runs can also provide impor-
tant insight. Finally, exploring the fluidity of moving tasks
between compile time and run time (and the ramifications
on programming language design) can provide insight into
the advantages and disadvantages of planning and improvi-
sation.

Embracing translation also provides a qualitatively deeper
understanding of how to organize computation. Instead of
simply having a program that executes, students can appre-
ciate the more general concept of sequencing computation
in stages as information becomes available over time. The
whole concept of meta-computation — programs that ma-
nipulate other programs — introduces a new level of sophis-

tication and helps students understand a much wider range
of system structuring possibilities and techniques. Program-
ming languages is the field with the greatest development of
these ideas and therefore the field that is best placed to teach
them.

3.2 Pragmatic Applications
Every computer science professional uses a compiler or pre-
processor. Studying translation provides the concepts re-
quired to better understand and utilize the system in which
the work takes place. Moreover, understanding how to write
translators provides students with a powerful tool they can
use to build systems more efficiently and effectively. For
example, it enables them to build preprocessors, domain-
specific languages, consistency checkers, and other tools that
can improve their productivity and help them eliminate er-
rors. It is important to understand that approaching develop-
ment in this way, instead of simply using existing general-
purpose approaches, can transform the development process,
the cost of development, and both the functionality and qual-
ity of the resulting product.

4. Abstraction
Computer systems are tremendously complicated, arguably
the most complex systems ever engineered. Abstraction (a
principled discarding of detail) is therefore a central theme
in virtually every field of computer science. But abstraction
has developed most fully and completely in programming
languages and is therefore most productively taught in the
context of a course that focuses on programming languages.
Consider the ways in which abstraction arises in program-
ming languages:

• Language Design and Features: Most programming
languages are abstractions of the underlying computing
platform. The abstraction is made precise and, at some
level, accessible via the implementation of the language.

• Interfaces: Each interface is an abstraction of the encap-
sulated functionality. Interfaces in general-purpose lan-
guages often provide a way to preserve some of the struc-
ture from the application domain in the final encoding of
concepts from the domain in the program.

• Specifications: Specifications abstract the information
that computations manipulate and the results and effects
that the computation generates. Specifications are partic-
ularly interesting because they make the distinction be-
tween requirements and program behavior explicit and
precise.

• Types: Types abstract the computations and informa-
tion that the computation manipulates. Strictly speaking,
types are merely a specific form of partial specification.
However, types seem to hit a sweet spot in the specifi-
cation space — they are often intuitive for programmers
to provide, are efficiently and modularly checkable, and



have become the focus of a large part of the field of pro-
gramming languages.

• Program Analysis: Program analyses work with ab-
stractions of the state and computation. This abstraction
is necessary to make the analysis tractable and able to
operate without access to information that is available
only when the program executes.

No other field comes close to providing abstractions with
this level of variety, sophistication, and precision. In com-
parison with other fields, the precision of the abstractions is
particularly well developed in programming languages. The
concrete and abstract domains are often formally specified,
as are the mappings between the two domains.

4.1 Intellectual Importance
Abstraction is a necessary process that most people engage
in unconsciously. But an inappropriate abstraction can be
problematic — if one discards important information during
the process of abstraction, they can limit their thinking,
acquire blind spots, or come to the wrong conclusion.

The explicit, overt, and precise nature of abstraction in
programming languages can help students develop a gen-
eral framework that they can use to improve their reason-
ing in other fields. This framework will help students per-
ceive and understand both the need for abstraction and the
potential problems that are an inevitable consequence of its
use. Building on their experience with abstraction in pro-
gramming languages, they will also be more able to see, un-
derstand, and criticize the implicit abstractions that they and
others make in other fields where the abstractions are much
less obvious and potentially even part of a standard and oth-
erwise unquestioned approach. If students learn to apply a
process of seeking out abstractions, understanding the result-
ing limitations, then, when appropriate, developing new ab-
stractions that remove inappropriate limitations, they will be
better able to understand how to innovate around shortcom-
ings and challenge ways of thinking that have, over time,
become limited or even counterproductive. When applied by
someone with a sufficient command of the process, it can
even become a mechanism for generating insights, creativ-
ity, and productive new directions upon demand.

4.2 Pragmatic Applications
Computer science professionals must deal with abstractions
on a daily basis. Knowledge of programming language ab-
stractions and how to use them is a prerequisite for function-
ing effectively in any professional environment. Moreover,
many computer science professionals spend much of their
time designing abstracts. A deeper understanding of abstrac-
tions in general can help them design more effective abstrac-
tions.

5. Potential Teaching Approaches
The field of programming languages is rich enough to sup-
port many productive teaching approaches. I outline two
such approaches, but recognize that there are other ap-
proaches that may be equally or even more productive.

Both of the approaches start with software development
activities. One advantage of this starting point is that it lever-
ages the immediate feedback and precision that interacting
with a computer provides and requires, which makes the
concepts obvious and accessible. It is also possible to struc-
ture the software development activities to emphasize spe-
cific skills or approaches that students can immediately use
in a professional software development career. It is also pos-
sible to take a more theoretical approach that starts with
mathematical modelling or analysis activities. In either case,
however, the most important part of the educational experi-
ence is reflecting on the concepts that the specific activities
illustrate. This reflection is crucial to enabling students to
generalize the concepts to apply them productively in dif-
ferent contexts, which is the most important and valuable
lesson of the course. One way to incorporate this reflection
into the course is to require students to perform additional
assignments (typically in essay form) that demonstrate the
application of the acquired concepts to a field outside of pro-
gramming languages.

5.1 A Domain-Specific Language
This approach would organize the course around designing
and implementing a language for computations in a particu-
lar domain. The course would be composed of several stages.
The first would be to develop and understanding of the ba-
sic concepts in the domain. The second would be to design
a language that supported the concepts explicitly. The third
would be to implement the language. Finally, the students
would implement several computations in the language.

Successfully developing the engineering artifacts would
be only part of the educational process. The arguably more
important part would be using the engineering experience
as a foundation for reflecting on the different concepts.
To this end students would write essays focusing on how
their experiences relate to multiple perspectives, automa-
tion and translation, and abstraction in other contexts. Ide-
ally, students would understand that the concepts in the
domain-specific language were different from the concepts
in general-purpose languages (the course would assume that
previous introductory courses have already provided the stu-
dents with knowledge of at least one such language) and that
providing these concepts explicitly in the language provides
a more productive perspective for computations in the do-
main than the perspective from general-purpose languages.
Students would also understand that making the domain con-
cepts explicit in the language shapes how they formulate and
solve problems in the domain.



They would also understand how to generalize this ex-
ample to understand that other perspectives would be useful
in other domains, and indeed that some domains would be
complex enough to justify the use of multiple perspectives.
Finally, they would understand that it is possible (although
potentially not ideal) to explicitly adopt a given perspective
during the engineering of the system even though one may
use a general-purpose language instead of a domain-specific
language.

Students would address the automation and translation
concepts as part of the implementation of the domain-
specific language. They would understand that certain as-
pects of the implementation were automated by the imple-
mentation of the domain-specific language, and that these
aspects would instead be performed by the human developer
if the system were built in a general-purpose language. They
would also understand how to generalize the basic concepts
illustrated in this exercise to obtain an understanding of how
automating tasks can make people more productive, that au-
tomation requires thinking about the general case as opposed
to any specific single problem at hand, and that some tasks
are still better left to humans. The implementation of the
domain-specific language would provide a concrete exam-
ple of the power of translation in packaging automation for
effective use by developers. Ideally, students would be able
to build on this experience to become more aware of the po-
tential benefits and drawbacks of automation, more able to
use it effectively in their careers, and to better understand
what kind of tasks are best automated and what kind of tasks
should be done by humans.

One way to address abstraction would be to develop a
type system for the domain-specific language. Ideally, the
students would formulate a formal connection between the
semantics of the full language and the abstract semantics
that the type system induces. They would understand the
purposeful discarding of information involved in the abstrac-
tion and the benefits and drawbacks of discarding the infor-
mation. They would be able to generalize the experience to
formulate frameworks for abstraction in other fields, be able
to understand the benefits and drawbacks of using abstrac-
tions, and be prepared to identify (and if appropriate discard)
otherwise implicit abstractions present in a variety of fields.

5.2 Different Language Paradigm
Instead of developing a domain-specific language, one could
instead start with an existing language whose basic approach
and concepts differ substantially from those of conventional
programming languages. In this case, going through the ex-
ercise would help students understand the importance of dif-
ferent perspectives and how perspectives shape the under-
standing and engineering process. The automation and trans-
lation aspect could be covered by studying the implementa-
tion of the logic programming language. One productive ap-
proach could be to ask the students to implement a simple
language based on the core concepts of logic programming.

Developing an analysis for the language, either to support
efficient implementation or to check certain desirable prop-
erties, could be an effective way to introduce the concept of
abstraction.

The important point here is not that logic programming
is necessarily valuable in and of itself or that students will
necessarily use the specific concepts in logic programming
in their careers. Rather, the use of logic programming in an
appropriately structured course (like the use of other non-
mainstream approaches) can illustrate general concepts and
make those concepts accessible to students in an immediate
and concrete way.

6. Conclusion
The field of programming languages provides a uniquely
favorable context for teaching certain fundamental concepts
that arise in almost all modern human endeavors. These
concepts include:

• Understanding the central role that one’s perspective
plays in the entire problem conceptualization, formula-
tion, and solution process,

• Understanding that multiple perspectives are available,
with different perspectives appropriate for different prob-
lems,

• Understanding how automation can greatly improve hu-
man productivity and that there is an appropriate division
of tasks between automated systems and humans, and

• Understanding a precise notion of abstraction, that ab-
straction is inevitably present in every activity, and that
different abstractions are appropriate for different pur-
poses and situations.

Most people will immediately accept these concepts; some
will even claim that they are obvious. But approaching these
concepts through programming languages makes them pre-
cise, explicit, and clear. Students can work with them in an
interactive setting that provides immediate feedback and re-
quires completely precise thinking. This approach can there-
fore provide part of the solid, foundational understanding
that all individuals, and not just computer scientists, need
to think clearly and be truly effective in whatever endeavor
they choose to pursue.


