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Mighttpd – a High Performance
Web Server in Haskell

by Kazu Yamamoto 〈kazu@iij.ad.jp〉

In 2002, Simon Marlow implemented a web server in Haskell, whose performance
is acceptable for most web sites [1]. Since then, the Haskell community has been
developing high performance tools such as ByteString, the new IO manager in
GHC 7, attoparsec, and Enumerator/Iteratee. Also, good web application
frameworks have appeared one after another. It is a good time to revisit a web
server to show that we can implement a high performance web server in Haskell
which is comparable to highly tuned web servers written in C.

The Evolution of Mighttpd

IIJ Innovation Institute Inc., to which the author belongs, is a designated research
company under Internet Initiative Japan Inc. (IIJ), one of the biggest and oldest
ISPs in Japan. In the autumn of 2009, we needed a web server whose back-
end storage could be freely changed for our cloud research. Instead of modifying
existing web servers, we started implementing a web server from scratch with
GHC 6. For this implementation, we created three Haskell packages which are all
in HackageDB:

I c10k: a network library which handles more than 1,024 connections with the
pre-fork technique. Since the IO manager of GHC 6 is based on the select
system call, it cannot handle more than 1,024 connections at the same time.
Classical network programming issues the fork system call after a socket is
accepted. If we use fork before accepting connections, the listening port is
shared among the processes and the OS kernel dispatches a new connection
randomly to one of processes when accepting. After that, the OS kernel
ensures that each connection is delivered to the appropriate process.
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I webserver: an HTTP server library including an HTTP engine (parser/-
formatter, session management), the HTTP logic (caching, redirection), and
a CGI framework. The library makes no assumptions about any particular
back-end storage.

I mighttpd: a file-based web server with configuration and a logging system.
Mighttpd [2] should be pronounced “mighty”.

Mighttpd

webserver

c10k / GHC 6

Mighttpd 2

warp + sendfile

GHC 7

wai-app-file-cgi

Configration
Logging

CGI framework
HTTP logic

HTTP Engine

Socket

WAI

Figure 1: The left side is Mighttpd and the right side is Mighttpd 2 which uses
WAI.

This architecture is schematically shown on the left side of Figure 1. Mighttpd
is stable and has been running on the author’s private web site, Mew.org, for about
one year, providing static file contents, mailing list management through CGI, and
page search services through CGI.

Next autumn, we applied to the Parallel GHC Project [3], hoping that we could
get advice on how best to use Haskell’s concurrency features. This project is
organized by Well-Typed and sponsored by GHC HQ. Fortunately, we were elected
as one of four initial members.

Around this time, GHC 7 was released. GHC 7.0.1 provided a new IO manager
based on kqueue and epoll [4]. GHC HQ asked us to test it. So, we tried to run
Mighttpd with it but it soon appeared that the new IO manager was unstable.
Together with Well-Typed, we discovered six bugs, which were quickly fixed by
both GHC HQ and Well-Typed. GHC 7.0.2 included all these fixes, and the IO
manager became stable in the sense that it could run Mighttpd.

A lot of great work has been done by others on web programming in Haskell, and
several web application frameworks such as Happstack [5], Snap [6], and Yesod [7]
have appeared over the years. We started to take a closer look, and it turned out
that Yesod is particularly interesting to us because it is built on the concept of
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the Web Application Interface (WAI). Using WAI, a CGI script, FastCGI server,
or web application can all be generated from the same source code.

The HTTP engine of WAI, called Warp [8], is extremely fast, and we decided
to adopt it. In addition, since GHC 7 no longer has the select-based limit of 1024
connections, there was no need to continue using the c10k package. Since we now
relied on Warp, we could strip the HTTP engine from the webserver package. The
rest was implemented as a WAI-based application as illustrated on the right side of
Figure 1. The corresponding HackageDB packages are called wai-app-file-cgi

and mighttpd2.

Benchmark

The Yesod team has made an effort to benchmark Warp using httperf with the
following options[9]:

httperf --hog --num-conns 1000 --rate 1000 \

--burst-length 20 --num-calls 1000 \

--server localhost --port 3000 --uri=/

This means that httperf repeats“20 burst requests”50 times for one connection,
tries to make 1,000 connections per second, and stops the measurement when 1,000
connections are completed. Their complete results are given in a blog post [10].
In particular, the performance of Warp in Amazon EC2 is 81,701 queries per
second. Note that in this benchmark Warp just sends an HTTP response against
an HTTP request without handling the HTTP logic and touching files. We decided
to benchmark Mighttpd similarly. Our own benchmark environment is as follows:

I Guest OS: Ubuntu 10.10, four cores, 1G memory.

I Host OS: Ubuntu 10.04, KVM 0.12.3, Intel Xeon CPU L5520 @ 2.27GHz x
8, four cores/CPU (32 cores total), 24G memory.

In this environment, the performance of Warp is 23,928 queries/s and that of
Mighttpd 2 is 4,229 queries/s. We were disappointed that Mighttpd 2 was so much
slower than plain Warp, and started tuning our web server.

Performance tuning

It may be surprising, but the main bottleneck was Data.Time. This library had
been used to parse and generate date-related HTTP fields such as Last-Modified:.
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For our purpose, this library is simply too generic and unacceptably slow. About
30–40% of CPU time was spent in Data.Time functions. To alleviate the problem,
we implemented the http-date package which directly uses ByteString and is
about 20 times faster than Data.Time.

The next bottlenecks were the functions that manipulate files. A typical Haskell
idiom to get the status of a file is the following:

exists <- doesFileExist file

when exists $ do

stat <- getFileStatus file

...

Both doesFileExist and getFileStatus issue the stat system call. Since they
are slow, we decided to use getFileStatus without doesFileExist and catch
errors for better performance. Moreover, because the status of files does not
change often, we modified Mighttpd 2 to cache the file status in an IORef (Map

ByteString FileStatus).

We first believed that the reason these functions were slow was that they manip-
ulate files. But it appeared that the real reason was that they issued a system call.
System calls are evil for network programming in Haskell. When a user thread
issues a system call, a context switch occurs. This means that all Haskell user
threads stop, and instead the kernel is given the CPU time. If we are striving for
highly concurrent Haskell programs, we must avoid issuing system calls as much
as possible.

Warp uses the recv system call to receive an HTTP request and the writev system
call to send an HTTP header. When sending an HTTP body based on a file, it
uses the sendfile package which unnecessarily issues the lseek and stat system
calls in addition to sendfile. While one could believe that the sendfile system call
is fast thanks to its zero-copying approach, the package is actually much slower
than we expected. We implemented the simple-sendfile package which does not
use lseek and stat. The system calls that the package uses are only open, sendfile,
and close. Since sockets are marked non-blocking, sendfile returns EAGAIN if the
size of a file is large. In this case, the simple-sendfile package issues sendfile
again without lseek to send the rest of the file.

At this point, the performance of Mighttpd 2 (without logging) became 21,601
queries per second. We also measured the performance of nginx, which is written
in C. The performance of nginx (without logging) is 22,713 queries per second.
Finally, we could say that a web server written in Haskell was comparable to one
written in C.
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Scaling on a multi-core processor

Since the new IO manager is single-threaded, Haskell network programs cannot
realize the potential of a multi-core processor even if the +RTS -Nx command line
option is specified. For our benchmark, the performance of Mighttpd 2 with the
-N3 option is 15,082 queries per second, which is slower than that with -N1 (21,601).
Moreover, forkProcess and +RTS -Nx cannot be used together. This means that
we cannot daemonize the network programs if +RTS -Nx is specified.

To get around these limitations, we again introduced the pre-fork technique.
Since Mighttpd 2 does not share essential information among user threads, we
don’t have to share any information among pre-forked processes. We compared
Mighttpd 2 and nginx with three worker processes. The performance of Mighttpd 2
(without logging) is 61,309 queries per second, while that of nginx (without log-
ging) is 30,471. Note that we are no experts in the use of nginx, so we might have
been able to obtain better results by tweaking its configuration. We can at least
say that the pre-fork technique is very effective for these kinds of servers.

Logging

Needless to say, logging is an important function of web servers. Since a logging
system has to manipulate files, it could be a big bottleneck. Note also that we
needed to ensure that log messages written concurrently were not mangled. We
implemented several logging systems and compared their performance. The tech-
niques which we tested were:

I Using hPut with a Handle in AppendMode

I Using fdWriteBuf in non-blocking and append mode

I Using the ftruncate and mmap system calls to append log messages to a log
file

I Buffering log messages with MVar or Chan

I Separating a dedicated logging process from worker processes

Let us describe the most complex of the approaches: we separated the server
processes into several worker processes and one dedicated logging process. Each
worker process shares memory with the logging process, and communicates using
UNIX pipes. In a worker process, user threads put log messages to a Chan for
serialization. They are written to the shared memory by a dedicated user thread.
When the shared memory is about to overflow, the user thread asks the logging
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process to write N bytes to a log file. The logging process copies the memory to
another area of memory mapped to a log file with the mmap system call. Then
the logging process sends an acknowledgement to the user thread.

Fortunately or unfortunately, our conclusion was that simple is best. That is,
the fastest way was to have each user thread append a log message through a
Handle. Since the buffer of the Handle is protected with an MVar, user threads
can safely use it concurrently. If we use the hPut family to write a log message and
the buffer mode for the Handle is LineBuffering, we can ensure that the entire
line is written to its log file atomically. But a non-blocking write system call is
issued for each log event.

We noticed that BlockBuffering can be used as “multi” LineBuffering. Sup-
pose that we use the hPut family to write a log message to a Handle whose buffer
mode is BlockBuffering. If the buffer has enough space, the log message is simply
stored. If the buffer is about to overflow, it is first flushed, then the log message is
stored in the empty buffer. In other words, the hPut family never splits lines. We
chose 4,096 bytes as the size of the buffer since it is the typical page size.

Also, we re-implemented hPut so that no unnecessary intermediate data is pro-
duced. A log message consists of a list of ByteStrings and/or Strings. Our hPut
directly copies ByteStrings and directly packs Strings into the buffer.

The typical log format of Apache contains an IP address and a zoned time. To
generate a numeric string of an IP address including IPv4 and IPv6, getNameInfo
should be used. However, it appeared that getNameInfo was slow. We thus imple-
mented an IP address pretty printer ourselves. As we mentioned earlier, Data.Time
was unacceptably slow for our purpose, but re-implementation of Data.Time was
a tough job due to time zones. So, Mighttpd 2 uses Data.Time once every sec-
ond and caches a ByteString containing the zoned time. For this cache, we use
an IORef instead of an MVar, taking a lesson from the experience of the Yesod
team [8].

The performance of nginx (3 workers with logging) is 25,035 queries per second,
while that of Mighttpd 2 (3 workers with logging) is 31,101 queries per second.
Though Mighttpd 2 is still faster, nginx loses only 18% of its performance through
logging whereas Mighttpd 2 loses 49%. This indicates that more efficient logging
systems might be possible. However, we have currently run out of ideas for further
optimizations. Implementing a better logging system remains an open problem.
Feedback would be appreciated.

Space leak

We observed a space leak in Mighttpd 2. If no connection requests arrive for a
long time, Mighttpd 2’s processes get fatter. The cause was atomicModifyIORef.
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As described earlier, Mighttpd 2 caches a ByteString of the time adapted to
the current time zone every second. The ByteString is stored in IORef with
atomicModifyIORef as follows:

atomicModifyIORef ref (\_ -> (tmstr, ()))

We realized that the reason for the space leak is that the result of atomicModifyIORef
is not used. If we used the ByteString with readIORef for logging, the space leak
quickly disappeared. To prevent the space leak, we adopted the following idiom.

x <- atomicModifyIORef ref (\_ -> (tmstr, ()))

x ‘seq‘ return ()

Using Mighttpd 2

As we described earlier, Mighttpd 2 is registered in HackageDB. You can install it
with the cabal command as follows:

$ cabal install mighttpd2

To run Mighttpd 2, you need to specify a configuration file and a path routing
file. Please consult the home page of Mighttpd 2 [2] to learn the syntax. Mighttpd 2
has been running on Mew.org for several months providing static file content,
mailing list management through CGI, and page search services through CGI.

Conclusion

With a good Haskell compiler such as GHC 7 and high performance tools such
as ByteString and simple-sendfile, it is possible to implement a high perfor-
mance web server in Haskell comparable to highly tuned web servers written in C.
Though event-driven network programming is still popular in other programming
languages, Haskell provides user thread network programming which makes the
code simple and concise. To fully take advantage of user threads, we should avoid
issuing system calls as much as possible.
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High Performance Haskell with MPI

by Bernie Pope 〈bjpope@unimelb.edu.au〉
and Dmitry Astapov 〈dastapov@gmail.com〉

In this article, we give a brief overview of the Haskell-MPI library and show how
it can be used to write distributed parallel programs. We use the trapezoid method
for approximating definite integrals as a motivating example and compare the per-
formance of an implementation using Haskell-MPI to three variations of the same
algorithm: a sequential Haskell program, a multi-threaded Haskell program, and a
C program also using MPI.

Distributed-memory parallelism and MPI

We are fast approaching the era of mega-core supercomputers. For example, the
Lawrence Livermore National Laboratory is currently preparing to install Sequoia,
a 1.6 million core IBM BlueGene/Q [1]. There are many technical challenges to
building such behemoths, not the least of which is the CPU-to-memory bottleneck.
In broad architectural terms, there are two basic ways to divvy up the RAM
amongst the cores: you can share it, or you can distribute it. In the shared model,
all processors participate in a single unified memory address space even if the
underlying interconnects are non-uniform. In the distributed model, each processor
(or small group of processors) has its own private memory address space and access
to non-local memory is performed by explicit copying. The advent of multi-core
CPUs has made shared-memory systems widely available, but it is difficult to scale
this abstraction in a cost-effective way beyond a few thousand cores. A quick glance
at the Top 500 list of supercomputers reveals that distributed-memory systems
dominate the top-end of high-performance computing [2].

Distributed-memory parallelism does not really solve the CPU-to-memory bot-
tleneck (over the whole machine); after all, copying data between computers over
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a network is a relatively costly operation. Instead it forces programmers to ad-
dress the non-uniformity head on, which typically means adopting an explicitly
distributed style of parallel programming and devising new algorithms.

Haskell already has excellent support for shared-memory parallelism via the
multi-threaded runtime system of GHC. However, if we want to use Haskell on the
latest supercomputers we need to go beyond threads and embrace the distributed
model. Haskell-MPI attempts to do that in a pragmatic way by providing a Haskell
wrapper to the Message Passing Interface (MPI). MPI is a“message-passing library
interface specification” for writing distributed-parallel programs [3]. Various real-
izations of the specification are provided by software libraries, some open source,
such as Open MPI [4] and MPICH [5], and some proprietary. As the name suggests,
MPI is firmly rooted in the paradigm of message passing. An MPI application con-
sists of numerous independent computing processes which collaborate by sending
messages amongst themselves. The underlying communication protocols are pro-
gramming language agnostic, but standard APIs are defined for Fortran, C and
C++. Bindings in other languages, such as Haskell-MPI, are typically based on
foreign interfaces to the C API.

Haskell-MPI provides a fairly modest wrapping of MPI, and is guided by two
objectives:

1. Convenience: for a small cost, it should be easy to send arbitrary (serializ-
able) data structures as messages.

2. Performance: low overhead communications should be possible, particularly
for array-like data structures.

It is difficult to satisfy both objectives in one implementation, so Haskell-MPI
provides two interfaces. The first is simple to use (more automated) but potentially
slower (more data copying), the second is more cumbersome to use (less automated)
but potentially faster (less data copying).

This article aims give you a taste of distributed parallel programming with
Haskell-MPI, enough to whet your appetite, without getting too bogged down in
details. Those who find themselves hungry for more can consult the haddock pages
and check out examples in the package sources.

We begin by introducing the technique of computing definite integrals by the
trapezoid method. This lends itself to an easy-to-parallelize algorithm which will
serve as the basis of programming examples in the following sections. We take a
simple sequential implementation of the algorithm, and convert it into two different
parallel implementations. The first uses shared-memory and threads, and the
second uses distributed-memory and Haskell-MPI. To see how well we fare against
the conventional school, we also provide an MPI implementation in C. We then
evaluate the performance of each version on a non-trivial problem instance and
compare the results.
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a b
x

f(x)

Figure 1: Approximating
∫ b

x=a
f(x) by summing the area of three trapezoids.

Computing definite integrals with trapezoids

We now consider the problem of computing definite integrals using the trapezoid
method. The algorithm is naturally data parallel, and is a common introduc-
tory example in parallel programming tutorials. Our presentation is inspired by
Pacheco’s textbook on MPI [6].

We can approximate integrals by summing the area of a consecutive trapezoids
lying under a function within a given interval, as illustrated in Figure 1. A single
trapezoid spanning the interval [x0, x1] has area:

(x1 − x0)(f(x0) + f(x1))

2

Extending this to n equally spaced sub-intervals [x0, x1, . . . , xn] we arrive at the
formula: ∫ b

x=a

f(x) ≈ h

2

n∑
i=1

f(xi−1) + f(xi)

= h

(
f(x0) + f(xn)

2
+ f(x1) + . . .+ f(xn−1)

)
x0 = a, xn = b, h = (b− a)/n

∀i ∈ {0 . . . n− 1}, xi+1 − xi = h

Listing 1 provides a sequential implementation of the trapezoid method in Haskell,
with the integrated function defined to be f(x) = sin(x).
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module Trapezoid (trapezoid, f) where

trapezoid :: (Double -> Double) -- Function to integrate

-> Double -> Double -- integration bounds

-> Int -- number of trapezoids

-> Double -- width of a trapezoid

-> Double

trapezoid f a b n h =

h * (endPoints + internals)

where

endPoints = (f a + f b) / 2.0

internals = worker 0 (a + h) 0.0

worker :: Int -> Double -> Double -> Double

worker count x acc

| count >= n - 1 = acc

| otherwise = worker (count + 1) (x + h) (acc + f x)

f :: Double -> Double

f = sin

Listing 1: Calculating definite integrals using the trapezoid method.
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There are undoubtedly more elegant ways to sum the internal points of a trape-
zoid than our worker function, but we found that GHC produces better compiled
code in this case when given an explicit loop.

Listing 2 provides a main function which takes a, b and n from the command
line, calls trapezoid to compute the integral, and prints the result.1 Later on we
will provide alternative main functions which will parallelize the program without
requiring any changes to trapezoid or f.

module Main where

import System (getArgs)

import Trapezoid

main :: IO ()

main = do

aStr:bStr:nStr:_ <- getArgs

let [a,b] = map read [aStr,bStr]

n = read nStr

h = (b - a) / fromIntegral n

integral = trapezoid f a b n h

print integral

Listing 2: Sequential program for calculating definite integrals.

Parallelization of the trapezoid method on a single
machine

The trapezoid method is a classic data-parallel problem because the computations
on each sub-interval can be computed independently. For an interval [a, b], n
sub-intervals, and p processors, we can parallelize the algorithm using a simple
chunking scheme like so:

1. The master processor splits the sub-intervals into chunks of size s = n/p
(assuming n ≥ p).

2. In parallel, each processor pi computes the definite integral on the sub-
interval [ai, bi], where h = (b− a)/n, ai = a+ i× s× h and bi = ai + s× h.

3. The master processor collects the results for each chunk and sums them up.

1Normally, we would check the program inputs for correctness, but in the interests of saving
space, we have elided such checks in the program examples in this article.
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module Main where

import GHC.Conc

import Control.Parallel.Strategies

import System (getArgs)

import Trapezoid

main :: IO ()

main = do

let numThreads = numCapabilities

aStr:bStr:nStr:_ <- getArgs

let [a,b] = map read [aStr,bStr]

n = read nStr

h = (b - a) / fromIntegral n

localN = n ‘div‘ fromIntegral numThreads

chunks = parMap rseq (\threadNo ->

let localA = a + fromIntegral (threadNo * localN) * h

localB = localA + fromIntegral localN * h

in trapezoid f localA localB localN h) [0..numThreads-1]

print (sum chunks)

Listing 3: Multi-threaded parallel program for calculating definite integrals using
the trapezoid method.

18
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Listing 3 shows that it is quite easy to use threads to parallelize the trapezoid
program, thanks to the convenient parMap combinator provided by the parallel
strategies library [7].

Parallelization on multiple machines using MPI

Point-to-point communications

We can use the same chunking approach to parallelize the program using MPI,
whereby the workload is divided over many independent processes, each with its
own private address space. One of the processes is designated to be the master,
which, in addition to computing its own chunk of the problem, is also responsible
for collecting the results from the other processes and combining them into the
final answer. On a distributed-memory system we can spread the MPI processes
over multiple networked computers (normally one process per core), and thus scale
the parallelization well beyond the number of cores on a single machine.

In multi-threaded programs each parallel task is identified by a simple numeric
index, whereas MPI uses a two-level numbering scheme. The first level indicates a
group of processes called a communicator; the second level is the rank of an indi-
vidual process within such a group. Each process can participate in an arbitrary
number of communicators, which can be created and destroyed at run time. By
default, all processes are members of the single pre-defined communicator called
commWorld.

Listing 4 shows how to parallelize our program using two point-to-point com-
munication functions:

send :: Serialize msg => Comm -> Rank -> Tag -> msg -> IO ()

recv :: Serialize msg => Comm -> Rank -> Tag -> IO (msg, Status)

The first three arguments of both functions are of the same type. The first ar-
gument is an abstract data type representing a communicator. In our example
program we use the default commWorld for all messaging. The second argument
specifies a process rank. In the case of send, it indicates the identity of receiver,
whereas conversely, in the case of recv, it indicates the identity of the sender. The
third argument is a tag which is useful for distinguishing different messages sent
between the same processes. We do not need this feature in our program, so we
have chosen to make it the dummy value unitTag, which is a synonym for ().
However, in general, tags can be any enumerable type. The fourth argument of
send, and the first component in the result of recv, is the message itself, which,
in the simple interface of Haskell-MPI, can be any data type which is an instance
of the Serialize type class from the cereal library [8]. Both functions return an
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IO action as their result; the send action yields unit, and the recv action yields
a tuple containing the received message and a status indicator. By default any
errors in the MPI functions will cause the program to abort, but, by setting an
appropriate error handler, you can change this behavior so that exceptions are
raised instead.

It should be noted that send and recv are synchronous, which means that
the calling process will block until the message has been successfully delivered.
Non-blocking variants are also available which return immediately, allowing the
processes to do other work while the message is in transit. A non-blocking receiver
must poll for completion of the message before using its value.

Besides point-to-point messaging, MPI provides one-to-many, many-to-one and
many-to-many communication primitives, capturing the majority of the typical
real-world communication scenarios.

In addition to send and recv the program also calls three other MPI functions:

mpi :: IO () -> IO ()

commSize :: Comm -> IO Int

commRank :: Comm -> IO Rank

The first function takes an IO action as input (something which presumably uses
other MPI features) and runs that action within an initialized MPI environment,
before finalizing the environment at the end. The other functions allow a process
to query the total number of processes in a communicator and the identity of the
process within a communicator.

It might seem strange at first that the processes do not exchange any messages
to determine how to divide up the work. This is unnecessary in our example
because all of the important local information for each process can be deduced
from its rank and the command line arguments, so no additional communication
is required. In other more complex programs it is common to begin the program
with an initialization phase, in which the master sends the configuration values of
the computation to the other processes.

Another surprising aspect of our example is that every MPI process runs the
same executable program, following the so-called Single Program Multiple Data
(SPMD) style. MPI also allows the Multiple Program Multiple Data (MPMD)
style, where different executables can be run by different processes — you can
even mix programs written in different languages. However, the SPMD style is
more common because it reduces development and deployment efforts. In the
SPMD style you typically see blocks of code which are conditionally executed
depending on the value of a the process rank. In our example, all processes call
the trapezoid function, but only the master process calls recv and print, while
all processes except for the master call send. If you use MPI in an eager language,
such as C, and forget to make some of the computations or memory allocations
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module Main where

import Control.Parallel.MPI.Simple

import System (getArgs)

import Trapezoid

main :: IO ()

main = mpi $ do

numRanks <- commSize commWorld

rank <- commRank commWorld

let master = 0 :: Rank

aStr:bStr:nStr:_ <- getArgs

let [a,b] = map read [aStr,bStr]

n = read nStr

h = (b - a) / fromIntegral n

localN = n ‘div‘ fromIntegral numRanks

localA = a + fromIntegral rank * fromIntegral localN * h

localB = localA + fromIntegral localN * h

integral = trapezoid f localA localB localN h

if rank == master then do

rest <- sequence [ recv’ commWorld (toRank proc) unitTag

| proc <- [1..numRanks-1] ]

print (integral + sum rest)

else send commWorld master unitTag integral

where

recv’ comm rank tag = do

(msg, status) <- recv comm rank tag

return msg

Listing 4: Multi-node parallel program for calculating definite integrals, using
point-to-point communication.
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conditional, processes would spend time computing values that would not actually
be used. Haskell, with its lazy evaluation and automatic memory management,
makes it much easier to avoid such problems. Pure computations are simply not
executed in processes that do not use their value, without requiring any explicit
housekeeping code.

Many-to-one communications

The use of the point-to-point communications in the previous section is workable
but clumsy. Thankfully, this pattern of many-to-one communication is sufficiently
common that MPI provides a convenient way to do it collectively:

gatherSend :: Serialize msg => Comm -> Rank -> msg -> IO ()

gatherRecv :: Serialize msg => Comm -> Rank -> msg -> IO [msg]

In this scenario the master process performs a gatherRecv while the others per-
form a gatherSend. The result of gatherRecv is an IO action that yields all the
messages from each process in rank order. Note that the receiver also sends a mes-
sage to itself, which appears in the first position of the output list.2 The collective
communications cannot be overlapping, so there is no need for a tag argument to
distinguish between them.3

As you can see in Listing 5, the use of collective communications leads to a much
more succinct implementation of the program. However, this is not their only
virtue. An MPI implementation can take advantage of the underlying network
hardware to optimize the collective operations, providing significant performance
gains over point-to-point versions.

Performance results

We now consider a small benchmark test to get a feeling for how well Haskell-MPI
performs in practice. For comparison we ran the same test on three alternative
implementations of the same program: the baseline sequential program, the multi-
threaded Haskell version, and a C version which also uses MPI.

All performance tests were executed on an IBM iDataplex cluster, featuring
2.66GHz Intel Nehalem processors, with 8 cores and 24GB of RAM per node,
running Red Hat Enterprise Linux 5, connected to a 40 Gb/s InfiniBand network.
We used the following software versions to build the programs:

2It might seem strange that the receiver mentions its own rank and passes a message to itself.
These oddities are required by a feature of MPI called intercommunicators. We do not discuss
them in this article, but an interested reader can consult the MPI report for more details [3].

3See Chapter 5 of the MPI report [3].

22



Bernie Pope, Dmitry Astapov: High Performance Haskell with MPI

module Main where

import Control.Parallel.MPI.Simple

import System (getArgs)

import Trapezoid

main :: IO ()

main = mpi $ do

numRanks <- commSize commWorld

rank <- commRank commWorld

let master = 0 :: Rank

aStr:bStr:nStr:_ <- getArgs

let [a,b] = map read [aStr,bStr]

n = read nStr

h = (b - a) / fromIntegral n

localN = n ‘div‘ fromIntegral numRanks

localA = a + fromIntegral rank * fromIntegral localN * h

localB = localA + fromIntegral localN * h

integral = trapezoid f localA localB localN h

if rank == 0

then print . sum =<< gatherRecv commWorld master integral

else gatherSend commWorld master integral

Listing 5: Multi-node parallel program for calculating definite integrals, using
many-to-one communication.
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1. GHC 7.0.3, with optimization flags -O2.
2. GCC 4.4.4, with optimization flags -O2.
3. Open MPI 1.4.2.

The benchmark test case computes the definite integral of Sine on the inter-
val [0, 1000π], using 109 trapezoids. We had to choose a very large number of
trapezoids to make it worth parallelizing this toy example at all.

Haskell

method cores time(s) scaling
MPI 1 54.364 –
MPI 2 26.821 2.0
MPI 4 12.022 2.2
MPI 8 6.142 2.0
MPI 16 4.975 1.2
MPI 32 3.952 1.3
MPI 64 3.291 1.2
MPI 128 3.141 1.0
MPI 256 3.674 0.9

sequential 1 54.301 –

threads 1 48.866 –
threads 2 24.118 2.0
threads 4 12.080 2.0
threads 8 6.014 2.0

C

method cores time(s) scaling
MPI 1 53.570 –
MPI 2 23.664 2.3
MPI 4 12.500 1.9
MPI 8 6.656 1.9
MPI 16 4.142 1.6
MPI 32 3.360 1.2
MPI 64 3.037 1.1
MPI 128 2.861 1.1
MPI 256 2.934 1.0

Figure 2: Performance figures for sequential, threaded and MPI versions of the
trapezoid program, when integrating Sine on the interval [0, 1000π] using 109 trape-
zoids.

Figure 2 shows the raw benchmark results taken by averaging three simultaneous
runs of the same computation. Figure 3 plots the results on a graph. The tests
illustrate that we get strong scaling for all parallel implementations up to 8 cores.
The performance improvement of the MPI implementations is fairly similar with
a slight edge to the C version. Scaling tends to decline around the 16 core mark,
although small improvements in overall performance are made up to 128 cores, but
both programs begin to slow down at 256 cores. The threaded implementation
stops at 8 cores because that is the maximum available on a single node in our test
machine. Given more cores in a single node we might expect the threaded version
to show similar improvements to the MPI versions. Having said that, the limitation
of the threaded version to a single shared-memory instance will ultimately be a
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Figure 3: Performance comparison of sequential, threaded and MPI versions of
the trapezoid program.
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barrier to very large-scale parallelism on current hardware. However, there is
nothing to stop you from using threads within an MPI application.

Obviously, we should not to pay too much heed to one toy benchmark. We
would need a much bigger problem to show strong scaling beyond a dozen or so
cores, and a truly gigantic problem to scale to the size of a machine such as LLNL’s
upcoming Sequoia!

The Simple and Fast interfaces of Haskell-MPI

One of the biggest limitations of our test case is that we are only sending trivially
small messages between processes (individual double precision floating point num-
bers). For larger messages the simple interface to Haskell-MPI imposes additional
performance costs due to the need to make a copy of the data for serialization.
Furthermore, in many cases, each message sent is preceded implicitly by another
message carrying size information about the serialized data stream. For this rea-
son Haskell-MPI provides an alternative “fast” interface which works on data types
that have a contiguous in-memory representation, thus avoiding the need for seri-
alization. ByteStrings, unboxed arrays, and instances of the Storable type class
can all be handled this way. The fast interface is more cumbersome to use, but
it is a necessary evil for programs with large message sizes and tight performance
constraints.

Conclusion

Haskell-MPI provides a pragmatic way for Haskell programmers to write high
performance programs in their favorite language today. The current version of
the library covers the most commonly used parts of the MPI standard, although
there are still several missing features, the most significant of which is parallel I/O.
We plan to include more parts of the standard over time, with emphasis on those
which are requested by users.

As you can see from the examples presented in this article, Haskell-MPI does not
provide a particularly functional interface to users – most of the provided functions
return IO results, and there is no satisfying way to send functions as messages. This
reflects the modest ambitions of the project, but we may investigate more idiomatic
APIs in future work.
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Appendix A: Installation and configuration

In order to use Haskell-MPI you need to have one of the MPI libraries installed
on your computer. If you don’t already have one installed, then Open MPI [4]
is a good choice. We’ve tested Haskell-MPI with Open MPI 1.4.2 and 1.4.3 and
MPICH 1.2.1 and 1.4, and there is a good chance it will work with other versions
out of the box.

If the MPI libraries and header files are in the search paths of your C compiler,
then Haskell-MPI can be built and installed with the command:4

cabal install haskell-mpi

Otherwise, the paths to the include files and libraries need to be specified manually:

cabal install haskell-mpi \

--extra-include-dirs=/usr/include/mpi \

--extra-lib-dirs=/usr/lib/mpi

If you are building the package with an MPI implementation other than Open
MPI or MPICH, it is recommended to pass -ftest to cabal install, running the
test-suite to verify that the bindings perform as expected. If you have problems
configuring MPI, take a look at the useful hints in the Haddock documentation for
the module Testsuite.
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Coroutine Pipelines

by Mario Blažević

The basic idea of trampoline-style execution is well known and has already been
explored multiple times, every time leading in a different direction. The recent
popularity of iteratees leads me to believe that the time has come for yet another
expedition. If you’re not inclined to explore this territory on your own, the monad-

coroutine and SCC packages [1, 2] provide a trodden path.

Trampolining a monad computation

I won’t dwell on the basics of trampoline-style execution, because it has been well
covered elsewhere [3, 4]. Let’s jump in with a simple monad transformer that
allows the base monad to pause its computation at any time, shown in Listing 6.

Once lifted on a Trampoline, in a manner of speaking, a computation from the
base monad becomes a series of alternating bounces and pauses. The bounces
are the uninterruptible steps in the base monad, and the during the pauses the
trampoline turns control over to us. Function run can be used to eliminate all
the pauses and restore the original, un-lifted computation. Here’s a little example
session in GHCi (this example, and all following, are shown with newlines for
readability, but must actually be entered into GHCi all one one line):

*Main> let hello = do { lift (putStr "Hello, ")

; pause

; lift (putStrLn "World!") }

*Main> run hello

Hello, World!

Alternatively, we can just bounce the computation once, use the pause to perform
some other work, and then continue the trampoline:
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{-# LANGUAGE FlexibleContexts, Rank2Types, ScopedTypeVariables #-}
import Control.Monad (liftM )
import Control.Monad.Trans (MonadTrans (. .))

newtype Trampoline m r = Trampoline {
bounce :: m (Either (Trampoline m r) r)
}
instance Monad m ⇒ Monad (Trampoline m) where

return = Trampoline ◦ return ◦ Right
t >>= f = Trampoline (bounce t

>>= either
(return ◦ Left ◦ (>>=f ))
(bounce ◦ f ))

instance MonadTrans Trampoline where
lift = Trampoline ◦ liftM Right

pause :: Monad m ⇒ Trampoline m ()
pause = Trampoline (return $ Left $ return ())

run :: Monad m ⇒ Trampoline m r → m r
run t = bounce t >>= either run return

Listing 6: The Trampoline monad transformer

30
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*Main> do { Left continuation <- bounce hello

; putStr "Wonderful "

; run continuation }

Hello, Wonderful World!

Though all examples in this article will be using the IO monad for brevity, keep
in mind that this is a monad transformer which can be applied to any monad
whatsoever.

The most interesting thing the trampoline transformer gives us is the ability to
run multiple interleaved computations. The function mzipWith defined below – I
find it more practical than plain mzip [5] – interleaves two trampolines, and then
we use it to interleave an arbitrary number of them.

mzipWith :: Monad m
⇒ (a → b → c)
→ Trampoline m a → Trampoline m b → Trampoline m c

mzipWith f t1 t2 = Trampoline (liftM2 bind (bounce t1 ) (bounce t2 ))
where

bind (Left a) (Left b) = Left (mzipWith f a b)
bind (Left a) (Right b) = Left (mzipWith f a (return b))
bind (Right a) (Left b) = Left (mzipWith f (return a) b)
bind (Right a) (Right b) = Right (f a b)

interleave :: Monad m ⇒ [Trampoline m r ]→ Trampoline m [r ]
interleave = foldr (mzipWith (:)) (return [ ])

When we apply interleave to a list of trampolines, it combines them all into
a single trampoline that bounces all the computations together. I wish I had an
appropriate video to insert here, but the best I can offer is this GHCi output:

*Main> run $ interleave [hello, hello, hello]

Hello, Hello, Hello, World!

World!

World!

[(),(),()]

If the base monad happens to support parallel execution, we have the option of
bouncing all the trampolines in parallel instead of interleaving them. All we need
to do is import the liftM2 function from the monad-parallel package [6] instead
of using the default one from base.

The amount of parallelism we can gain this way depends on how close the dif-
ferent trampolines’ bounces are to each other in duration. The function interleave
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will wait for all trampolines to complete their first bounces before it initiates their
second bounces. This is cooperative, rather than preemptive multi-tasking.

Because of their ability of interleaved execution, trampoline computations are
an effective way to implement coroutines, and that is what we’ll call them from
now on. Note, however, that the hello coroutines we have run are completely
independent. This is comparable to an operating system running many sandboxed
processes completely unaware of each other. Though the processes are concurrent,
they cannot cooperate. Before we remedy this failing, let’s take a closer look at
what a coroutine can accomplish during the pause.

Suspension functors

Generators

During the 1970s, coroutines were actively researched and experimented with [7,
8, 9], but support for them disappeared from later mainstream general-purpose
languages for a long time. Rejoice now, because the Dark Ages of the coroutines
are coming to an end.

This renaissance has started with a limited form of coroutine called a generator,
which has become a part of JavaScript, Python, and Ruby, among other recent
programming languages. A generator (Listing 7) is just like a regular trampoline
except it yields a value whenever it suspends.

The difference between the old function run, that we’ve used for running a
Trampoline, and the new function runGenerator is that the latter collects all values
that its generator argument yields:

*Main> let gen = do { lift (putStr "Yielding one, ")

; yield 1

; lift (putStr "then two, ")

; yield 2

; lift (putStr "returning three: ")

; return 3 }

*Main> runGenerator gen

Yielding one, then two, returning three: ([1,2],3)

Iteratees

A generator is thus a coroutine whose every suspension provides not only the
coroutine resumption but also a single value. We can easily define a monad trans-
former dual to generators, whose suspension demands a value instead of yielding
it (Listing 8). The terminology for this kind of coroutine is not as well established
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newtype Generator a m x = Generator {
bounceGen :: m (Either (a,Generator a m x ) x )
}
instance Monad m ⇒ Monad (Generator a m) where

return = Generator ◦ return ◦ Right
t >>= f = Generator (bounceGen t

>>= either
(λ(a, cont)→

return $ Left (a, cont >>= f ))
(bounceGen ◦ f ))

instance MonadTrans (Generator a) where
lift = Generator ◦ liftM Right

yield :: Monad m ⇒ a → Generator a m ()
yield a = Generator (return $ Left (a, return ()))

runGenerator :: Monad m ⇒ Generator a m x → m ([a ], x )
runGenerator = run ′ id where

run ′ f g = bounceGen g
>>= either

(λ(a, cont)→ run ′ (f ◦ (a:)) cont)
(λx → return (f [ ], x ))

Listing 7: Generators
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as for generators, but in the Haskell community the name iteratee appears to be
the most popular.

newtype Iteratee a m x = Iteratee {
bounceIter :: m (Either (a → Iteratee a m x ) x )
}
instance Monad m ⇒ Monad (Iteratee a m) where

return = Iteratee ◦ return ◦ Right
t >>= f = Iteratee (bounceIter t

>>= either
(λcont → return $ Left ((>>=f ) ◦ cont))
(bounceIter ◦ f ))

instance MonadTrans (Iteratee a) where
lift = Iteratee ◦ liftM Right

await :: Monad m ⇒ Iteratee a m a
await = Iteratee (return $ Left return)

runIteratee :: Monad m ⇒ [a ]→ Iteratee a m x → m x
runIteratee (a : rest) i = bounceIter i

>>= either
(λcont → runIteratee rest (cont a))
return

runIteratee [ ] i = bounceIter i
>>= either

(λcont → runIteratee [ ]
(cont $ error "No more values to feed."))

return

Listing 8: Iteratees

To run a monad thus transformed, we have to supply it with values:

*Main> let iter = do { lift (putStr "Enter two numbers: ")

; a <- await

; b <- await

; lift (putStrLn ("sum is " ++ show (a + b))) }

*Main> runIteratee [4, 5] iter

Enter two numbers: sum is 9
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Generalizing the suspension type

Let’s take another look at the three kinds of coroutines we have defined so far.
Their definitions are very similar; the only differences stem from the first ar-
gument of the Either constructor, which always contains the coroutine resump-
tion but wrapped in different ways: plain resumption in the case of Trampoline;
(x , resumption) for Generator; and x → resumption in the case of Iteratee. All three
wrappings, not coincidentally, happen to be functors. It turns out that just know-
ing that the suspension is a functor is sufficient to let us define the trampolining
monad transformer. The time has come to introduce the generic Coroutine data
type (Listing 9).

newtype Coroutine s m r = Coroutine {
resume :: m (Either (s (Coroutine s m r)) r)
}
instance (Functor s ,Monad m)⇒ Monad (Coroutine s m) where

return x = Coroutine (return (Right x ))
t >>= f = Coroutine (resume t

>>= either
(return ◦ Left ◦ fmap (>>=f ))
(resume ◦ f ))

instance Functor s ⇒ MonadTrans (Coroutine s) where
lift = Coroutine ◦ liftM Right

suspend :: (Monad m,Functor s)⇒
s (Coroutine s m x )→ Coroutine s m x

suspend s = Coroutine (return (Left s))

Listing 9: The generic Coroutine transformer

The Coroutine type constructor has three parameters: the functor type for wrap-
ping the resumption, the base monad type, and the monad’s return type. We can
now redefine our three previous coroutine types as mere type aliases, differing only
in the type of functor in which they wrap their resumption (Listing 10). All these
definitions and more can also be found in the monad-coroutine package [1].

Other possible suspension types

Any functor can serve as a new coroutine suspension type, though some would
be more useful than others. Of the three Functor instances from the Haskell 98
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import Data.Functor.Identity (Identity (. .))

type Trampoline m x = Coroutine Identity m x
type Generator a m x = Coroutine ((, ) a) m x
type Iteratee a m x = Coroutine ((→) a) m x

pause :: Monad m ⇒ Trampoline m ()
pause = suspend (Identity $ return ())

yield :: (Monad m,Functor ((, ) x ))⇒ x → Generator x m ()
yield x = suspend (x , return ())

await :: (Monad m,Functor ((, ) x ))⇒ Iteratee x m x
await = suspend return

run :: Monad m ⇒ Trampoline m x → m x
run t = resume t >>= either (run ◦ runIdentity) return

runGenerator :: Monad m ⇒ Generator x m r → m ([x ], r)
runGenerator = run ′ id where

run ′ f g = resume g
>>= either

(λ(x , cont)→ run ′ (f ◦ (x :)) cont)
(λr → return (f [ ], r))

runIteratee :: Monad m ⇒ [x ]→ Iteratee x m r → m r
runIteratee (x : rest) i =

resume i >>= either (λcont → runIteratee rest (cont x )) return
runIteratee [ ] i =

resume i
>>= either

(λcont → runIteratee [ ] (cont $ error "No more values to feed."))
return

Listing 10: Redefining examples in terms of Coroutine
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Prelude, IO, Maybe and [ ], only the list functor would qualify as obviously useful.
A list of resumptions could be treated as offering a choice of resumptions or as a
collection of resumptions that all need to be executed.

We can get another practical example of a suspension functor if we combine
the generator’s functor which yields a value and iteratee’s which awaits one. The
result can be seen as a request suspension: the coroutine supplies a request and
requires a response before it can proceed.

data Request request response x = Request request (response → x )
instance Functor (Request x f ) where

fmap f (Request x g) = Request x (f ◦ g)

request :: Monad m ⇒ x → Coroutine (Request x y) m y
request x = suspend (Request x return)

As noted above, the Request functor is just a composition of the two functors
used for generators and iteratees. More generally, any two functors can be com-
bined into their composition or sum:

-- From the transformers package
newtype Compose f g a = Compose {getCompose :: f (g a)}
instance (Functor f ,Functor g)⇒ Functor (Compose f g) where

fmap f (Compose x ) = Compose (fmap (fmap f ) x )

data EitherFunctor l r x = LeftF (l x ) ∨ RightF (r x )
instance (Functor l ,Functor r)⇒ Functor (EitherFunctor l r) where

fmap f (LeftF l) = LeftF (fmap f l)
fmap f (RightF r) = RightF (fmap f r)

If we use these type constructors, we can redefine Request as

type Request a b = Compose ((, ) a) ((→) b).

We can also define a sum of functors like

type InOrOut a b = EitherFunctor ((, ) a) ((→) b)

to get a coroutine which can either demand or supply a value every time it sus-
pends, but not both at the same time as Request does.

Relating the suspension types

Having different types of coroutines share the same Coroutine data type parame-
terized by different resumption functors isn’t only useful for sharing a part of their
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implementation. We can also easily map a computation of one coroutine type into
another:

mapSuspension :: (Functor s ,Monad m)⇒
(∀ a. s a → s ′ a)→ Coroutine s m x → Coroutine s ′ m x

mapSuspension f cort = Coroutine {resume = liftM map ′ (resume cort)}
where map ′ (Right r) = Right r

map ′ (Left s) = Left (f $ fmap (mapSuspension f ) s)

This functionality will come in handy soon.

Communicating coroutines

We should now revisit the problem of running multiple coroutines while letting
them communicate. After all, if they cannot cooperate they hardly deserve the
name of coroutines.

The simplest solution would be to delegate the problem to the base monad.
Coroutines built on top of the monad IO or State can use the monad-specific
features like MVars to exchange information, like threads normally do. Apart from
tying our code to the specific monad, this solution would introduce an unfortunate
mismatch between the moment of communication and the moment of coroutine
switching.

Another way to let our coroutines communicate is to explicitly add a commu-
nication request to their suspension functor. We could, for example, extend the
suspension functor with the ability to request a switch to another coroutine. To-
gether with a scheduler at the top level, this approach gives us classic symmetric
coroutines [4], or non-preemptive green threads.

This time, I want to explore some different ways to let coroutines communicate.
Explicit transfers of control between coroutines, though they’re easier to handle,
share many of the problems that plague thread programming.

Producer-consumer

One of the most popular and useful examples of communicating coroutines is a
producer-consumer coroutine pair. The producer coroutine yields values which the
consumer coroutine awaits to process. This pair also happens to be an example of
two coroutines that are easy to run together, because their two suspension functors
are dual to each other.

The first function shown in Listing 11, pipe1 , assumes that the producer always
yields at least as many values as the consumer awaits. If that is not the case and
the producer may end its execution before the consumer does, pipe2 should be used
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-- a helper function that really belongs in Control.Monad
bindM2 :: Monad m ⇒ (a → b → m c)→ m a → m b → m c
bindM2 f ma mb = do {a ← ma; b ← mb; f a b}
pipe1 :: Monad m ⇒ Generator a m x → Iteratee a m y → m (x , y)
pipe1 g i = bindM2 proceed (resume g) (resume i) where

proceed (Left (a, c)) (Left f ) = pipe1 c (f a)
proceed (Left (a, c)) (Right y) = pipe1 c (return y)
proceed (Right x ) (Left f ) = error "The producer ended too soon."

proceed (Right x ) (Right y) = return (x , y)

pipe2 :: Monad m ⇒ Generator a m x → Iteratee (Maybe a) m y → m (x , y)
pipe2 g i = bindM2 proceed (resume g) (resume i) where

proceed (Left (a, c)) (Left f ) = pipe2 c (f $ Just a)
proceed (Left (a, c)) (Right y) = pipe2 c (return y)
proceed (Right x ) (Left f ) = pipe2 (return x ) (f Nothing)
proceed (Right x ) (Right y) = return (x , y)

Listing 11: A producer-consumer pair

instead. This function informs the consumer of the producer’s death by supplying
Nothing to the consumer’s resumption. The following GHCi session shows the
difference:

*Main> pipe1 gen iter

Yielding one, Enter two numbers: then two, returning three: sum is 3

(3,())

*Main> pipe1 (return ()) iter

Enter two numbers: *** Exception: The producer ended too soon.

*Main> let iter2 s = lift (putStr "Enter a number: ") >> await

>>= maybe (lift (putStrLn ("sum is " ++ show s)))

(\n -> iter2 (s + n))

*Main> pipe2 (return ()) (iter2 0)

Enter a number: sum is 0

((),())

*Main> pipe2 (gen >> gen) (iter2 0)

Yielding one, Enter a number: then two, Enter a number:

returning three: Yielding one, Enter a number: then two,

Enter a number: returning three: Enter a number: sum is 6

(3,())
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The first clause of the helper function proceed handles the most important case,
where both coroutines suspend and can be resumed. The remaining three cover
the cases where one or both coroutines return.

Our definition of bindM2 happens to first resume the producer, waits until its
step is finished, and only then resume the consumer; however, we could replace it
by the same-named function from the monad-parallel package and step the two
coroutines in parallel.

When we compare pipe to our earlier interleave function or any other symmet-
rical coroutine scheduler, the first thing to note is that the two coroutines now
have different types corresponding to their different roles. We are beginning to use
Haskell’s type system to our advantage.

Another thing to note is that producer-consumer pair synchronizes and ex-
changes information whenever the next yield/await suspension pair is ready. There
can be no race conditions nor deadlocks. That in turn means we need no locking,
mutexes, semaphores, transactions, nor the rest of the bestiary.

Transducers in the middle

The producer-consumer pair is rather limited, but it’s only the minimal example of
a coroutine pipeline. We could insert more coroutines in the middle of the pipeline,
transducer coroutines [10], also known as enumeratees lately. A transducer has
two operations available to it, awaitT for receiving a value from upstream and
yieldT to pass a value downstream. The input and output values may have different
types. The awaitT function returns Nothing if there are no more upstream values
to receive.

type Transducer a b m x
= Coroutine (EitherFunctor ((→) (Maybe a)) ((, ) b)) m x

awaitT :: Monad m ⇒ Transducer a b m (Maybe a)
awaitT = suspend (LeftF return)

yieldT :: Monad m ⇒ b → Transducer a b m ()
yieldT x = suspend (RightF (x , return ()))

Although transducers can lift arbitrary operations from the base monad, few
of them need any side-effects in practice. Any pure function can be lifted into a
transducer. Even a stateful transducer can be pure, in the sense that it doesn’t
need to rely on any base monad operation.

lift121 :: Monad m ⇒ (a → b)→ Transducer a b m ()
lift121 f = awaitT

>>= maybe (return ()) (λa → yieldT (f a)>> lift121 f )
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liftStateless :: Monad m ⇒ (a → [b ])→ Transducer a b m ()
liftStateless f = awaitT

>>= maybe (return ()) (λa → mapM yieldT (f a)
>> liftStateless f )

liftStateful :: Monad m ⇒ (state → a → (state, [b ]))
→ (state → [b ])→ state → Transducer a b m ()

liftStateful f eof s = awaitT
>>= maybe

(mapM yieldT (eof s))
(λa → let (s ′, bs) = f s a

in mapM yieldT bs
>> liftStateful f eof s ′)

Transducer piping

Now we have the means to create lots of transducer coroutines, but how can we
use them? One possibility would be to define a new variant of the pipe function
that would run the entire pipeline and reduce it to the base monad:

pipe3 :: Monad m ⇒ Generator a m x → Transducer a b m y
→ Iteratee (Maybe b) m z → m (x , y , z )

This solution would be very limited, as it could not handle more than the one
transducer in the pipeline. As usual, big problems require modular solutions. In
this case, the solution is a function that combines two transducers into one, piping
the output of the first into the input of the second transducer (Listing 12).

We could also define similar operators for combining a generator/transducer or
a transducer/iteratee pair into another generator or iteratee, respectively. Instead
of doing that, however, we can provide functions for casting generators, iteratees,
and plain trampolines into transducers and back (Listing 13).

The empty data type Naught should not be exposed to the end-user. Its purpose
is to ensure we don’t get a run-time error by attempting to cast a non-trivial
transducer into a simpler coroutine it cannot fit.

Using the piping combinator =>=, we can easily construct a coroutine pipeline of
unlimited length and run it as a simple generator, iteratee, or plain trampoline,
all the while retaining the type safety and synchronization guarantees.
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(=>=) :: ∀ a b c m x y . Monad m
⇒ Transducer a b m x → Transducer b c m y
→ Transducer a c m (x , y)

t1 =>= t2 = Coroutine (bindM2 proceed (resume t1 ) (resume t2 )) where
proceed (Left (LeftF s)) c =

return (Left $ LeftF $ fmap (=>= Coroutine (return c)) s)
proceed c (Left (RightF s)) =

return (Left $ RightF $ fmap (Coroutine (return c) =>=) s)
proceed (Left (RightF (b, c1 ))) (Left (LeftF f )) =

resume (c1 =>= f (Just b))
proceed (Left (RightF (b, c1 ))) (Right y) =

resume (c1 =>= (return y :: Transducer b c m y))
proceed (Right x ) (Left (LeftF f )) =

resume ((return x :: Transducer a b m x ) =>= f Nothing)
proceed (Right x ) (Right y) =

return $ Right (x , y)

Listing 12: Composing transducers
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data Naught

fromGenerator :: Monad m ⇒
Generator a m x → Transducer Naught a m x

fromGenerator = mapSuspension RightF

fromIteratee :: Monad m ⇒
Iteratee (Maybe a) m x → Transducer a Naught m x

fromIteratee = mapSuspension LeftF

toGenerator :: Monad m ⇒ Transducer Naught a m x → Generator a m x
toGenerator = mapSuspension (λ(RightF a)→ a)

toIteratee :: Monad m ⇒
Transducer a Naught m x → Iteratee (Maybe a) m x

toIteratee = mapSuspension (λ(LeftF a)→ a)

toTrampoline :: Monad m ⇒
Transducer Naught Naught m x → Trampoline m x

toTrampoline = mapSuspension ⊥

Listing 13: Converting to and from transducers
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*Main> let double = liftStateless (\a -> [a, a])

*Main> runGenerator (toGenerator $ fromGenerator gen =>= double)

Yielding one, then two, returning three: ([1,1,2,2],(3,()))

*Main> runIteratee [Just 3, Nothing]

(toIteratee $ double =>= fromIteratee (iter2 0))

Enter a number: Enter a number: Enter a number: sum is 6

((),())

*Main> run (toTrampoline $

fromGenerator (yield 3) =>=

double =>= fromIteratee (iter2 0))

Enter a number: Enter a number: Enter a number: sum is 6

(((),()),())

*Main> run (toTrampoline $

fromGenerator (yield 3) =>=

double =>= double =>= fromIteratee (iter2 0))

Enter a number: Enter a number: Enter a number: Enter a number:

Enter a number: sum is 12

((((),()),()),())

Parting and joining the stream

The next extension would be to generalize the coroutine pipeline by allowing it to
sprout branches and form a non-linear data-flow network. Every node of the net-
work is a coroutine that communicates only with its neighbours. For example, we
could have a stream-branching coroutine with a single await suspension and two
different yield suspensions that feed two different downstream coroutines. Or du-
ally, we can imagine a join coroutine that can await value from two different input
coroutines, combine the two streams and yield to a single downstream coroutine
(Listing 14).

The main reason that the input and output of the Splitter and Join coroutines
are declared to be the same is to enforce the division of labour. If there is any
data conversion to be done, the task should be given to a Transducer. The Splitter
and Join coroutines are to be used for splitting and merging the streams, without
modifying any individual item. This helps keep the number of possible combinators
under control.

The stream-branching coroutine type is especially interesting because it can be
used to implement conditionals as coroutines which stream all their upstream data
unmodified to their two outputs. All data output to one downstream branch would
be treated as satisfying the coroutine’s condition, and vice versa. Once we have
these coroutine components, we can combine them with combinators based on
Boolean logic, if. . . then. . . else combinator, and others [11].
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Mario Blažević: Coroutine Pipelines

type Splitter a m x =
Coroutine (EitherFunctor ((→) (Maybe a))

(EitherFunctor ((, ) a) ((, ) a))) m x
type Join a m x =

Coroutine (EitherFunctor (EitherFunctor ((→) (Maybe a))
((→) (Maybe a)))
((, ) a)) m x

yieldLeft :: Monad m ⇒ a → Splitter a m ()
yieldLeft a = suspend (RightF $ LeftF (a, return ()))

yieldRight :: Monad m ⇒ a → Splitter a m ()
yieldRight a = suspend (RightF $ RightF (a, return ()))

awaitLeft :: Monad m ⇒ Join a m (Maybe a)
awaitLeft = suspend (LeftF $ LeftF return)

awaitRight :: Monad m ⇒ Join a m (Maybe a)
awaitRight = suspend (LeftF $ RightF return)

Listing 14: Splitter and Join

ifThenElse :: Monad m ⇒ Splitter a m x → Transducer a b m y
→ Transducer a b m z → Transducer a b m (x , y , z )

not :: Monad m ⇒ Splitter a m x → Splitter a m x
and :: Monad m ⇒ Splitter a m x → Splitter a m x → Splitter a m x
or :: Monad m ⇒ Splitter a m x → Splitter a m x → Splitter a m x
groupBy :: Monad m ⇒ Splitter a m x → Transducer a [a ] m x
any :: Monad m ⇒ Splitter a m x → Splitter [a ] m x
all :: Monad m ⇒ Splitter a m x → Splitter [a ] m x

The ifThenElse combinator sends all true output of the argument splitter to
one transducer, all false output to the other, and merges together the transducers’
outputs in the order they appear. The result behaves as a transducer. The groupBy
combinator takes every contiguous section of the stream that its argument splitter
considers true and packs it into a list, discarding all parts of the input that the
splitter sends to its false output. The any combinator considers each input list
true iff its argument splitter deems any of it true. The all combinator is equivalent,
except it considers the entire list false iff the its argument considers any of it false.
Many other splitter combinators beside these can be found in the scc package [2].

While the number of primitive splitters is practically unlimited, corresponding
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to the number of possible yes/no questions that can be asked of any section of the
input, there are relatively few interesting primitive joins. The two input streams
can be fully concatenated one after the other, they can be interleaved in some way,
or their individual items can be combined together. The set of possible combinators
for the Join coroutines is to some extent dual to the set of the Splitter combinators,
but without the helpful analogy with the Boolean logic.

joinTransduced :: Monad m ⇒ Transducer a b m x → Transducer a b m y
→ Join b m z → Transducer a b m (x , y , z )

flipJoin :: Join a m x → Join a m x

Pipeline examples

The following pipeline generates all lines of the file input.txt that contain the
string FIND ME:

toGenerator (fromGenerator (readFile "input.txt")
=>= groupBy line
=>= ifThenElse (any $ substring "FIND ME")

(lift121 id)
(fromIteratee suppress)

=>= concatenate)

To get the effect of grep -n, with each line prefixed by its ordinal number, we
can use the following generator instead:

toGenerator (joinTransduced
(joinTransduced (fromGenerator naturals =>= toString)

(fromGenerator $ repeat ": ")
zipMonoids)

(fromGenerator (readFile "input.txt")
=>= groupBy line)

zipMonoids)
=>= ifThenElse (any $ substring "FIND ME")

(lift121 id)
(fromIteratee suppress)

=>= concatenate)

Here are the type signatures of all the primitive coroutines used above. Their
names are mostly evocative enough to explain what each coroutine does. The line
splitter sends the line-ends to its false output, and all line characters to its true
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output. The zipMonoids join outputs the result of mappend of each pair of items
it reads from its two inputs. It returns as soon as either of its input streams ends.

line :: Monad m ⇒ Splitter Char m ()
readFile :: FilePath→ Generator Char IO ()
naturals :: Monad m ⇒ Generator Int m ()
toString :: (Show a,Monad m)⇒ Transducer a String m ()
concatenate :: Monad m ⇒ Transducer [a ] a m ()
zipMonoids :: (Monad m,Monoid a)⇒ Join a m ()
repeat :: Monad m ⇒ a → Generator a m ()
suppress :: Monad m ⇒ Iteratee a m ()
substring :: Monad m ⇒ [a ]→ Splitter a m ()

Final overview

We have now seen what the trampoline-style stream processing looks like. It feels
like a paradigm of its own while programming, subjectively speaking, but that
shouldn’t prevent us from comparing it to alternatives and finding its place in the
vast landscape of programming techniques.

Coroutines

First, this is not a domain-specific programming language that can stand on its
own. Every single coroutine listed above relies on plain Haskell code to accomplish
its task. That remains true even for coroutines that are largely composed of
smaller coroutines, though the proportion of the host-language code gets smaller
and smaller as the pipeline complexity grows.

The concept of coroutines in general makes sense only in the presence of state.
If your Haskell code never uses any monads, you’ve no use for coroutines.

Coroutines are an example of cooperative multitasking, as opposed to threads
where the multitasking is preemptive. If a single coroutine enters an infinite loop,
the entire program is stuck in the infinite loop.

Data-driven coroutines

The specific coroutine design presented above has some additional characteristics
which are not typical of other coroutine designs. A coroutine can resume only its
neighbours, not just any coroutine. Furthermore, to resume a coroutine one must
satisfy the interface of its suspension: an iteratee, for example, cannot be resumed
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without feeding it a value. This requirement is checked statically, so no run-time
error can happen like, for example, in Lua [12].

Some coroutines, like Transducer for example, can suspend in more than one way.
The interface for resuming such a coroutine depends on how it last suspended –
whether it was awaitT or yieldT . The correct resumption is still statically ensured,
however, because the two types of suspension always switch to two different corou-
tines, and each of them has only the one correct way of resuming the suspended
coroutine.

The price of this safety is the inability to implement any pipeline that forms a
cyclic graph. Consider for example a pipeline, unfortunately impossible in this sys-
tem, that performs a streaming merge sort of the input. This would be a transducer
consisting of the following four coroutines arranged in a diamond configuration:

I a stream splitter that directs odd input items to one output and even items
to the other,

I two transducer coroutines, odd and even, recursively sorting the two halves
of the stream, and

I a join coroutine with a single output and two inputs fed from odd and even.

If this configuration was possible, the following sequence of events would become
possible as well: splitter → odd → join → even → splitter → even → join →
even → splitter → odd. The transducer odd suspends by yielding a value to join,
but the next time it gets resumed, it’s not join waking it up to ask for another
value, it’s splitter handing it a value instead! The resumption created by yield
does not expect and cannot handle any value, so it would have to raise a run-time
error.

Iteratee libraries

Oleg Kiselyov’s Iteratee design [13] and various Haskell libraries based on it [14, 15,
16] are in essence asymmetrical coroutines, where only the Iteratee data type can
suspend. In comparison, the coroutine design presented here is more generic but,
being expository, not as optimized. The existence on Hackage of three different
implementations of the same basic design indicates that the sweet spot has not
been found yet. I hope that the present paper helps clarify the design space.
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