Kademlia: A Peer-to-peer Information System
Based on the XOR Metric

Petar Maymounkov and David Mazieres
{petar,dm}@cs.nyu.edu
http://kademlia.scs.cs.nyu.edu

New York University

Abstract. We describe a peer-to-peer distributed hash table with prov-
able consistency and performance in a fault-prone environment. Qur
system routes queries and locates nodes using a novel XOR-based met-
ric topology that simplifies the algorithm and facilitates our proof. The
topology has the property that every message exchanged conveys or re-
inforces useful contact information. The system exploits this information
to send parallel, asynchronous query messages that tolerate node failures
without imposing timeout delays on users.

1 Introduction

This paper describes Kademlia, a peer-to-peer distributed hash table (DHT).
Kademlia has a number of desirable features not simultaneously offered by any
previous DHT. It minimizes the number of configuration messages nodes must
send to learn about each other. Configuration information spreads automatically
as a side-effect of key lookups. Nodes have enough knowledge and flexibility to
route queries through low-latency paths. Kademlia uses parallel, asynchronous
queries to avoid timeout delays from failed nodes. The algorithm with which
nodes record each other’s existence resists certain basic denial of service attacks.
Finally, several important properties of Kademlia can be formally proven using
only weak assumptions on uptime distributions (assumptions we validate with
measurements of existing peer-to-peer systems).

Kademlia takes the basic approach of many DHTs. Keys are opaque, 160-bit
quantities (e.g., the SHA-1 hash of some larger data). Participating computers
each have a node ID in the 160-bit key space. {key,value) pairs are stored on
nodes with IDs “close” to the key for some notion of closeness. Finally, a node-
ID-based routing algorithm lets anyone efficiently locate servers near any given
target key.

Many of Kademlia’s benefits result from its use of a novel XOR metric for
distance between points in the key space. XOR is symmetric, allowing Kademlia
participants to receive lookup queries from precisely the same distribution of

This research was partially supported by National Science Foundation grants
CCR 0093361 and CCR 9800085.

nodes contained in their routing tables. Without this property, systems such
as Chord [5] do not learn useful routing information from queries they receive.
Worse yet, asymmetry leads to rigid routing tables. Each entry in a Chord node’s
finger table must store the precise node preceding some interval in the ID space.
Any node actually in the interval would be too far from nodes preceding it in
the same interval. Kademlia, in contrast, can send a query to any node within
an interval, allowing it to select routes based on latency or even send parallel,
asynchronous queries to several equally appropriate nodes.

To locate nodes near a particular ID, Kademlia uses a single routing algo-
rithm from start to finish. In contrast, other systems use one algorithm to get
near the target ID and another for the last few hops. Of existing systems, Kadem-
lia most resembles Pastry’s [1] first phase, which (though not described this way
by the authors) successively finds nodes roughly half as far from the target ID by
Kademlia’s XOR metric. In a second phase, however, Pastry switches distance
metrics to the numeric difference between IDs. It also uses the second, numeric
difference metric in replication. Unfortunately, nodes close by the second met-
ric can be quite far by the first, creating discontinuities at particular node ID
values, reducing performance, and complicating attempts at formal analysis of
worst-case behavior.

2 System description

Our system takes the same general approach as other DHTs. We assign 160-bit
opaque IDs to nodes and provide a lookup algorithm that locates successively
“closer” nodes to any desired ID, converging to the lookup target in logarithmi-
cally many steps.

Kademlia effectively treats nodes as leaves in a binary tree, with each node’s
position determined by the shortest unique prefix of its ID. Figure 1 shows the
position of a node with unique prefix 0011 in an example tree. For any given
node, we divide the binary tree into a series of successively lower subtrees that
don’t contain the node. The highest subtree consists of the half of the binary tree
not containing the node. The next subtree consists of the half of the remaining
tree not containing the node, and so forth. In the example of node 0011, the
subtrees are circled and consist of all nodes with prefixes 1, 01, 000, and 0010
respectively.

The Kademlia protocol ensures that every node knows of at least one node
in each of its subtrees, if that subtree contains a node. With this guarantee, any
node can locate any other node by its ID. Figure 2 shows an example of node
0011 locating node 1110 by successively querying the best node it knows of to
find contacts in lower and lower subtrees; finally the lookup converges to the
target node.

The remainter of this section fills in the details and makes the lookup algo-
rithm more concrete. We first define a precise notion of ID closeness, allowing
us to speak of storing and looking up (key, value) pairs on the k closest nodes
to the key. We then give a lookup protocol that works even in cases where no

11..11 Space of 160-bit numbers 00...00

1
0
0 0 1o o °
01\0 Ao

Fig. 1: Kademlia binary tree. The black dot shows the location of node
0011--- in the tree. Gray ovals show subtrees in which node 0011--- must
have a contact.

11..1 Space of 160-bit numbers 00..00
0-0—O0—0—O0—O0—O0—0—0—0-0-0-0—0—0—0-O0—0—
1 0
1 0 1 0
1 0 1 1 0 0
0 ° 1N\0 1/\0 0 0
0 O X O O
NN 0V\0 0
O .\ ONONONG) ONO)
1
2
4
3

Fig. 2: Locating a node by its ID. Here the node with prefix 0011 finds the
node with prefix 1110 by successively learning of and querying closer and
closer nodes. The line segment on top represents the space of 160-bit IDs,
and shows how the lookups converge to the target node. Below we illustrate
RPC messages made by 1110. The first RPC is to node 101, already known
to 1110. Subsequent RPCs are to nodes returned by the previous RPC.

node shares a unique prefix with a key or some of the subtrees associated with
a given node are empty.

2.1 XOR metric

Each Kademlia node has a 160-bit node ID. Node IDs are currently just random
160-bit identifiers, though they could equally well be constructed as in Chord.
Every message a node transmits includes its node ID, permitting the recipient
to record the sender’s existence if necessary.

Keys, too, are 160-bit identifiers. To assign (key,value) pairs to particular
nodes, Kademlia relies on a notion of distance between two identifiers. Given
two 160-bit identifiers, z and y, Kademlia defines the distance between them as
their bitwise exclusive or (XOR) interpreted as an integer, d(z,y) =z @ y.

We first note that XOR is a valid, albeit non-Euclidean metric. It is obvious
that that d(z,z) = 0, d(z,y) > 0 if x # y, and Vz,y : d(z,y) = d(y,z). XOR
also offers the triangle property: d(x,y) +d(y, z) > d(z, z). The triangle property
follows from the fact that d(z,y) ® d(y, z) = d(z,2) and Va > 0,b>0:a+ b >
a@®b.

We next note that XOR captures the notion of distance implicit in our binary-
tree-based sketch of the system. In a fully-populated binary tree of 160-bit IDs,
the magnitude of the distance between two IDs is the height of the smallest
subtree containing them both. When a tree is not fully populated, the closest
leaf to an ID z is the leaf whose ID shares the longest common prefix of z. If
there are empty branches in the tree, there might be more than one leaf with the
longest common prefix. In that case, the closest leaf to z will be the closest leaf
to ID Z produced by flipping the bits in z corresponding to the empty branches
of the tree.

Like Chord’s clockwise circle metric, XOR, is unidirectional. For any given
point z and distance A > 0, there is exactly one point y such that d(z,y) = A.
Unidirectionality ensures that all lookups for the same key converge along the
same path, regardless of the originating node. Thus, caching (key,value) pairs
along the lookup path alleviates hot spots. Like Pastry and unlike Chord, the
XOR topology is also symmetric (d(z,y) = d(y, z) for all z and y).

2.2 Node state

Kademlia nodes store contact information about each other to route query mes-
sages. For each 0 < 4 < 160, every node keeps a list of (IP address, UDP port, Node ID)
triples for nodes of distance between 2! and 2¢+! from itself. We call these lists k-
buckets. Each k-bucket is kept sorted by time last seen—least-recently seen node

at the head, most-recently seen at the tail. For small values of i, the k-buckets

will generally be empty (as no appropriate nodes will exist). For large values of

1, the lists can grow up to size k, where k is a system-wide replication parameter.

k is chosen such that any given k nodes are very unlikely to fail within an hour

of each other (for example k = 20).

0.8 .

0.6 .

1 1 1 1 1
00 500 1000 1500 2000 2500

Fig. 3: Probability of remaining online another hour as a function of uptime.
The z axis represents minutes. The y axis shows the the fraction of nodes
that stayed online at least minutes that also stayed online at least = + 60
minutes.

When a Kademlia node receives any message (request or reply) from another
node, it updates the appropriate k-bucket for the sender’s node ID. If the sending
node already exists in the recipient’s k-bucket, the recipient moves it to the tail
of the list. If the node is not already in the appropriate k-bucket and the bucket
has fewer than k entries, then the recipient just inserts the new sender at the
tail of the list. If the appropriate k-bucket is full, however, then the recipient
pings the k-bucket’s least-recently seen node to decide what to do. If the least-
recently seen node fails to respond, it is evicted from the k-bucket and the new
sender inserted at the tail. Otherwise, if the least-recently seen node responds,
it is moved to the tail of the list, and the new sender’s contact is discarded.

k-buckets effectively implement a least-recently seen eviction policy, except
that live nodes are never removed from the list. This preference for old contacts
is driven by our analysis of Gnutella trace data collected by Saroiu et. al. [4].
Figure 3 shows the percentage of Gnutella nodes that stay online another hour as
a function of current uptime. The longer a node has been up, the more likely it is
to remain up another hour. By keeping the oldest live contacts around, k-buckets
maximize the probability that the nodes they contain will remain online.

A second benefit of k-buckets is that they provide resistance to certain DoS
attacks. One cannot flush nodes’ routing state by flooding the system with new
nodes. Kademlia nodes will only insert the new nodes in the k-buckets when old
nodes leave the system.

2.3 Kademlia protocol

The Kademlia protocol consists of four RPCs: PING, STORE, FIND_NODE, and
FIND_VALUE. The PING RPC probes a node to see if it is online. STORE instructs
a node to store a (key, value) pair for later retrieval.

FIND_NODE takes a 160-bit ID as an argument. The recipient of a the RPC
returns (IP address, UDP port, Node ID) triples for the & nodes it knows about

closest to the target ID. These triples can come from a single k-bucket, or they
may come from multiple k-buckets if the closest k-bucket is not full. In any case,
the RPC recipient must return k items (unless there are fewer than k nodes in
all its k-buckets combined, in which case it returns every node it knows about).

FIND_VALUE behaves like FIND_NODE—returning (IP address, UDP port, Node ID)
triples—with one exception. If the RPC recipient has received a STORE RPC for
the key, it just returns the stored value.

In all RPCs, the recipient must echo a 160-bit random RPC ID, which pro-
vides some resistance to address forgery. PINGs can also be piggy-backed on
RPC replies for the RPC recipient to obtain additional assurance of the sender’s
network address.

The most important procedure a Kademlia participant must perform is to
locate the k closest nodes to some given node ID. We call this procedure a node
lookup. Kademlia employs a recursive algorithm for node lookups. The lookup
initiator starts by picking « nodes from its closest non-empty k-bucket (or, if
that bucket has fewer than « entries, it just takes the a closest nodes it knows
of). The initiator then sends parallel, asynchronous FIND_NODE RPCs to the a
nodes it has chosen. a is a system-wide concurrency parameter, such as 3.

In the recursive step, the initiator resends the FIND_NODE to nodes it has
learned about from previous RPCs. (This recursion can begin before all a of
the previous RPCs have returned). Of the k¥ nodes the initiator has heard of
closest to the target, it picks « that it has not yet queried and resends the
FIND_NODE RPC to them.! Nodes that fail to respond quickly are removed from
consideration until and unless they do respond. If a round of FIND_NODES fails to
return a node any closer than the closest already seen, the initiator resends the
FIND_NODE to all of the k closest nodes it has not already queried. The lookup
terminates when the initiator has queried and gotten responses from the k closest
nodes it has seen. When a = 1, the lookup algorithm resembles Chord’s in terms
of message cost and the latency of detecting failed nodes. However, Kademlia
can route for lower latency because it has the flexibility of choosing any one of
k nodes to forward a request to.

Most operations are implemented in terms of the above lookup procedure.
To store a (key,value) pair, a participant locates the k closest nodes to the key
and sends them STORE RPCs. Additionally, each node re-publishes (key,value)
pairs as necessary to keep them alive, as described later in Section 2.5. This
ensures persistence (as we show in our proof sketch) of the (key,value) pair with
very high probability. For Kademlia’s current application (file sharing), we also
require the original publisher of a (key,value) pair to republish it every 24 hours.
Otherwise, (key,value) pairs expire 24 hours after publication, so as to limit
stale index information in the system. For other applications, such as digital
certificates or cryptographic hash to value mappings, longer expiration times
may be appropriate.

! Bucket entries and FIND replies could be augmented with round trip time estimates
for use in selecting the a nodes.

To find a (key,value) pair, a node starts by performing a lookup to find the
k nodes with IDs closest to the key. However, value lookups use FIND_VALUE
rather than FIND_NODE RPCs. Moreover, the procedure halts immediately when
any node returns the value. For caching purposes, once a lookup succeeds, the
requesting node stores the (key,value) pair at the closest node it observed to the
key that did not return the value.

Because of the unidirectionality of the topology, future searches for the same
key are likely to hit cached entries before querying the closest node. During times
of high popularity for a certain key, the system might end up caching it at many
nodes. To avoid “over-caching,” we make the expiration time of a (key,value)
pair in any node’s database exponentially inversely proportional to the number
of nodes between the current node and the node whose ID is closest to the key
ID.2 While simple LRU eviction would result in a similar lifetime distribution,
there is no natural way of choosing the cache size, since nodes have no a priori
knowledge of how many values the system will store.

Buckets are generally kept fresh by the traffic of requests traveling through
nodes. To handle pathological cases in which there are no lookups for a particular
ID range, each node refreshes any bucket to which it has not performed a node
lookup in the past hour. Refreshing means picking a random ID in the bucket’s
range and performing a node search for that ID.

To join the network, a node u must have a contact to an already participating
node w. u inserts w into the appropriate k-bucket. u then performs a node lookup
for its own node ID. Finally, u refreshes all k-buckets further away than its closest
neighbor. During the refreshes, u both populates its own k-buckets and inserts
itself into other nodes’ k-buckets as necessary.

2.4 Routing table

Kademlia’s basic routing table structure is fairly straight-forward given the pro-
tocol, though a slight subtlety is needed to handle highly unbalanced trees. The
routing table is a binary tree whose leaves are k-buckets. Each k-bucket contains
nodes with some common prefix of their IDs. The prefix is the k-bucket’s posi-
tion in the binary tree. Thus, each k-bucket covers some range of the ID space,
and together the k-buckets cover the entire 160-bit ID space with no overlap.

Nodes in the routing tree are allocated dynamically, as needed. Figure 4
illustrates the process. Initially, a node u’s routing tree has a single node—
one k-bucket covering the entire ID space. When u learns of a new contact, it
attempts to insert the contact in the appropriate k-bucket. If that bucket is
not full, the new contact is simply inserted. Otherwise, if the k-bucket’s range
includes u’s own node ID, then the bucket is split into two new buckets, the
old contents divided between the two, and the insertion attempt repeated. If a
k-bucket with a different range is full, the new contact is simply dropped.

One complication arises in highly unbalanced trees. Suppose node u joins
the system and is the only node whose ID begins 000. Suppose further that the

2 This number can be inferred from the bucket structure of the current node.

Routing table for a node whose ID is 00..00

11..11 Space of 160-bit ID numbers 00...00

Fig. 4: Evolution of a routing table over time. Initially, a node has a single
k-bucket, as shown in the top routing table. As the k-buckets fill, the bucket
whose range covers the node’s ID repeatedly splits into two k buckets.

system already has more than k nodes with prefix 001. Every node with prefix
001 would have an empty k-bucket into which u should be inserted, yet w’s bucket
refresh would only notify & of the nodes. To avoid this problem, Kademlia nodes
keep all valid contacts in a subtree of size at least k nodes, even if this requires
splitting buckets in which the node’s own ID does not reside. Figure 5 illustrates
these additional splits. When u refreshes the split buckets, all nodes with prefix
001 will learn about it.

2.5 Efficient key re-publishing

To ensure the persistence of key-value pairs, nodes must periodically republish
keys. Otherwise, two phenomena may cause lookups for valid keys to fail. First,
some of the k nodes that initially get a key-value pair when it is published may
leave the network. Second, new nodes may join the network with IDs closer to
some published key than the nodes on which the key-value pair was originally
published. In both cases, the nodes with a key-value pair must republish it so as
once again to ensure it is available on the k£ nodes closest to the key.

To compensate for nodes leaving the network, Kademlia republishes each
key-value pair once an hour. A naive implementation of this strategy would
require many messages—each of up to k nodes storing a key-value pair would
perform a node lookup followed by £ — 1 STORE RPCs every hour. Fortunately,
the republishing process can be heavily optimized. First, when a node receives a
STORE RPC for a given key-value pair, it assumes the RPC was also issued to the

Relaxed routing table for a node whose ID is 00..00

Space of 160—-bit numbers (used for nodelDs and keys) 00..00
1 0

11.11

Fig. 5: This figure examplifies the relaxed routing table of a node whose
ID is 00...00. The relaxed table may have small (expected constant size)
irregularities in its branching in order to make sure it knows all contacts in
the smallest subtree around the node that has at least k£ contacts.

other k — 1 closest nodes, and thus the recipient will not republish the key-value
pair in the next hour. This ensures that as long as republication intervals are not
exactly synchronized, only one node will republish a given key-value pair every
hour.

A second optimization avoids performing node lookups before republishing
keys. As described in Section 2.4, to handle unbalanced trees, nodes split k-
buckets as required to ensure they have complete knowledge of a surrounding
subtree with at least k nodes. If, before republishing key-value pairs, a node u
refreshes all k-buckets in this subtree of k nodes, it will automatically be able
to figure out the k closest nodes to a given key. These bucket refreshes can be
amortized over the republication of many keys.

To see why a node lookup is unnecessary after u refreshes buckets in the sub-
tree of size > k, it is necessary to consider two cases. If the key being republished
falls in the ID range of the subtree, then since the subtree is of size at least k
and u has complete knowledge of the subtree, clearly v must know the k closest
nodes to the key. If, on the other hand, the key lies outside the subtree, yet u
was one of the k closest nodes to the key, it must follow that u’s k-buckets for
intervals closer to the key than the subtree all have fewer than & entries. Hence,
u will know all nodes in these k-buckets, which together with knowledge of the
subtree will include the k closest nodes to the key.

When a new node joins the system, it must store any key-value pair to
which it is one of the k closest. Existing nodes, by similarly exploiting complete
knowledge of their surrounding subtrees, will know which key-value pairs the
new node should store. Any node learning of a new node therefore issues STORE
RPCs to transfer relevant key-value pairs to the new node. To avoid redundant
STORE RPCs, however, a node only transfers a key-value pair if it’s own ID is
closer to the key than are the IDs of other nodes.

3 Sketch of proof

To demonstrate proper function of our system, we need to prove that most
operations take [logn] + ¢ time for some small constant ¢, and that a (key,value)
lookup returns a key stored in the system with overwhelming probability.

We start with some definitions. For a k-bucket covering the distance range
[2¢,21+1), define the index of the bucket to be i. Define the depth, h, of a node
to be 160 — i, where 7 is the smallest index of a non-empty bucket. Define node
y’s bucket height in node z to be the index of the bucket into which z would
insert y minus the index of z’s least significant empty bucket. Because node
IDs are randomly chosen, it follows that highly non-uniform distributions are
unlikely. Thus with overwhelming probability the height of a any given node will
be within a constant of logn for a system with n nodes. Moreover, the bucket
height of the closest node to an ID in the kth-closest node will likely be within
a constant of log k.

Our next step will be to assume the invariant that every k-bucket of every
node contains at least one contact if a node exists in the appropriate range.
Given this assumption, we show that the node lookup procedure is correct and
takes logarithmic time. Suppose the closest node to the target ID has depth h. If
none of this node’s h most significant k-buckets is empty, the lookup procedure
will find a node half as close (or rather whose distance is one bit shorter) in
each step, and thus turn up the node in h — logk steps. If one of the node’s
k-buckets is empty, it could be the case that the target node resides in the range
of the empty bucket. In this case, the final steps will not decrease the distance
by half. However, the search will proceed exactly as though the bit in the key
corresponding to the empty bucket had been flipped. Thus, the lookup algorithm
will always return the closest node in h — log k steps. Moreover, once the closest
node is found, the concurrency switches from « to k. The number of steps to
find the remaining k — 1 closest nodes can be no more than the bucket height
of the closest node in the kth-closest node, which is unlikely to be more than a
constant plus log k.

To prove the correctness of the invariant, first consider the effects of bucket
refreshing if the invariant holds. After being refreshed, a bucket will either con-
tain k valid nodes or else contain every node in its range if fewer than k exist.
(This follows from the correctness of the node lookup procedure.) New nodes
that join will also be inserted into any buckets that are not full. Thus, the only
way to violate the invariant is for there to exist £+ 1 or more nodes in the range
of a particular bucket, and for the k actually contained in the bucket all to fail
with no intervening lookups or refreshes. However, k was precisely chosen for the
probability of simultaneous failure within an hour (the maximum refresh time)
to be small.

In practice, the probability of failure is much smaller than the probability of
k nodes leaving within an hour, as every incoming or outgoing request updates
nodes’ buckets. This results from the symmetry of the XOR metric, because the
IDs of the nodes with which a given node communicates during an incoming

or outgoing request are distributed exactly compatibly with the node’s bucket
ranges.

Moreover, even if the invariant does fail for a single bucket in a single node,
this will only affect running time (by adding a hop to some lookups), not cor-
rectness of node lookups. For a lookup to fail, £ nodes on a lookup path must
each lose k nodes in the same bucket with no intervening lookups or refreshes.
If the different nodes’ buckets have no overlap, this happens with probability
2k, Otherwise, nodes appearing in multiple other nodes’ buckets will likely
have longer uptimes and thus lower probability of failure.

Now we consider a (key,value) pair’s recovery. When a (key,value) pair is
published, it is populated at the k nodes, closest to the key. It is also re-published
every hour. Since even new nodes (the least reliable) have probability 1/2 of
lasting one hour, after one hour the (key,value) pair will still be present on one
of the k nodes closest to the key with probability 1 — 2~*. This property is not
violated by the insertion of new nodes that are close to the key, because as soon
as such nodes are inserted, they contact their closest nodes in order to fill their
buckets and thereby receive any nearby (key,value) pairs they should store. Of
course, if the k closest nodes to a key fail and the (key,value) pair has not been
cached elsewhere, Kademlia will fail to store the pair and therefore lose the key.

4 TImplementation notes

In this section, we describe two important techniques we used to improve the
performance of the Kademlia implementation.

4.1 Optimized contact accounting

The basic desired property of k-buckets is to provide LRU checking and evic-
tion of invalid contacts without dropping any valid contacts. As described in
Section 2.2, if a k-bucket is full, it requires sending a PING RPC every time
a message is received from an unknown node in the bucket’s range. The PING
checks to see if the least-recently used contact in the k-bucket is still valid. If
it isn’t, the new contact replaces the old one. Unfortunately, the algorithm as
described would require a large number of network messages for these PINGs.

To reduce traffic, Kademlia delays probing contacts until it has useful mes-
sages to send them. When a Kademlia node receives an RPC from an unknown
contact and the k-bucket for that contact is already full with k entries, the node
places the new contact in a replacement cache of nodes eligible to replace stale
k-bucket entries. The next time the node queries contacts in the k-bucket, any
unresponsive ones can be evicted and replaced with entries in the replacement
cache. The replacement cache is kept sorted by time last seen, with the most
recently seen entry having the highest priority as a replacement candidate.

A related problem is that because Kademlia uses UDP, valid contacts will
sometimes fail to respond when network packets are dropped. Since packet loss
often indicates network congestion, Kademlia locks unresponsive contacts and

avoids sending them any further RPCs for an exponentially increasing backoff
interval. Because at most stages Kademlia’s lookup only needs to hear from one
of k nodes, the system typically does not retransmit dropped RPCs to the same
node.

When a contact fails to respond to 5 RPCs in a row, it is considered stale.
If a k-bucket is not full or its replacement cache is empty, Kademlia merely
flags stale contacts rather than remove them. This ensures, among other things,
that if a node’s own network connection goes down teporarily, the node won’t
completely void all of its k-buckets.

4.2 Accelerated lookups

Another optimization in the implementation is to achieve fewer hops per lookup
by increasing the routing table size. Conceptually, this is done by considering
IDs b bits at a time instead of just one bit at a time. As previously described, the
expected number of hops per lookup is log, n. By increasing the routing table’s
size to an expected 2°log,. n k-buckets, we can reduce the number of expected
hops to logys n.

Section 2.4 describes how a Kademlia node splits a k-bucket when the bucket
is full and its range includes the node’s own ID. The implementation, however,
also splits ranges not containing the node’s ID, up to b — 1 levels. If b = 2, for
instance, the half of the ID space not containing the node’s ID gets split once
(into two ranges); if b = 3, it gets split at two levels into a maximum of four
ranges, etc. The general splitting rule is that a node splits a full k-bucket if the
bucket’s range contains the node’s own ID or the depth d of the k-bucket in the
routing tree satisfies d Z 0 (mod b). (The depth is just the length of the prefix
shared by all nodes in the k-bucket’s range.) The current implementation uses
b=5.

Though XOR-based routing resembles the first stage routing algorithms of
Pastry [1], Tapestry [2], and Plaxton’s distributed search algorithm [3], all three
become more complicated when generalized to b > 1. Without the XOR topology,
there is a need for an additional algorithmic structure for discovering the target
within the nodes that share the same prefix but differ in the next b-bit digit.
All three algorithms resolve this problem in different ways, each with its own
drawbacks; they all require secondary routing tables of size O(2°) in addition to
the main tables of size O(2° log,s n). This increases the cost of bootstrapping and
maintenance, complicates the protocols, and for Pastry and Tapestry complicates
or prevents a formal analysis of correctness and consistency. Plaxton has a proof,
but the system is less geared for highly fault-prone environments like peer-to-
peer networks.

5 Summary

With its novel XOR-based metric topology, Kademlia is the first peer-to-peer
system to combine provable consistency and performance, latency-minimizing

routing, and a symmetric, unidirectional topology. Kademlia furthermore intro-
duces a concurrency parameter, «, that lets people trade a constant factor in
bandwidth for asynchronous lowest-latency hop selection and delay-free fault re-
covery. Finally, Kademlia is the first peer-to-peer system to exploit the fact that
node failures are inversely related to uptime.

References

1. A. Rowstron and P. Druschel. Pastry: Scalable, distributed object location and
routing for large-scale peer-to-peer systems. Accepted for Middleware, 2001, 2001.
http://research.microsoft.com/~antr/pastry/.

2. Ben Y. Zhao, John Kubiatowicz, and Anthony Joseph. Tapestry: an infrastructure
for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-
1141, U.C. Berkeley, April 2001.

3. Andréa W. Richa C. Greg Plaxton, Rajmohan Rajaraman. Accessing nearby copies
of replicated objects in a distributed environment. In Proceedings of the ACM SPAA,
pages 311-320, June 1997.

4. Stefan Saroiu, P. Krishna Gummadi and Steven D. Gribble. A Measurement Study
of Peer-to-Peer File Sharing Systems. Technical Report UW-CSE-01-06-02, Univer-
sity of Washington, Department of Computer Science and Engineering, July 2001.

5. Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrish-
nan. Chord: A scalable peer-to-peer lookup service for internet applications. In
Proceedings of the ACM SIGCOMM 01 Conference, San Diego, California, August
2001.

