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Abstract 1. Introduction

Authentication is a well-studied area of classical cryp- Until recently, the expression “quantum cryptogra-
tography: a sendesd and a receivei3 sharing a classi- v~ referred mostly to quantum key distribution pro-
cal secret key want to exchange a classical message withqcq|g [3]. However, these words now refer to a larger
the guarantee that the message has not been modified 0gqt o problems. While QKD and many other quan-
replaced by a dishonest party with control of the commu- ym protocols attempt to provide improved security for
nication line. In this paper we study the authentication 55ks involving classical information, an emerging area
of messages composedjolantium states of quantum cryptography attempts instead to create se-
We give a formal definition of authentication in the ¢ re protocols for tasks involvinguantuminformation.

guantum setting. Assuming and 3 have access to an

One standard cryptographic task is thehenticatiorof

insecure quantum channel and share a secret, ClaSSicalmessagesA transmits some information t8 over an

random key, we provide aon-interactivescheme that
enablesA to both encrypt and authenticate am qubit
message by encoding it inte + s qubits, where the

insecure channel, and they wish to be sure that it has
not been tampered withn route When the message is
classical, and4 and B share a random secret key, this

error probability decreases exponentially in the security problem can be solved by, for instance, the Wegman-
parameters. The scheme requires a secret key of size carter scheme [7]. In this paper, we discuss the analo-

2m + O(s). To achieve this, we give a highly efficient
protocol for testing the purity of shared EPR pairs.
It has long been known that learning information

about a general quantum state will necessarily disturb it.

gous question for quantum messages.

If we assume4 andB share a secrefuantumkey in
the form ofm EPR pairs, and a secret classical key, there
is a straightforward solution to the problerd:teleports

We refine this result to show that such a disturbance can her message 6, authenticating them classical bits
be done with few side effects, allowing it to circumvent yangmitted in the quantum teleportation protocol [4]. If

cryptographic protections. Consequently,

any scheme 0 4 andB initially share only a classical key, however, the

authenticate quantum messages must also encrypt themMygy is more difficult. We start with a simple approach:

In contrast, no such constraint exists classically.

first distribute EPR pairs (which might get corrupted in

This reasoning has two important consequences: It {ansit) and then use entanglement purification [5] to es-

allows us to give a lower bound @fn key bits for au-
thenticatingm qubits, which makes our protocol asymp-
totically optimal. Moreover, we use it to show that digi-
tally signing quantum states is impossible.

Keywords. Authentication, quantum information.

* CCS-3 Group, Los Alamos National Laboratories, Los Alamos,

New Mexico 87554 USA. e-maibarnum@Ilanl.gov

T School of Computer Science, McGill University, Mogal (Qc),
Canada H3A 2A7. e-maiktrepeau@cs.mcgill.ca

¥ UC Berkeley, EECS: Computer Science Division, Berkeley,
CA 94720, USA. e-mail: gottesma@eecs.berkeley.edu
Supported by the Clay Mathematics Institute.

§ M.L.T., Lab. for Computer Science, Cambridge MA 02139, USA.
e-mail: asmith@theory.Ics.mit.edu . Supported in part by
U.S. Army Research Office Grant DAAD19-00-1-0177.

9 Département IRO, Univeréit de Monteal, Montéal (Qc),
Canada H3C 3J7. e-mathppa@iro.umontreal.ca

tablish clean pairs for teleportation. However, we do not
need entanglemergurification, which produces good
EPR pairs even if the channel is noisy; instead we only
need apurity testing protocql which checks that EPR
pairs are correct, but does not repair erroneous ones.
Unfortunately, any such protocol will have to be in-
teractive, sinced must first send some qubits tband
then wait for confirmation of receipt before complet-
ing the transmission. This is unsuitable for situations
in which a message is stored and must be checked for
authenticity at a later time. Also, this interactive pro-
tocol achieves something stronger than what is required
of a quantum authentication scheme: at the end of the
purity-testing based schemkeoth .4 and B know that
the transmission was successful, whereas for authenti-
cation, we only require tha$ knows.



Contributions In this paper we studpon-interactive ble to create digital signature schemes for quantum mes-
guantum authentication schemes with classical keys.sages: any protocol which allows one recipient to read a
Our primary contributions are: message also allows him or her to modify it without risk
of detection, and therefore all potential recipients of an
authenticated message must be trustworthy (section 7).
This conclusion holds true even if we require only com-
putationally secure digital signatures. Note that this does
not in any way preclude the possibility of signiotas-
sicalmessages with or without quantum states [9].

Formal definition of authentication for quantum
states -In classical authentication, one simply limits the
probability that the adversary can ma&ry change to
the state without detection. This condition is too strin-
gent for quantum information, where we only require
high fidelity to the original state. We state our definition
in terms of the transmission of pure states (section 3). In ~ Why should we prefer a scheme with classical keys
the full version, we also show that the same definition to a scheme with entangled quantum keys? The task of
implies security for mixed or entangled states. authenticating quantum data is only useful in a scenario

Construction of efficient purity testing protocolsVe where quantum information can be reliably stored, ma-
show how to create purity-testing protocols using fam- nipulated, and transmitted over communication lines, so
ilies of quantum error-correcting codes with a particu- it would not be unreasonable to assume quantum keys.
lar covering property, namely that any Pauli error is de- However, many manipulations are easier with classical
tected by most of the codes in the family. We construct keys. Certainly, the technology for storing and manip-
an efficient such family based on projective geometry, ulating them is already available, but there are addi-

yielding a purity-testing protocol requiring oni§(s) tional advantages. Consider, for example, public key
(classical) bits of communication, whesds the secu-  cryptography; it is possible to sign and encrypt classical
rity parameter (section 4). key bits with public key systems, but signing a general

Purity-testing codes have not explicitly appeared be- quantum state is impossible. Thus, quantum keys would
fore in the literature, but have been present implicitly be unsuitable for an asymmetric quantum authentication
in earlier work, for instance [10, 12]. To prove our Scheme such as the one we describe in section 7.1.
purity-testing protocols secure, we use a “quantum-to-
classical” reduction, due to Lo and Chau [10]. Sub- 2. Preliminaries
sequently to our work, Ambainis, Smith, and Yang [2]

used our construction in a study of more general entan-c|assical Authentication In the classical setting, an

glement extrgcuon proce_dures. , . authentication scheme is defined by a pair of functions

Construction of non-interactive quantum authenti- 4. - v ondB - KxC — M x {valid, invalid}
F:atlon s_,chemeSQ(As) — We show that a secure nON- " sych that for any messagee M and keyk € K we
interactive QAS can be constructed from any purity- havecompleteness

testing protocol derived, as above, fropeEccs (sec-
tion 5). In parti_cular, for our fgmily of c_:odes, we obtain By (Ar(p)) = (u, valid)
an authentication scheme which requires sending s
qubits, and consumingm + O(s) bits of classical key  and that for any oppone, we havesoundness
for a message af: qubits. The proof techniques in the
Shor and Preskill paper [12] serve as inspiration for the Prob{ B, (O(Ax(x))) € {(u',valid), " # u}}
transformation from an interactive purity-testing proto- >1— 2790
col to a non-interactiveAs. B
A relation between encryption and authentication — wheret = lg#C — lg#M is the security parameter
One feature of our authentication protocol is that it com- creating the tradeoff between the expansion of the mes-
pletely encrypts the quantum message being sent. Wesages and the security level. Note that we only consider
show that this is necessary any QAs(section 6), in information-theoretically secure schemes, not schemes
striking contrast to the situation for classical informa- that are based on computational assumptions.
tion, where common authentication schemes leave the Wegman and Carter [7] introduced several construc-
message completely intelligible. It therefore follows tions for such schemes; their most efficient uses keys
that any authentication protocol for asrqubit message  of size only4(t + lglgm)lgm and achieves security
must use nearlgm bits of classical key, enough to en- 1 — 27t+2, This compares rather well to the known
crypt the message. The protocol we present approachesower bound oft + lgm — lgt for such a result [7].
this bound asymptotically. The same work also introduced a technique to re-use an
Impossibility of digitally signing quantum states — authentication function several times by using one-time-
Since authentication requires encryption, it is impossi- pad encryption on the tag, so that an opponent cannot



learnanythingabout the particular key being used dy
andB. Thus, at a marginal cost of ontysecret key bits
per authentication, the confidentiality of the authentica-
tion functionh is guaranteed and thus may be re-used (a
polynomial number of times).

For the remainder of this paper, we assume the reade
is familiar with the basic notions and notation of quan-
tum computing (see textbooks such as [11]).

Quantum Stabilizer Codes A quantum error-
correcting code (QECC) is a way of encoding quantum
data (sayn qubits) inton qubits ¢n < n). Usually the
goal in the construction of codes is give it the ability to
correct errors on as many qubits as possible. However
in this paper, we use the theory developed for those
purposes to construct families of codes with a slightly
different type of property. For now, we review the

r;l_

Undetectable errors We can classify errors which lie
in E into three categories: The errors corresponding to
elements of) are not truly errors—they leave the code-
words unchanged. Errors which fail to commute with
some element of) move codewords into a subspace or-
thogonal to the code, so can be detected by the QECC.
he remaining errors, those which commute with all el-
ements inS but are not themselves ifi, are the unde-
tectable errors of the code. Thus@f- is the space of
vectorsy for which B(z,y) = 0 for all z € @, the set

of undetectable errors is jugt- — Q.

Purification and purity testing Quantum error-
correcting codes may be used @artanglement purifica-

'tion ([5]). In this setting,4 andB share some Bell states

(say|®*) = |00) 4 |11)) which have been corrupted by
transmission through a noisy quantum channel. They
want a protocol which processes these imperfect EPR

necessary theory on a very general class of codes know’bairs and produces a smaller number of higher-quality

asstabilizer codes

A basis for the set of all operators on a qubit is the
“Pauli” error basis, defined vi&,, = X*Z°, where
<Z|X‘]> = 5i7j+11 <’L‘Z‘]> = (—1)"6,»7j . We define the
error groupE' to be the tensor product of copies of
the single-qubit error groufp(—1)¢E,;}. Each element
of E corresponds to @n-dimensional vector, and the
vectorsz = (a|b), y = (a’|b’) come from commuting
operators iff their symplectic inner product is 0Za:
E,E,=FE/E, <= B(z,y)=4a -b+a-b =0.

o 1

A stabilizer codes a QECC given by an Abelian sub-
group S of E which does not contain any multiples of
the identity other thard itself. S can be described by
the set of2n-dimensional vectors such thatt, € S.
This will be a subspace df3". Moreover, it will be
totally isotropig i.e. B(z,y) = 0 for all z, y in the sub-
space. If we take a set of generators fHrwe can di-
vide Hilbert space into a set of equidimensional orthog-
onal subspaces. Each such sp&asonsists of common
eigenvectors of all operators Sfhaving a fixed pattern
of eigenvalues, unique t6. The space with all eigen-
values+1 is the “code space,” its elements are “code-
words,” and the orthogonal spaces are labelled by “syn-
dromes.”

Note that one can also view(-,-) as a symplectic
form overG F(2%"), by choosing a set of generators for
GF(2°") as a vector space ovér. By choosing dif-
ferent sets of generators f6tF(22") as a vector space
over Zs, we can get different symplectic forni3(, -)
over this finite vector space. By judicious choice of the
generators, one can mak¥-, -) correspond t@anynon-
degenerate symplectic form oveir’(22").

pairs. We assume thad and B have access to an au-
thenticated, public classical channel. At the end of the
protocol, they either accept or reject based on any incon-
sistencies they have observed. As longdaand B have

a noticeable probability of accepting, then conditioned
on accepting, the state they share should have fidelity
almost 1 to the pure stat@*)®™. Moreover, small
amounts of noise in their initial shared state should not
cause failure of the protocol.

Stabilizer codes can be particularly useful for purifi-
cation because of the following observation: for any sta-
bilizer code@), if we measure the syndrome of one half
of a set of Bell stategd*)®" and obtain the resul,
then the result is the stat@™)®™, with each of its two
halves encoded in the coset with syndrome(More-
over, in this case the distribution gnis uniform.) If
the original state is erroneoud, and B will likely find
different syndromes, which will differ by the syndrome
associated with the actual error.

Most purification protocols based on stabilizer codes
require efficient error correction; we measure the syn-
drome, and use that information to efficiently restore
the encoded state. However, one can imagine a weaker
task in which.A andB only want totesttheir EPR pairs
for purity, i.e. they want a guarantee that if their pairs
pass the test, their shared state will probably be close to
|®T)Y®™ In that case, we can use the code for error de-
tection, not correction, and need only be able to encode
and decode efficiently from the spaQe

Encryption of Quantum Messages A useful ingredi-
ent for much recent work in quantum cryptography is
the concept of quantum teleportation, put forward by
Bennett et al [4]. AfterA and B have shared a singlet



state,.A can later secretly send a single qubit in an ar- two systems: an-qubit message statd/, and a

bitrary quantum state to B by measuring her half of single qubitV which indicates acceptance or re-
the singlet state together with her statan the Bell ba- jection. The classical basis statesdfare called
sis to get two classical bits, b;. As a result,3’s half |acc), |REJ) by convention.

of the singlet state will become one of four possibilities ] ]
o = aboabi patigb. If A sendshy, by, thenB can eas- For any fixed key:, we denote the corresponding super-

ily recoverp. operators byA; and By,.

Now without the bitsby, b1, the statey’ reveals no
00 1 NA Note thatB may well have measured the qubitto

information aboup. Thus, one can turn this into an en- heth tthe t o ted
cryption scheme which uses only a classical key: after see whether or not the fransmission was accepted or re-

A'andB have secretly shared two classical bitsy, A jected. .None.thelless: we think Bfas a qubit r'ather thap
can later secretly send a single qubit in an arbitrary quan-2 classical bit since it will aIIovy us to de;crlbe the joint
tum statep to B by sending a qubit in stat€ as above. state of the two systenjb;{, v W'th. a density matrix.

This is called a quantum one-time pad (QOTP). This There are two conditions which should be met by a

scheme is optimal [1]: any quantum encryption must use quantum autheptlcatlon_protocol. O_n the one hand, in
2 bits of classical key for every transmitted qubit. the absence of intervention, the received state should be

the same as the initial state aficshould accept.

On the other hand, we want that when the adversary
does intervene3’s output systems have high fidelity to
the statement “eitheBrejects or his received state is the
same as that sent b§". One difficulty with this is that
it is not clear what is meant by “the same state” when
A’s input is a mixed state. It turns out that it is sufficient
to define security in terms of pure states; one can deduce
an appropriate statement about fidelity of mixed states.
S IVHIR TR i Given a pure statg)) € H,y, consider the following
Qf course, this mformgl definition is impossible t0 o5t on the joint system, V: output a 1 if the firstn
attain. The adversary might always replads trans- g hits are in stat@)) or if the last qubit is in statéred)

mitted message with a completely mixed state. There ,inenyise, output a 0). The projectors corresponding to
would be a small probability thdt would accept, andin  his measurement are

that case the fidelity of the received state4( initial

state would be very low. o p1|“/’> = W)W ®Iy + Iy ®|RE)(RE]
The problem comes from conditioning &s accep- — 1) ()| ® |REH(REY

tance of the received state; this causes trouble if the

adversary's a priori chances of cheating are high. A Py = (In — [¥)(¢]) @ (|]acc)(acc])

more reasonable definition requires a tradeoff between o

B's chances of accepting, and the expected fidelity of e want that for all possible input states) and for all

the received system td’s initial state given his accep- possible interventions by the adversary, the expected fi-

tance: asi's chance of accepting increases, so should delity of B's output to the space defined " is high.

the expected fidelity. This is captured in the following definition of security.
There is no reason to use the languages of both prob- ) )

ability and fidelity here: for classical tests, fidelity and Definition 2 AQAsis secure with errok for a state|s))

probability of acceptance coincide. With this in mind If it satisfies:

we first define what constitutes a quantum authentica- COmpleteness: For all keys k& € K.

tion scheme, and then give a definition of security: Br(Ar([v)(¥]) = [¥)(¢] ® |acc)(Acc|
Soundness¥or all super-operators), let pg., be

Definition 1 A quantum authentication schef@as)is  the state output b when the adversary’s interventibn
a pair of polynomial time quantum algorithrasand B is characterized by, that is:

together with a set o€lassicakeys/C such that:

3. Quantum Authentication

At an intuitive level, a quantum authentication
scheme is a keyed system which allowlsto send a
statep to 5 with a guarantee: iB accepts the received
state as “good”, the fidelity of that statesas almost 1.
Moreover, if the adversary makes no chandgshould
always accept, and the fidelity should be exactly 1.

o Atakes as input am-qubit message systet and pBob = Ej [Bk(O(Ak(WMwD))}
a keyk € K and outputs a transmitted systénof 1
m + t qubits. = EZBk(O(Ak(\WWI)))
e B takes as input the (possibly altered) transmitted F
systenil” and a classical key € K and outputs 1we make no assumptions on the running time of the adversary.



where “ E;” means the expectation whénis chosen
uniformly at random fromiC. The QAS has soundness
error e for |¢) if:

Tr (lepBob) >1—¢

A QAS is secure with errok if it is secure with errore
for all states|«)).

Note that our definition of completeness assumes that

the channel connecting to 3 is noiseless in the absence
of the adversary’s intervention. This is in fact not a sig-
nificant problem, as we can simulate a noiseless channe
using standard quantum error correction.

Interactive protocols In the previous section, we

The obvious way of constructing a purity testing pro-
tocol 7 is to start with a purity testing cod&), }. When
A and B are given the statp, A chooses a random
k € K and tells it to3. They both measure the syn-
drome of @, and compare. If the syndromes are the
same, they accept and perform the decoding procedure
for Qy; otherwise they reject.

Proposition 1 If the purity testing cod¢@ } has error
¢, thenT is a purity testing protocol with erro.

Proof: If A andB are givenn EPR pairs, this proce-
l:iure will always accept, and the output will always be
|®+T)Y®™ Thus,7 satisfies the completeness condition.
Suppose for the moment that the input statfis ®
N|®*t)®" for E, € E, x # 0. Then wherk is chosen

dealt only with non-interactive quantum authentication at random, there is only probabilitythat z € Qr —
schemes, since that is both the most natural notion, andg), . |f ¢ Qi-, then.A and B will find different error

the one we achieve in this paper. However, there is no
reason to rule out interactive protocols. The definitions

syndromes, and therefore reject the statez ¥ Qi ,
then. A and 5 will accept the state, but if € Qy, then

of completeness and soundness extend naturally: as bethe output state will b¢d+)®™. Thus, the probability

fore, B’s final output is a pair of system&/, ', where
the state space df is spanned byacc), [REJ). In that
casepp.p IS B’s density matrix at the end of the proto-

that.A andB accept an incorrect state is at mest
To prove the soundness condition, we can use
this fact and a technique of Lo and Chau [10]. The

col, averaged over all possible choices of shared secrektates(E, @ I)|®+)®" form the Bell basis for the
key and executions of the protocol. The soundness erroryjlpert space of4 and B. Suppose a nonlocal third

is €, whereTr (Pl"”pgob) >1—ce.

4. Purity Testing Codes

Animportant tool in our proof is the notion ofaurity
testing codewhich is a way for4 andB to ensure that
they share (almost) perfect EPR pairs. We shall concen-
trate on purity testing codes based on stabilizer QECCs.

Definition 3 A stabilizer purity testing code (SPTC)
with error e is a set of stabilizer codeg)y }, for k € K,
suchthat E, € E withx # 0, #{k|z € Q} — Qi} <
(#K)e.

That is, for any error: in the error group, i is cho-
sen later at random, the probability that the cqilede-
tectsz is at leasfl — e.

Definition 4 A purity testing protocol with errok is

a superoperator7 which can be implemented with lo-
cal operations and classical communication, and which
maps2n qubits (half held by4 and half held by’3) to
2m+1 qubits and satisfies the following two conditions:

CompletenessT (|¢+)®") = [®T)®™ @ |acC)
Soundnessiet P be the projection on the subspace
spanned by®™)®™ @ |acc) and |¢)) @ |REJ) for

all |¢). ThenT satisfies the soundness condition if
forall p, Tr (P7 (p)) > 1—ce.

party first measured the input staién the Bell basis;

call this measuremenB. Then the argument of the
previous paragraph would apply to show the soundness
condition. In fact, it would be sufficient il and5 used

the nonlocal measuremenfyl;, ® Q) which compares
the Q-syndromes for.4 and Bwithout measuring
them precisely. This is a submeasurement of the
Bell measuremenB — that is, it gives no additional
information about the state. Therefore it commutes with
B, so the sequencg followed by Q. ® Q) is the same
as@Qy ® Qy followed by B, which gives probability at
leastl — ¢ of success for general input stajesBut if

the state afte@);, ® Qx gives, from a Bell measurement,
|®+)Y®™ or |REJ with probability 1 — ¢, then the state
itself must have fidelityl — ¢ to the projectionP.
Thus, the measuremel, ® Qr without B satisfies
the soundness condition. Moreovet,and 5’s actual
procedure7 is a refinement of), ® Q,—that is, it
gathers strictly more information. Thus, it also satisfies
the soundness condition, aril is a purity testing
protocol with errofe. O

An Efficient Purity Testing Code Now we give an
example of a particularly efficient purity testing code.
To do so, we apply the techniques of stabilizer quantum
error-correcting codes. We build a set of codgseach
encodingm = (r — 1)s qubits inn = rs qubits, and



show that the),, form a SPTC. (Note that the construc-
tion below works for registers with dimension equal to
any prime power.) Using qubits in groups ofallows
us to view our field7F'(2%7¢) as both &r-dimensional
vector space over I'(2°) and a2rs-dimensional binary

vector space. We need a symplectic form that is compat-

ible with this decomposition. One possibility is

B(z,y) = Tr (xy*), )

2rs—1
%

whereTr(z) ‘o1 2% is the standard trace func-
tion, which maps= F(22"¢) onto GF'(2).

We consider anormal rational curvein PG(2r —
1,2#%) (the projective geometry whose points are the 1-
d subspaces of ther-dimensional vector space over
GF(29)). (See, e.g., the excellent introductory text [6].)
Such a curve is given by:

Y={[1:y:9*: 9" yc GF(2°)}
U{[0:0:0:---:1]}

Thus, there are@® + 1 points on the curve.

Since each “point” of this curve is actually a one-
dimensional subspace ovétF'(2°), it can also be con-
sidered as am-dimensional binary subspacg; in a
vector space of dimensidrs = 2n. We show that)y,
is totally isotropic with respect to the symplectic inner
product (2), and encodes = n — s qubits inn qubits.

Theorem 2 The set of codeQ,, form a SPTC with error

2r
25 +1°

®)

€ =

Each@j, encodesn = (r —1)s qubits inn = rs qubits.

Proof: We must show (a) tha),, is totally isotropic, and
(b) that the error probability is at most

(a) Follows from a straightforward calculation.

(b) We must find, for an arbitrary erréf,, (which can
be described via an-dimensionalG F'(¢q) vectorz), an
upper bound on the number@f- — Q. it can belong to.
It will be sufficient to bound the number &f;- the er-
ror can belong to, sinc)y| is small compared t@Q; |
in our context. x € Q; meansB(z,y) = 0 for all
y € Q. By choice ofs linearly independeny € Qy
this imposes linearly independent linear equations on
2. We will show below that if we take arBr codesQy,
defined by points o, and takes independent vectors
from each, the resulting set 8f s vectors is linearly in-
dependent. Thus iF, is undetectable i8r such codes,
this imposes the dimension’s worttr) of linearly in-
dependent equations an ConsequentlyF, must be
detectable in all the remaining codes, i8,,can satisfy
x € Q; for at most2r values ofk, when@,, are chosen

among the;® + 1 availables-dimensional spaces corre-
sponding to points off'. Thus, the{Q;} form a purity
testing code with error

2r
e < .
¢ +1

(4)

We now show the claimed property of codes defined
by T. A set of points in a projective geometry of
dimensiond — 1 are said to be in general position if
any d (= dimension of the underlying vector space,
when, as in our case, such exists) of them are linearly
independent. The points on the normal rational curve
T are in general position, and indeed a maximal set
of such points. (To verify that they are in general
position one shows that for ary- points on the curve,
the determinant of the matrix of their coordinates is
nonzero; these are Vandermonde determinants.) That
is, any2r points onY are linearly independent. Each
point k£ on Y corresponds to as-dimensional codé€)y,
consisting of2rs-dimensional vectors. Let be any
nonzero element af),. As « ranges ovetZF(¢*), az
ranges over all vectors iQ;. Thus, if any vector from
Qy is a linear combination of vectors from other codes
{Q;}, than all of Q; is also a linear combination of
vectors from{Q,}, andk is linearly dependent on the
points{j} of Y. So if we take any2r codesQy, and
take s independent vectors from each, the resulting set
of 2rs vectors is linearly independent. |

Note that the above efficient SPTC also yields a cor-
responding efficient QKD protocol.

5. Protocols

In this section we describe a secure non-interactive
guantum authentication scheme (Protocol 5.2) which
satisfies the definition of section 3.

In order to prove our scheme secure, we begin with a
purity testing protocol as per Section 4 (summarized as
Protocol 5.1). The security of this protocol follows from
Prop. 1. We then perform several transformations to the
protocol that strictly preserve its security and goals but
which remove the interaction, replacing it with a shared
secret key. We thus obtain two less interactive interme-
diate protocols and a final protocol (Protocol 5.2), which
is completely non-interactive. The transformations are
similar in flavor to those of Shor and Preskill [12], who
use the technique to obtain a simple proof of the secu-
rity of a completely different task, namely the BB84 [3]
guantum key exchange scheme.

Following the notation of Section 4, |&® be the
projector onto the subspace described by “eitBdras
aborted or the joint state held by andB is |®+)®™ .



Protocol 5.1 ( Purity Testing Based Protocol ) Proof: From Corollary 3 we have that Protocol 5.1 is a
secure interactive authentication protocol. We show that

1. AandB agree on some SPT{L):}. Protocol 5.2 is equivalent to Protocol 5.1, in the sense

2: A generate€n qubits in stated®™)®". A sends that any attack on Protocol 5.2 implies an equally suc-
the first half of eactid™) state toB. cessful attack on Protocol 5.1. To do so, we proceed by a
series of reductions through two intermediate protocols.
3: Bannounces that he has received thqubits. PrROTOCOL 5.1 — 1SUINT. PROTOCOL We obtain

our first intermediate protocol by observing that in pro-
tocol 5.1,4 can perform all of her operations (except for

5: A and B measure the syndrome of the stabilizer the transmissiond)eforeshe actually sends anything to

4: A picks arandonk € K, and announces it .

codeQy.. A announces her results 8 who com- B, since these actions do not depend&is feedback.
pares them to his own results. If any error is de- 1 his Will not change any of the states transmitted in the
tected B aborts. protocol or computed by, and so both completeness
and soundness will remain the same.
6: A and B decode theirn-qubit words according 1St INT. PROTOCOL — 2nd INT. PROTOCOL There
to Q. Each is left withm qubits, which together are two changes between the first and second intermedi-
should be nearly in statgh™)®™. ate protocols. First, note that measuring the first qubit

of |®*) and obtaining a random bit; is equivalent
to choosinge; at random and preparing the pure state
le;) @ |e;). Therefore, instead of preparing@™)®"
Let pap be the joint density matrix o4 andB's sys-  and measuring the syndrome of half of i, may as
tems. Then Prop. 1 states that at the end of step 6,Well choose the syndromesat random and encode both
Tr(Ppag) is exponentially close to 1in. The sound- ~ halves ofl )€™ using codey;. and the syndrome.

ness of our first protocol follows immediately: Second, rather than teleporting state 5 using the
. EPR halves which were encoded{y, s,, .A encryptsp
Corollary 3 If A and 5 are connected by an authenti- using a quantum one-time pad and sends & tirectly,

cated classical channel, then Protocol 5.1is ase@e  frther encoded inQ,. These behaviors are equivalent
teractivequantum authentication protocol, with sound-

ness error exponentially small in

7: Auses her half of®™)®™ to teleport an arbitrary
m-qubit statep to .

since either way, the encoded stateoEsaE2 pag"agl,
wheret; andi, are random-bit vectors.

Protocol 5.2 ( Non-interactive authentication ) 2nd |NT. PROTOCOL — PROTOCOL5.2: In Protocol
1: Preprocessing: A and 5 agree on some SPTC 5:2, all the random choices of are replaced with the
. . bits taken from a secret random key shared only by her
{Qx} and some secret and random binary strings and B. This eliminates the need for an authenticated
k, z, andy. . . L
classical channel, and for any interaction in the protocol.
2: A g-encryptsp as using keyr. A encodes ac- This transformation can only increase the security of
cording to Q. for the codeQ, with syndromey to the protocol as it removes the adversary’s ability to jam
produces. A sends the result t8. the classical communication. O
3: B receives the: qubits. Denote the received state If the quantum channel is noisy we can modify our
by o’. B measures the syndromé of the codeQx scheme to benefit from the error-correction capability of
on his qubits. 3 compareg to y', and aborts if any the quantum code. I8 rejects only when the number of
error is detected.3 decodes his:-qubit word ac- observed errors is too large then error correction will fix
cording toQx, obtainingr’. B g-decryptsr’ using natural noise or tampering of small amplitude.
2 and obtaingy’.

Theorem 4 When the purity testing codg);,} has er- 6. Authentication Implies Encryption

ror ¢, the protocol 5.2 is a secure quantum authenti-

cation scheme with key length(n + log,(#K)) and One notable feature of any protocol derived using

soundness erroe. In particular, for the purity testing  Theorem 4 is that the information being authenticated
code described in section 4, the authentication schemeis also completely encrypted. For classical information,

has key lengti2m + s + log,(2° + 1) < 2n + 1 and authentication and encryption can be considered com-
soundness erro2n/[s(2° + 1)], wherem is the length  pletely separately, but in this section we will show that

of the message in qubitsjs the security parameter,and quantum information is different. While quantum states

A sends a total ofi = m + s qubits. can be encrypted without any form of authentication, the



converse is not true: any scheme which guarantees au- However, in general, the adversary cannot exactly
thenticity must also encrypt the quantum state almost distinguish two states, so we must allow some proba-
perfectly. The difference can be understood as a com-bility of failure. Note that it is sufficient in general to
plementarity feature of quantum mechanics: authenti- consider two encoded pure states, since any two mixed
cating a message in one basis requires encrypting it instates can be written as ensembles of pure states, and
the complementary Fourier-transformed basis. This is the mixed states are distinguishable only if some pair of
essentially another realization of the principle that mea- pure states are. Furthermore, we might as well let the
suring data in one basis disturbs it in any complemen- two pure states be orthogonal, since if two nonorthog-
tary basis. For classical messages, therefore, encryptioronal statesiy,) and|;) are distinguishable, two basis

is not required: only one basis is relevant. In contrast, stateq0) and|1) for the space spanned hy,) and|v1 )

for quantum messages, we require authentication in allare at least as distinguishable.

bases and therefore we must also require encryption in  Due to space limitations, we outline the proof with

all bases. a sequence of lemmas, only proving the last and most
To show this, let us consider any fixed authentication difficult.

scheme. Denote by, the density matrix transmitted We first consider the case whéd) and|1) canal-

in this scheme whenl’s input is [). Let /"\(Zg denote ~ Mostperfectly be distinguished. In that case, the adver-

the density matrix for key:. sary can _chgng@) + (1) to]0) — .|1> with high (but not

perfect) fidelity (stated formally in Lemma 8). Whé)

Definition 5 An encryption scheme with error for and|1) are more similar, we first magnify the difference

guantum states hides information so thapif and p; between them by repeatedly encoding the same state in

are any two distinct encrypted states, then the trace dis- multiple copies of the authentication scheme, then apply

tanceD(po, p1) = 3 Tr |po — p1| < e. the above argument.

We claim that any goodAs must necessarily alsobe | emma 8 Suppose that there are two staté, [1)
a good encryption scheme. That is: such thatD(pjoy, pj1y) > 1 — 5. Then the scheme is

Theorem 5 (Main Lower Bound) A QAS with error ¢ note-secure forly) = |0) +[1) for anye <1 — 2.

: X : /6
Is an encryption scheme with error at metst/®. When two states can be distinguished, but only just

Corollary 6 A QAs with error e requires at least  barely, the above lemma is not sufficient. Instead, we
2m(1 — poly(e)) classical key bits. must magnify the distinguishability of the staiés and

|1) by repeating them by considering the tensor product

The proof of the corollary is quite similar to the proof  of many copies of the same state. The probability of

that2m key bits are needed to perfectly encrypt a quan- distinguishing then goes to 1 exponentially fast in the
tum message. Instead, we concentrate on Theorem 5. number of copies:

The intuition behind the proof of this main theo-
rem is that measurement disturbs quantum states, so iLemma9 Let py,p1 be  density  matrices
the adversary can learn information about the state, shewith D(py,p1) = §.  Then D(p§", p¥") >
can change the state. More precisely, if the adversary1l — 2 exp(—t§2/2).
can distinguish between two stat@$ and|1), she can
change the stat@)+|1) to |0)—|1). An extreme version We create these repeated states by encoding them in
of this fact is contained in the following proposition: an iteratedyAs consisting of copies of the originabAs

. (with independent values of the key for each copy).
Proposition 7 Suppose that there are two stafes, |1)

whose corresponding density matriges, pj1) are per- | emma 10 Suppose we iterate the schetrtémes. Let
fectly distinguishable. Then the scheme is notean |, — 75(/000...0) + [111...1)). If (4, B,K) is ane-
2 3 3 g

secureQas for anye < 1. secureQAs, then the iterated schemeli8t3e-secure for

Proof: Sincepyq), pj1y can be distinguished, they must  the statejy).
have orthogonal support, say on subspdced’;. So

consider an adversary who applies a phase shift bf Note that the proof of this lemma goes through the

conditioned on being i;. Then for allk, P|(§>)+|1> foIonvmg crucial claim, which follows from a simple
k) _ hybrid argument.

becomesb‘(OHl). Thus,B will decode the (orthogonal)

state|0) — |1). O Claim 11 (Product states) The iterated scheme ig-

secure for any product state.



Proof: For simplicity we prove the claim for the state
|000...0). The same proof works for any product pure
state (and in fact for separable states in general).
Intuitively, an adversary who modifies the state
|000...0) must change some component of the state. We

can formalize this by rewriting the project&"** ") in

terms of the individual projectorB(l)O”.
For the case = 2, B accepts only if he finds the
verification qubits for both schemes in the accept state.

P(\)oo)

(Imym, — 100)(00]) ® |ACC1){ACC,|
®|ACCs){ACCs|

((Lny = 10)00) @ Ly + Ly, @ (I

~(Timy = 10){0]) & (I — 0)(0]))

®|ACC)(ACC| ® |A002><Acc2|

— |0)0])

P ® |accy)(Accy| + PL? @ |acc: ) (Acc|
_PO|O>1 ® P0|0>2

SincePAO>1 ® PAOM is positive, for allp, we have
Te(P)* p) < Tr(PY" p) + Te(Py2p) < 2

Similarly, for larger values of we have
t
P\ooo 0 Z PAO < te

Thus the iterated schemetissecure for{000...0) (and
in fact for all product states). O

Proof (of Lemma 10):Consider the net superoperator
due to encoding, decoding, and the adversary’s interven-
tion, i.e. 0,0t = ﬁ >4 BrOaan Ay By introducing an
ancilla systemRk, we can extend this superoperator to a
linear transformation on the joint syste @ R ® V'
(whereM is the message system aWdis B’s verifica-

tion qubit). For a pure stafg)), write its image as

917wy} |ACC) + |8y ) IREY + [d)4y)[ACC)

where|d|,) is a joint state of\/ R which is orthogonal
to the subspack)) ® R.

Now consider the family of stategy;)
1000...0111...1), and let|y;) = |v}y,)) and|d;)

|614p:))-

Claim 12 Forall i =0, ..., ¢
Il < (1+V2)vEe

t—1

-1, we haVQ\%(|%+1> -

Proof: Fix i. Note that|y, ) = %(le) + ;) is a
product state (withH |0) in one position), as ig)_) =
%(WHQ — |ab;)). The image ofy, ) can be written

1
V2
+ (:41) +[0:))lacc) + <|@+1> + |8:))IRed)
= (1) g (iew) + 1) + 95 (i) — )
+%<|61-+1>+\6i>>)|Acc>+ﬁ(wmwwmme»
Now we know that||d; >H2 < te for all 7 (since|v;) is a

product state). Thuﬁ s([0i41) + [:))]] < V2te.
Moreover,|¢, ) is a product state and so we have

(i) isa) + i) ) lace)

=) 5 (|%+1> \%>)+%(I5i+1> o)l < Vie
Thus,|[[¢-) 5 (1) = )l = 115 (i) = )l <
(1+V2)Vte. O
Then by the triangle inequality,3 (]v:) — [70)) <

(1+V2)tV/te. Let|Ty) =
of [ ) =

75 ([¥r) £[10)). Theimage
75(1000...0) + [111...1)) is

(12405 (he) + hod) + 125 () — o))

(15 +180)) ) IACC) + = (1) + |60)) [RE

V2 V2

Now the trace of this state Witﬁé\l’+> is the square of

1% () (160 + 160) |

7z
1195 ) = o)l + (15} + a1
(1+ V2)t\/te + V2te

where in the last line, we have assumed 2. That is,
the iterated scheme i$)t3¢-secure fof W ). O

170)) +

IN

<
<

Putting the various lemmas together, we find that,
given two stateg0) and|1) which are slightly distin-
guishable by the adversary, €&(pg, p1) > 4, then in

the iterated schem#)00...0) and|111...1) are more dis-
tinguishable: D

(Plooo...0ys P111...1y) = 1 =, Whgre
n < 2exp(—t62/2). Since the iterated schemelidt?e-

secure for the state)) = %(\000...0>+|111...1>), then
by Lemma 8,

1063 > 1 — 21 > 1 — 4exp(—t52/2)
Choosingt = 1/+/20¢, we gets < 4¢'/6,



7. Quantum Signatures

One consequence of the previous theorem is that dig-
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should not be able to alter signed messages—to learn

something about the contents of the message. HoweverReferences

this is precisely what is forbidden by the previous the-
orem: in an information-theoretic setting, any adver-
sary who can gain a non-trivial amount of information

must be able to modify the authenticated state with non-
negligible success.

If we consider computationally secure schemes, a
somewhat narrower definition of digitally signing quan-
tum states remains impossible to realize. If we assume a
guantum digital signature protocol should allow any re-
cipient to efficiently extract the original message, then
a simple argument shows that he can also efficiently
change it without being detected, contradicting the secu-
rity of the scheme. Namely: Assume that there is trans-
formationU with a small circuit which extracts the orig-
inal message, leaving auxiliary stateyp) (which may
not all be held byB). In order to preserve any entan-
glement betweep and a reference system, the auxiliary
state|¢) must be independent of Therefore5 can re-
placep with any other state’ and then perforni/T on
p’ and his portion ofy), producing a valid signature for
¢'. This is an efficient procedure: the circuit for is
just the circuit forU executed backwards.

7.1. Public Key Quantum Authentication

As an alternative to digital signature we introduce the
weaker notion of public key quantum authentication.

Let E,, D, be B’'s public and private keyed algo-
rithms to a PKC and>,,, V, be A’s private and public
keyed algorithms to a digital signature scheme, both re-
sistant to quantum computers’ attacks. To perform au-
thentication,4 picks secret and random binary stririgs
z, andy, and uses them as keys to g-authentigesp’.
A encrypts and signs the key @as= S, (Ep(k|z]y)). A
sendsp’, o) to B. To verify a statel3 verifies. A’s signa-
ture ono usingV, and then discovers the kéy x andy
using his private decryption functiahy,. 5 checks that
o’ is a valid g-authenticated message accordinkg, to,
y, and recoverg.

Public Key Quantum Authentication is the basis of a
scheme for Uncloneable Encryption [8] allowing trans-

mission of quantum or classical messages in a way that [12

if the authentication succeeds then despite the computa-
tional assumption the confidentiality of the message is
forever guaranteed unconditionally.
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