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Abstract

Authentication is a well-studied area of classical cryp-
tography: a senderA and a receiverB sharing a classi-
cal secret key want to exchange a classical message with
the guarantee that the message has not been modified or
replaced by a dishonest party with control of the commu-
nication line. In this paper we study the authentication
of messages composed ofquantum states.

We give a formal definition of authentication in the
quantum setting. AssumingA andB have access to an
insecure quantum channel and share a secret, classical
random key, we provide anon-interactivescheme that
enablesA to both encrypt and authenticate anm qubit
message by encoding it intom + s qubits, where the
error probability decreases exponentially in the security
parameters. The scheme requires a secret key of size
2m + O(s). To achieve this, we give a highly efficient
protocol for testing the purity of shared EPR pairs.

It has long been known that learning information
about a general quantum state will necessarily disturb it.
We refine this result to show that such a disturbance can
be done with few side effects, allowing it to circumvent
cryptographic protections. Consequently, any scheme to
authenticate quantum messages must also encrypt them.
In contrast, no such constraint exists classically.

This reasoning has two important consequences: It
allows us to give a lower bound of2m key bits for au-
thenticatingm qubits, which makes our protocol asymp-
totically optimal. Moreover, we use it to show that digi-
tally signing quantum states is impossible.
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1. Introduction

Until recently, the expression “quantum cryptogra-
phy” referred mostly to quantum key distribution pro-
tocols [3]. However, these words now refer to a larger
set of problems. While QKD and many other quan-
tum protocols attempt to provide improved security for
tasks involving classical information, an emerging area
of quantum cryptography attempts instead to create se-
cure protocols for tasks involvingquantuminformation.
One standard cryptographic task is theauthenticationof
messages:A transmits some information toB over an
insecure channel, and they wish to be sure that it has
not been tampered withen route. When the message is
classical, andA andB share a random secret key, this
problem can be solved by, for instance, the Wegman-
Carter scheme [7]. In this paper, we discuss the analo-
gous question for quantum messages.

If we assumeA andB share a secretquantumkey in
the form ofm EPR pairs, and a secret classical key, there
is a straightforward solution to the problem:A teleports
her message toB, authenticating the2m classical bits
transmitted in the quantum teleportation protocol [4]. If
A andB initially share only a classical key, however, the
task is more difficult. We start with a simple approach:
first distribute EPR pairs (which might get corrupted in
transit), and then use entanglement purification [5] to es-
tablish clean pairs for teleportation. However, we do not
need entanglementpurification, which produces good
EPR pairs even if the channel is noisy; instead we only
need apurity testing protocol, which checks that EPR
pairs are correct, but does not repair erroneous ones.

Unfortunately, any such protocol will have to be in-
teractive, sinceA must first send some qubits toB and
then wait for confirmation of receipt before complet-
ing the transmission. This is unsuitable for situations
in which a message is stored and must be checked for
authenticity at a later time. Also, this interactive pro-
tocol achieves something stronger than what is required
of a quantum authentication scheme: at the end of the
purity-testing based scheme,bothA andB know that
the transmission was successful, whereas for authenti-
cation, we only require thatB knows.
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Contributions In this paper we studynon-interactive
quantum authentication schemes with classical keys.
Our primary contributions are:

Formal definition of authentication for quantum
states –In classical authentication, one simply limits the
probability that the adversary can makeany change to
the state without detection. This condition is too strin-
gent for quantum information, where we only require
high fidelity to the original state. We state our definition
in terms of the transmission of pure states (section 3). In
the full version, we also show that the same definition
implies security for mixed or entangled states.

Construction of efficient purity testing protocols –We
show how to create purity-testing protocols using fam-
ilies of quantum error-correcting codes with a particu-
lar covering property, namely that any Pauli error is de-
tected by most of the codes in the family. We construct
an efficient such family based on projective geometry,
yielding a purity-testing protocol requiring onlyO(s)
(classical) bits of communication, wheres is the secu-
rity parameter (section 4).

Purity-testing codes have not explicitly appeared be-
fore in the literature, but have been present implicitly
in earlier work, for instance [10, 12]. To prove our
purity-testing protocols secure, we use a “quantum-to-
classical” reduction, due to Lo and Chau [10]. Sub-
sequently to our work, Ambainis, Smith, and Yang [2]
used our construction in a study of more general entan-
glement extraction procedures.

Construction of non-interactive quantum authenti-
cation schemes (QAS) – We show that a secure non-
interactive QAS can be constructed from any purity-
testing protocol derived, as above, fromQECCs (sec-
tion 5). In particular, for our family of codes, we obtain
an authentication scheme which requires sendingm+ s
qubits, and consuming2m + O(s) bits of classical key
for a message ofm qubits. The proof techniques in the
Shor and Preskill paper [12] serve as inspiration for the
transformation from an interactive purity-testing proto-
col to a non-interactiveQAS.

A relation between encryption and authentication –
One feature of our authentication protocol is that it com-
pletely encrypts the quantum message being sent. We
show that this is necessary inany QAS(section 6), in
striking contrast to the situation for classical informa-
tion, where common authentication schemes leave the
message completely intelligible. It therefore follows
that any authentication protocol for anm-qubit message
must use nearly2m bits of classical key, enough to en-
crypt the message. The protocol we present approaches
this bound asymptotically.

Impossibility of digitally signing quantum states –
Since authentication requires encryption, it is impossi-

ble to create digital signature schemes for quantum mes-
sages: any protocol which allows one recipient to read a
message also allows him or her to modify it without risk
of detection, and therefore all potential recipients of an
authenticated message must be trustworthy (section 7).
This conclusion holds true even if we require only com-
putationally secure digital signatures. Note that this does
not in any way preclude the possibility of signingclas-
sicalmessages with or without quantum states [9].

Why should we prefer a scheme with classical keys
to a scheme with entangled quantum keys? The task of
authenticating quantum data is only useful in a scenario
where quantum information can be reliably stored, ma-
nipulated, and transmitted over communication lines, so
it would not be unreasonable to assume quantum keys.
However, many manipulations are easier with classical
keys. Certainly, the technology for storing and manip-
ulating them is already available, but there are addi-
tional advantages. Consider, for example, public key
cryptography; it is possible to sign and encrypt classical
key bits with public key systems, but signing a general
quantum state is impossible. Thus, quantum keys would
be unsuitable for an asymmetric quantum authentication
scheme such as the one we describe in section 7.1.

2. Preliminaries

Classical Authentication In the classical setting, an
authentication scheme is defined by a pair of functions
A : K×M → C andB : K×C →M×{valid, invalid}
such that for any messageµ ∈ M and keyk ∈ K we
havecompleteness

Bk(Ak(µ)) = 〈µ, valid〉

and that for any opponentO, we havesoundness

Prob{Bk(O(Ak(µ))) ∈ {〈µ′, valid〉, µ′ 6= µ}}
≥ 1− 2−Ω(t)

wheret = lg #C − lg #M is the security parameter
creating the tradeoff between the expansion of the mes-
sages and the security level. Note that we only consider
information-theoretically secure schemes, not schemes
that are based on computational assumptions.

Wegman and Carter [7] introduced several construc-
tions for such schemes; their most efficient uses keys
of size only4(t + lg lgm) lgm and achieves security
1 − 2−t+2. This compares rather well to the known
lower bound oft + lgm − lg t for such a result [7].
The same work also introduced a technique to re-use an
authentication function several times by using one-time-
pad encryption on the tag, so that an opponent cannot
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learnanythingabout the particular key being used byA
andB. Thus, at a marginal cost of onlyt secret key bits
per authentication, the confidentiality of the authentica-
tion functionh is guaranteed and thus may be re-used (a
polynomial number of times).

For the remainder of this paper, we assume the reader
is familiar with the basic notions and notation of quan-
tum computing (see textbooks such as [11]).

Quantum Stabilizer Codes A quantum error-
correcting code (QECC) is a way of encoding quantum
data (saym qubits) inton qubits (m < n). Usually the
goal in the construction of codes is give it the ability to
correct errors on as many qubits as possible. However,
in this paper, we use the theory developed for those
purposes to construct families of codes with a slightly
different type of property. For now, we review the
necessary theory on a very general class of codes known
asstabilizer codes.

A basis for the set of all operators on a qubit is the
“Pauli” error basis, defined viaEab = XaZb, where
〈i|X|j〉 = δi,j+1, 〈i|Z|j〉 = (−1)iδi,j . We define the
error groupE to be the tensor product ofn copies of
the single-qubit error group{(−1)cEab}. Each element
of E corresponds to a2n-dimensional vector, and the
vectorsx = (a|b), y = (a′|b′) come from commuting
operators iff their symplectic inner product is 0 inZ2:

ExEy = EyEx ⇐⇒ B(x, y) = a′ · b + a · b′ = 0.
(1)

A stabilizer codeis a QECC given by an Abelian sub-
groupS of E which does not contain any multiples of
the identity other thanI itself. S can be described by
the set of2n-dimensional vectorsx such thatEx ∈ S.
This will be a subspace ofZ2n

2 . Moreover, it will be
totally isotropic, i.e.B(x, y) = 0 for all x, y in the sub-
space. If we take a set of generators forS, we can di-
vide Hilbert space into a set of equidimensional orthog-
onal subspaces. Each such spaceT consists of common
eigenvectors of all operators ofS having a fixed pattern
of eigenvalues, unique toT . The space with all eigen-
values+1 is the “code space,” its elements are “code-
words,” and the orthogonal spaces are labelled by “syn-
dromes.”

Note that one can also viewB(·, ·) as a symplectic
form overGF (22n), by choosing a set of generators for
GF (22n) as a vector space overZ2. By choosing dif-
ferent sets of generators forGF (22n) as a vector space
overZ2, we can get different symplectic formsB(·, ·)
over this finite vector space. By judicious choice of the
generators, one can makeB(·, ·) correspond toanynon-
degenerate symplectic form overGF (22n).

Undetectable errors We can classify errors which lie
in E into three categories: The errors corresponding to
elements ofQ are not truly errors—they leave the code-
words unchanged. Errors which fail to commute with
some element ofQ move codewords into a subspace or-
thogonal to the code, so can be detected by the QECC.
The remaining errors, those which commute with all el-
ements inS but are not themselves inS, are the unde-
tectable errors of the code. Thus, ifQ⊥ is the space of
vectorsy for whichB(x, y) = 0 for all x ∈ Q, the set
of undetectable errors is justQ⊥ −Q.

Purification and purity testing Quantum error-
correcting codes may be used forentanglement purifica-
tion ([5]). In this setting,A andB share some Bell states
(say|Φ+〉 = |00〉+ |11〉) which have been corrupted by
transmission through a noisy quantum channel. They
want a protocol which processes these imperfect EPR
pairs and produces a smaller number of higher-quality
pairs. We assume thatA andB have access to an au-
thenticated, public classical channel. At the end of the
protocol, they either accept or reject based on any incon-
sistencies they have observed. As long asA andB have
a noticeable probability of accepting, then conditioned
on accepting, the state they share should have fidelity
almost 1 to the pure state|Φ+〉⊗m. Moreover, small
amounts of noise in their initial shared state should not
cause failure of the protocol.

Stabilizer codes can be particularly useful for purifi-
cation because of the following observation: for any sta-
bilizer codeQ, if we measure the syndrome of one half
of a set of Bell states|Φ+〉⊗n and obtain the resulty,
then the result is the state|Φ+〉⊗m, with each of its two
halves encoded in the coset with syndromey. (More-
over, in this case the distribution ony is uniform.) If
the original state is erroneous,A andB will likely find
different syndromes, which will differ by the syndrome
associated with the actual error.

Most purification protocols based on stabilizer codes
require efficient error correction; we measure the syn-
drome, and use that information to efficiently restore
the encoded state. However, one can imagine a weaker
task in whichA andB only want totesttheir EPR pairs
for purity, i.e. they want a guarantee that if their pairs
pass the test, their shared state will probably be close to
|Φ+〉⊗m. In that case, we can use the code for error de-
tection, not correction, and need only be able to encode
and decode efficiently from the spaceQ.

Encryption of Quantum Messages A useful ingredi-
ent for much recent work in quantum cryptography is
the concept of quantum teleportation, put forward by
Bennett et al [4]. AfterA andB have shared a singlet
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state,A can later secretly send a single qubit in an ar-
bitrary quantum stateρ to B by measuring her half of
the singlet state together with her stateρ in the Bell ba-
sis to get two classical bitsb0, b1. As a result,B’s half
of the singlet state will become one of four possibilities
ρ′ := σb0z σ

b1
x ρσ

b1
x σ

b0
z . If A sendsb0, b1, thenB can eas-

ily recoverρ.
Now without the bitsb0, b1, the stateρ′ reveals no

information aboutρ. Thus, one can turn this into an en-
cryption scheme which uses only a classical key: after
A andB have secretly shared two classical bitsb0, b1,A
can later secretly send a single qubit in an arbitrary quan-
tum stateρ to B by sending a qubit in stateρ′ as above.
This is called a quantum one-time pad (QOTP). This
scheme is optimal [1]: any quantum encryption must use
2 bits of classical key for every transmitted qubit.

3. Quantum Authentication

At an intuitive level, a quantum authentication
scheme is a keyed system which allowsA to send a
stateρ to B with a guarantee: ifB accepts the received
state as “good”, the fidelity of that state toρ is almost 1.
Moreover, if the adversary makes no changes,B should
always accept, and the fidelity should be exactly 1.

Of course, this informal definition is impossible to
attain. The adversary might always replaceA’s trans-
mitted message with a completely mixed state. There
would be a small probability thatB would accept, and in
that case the fidelity of the received state toA’s initial
state would be very low.

The problem comes from conditioning onB’s accep-
tance of the received state; this causes trouble if the
adversary’s a priori chances of cheating are high. A
more reasonable definition requires a tradeoff between
B’s chances of accepting, and the expected fidelity of
the received system toA’s initial state given his accep-
tance: asB’s chance of accepting increases, so should
the expected fidelity.

There is no reason to use the languages of both prob-
ability and fidelity here: for classical tests, fidelity and
probability of acceptance coincide. With this in mind
we first define what constitutes a quantum authentica-
tion scheme, and then give a definition of security:

Definition 1 A quantum authentication scheme(QAS) is
a pair of polynomial time quantum algorithmsA andB
together with a set ofclassicalkeysK such that:

• A takes as input anm-qubit message systemM and
a keyk ∈ K and outputs a transmitted systemT of
m+ t qubits.

• B takes as input the (possibly altered) transmitted
systemT ′ and a classical keyk ∈ K and outputs

two systems: am-qubit message stateM , and a
single qubitV which indicates acceptance or re-
jection. The classical basis states ofV are called
|ACC〉, |REJ〉 by convention.

For any fixed keyk, we denote the corresponding super-
operators byAk andBk.

Note thatB may well have measured the qubitV to
see whether or not the transmission was accepted or re-
jected. Nonetheless, we think ofV as a qubit rather than
a classical bit since it will allow us to describe the joint
state of the two systemsM,V with a density matrix.

There are two conditions which should be met by a
quantum authentication protocol. On the one hand, in
the absence of intervention, the received state should be
the same as the initial state andB should accept.

On the other hand, we want that when the adversary
does intervene,B’s output systems have high fidelity to
the statement “eitherBrejects or his received state is the
same as that sent byA”. One difficulty with this is that
it is not clear what is meant by “the same state” when
A’s input is a mixed state. It turns out that it is sufficient
to define security in terms of pure states; one can deduce
an appropriate statement about fidelity of mixed states.

Given a pure state|ψ〉 ∈ HM , consider the following
test on the joint systemM,V : output a 1 if the firstm
qubits are in state|ψ〉 or if the last qubit is in state|REJ〉
(otherwise, output a 0). The projectors corresponding to
this measurement are

P
|ψ〉
1 = |ψ〉〈ψ| ⊗ IV + IM ⊗ |REJ〉〈REJ|

− |ψ〉〈ψ| ⊗ |REJ〉〈REJ|
P
|ψ〉
0 = (IM − |ψ〉〈ψ|)⊗ (|ACC〉〈ACC|)

We want that for all possible input states|ψ〉 and for all
possible interventions by the adversary, the expected fi-
delity ofB’s output to the space defined byP |ψ〉1 is high.
This is captured in the following definition of security.

Definition 2 A QAS is secure with errorε for a state|ψ〉
if it satisfies:

Completeness: For all keys k ∈ K:
Bk(Ak(|ψ〉〈ψ|)) = |ψ〉〈ψ| ⊗ |ACC〉〈ACC|

Soundness:For all super-operatorsO, let ρBob be
the state output byB when the adversary’s intervention1

is characterized byO, that is:

ρBob = Ek

[
Bk(O(Ak(|ψ〉〈ψ|)))

]
=

1
|K|

∑
k

Bk(O(Ak(|ψ〉〈ψ|)))

1We make no assumptions on the running time of the adversary.
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where “ Ek” means the expectation whenk is chosen
uniformly at random fromK. TheQAS has soundness
error ε for |ψ〉 if:

Tr
(
P
|ψ〉
1 ρBob

)
≥ 1− ε

A QAS is secure with errorε if it is secure with errorε
for all states|ψ〉.

Note that our definition of completeness assumes that
the channel connectingA toB is noiseless in the absence
of the adversary’s intervention. This is in fact not a sig-
nificant problem, as we can simulate a noiseless channel
using standard quantum error correction.

Interactive protocols In the previous section, we
dealt only with non-interactive quantum authentication
schemes, since that is both the most natural notion, and
the one we achieve in this paper. However, there is no
reason to rule out interactive protocols. The definitions
of completeness and soundness extend naturally: as be-
fore,B’s final output is a pair of systemsM,V , where
the state space ofV is spanned by|ACC〉, |REJ〉. In that
caseρBob is B’s density matrix at the end of the proto-
col, averaged over all possible choices of shared secret
key and executions of the protocol. The soundness error

is ε, whereTr
(
P
|ψ〉
1 ρBob

)
≥ 1− ε.

4. Purity Testing Codes

An important tool in our proof is the notion of apurity
testing code, which is a way forA andB to ensure that
they share (almost) perfect EPR pairs. We shall concen-
trate on purity testing codes based on stabilizer QECCs.

Definition 3 A stabilizer purity testing code (SPTC)
with error ε is a set of stabilizer codes{Qk}, for k ∈ K,
such that∀Ex ∈ E with x 6= 0, #{k|x ∈ Q⊥k −Qk} ≤
(#K)ε.

That is, for any errorx in the error group, ifk is cho-
sen later at random, the probability that the codeQk de-
tectsx is at least1− ε.

Definition 4 A purity testing protocol with errorε is
a superoperatorT which can be implemented with lo-
cal operations and classical communication, and which
maps2n qubits (half held byA and half held byB) to
2m+1 qubits and satisfies the following two conditions:

Completeness:T (|Φ+〉⊗n) = |Φ+〉⊗m ⊗ |ACC〉

Soundness:Let P be the projection on the subspace
spanned by|Φ+〉⊗m ⊗ |ACC〉 and |ψ〉 ⊗ |REJ〉 for
all |ψ〉. ThenT satisfies the soundness condition if
for all ρ, Tr (PT (ρ)) ≥ 1− ε.

The obvious way of constructing a purity testing pro-
tocolT is to start with a purity testing code{Qk}. When
A and B are given the stateρ, A chooses a random
k ∈ K and tells it toB. They both measure the syn-
drome ofQk and compare. If the syndromes are the
same, they accept and perform the decoding procedure
for Qk; otherwise they reject.

Proposition 1 If the purity testing code{Qk} has error
ε, thenT is a purity testing protocol with errorε.

Proof: If A andB are givenn EPR pairs, this proce-
dure will always accept, and the output will always be
|Φ+〉⊗m. Thus,T satisfies the completeness condition.

Suppose for the moment that the input state is(Ex ⊗
I)|Φ+〉⊗n, for Ex ∈ E, x 6= 0. Then whenk is chosen
at random, there is only probabilityε that x ∈ Q⊥k −
Qk. If x /∈ Q⊥k , thenA andB will find different error
syndromes, and therefore reject the state. Ifx ∈ Q⊥k ,
thenA andB will accept the state, but ifx ∈ Qk, then
the output state will be|Φ+〉⊗m. Thus, the probability
thatA andB accept an incorrect state is at mostε.

To prove the soundness condition, we can use
this fact and a technique of Lo and Chau [10]. The
states(Ex ⊗ I)|Φ+〉⊗n form the Bell basis for the
Hilbert space ofA andB. Suppose a nonlocal third
party first measured the input stateρ in the Bell basis;
call this measurementB. Then the argument of the
previous paragraph would apply to show the soundness
condition. In fact, it would be sufficient ifA andB used
the nonlocal measurementQk ⊗ Qk which compares
the Qk-syndromes forA and Bwithout measuring
them precisely. This is a submeasurement of the
Bell measurementB — that is, it gives no additional
information about the state. Therefore it commutes with
B, so the sequenceB followed byQk ⊗Qk is the same
asQk ⊗ Qk followed byB, which gives probability at
least1 − ε of success for general input statesρ. But if
the state afterQk⊗Qk gives, from a Bell measurement,
|Φ+〉⊗m or |REJ〉 with probability 1 − ε, then the state
itself must have fidelity1 − ε to the projectionP .
Thus, the measurementQk ⊗ Qk without B satisfies
the soundness condition. Moreover,A andB’s actual
procedureT is a refinement ofQk ⊗ Qk—that is, it
gathers strictly more information. Thus, it also satisfies
the soundness condition, andT is a purity testing
protocol with errorε. 2

An Efficient Purity Testing Code Now we give an
example of a particularly efficient purity testing code.
To do so, we apply the techniques of stabilizer quantum
error-correcting codes. We build a set of codesQk each
encodingm = (r − 1)s qubits inn = rs qubits, and
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show that theQk form a SPTC. (Note that the construc-
tion below works for registers with dimension equal to
any prime power.) Using qubits in groups ofs allows
us to view our fieldGF (22rs) as both a2r-dimensional
vector space overGF (2s) and a2rs-dimensional binary
vector space. We need a symplectic form that is compat-
ible with this decomposition. One possibility is

B(x, y) := Tr (xy2rs), (2)

whereTr(z) =
∑2rs−1
i=0 z2i is the standard trace func-

tion, which mapsGF (22rs) ontoGF (2).
We consider anormal rational curvein PG(2r −

1, 2s) (the projective geometry whose points are the 1-
d subspaces of the2r-dimensional vector space over
GF (2s)). (See, e.g., the excellent introductory text [6].)
Such a curve is given by:

Υ = {[1 : y : y2 : · · · : y2r−1] : y ∈ GF (2s)}
∪ {[0 : 0 : 0 : · · · : 1]}

Thus, there are2s + 1 points on the curve.
Since each “point” of this curve is actually a one-

dimensional subspace overGF (2s), it can also be con-
sidered as ans-dimensional binary subspaceQk in a
vector space of dimension2rs = 2n. We show thatQk
is totally isotropic with respect to the symplectic inner
product (2), and encodesm = n− s qubits inn qubits.

Theorem 2 The set of codesQk form a SPTC with error

ε =
2r

2s + 1
. (3)

EachQk encodesm = (r−1)s qubits inn = rs qubits.

Proof: We must show (a) thatQk is totally isotropic, and
(b) that the error probability is at mostε.

(a) Follows from a straightforward calculation.
(b) We must find, for an arbitrary errorEx (which can

be described via a2n-dimensionalGF (q) vectorx), an
upper bound on the number ofQ⊥k −Qk it can belong to.
It will be sufficient to bound the number ofQ⊥k the er-
ror can belong to, since|Qk| is small compared to|Q⊥k |
in our context. x ∈ Q⊥k meansB(x, y) = 0 for all
y ∈ Qk. By choice ofs linearly independenty ∈ Qk
this imposess linearly independent linear equations on
x. We will show below that if we take any2r codesQk
defined by points onΥ, and takes independent vectors
from each, the resulting set of2rs vectors is linearly in-
dependent. Thus ifEx is undetectable in2r such codes,
this imposes the dimension’s worth (2rs) of linearly in-
dependent equations onx. Consequently,Ex must be
detectable in all the remaining codes, i.e.,Ex can satisfy
x ∈ Q⊥k for at most2r values ofk, whenQk are chosen

among theqs + 1 availables-dimensional spaces corre-
sponding to points onΥ. Thus, the{Qk} form a purity
testing code with error

ε ≤ 2r
qs + 1

. (4)

We now show the claimed property of codes defined
by Υ. A set of points in a projective geometry of
dimensiond − 1 are said to be in general position if
any d (= dimension of the underlying vector space,
when, as in our case, such exists) of them are linearly
independent. The points on the normal rational curve
Υ are in general position, and indeed a maximal set
of such points. (To verify that they are in general
position one shows that for any2r points on the curve,
the determinant of the matrix of their coordinates is
nonzero; these are Vandermonde determinants.) That
is, any2r points onΥ are linearly independent. Each
pointk on Υ corresponds to ans-dimensional codeQk,
consisting of2rs-dimensional vectors. Letz be any
nonzero element ofQk. As α ranges overGF (qs), αz
ranges over all vectors inQk. Thus, if any vector from
Qk is a linear combination of vectors from other codes
{Qj}, than all ofQk is also a linear combination of
vectors from{Qj}, andk is linearly dependent on the
points{j} of Υ. So if we take any2r codesQk, and
takes independent vectors from each, the resulting set
of 2rs vectors is linearly independent. 2

Note that the above efficient SPTC also yields a cor-
responding efficient QKD protocol.

5. Protocols

In this section we describe a secure non-interactive
quantum authentication scheme (Protocol 5.2) which
satisfies the definition of section 3.

In order to prove our scheme secure, we begin with a
purity testing protocol as per Section 4 (summarized as
Protocol 5.1). The security of this protocol follows from
Prop. 1. We then perform several transformations to the
protocol that strictly preserve its security and goals but
which remove the interaction, replacing it with a shared
secret key. We thus obtain two less interactive interme-
diate protocols and a final protocol (Protocol 5.2), which
is completely non-interactive. The transformations are
similar in flavor to those of Shor and Preskill [12], who
use the technique to obtain a simple proof of the secu-
rity of a completely different task, namely the BB84 [3]
quantum key exchange scheme.

Following the notation of Section 4, letP be the
projector onto the subspace described by “eitherB has
aborted or the joint state held byA andB is |Φ+〉⊗m ”.
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Protocol 5.1 ( Purity Testing Based Protocol )

1: A andB agree on some SPTC{Qk}.

2: A generates2n qubits in state|Φ+〉⊗n. A sends
the first half of each|Φ+〉 state toB.

3: B announces that he has received then qubits.

4: A picks a randomk ∈ K, and announces it toB.

5: A and B measure the syndrome of the stabilizer
codeQk. A announces her results toB who com-
pares them to his own results. If any error is de-
tected,B aborts.

6: A and B decode theirn-qubit words according
to Qk. Each is left withm qubits, which together
should be nearly in state|Φ+〉⊗m.

7: A uses her half of|Φ+〉⊗m to teleport an arbitrary
m-qubit stateρ toB.

Let ρAB be the joint density matrix ofA andB’s sys-
tems. Then Prop. 1 states that at the end of step 6,
Tr(PρAB) is exponentially close to 1 inn. The sound-
ness of our first protocol follows immediately:

Corollary 3 If A andB are connected by an authenti-
cated classical channel, then Protocol 5.1 is a securein-
teractivequantum authentication protocol, with sound-
ness error exponentially small inn.

Protocol 5.2 ( Non-interactive authentication )

1: Preprocessing:A and B agree on some SPTC
{Qk} and some secret and random binary strings
k, x, andy.

2: A q-encryptsρ asτ using keyx. A encodesτ ac-
cording toQk for the codeQk with syndromey to
produceσ. A sends the result toB.

3: B receives then qubits. Denote the received state
by σ′. B measures the syndromey′ of the codeQk
on his qubits.B comparesy to y′, and aborts if any
error is detected.B decodes hisn-qubit word ac-
cording toQk, obtainingτ ′. B q-decryptsτ ′ using
x and obtainsρ′.

Theorem 4 When the purity testing code{Qk} has er-
ror ε, the protocol 5.2 is a secure quantum authenti-
cation scheme with key lengthO(n + log2(#K)) and
soundness errorε. In particular, for the purity testing
code described in section 4, the authentication scheme
has key length2m + s + log2(2s + 1) ≤ 2n + 1 and
soundness error2n/[s(2s + 1)], wherem is the length
of the message in qubits,s is the security parameter, and
A sends a total ofn = m+ s qubits.

Proof: From Corollary 3 we have that Protocol 5.1 is a
secure interactive authentication protocol. We show that
Protocol 5.2 is equivalent to Protocol 5.1, in the sense
that any attack on Protocol 5.2 implies an equally suc-
cessful attack on Protocol 5.1. To do so, we proceed by a
series of reductions through two intermediate protocols.

PROTOCOL 5.1→ 1st INT. PROTOCOL: We obtain
our first intermediate protocol by observing that in pro-
tocol 5.1,A can perform all of her operations (except for
the transmissions)beforeshe actually sends anything to
B, since these actions do not depend onB’s feedback.
This will not change any of the states transmitted in the
protocol or computed byB, and so both completeness
and soundness will remain the same.

1st INT. PROTOCOL→ 2nd INT. PROTOCOL: There
are two changes between the first and second intermedi-
ate protocols. First, note that measuring the first qubit
of |Φ+〉 and obtaining a random bitci is equivalent
to choosingci at random and preparing the pure state
|ci〉 ⊗ |ci〉. Therefore, instead of preparing|Φ+〉⊗n
and measuring the syndrome of half of it,A may as
well choose the syndromess at random and encode both
halves of|Φ+〉⊗m using codeQk and the syndromes.

Second, rather than teleporting stateρ to B using the
EPR halves which were encoded inQs1,s2 ,A encryptsρ
using a quantum one-time pad and sends it toB directly,
further encoded inQk. These behaviors are equivalent
since either way, the encoded state isσ~t1x σ

~t2
z ρσ

~t2
z σ

~t1
x ,

where~t1 and~t2 are randomn-bit vectors.
2nd INT. PROTOCOL→ PROTOCOL5.2: In Protocol

5.2, all the random choices ofA are replaced with the
bits taken from a secret random key shared only by her
andB. This eliminates the need for an authenticated
classical channel, and for any interaction in the protocol.
This transformation can only increase the security of
the protocol as it removes the adversary’s ability to jam
the classical communication. 2

If the quantum channel is noisy we can modify our
scheme to benefit from the error-correction capability of
the quantum code. IfB rejects only when the number of
observed errors is too large then error correction will fix
natural noise or tampering of small amplitude.

6. Authentication Implies Encryption

One notable feature of any protocol derived using
Theorem 4 is that the information being authenticated
is also completely encrypted. For classical information,
authentication and encryption can be considered com-
pletely separately, but in this section we will show that
quantum information is different. While quantum states
can be encrypted without any form of authentication, the
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converse is not true: any scheme which guarantees au-
thenticity must also encrypt the quantum state almost
perfectly. The difference can be understood as a com-
plementarity feature of quantum mechanics: authenti-
cating a message in one basis requires encrypting it in
the complementary Fourier-transformed basis. This is
essentially another realization of the principle that mea-
suring data in one basis disturbs it in any complemen-
tary basis. For classical messages, therefore, encryption
is not required: only one basis is relevant. In contrast,
for quantum messages, we require authentication in all
bases and therefore we must also require encryption in
all bases.

To show this, let us consider any fixed authentication
scheme. Denote byρ|ψ〉 the density matrix transmitted

in this scheme whenA’s input is |ψ〉. Let ρ(k)
|ψ〉 denote

the density matrix for keyk.

Definition 5 An encryption scheme with errorε for
quantum states hides information so that ifρ0 and ρ1

are any two distinct encrypted states, then the trace dis-
tanceD(ρ0, ρ1) = 1

2Tr |ρ0 − ρ1| ≤ ε.

We claim that any goodQAS must necessarily also be
a good encryption scheme. That is:

Theorem 5 (Main Lower Bound) A QAS with error ε
is an encryption scheme with error at most4ε1/6.

Corollary 6 A QAS with error ε requires at least
2m(1− poly(ε)) classical key bits.

The proof of the corollary is quite similar to the proof
that2m key bits are needed to perfectly encrypt a quan-
tum message. Instead, we concentrate on Theorem 5.

The intuition behind the proof of this main theo-
rem is that measurement disturbs quantum states, so if
the adversary can learn information about the state, she
can change the state. More precisely, if the adversary
can distinguish between two states|0〉 and |1〉, she can
change the state|0〉+|1〉 to |0〉−|1〉. An extreme version
of this fact is contained in the following proposition:

Proposition 7 Suppose that there are two states|0〉, |1〉
whose corresponding density matricesρ|0〉, ρ|1〉 are per-
fectly distinguishable. Then the scheme is not anε-
secureQAS for anyε < 1.

Proof: Sinceρ|0〉, ρ|1〉 can be distinguished, they must
have orthogonal support, say on subspacesV0, V1. So
consider an adversary who applies a phase shift of−1
conditioned on being inV1. Then for all k, ρ(k)

|0〉+|1〉

becomesρ(k)
|0〉−|1〉. Thus,B will decode the (orthogonal)

state|0〉 − |1〉. 2

However, in general, the adversary cannot exactly
distinguish two states, so we must allow some proba-
bility of failure. Note that it is sufficient in general to
consider two encoded pure states, since any two mixed
states can be written as ensembles of pure states, and
the mixed states are distinguishable only if some pair of
pure states are. Furthermore, we might as well let the
two pure states be orthogonal, since if two nonorthog-
onal states|ψ0〉 and|ψ1〉 are distinguishable, two basis
states|0〉 and|1〉 for the space spanned by|ψ0〉 and|ψ1〉
are at least as distinguishable.

Due to space limitations, we outline the proof with
a sequence of lemmas, only proving the last and most
difficult.

We first consider the case when|0〉 and |1〉 canal-
mostperfectly be distinguished. In that case, the adver-
sary can change|0〉+ |1〉 to |0〉 − |1〉 with high (but not
perfect) fidelity (stated formally in Lemma 8). When|0〉
and|1〉 are more similar, we first magnify the difference
between them by repeatedly encoding the same state in
multiple copies of the authentication scheme, then apply
the above argument.

Lemma 8 Suppose that there are two states|0〉, |1〉
such thatD(ρ|0〉, ρ|1〉) ≥ 1 − η. Then the scheme is
not ε-secure for|ψ〉 = |0〉+ |1〉 for anyε < 1− 2η.

When two states can be distinguished, but only just
barely, the above lemma is not sufficient. Instead, we
must magnify the distinguishability of the states|0〉 and
|1〉 by repeating them by considering the tensor product
of many copies of the same state. The probability of
distinguishing then goes to 1 exponentially fast in the
number of copies:

Lemma 9 Let ρ0, ρ1 be density matrices
with D(ρ0, ρ1) = δ. Then D(ρ⊗t0 , ρ⊗t1 ) ≥
1− 2 exp(−tδ2/2).

We create these repeated states by encoding them in
an iteratedQAS consisting oft copies of the originalQAS

(with independent values of the key for each copy).

Lemma 10 Suppose we iterate the schemet times. Let
|ψ〉 = 1√

2
(|000...0〉 + |111...1〉). If (A,B,K) is an ε-

secureQAS, then the iterated scheme is10t3ε-secure for
the state|ψ〉.

Note that the proof of this lemma goes through the
following crucial claim, which follows from a simple
hybrid argument.

Claim 11 (Product states) The iterated scheme istε-
secure for any product state.
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Proof: For simplicity we prove the claim for the state
|000...0〉. The same proof works for any product pure
state (and in fact for separable states in general).

Intuitively, an adversary who modifies the state
|000...0〉 must change some component of the state. We
can formalize this by rewriting the projectorP |000...0〉

0 in

terms of the individual projectorsP |0〉i0 .
For the caset = 2, B accepts only if he finds the

verification qubits for both schemes in the accept state.

P
|00〉
0

= (Im1m2 − |00〉〈00|)⊗ |ACC1〉〈ACC1|
⊗|ACC2〉〈ACC2|

=
(

(Im1 − |0〉〈0|)⊗ Im2 + Im1 ⊗ (Im2 − |0〉〈0|)

−(Im1 − |0〉〈0|)⊗ (Im2 − |0〉〈0|)
)

⊗|ACC1〉〈ACC1| ⊗ |ACC2〉〈ACC2|
= P

|0〉1
0 ⊗ |ACC2〉〈ACC2|+ P

|0〉2
0 ⊗ |ACC1〉〈ACC1|

−P |0〉10 ⊗ P |0〉20

SinceP |0〉10 ⊗ P |0〉20 is positive, for allρ, we have

Tr(P |00〉
0 ρ) ≤ Tr(P |0〉10 ρ) + Tr(P |0〉20 ρ) ≤ 2ε

Similarly, for larger values oft we have

Tr(P |000...0〉
0 ρ) ≤

t∑
i=1

Tr(P |0〉i0 ρ) ≤ tε

Thus the iterated scheme istε-secure for|000...0〉 (and
in fact for all product states). 2

Proof (of Lemma 10):Consider the net superoperator
due to encoding, decoding, and the adversary’s interven-
tion, i.e.Onet = 1

|K|
∑
k BkOadvAk. By introducing an

ancilla systemR, we can extend this superoperator to a
linear transformation on the joint systemM ⊗ R ⊗ V
(whereM is the message system andV is B’s verifica-
tion qubit). For a pure state|ψ〉, write its image as

|ψ〉|γ|ψ〉〉|ACC〉+ |β|ψ〉〉|REJ〉+ |δ|ψ〉〉|ACC〉

where|δ|ψ〉〉 is a joint state ofMR which is orthogonal
to the subspace|ψ〉 ⊗R.

Now consider the family of states|ψi〉 =
| 000...0︸ ︷︷ ︸

i

111...1︸ ︷︷ ︸
t−i

〉, and let |γi〉 = |γ|ψi〉〉 and |δi〉 =

|δ|ψi〉〉.

Claim 12 For all i = 0, ..., t− 1, we have‖ 1
2 (|γi+1〉 −

|γi〉)‖ ≤ (1 +
√

2)
√
tε

Proof: Fix i. Note that|ψ+〉 = 1√
2
(|ψi+1〉 + |ψi〉) is a

product state (withH|0〉 in one position), as is|ψ−〉 =
1√
2
(|ψi+1〉 − |ψi〉). The image of|ψ+〉 can be written

1√
2

(
(|ψi+1〉|γi+1〉+ |ψi〉|γi〉)|ACC〉

+ (|δi+1〉+ |δi〉)|ACC〉+ (|βi+1〉+ |βi〉)|REJ〉
)

=
(
|ψ+〉

1
2

(|γi+1〉+ |γi〉) + |ψ−〉
1
2

(|γi+1〉 − |γi〉)

+
1√
2

(|δi+1〉+|δi〉)
)
|ACC〉+ 1√

2
(|βi+1〉+|βi〉)|REJ〉

Now we know that‖|δi〉‖2 ≤ tε for all i (since|γi〉 is a
product state). Thus,‖ 1√

2
(|δi+1〉+ |δi〉)‖ ≤

√
2tε.

Moreover,|ψ+〉 is a product state and so we have

‖|ψ−〉
1
2

(|γi+1〉 − |γi〉) +
1√
2

(|δi+1〉+ |δi〉)‖ ≤
√
tε

Thus,‖|ψ−〉 12 (|γi+1〉 − |γi〉)‖ = ‖ 1
2 (|γi+1〉 − |γi〉)‖ ≤

(1 +
√

2)
√
tε. 2

Then by the triangle inequality,‖ 1
2 (|γt〉 − |γ0〉)‖ ≤

(1+
√

2)t
√
tε. Let |Ψ±〉 = 1√

2
(|ψt〉±|ψ0〉). The image

of |Ψ+〉 = 1√
2
(|000...0〉+ |111...1〉) is:(

|Ψ+〉
1
2

(|γt〉+ |γ0〉) + |Ψ−〉
1
2

(|γt〉 − |γ0〉)

+
1√
2

(|δt〉+ |δ0〉)
)
|ACC〉+

1√
2

(|βt〉+ |β0〉)|REJ〉

Now the trace of this state withP |Ψ+〉
0 is the square of

‖|Ψ−〉
1
2

(|γt〉 − |γ0〉) +
1√
2

(|δt〉+ |δ0〉)‖

≤ ‖|Ψ−〉
1
2

(|γt〉 − |γ0〉)‖+ ‖ 1√
2

(|δt〉+ |δ0〉)‖

≤ (1 +
√

2)t
√
tε+
√

2tε

≤
√

10t3ε,

where in the last line, we have assumedt ≥ 2. That is,
the iterated scheme is10t3ε-secure for|Ψ+〉. 2

Putting the various lemmas together, we find that,
given two states|0〉 and |1〉 which are slightly distin-
guishable by the adversary, soD(ρ0, ρ1) ≥ δ, then in
the iterated scheme,|000...0〉 and|111...1〉 are more dis-
tinguishable:D(ρ|000...0〉, ρ|111...1〉) ≥ 1 − η, where
η ≤ 2 exp(−tδ2/2). Since the iterated scheme is10t3ε-
secure for the state|ψ〉 = 1√

2
(|000...0〉+|111...1〉), then

by Lemma 8,

10t3ε > 1− 2η ≥ 1− 4 exp(−tδ2/2)

Choosingt = 1/ 3
√

20ε, we getδ ≤ 4ε1/6.
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7. Quantum Signatures

One consequence of the previous theorem is that dig-
itally signing quantum messages is impossible. One can
imagine more than one way of defining this task, but
any reasonable definition must allow a recipient—who
should not be able to alter signed messages—to learn
something about the contents of the message. However,
this is precisely what is forbidden by the previous the-
orem: in an information-theoretic setting, any adver-
sary who can gain a non-trivial amount of information
must be able to modify the authenticated state with non-
negligible success.

If we consider computationally secure schemes, a
somewhat narrower definition of digitally signing quan-
tum states remains impossible to realize. If we assume a
quantum digital signature protocol should allow any re-
cipient to efficiently extract the original message, then
a simple argument shows that he can also efficiently
change it without being detected, contradicting the secu-
rity of the scheme. Namely: Assume that there is trans-
formationU with a small circuit which extracts the orig-
inal messageρ, leaving auxiliary state|ϕ〉 (which may
not all be held byB). In order to preserve any entan-
glement betweenρ and a reference system, the auxiliary
state|ϕ〉must be independent ofρ. Therefore,B can re-
placeρ with any other stateρ′ and then performU† on
ρ′ and his portion of|ϕ〉, producing a valid signature for
ρ′. This is an efficient procedure: the circuit forU† is
just the circuit forU executed backwards.

7.1. Public Key Quantum Authentication

As an alternative to digital signature we introduce the
weaker notion of public key quantum authentication.

Let Eb, Db be B’s public and private keyed algo-
rithms to a PKC andSa, Va beA’s private and public
keyed algorithms to a digital signature scheme, both re-
sistant to quantum computers’ attacks. To perform au-
thentication,A picks secret and random binary stringsk,
x, andy, and uses them as keys to q-authenticateρ asρ′.
A encrypts and signs the key asσ := Sa(Eb(k|x|y)). A
sends〈ρ′, σ〉 toB. To verify a state,B verifiesA’s signa-
ture onσ usingVa and then discovers the keyk, x andy
using his private decryption functionDb. B checks that
ρ′ is a valid q-authenticated message according tok, x,
y, and recoversρ.

Public Key Quantum Authentication is the basis of a
scheme for Uncloneable Encryption [8] allowing trans-
mission of quantum or classical messages in a way that
if the authentication succeeds then despite the computa-
tional assumption the confidentiality of the message is
forever guaranteed unconditionally.
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