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Abstract Topology optimization is a technique that allows
for increasingly efficient designs with minimal a priori deci-
sions. Because of the complexity and intricacy of the solu-
tions obtained, topology optimization was often constrained
to research and theoretical studies. Additive manufacturing,
a rapidly evolving field, fills the gap between topology opti-
mization and application. Additive manufacturing has min-
imal limitations on the shape and complexity of the design,
and is currently evolving towards new materials, higher pre-
cision and larger build sizes. Two topology optimization
methods are addressed: the ground structure method and
density-based topology optimization. The results obtained
from these topology optimization methods require some
degree of post-processing before they can be manufactured.
A simple procedure is described by which output suitable
for additive manufacturing can be generated. In this pro-
cess, some inherent issues of the optimization technique
may be magnified resulting in an unfeasible or bad product.
In addition, this work aims to address some of these issues
and propose methodologies by which they may be allevi-
ated. The proposed framework has applications in a number
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of fields, with specific examples given from the fields
of health, architecture and engineering. In addition, the
generated output allows for simple communication, editing,
and combination of the results into more complex designs.
For the specific case of three-dimensional density-based
topology optimization, a tool suitable for result inspection
and generation of additive manufacturing output is also
provided.
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Three-dimensional optimal structures · Structural
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1 Introduction

The field of structural optimization has developed for over a
century (Topping 1983; Rozvany 2009; Deaton and Grandhi
2013). However, the ability to manufacture these struc-
tures lags behind our ability to design and optimize them.
Recently, additive manufacturing (colloquially known as
3D printing), positions itself as the missing link towards a
fully integrated optimal structural design.

Additive manufacturing opens the possibility to over-
come limits currently imposed by conventional manufactur-
ing techniques. There is a large variety of additive manu-
facturing technologies. However, the steep cost and size of
these machines indirectly restricted them to large industry
and research installations. Recently, there has been a push to
bring these technologies to the consumer and small indus-
try (Jones et al. 2011). Five of the most common additive
manufacturing technologies are:

1. Fused Deposition Modeling (FDM);
2. Stereolithography (SLA);
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3. PolyJet;
4. Selective Laser Sintering (SLS);
5. Selective Laser Melting (SLM).

In FDM (Crump 1992), layers are built by extruding mate-
rial, joining it to previously built layers in the process. In
SLA (also referred to as LS), consecutive layers of pho-
topolymer liquid are cured by a UV laser or similar (Hull
1986). PolyJet technology is similar to SLA, except that the
photopolymer is jetted in thin layers onto the model and
rapidly cured by a UV light. SLS and SLM fuse material
powder in layers, with each consecutive layer commencing
by depositing a new layer of powder (Meiners et al. 1998;
Deckard 1989). The main difference between SLS and SLM
is whether the material gets fully melted by the laser or not.
The cost reduction and improved reliability of Fused Depo-
sition Modeling (FDM) have generated increased awareness
and widespread use of 3D printing (Crump 1992; Jones et al.
2011; Wittbrodt et al. 2013).

This work proposes a simple and effective procedure for
the last step in the design of optimal structures: the man-
ufacture. Structures obtained using three types of topology
optimization techniques are addressed:

– Two-dimensional ground structure optimization
– Three-dimensional ground structure optimization
– Density-based topology optimization

The goal in all three cases is the same—to generate
three-dimensional data in a format that can be used for
additive manufacturing. The workflow and techniques pre-
sented here apply to most (if not all) of the additive man-
ufacturing technologies. Work combining topology opti-
mization techniques (density-based methods mostly) and
additive manufacturing do exist (Brackett et al. 2011;
Dewhurst and Srithongchai 2005; Dewhurst and Taggart
2009; Meisel et al. 2013; Reinhart and Teufelhart 2011;
Rezaie et al. 2013; Sundararajan 2011; Villanueva and
Maute 2014; Gaynor et al. 2014). However, at the time
of this writing, the use of these technologies is still novel
and further developments are required to streamline the
process.

A tool to inspect and post-process three-dimensional
density-based topology optimization results is discussed
and provided to the reader (see the Electronic Supplemen-
tary Material accompanying this publication). This tool,
named TOPslicer and developed in MATLAB, takes a three-
dimensional matrix (or array) containing density values in
the range of 0 and 1 (void and solid), and generates output
suitable for additive manufacturing, or for further manipu-
lation in standard 3D modeling software. Additional notes
on the input data for this tool are provided in the Appendix.

The manuscript is organized as follows: Section 2
briefly reviews the file formats commonly used in additive

manufacturing and their specific use in the field of topol-
ogy optimization. Sections 3 and 4 introduce the ground
structure and density-based topology optimization meth-
ods respectively, both methods which are addressed in the
present work. Examples and applications for both methods
are discussed and shown in Section 5. Finally, the work is
summarized and conclusions are given in Section 6.

2 Additive manufacturing file formats

Regardless of the additive manufacturing technology, a vast
majority of additive manufacturing machines accept STL
or stereolithography files (*.stl) as input (France 2013;
Lipson and Kurman 2013). The specification for stere-
olithography files is relatively old and outdated. In addition,
the STL format is quite rigid: it can only describe solids by
tessellating (discretizing) its surface into triangles.

The X3D format (*.x3d), itself a successor of the
VRML format, is a modern royalty-free ISO standard to
specify three-dimensional computer data (Brutzman and
Daly 2010). The X3D specification has support for implicit
definitions of basic geometric primitives like the box, cone,
cylinder and sphere, in addition to tessellated surfaces. The
number of facets or details on these implicit primitives is left
to the specific renderer or interpreter. X3D has support for
label definitions which can be reutilized to reduce the out-
put size, while still being human-readable. In addition, X3D
output poses additional benefits that extend beyond man-
ufacturing: ease of communication, editing and third-party
visualization.

Translation from X3D to STL is straightforward and sim-
ple. In the process however, the implicit geometrical entities
must be discretized. Translating from STL to X3D is also
possible; however, a discretized sphere surface will not
become an implicit sphere (defined by center and radius) in
X3D; thus, there is a (potential) loss of information when
converting from X3D to STL (if implicit geometries are
being used). An X3D file can combine implicit primitives
with tessellated surfaces in a single file, and is thus the pre-
ferred output format in the present work. Nonetheless, both
X3D and STL output capabilities were developed for all
three types of optimal structures in this work. The output
possibilities, as well as their intended purpose are sum-
marized in Fig. 1. The main purpose of the STL output
is additive manufacturing, while X3D output is primarily
intended for communication and editing (and later additive
manufacturing).

A sphere can be completely defined by the three coor-
dinates of its centroid and the radius: 4 floating point
numbers (Fig. 2a). If this sphere is tessellated into 320
triangles, and considering it is required to store three three-
dimensional nodes per triangle: the storage requirement is
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Fig. 1 Diagram illustrating the possible file outputs (X3D and STL)
and their intended purpose

(320) (3) (3) = 2880 floating point numbers. This situation
worsens for the specific case of the STL specification: the
numbering convention is not strict and therefore the normal
vector for each triangle is also required (additional 3 float-
ing point numbers per triangle). On the other hand, X3D has
support for a node list, with the triangle (element) connec-
tivity given in a separate list: this results in a more modern,
readable and efficient storage format.

The quality of the representation depends on the degree
of refinement of the tessellation and on the method used to
generate the tessellation: Fig. 2b and c exhibit two examples
of a sphere tessellation, one based on spherical coordinates

and one based on the refinement of an icosphere, with the
latter having a more uniform quality throughout its surface.
Similarly, the cylinder and box must also be tessellated into
triangles for the case of STL output as shown in Figs. 3
and 4.

Recently, a new file format named AMF or Additive
Manufacturing File (*.amf) was created to overcome the
limitations of the STL format (ASTM ISO 2013). This
new specification implements many of the modern features
available in modern formats such as X3D as well as features
specific to additive manufacturing. However, at the time of
this writing, the standard is not widespread nor compatible
with the machines in the market, and its support is minimal
or non-existent in 3D editing software. Thus, it (currently)
poses no real advantage over X3D in the scope of this work.

3 Ground structure method

3.1 Overview of the ground structure method

The ground structure method (Dorn et al. 1964) numeri-
cally approximates the optimal truss-like (Michell) structure
(Michell 1904; Hemp 1973) using a reduced finite num-
ber of truss members. The method “removes” unnecessary
members from a highly interconnected truss (ground struc-
ture) while keeping the nodal locations fixed: the method
avoids the optimization of sizing and geometry by instead
doing a sizing-only optimization for a highly redundant
truss. For a single load case, Hegemier and Prager (1969)
showed that a truss with maximum stiffness is also fully
stressed: i.e. volume minimization for a single load case
with equal stress limits in tension and compression is equiv-
alent to compliance minimization with a prescribed volume
(Bendsøe and Sigmund 2003).

The ground structure method owes its popularity to
the development and discovery of new analytical (closed-
form) solutions for optimal structures (Rozvany and Gollub

Fig. 2 Spherical representations: (a) Sphere defined implicitly; (b) Sphere discretized using spherical coordinates using 320 triangles; (c)
Icosphere tessellated into 324 triangles
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Fig. 3 Cylinder representations: (a) Cylinder defined implicitly; (b)
Cylinder discretized using cylindrical coordinates using 48 triangles

1990; Lewiǹski et al. 1994a, b; Rozvany et al. 1997; Roz-
vany1998; Lewiǹski 2004; Graczykowski and Lewiǹski
2005, a, b, c, 2007; Lewiǹski and Rozvany citeyearLewin-
ski2007, 2008a, b; Lewiǹski et al. 2013), and there is
ongoing work to extend the library of known analytical solu-
tions for complicated domains. In this regard, the method
is of particular interest to researchers and academics in
the field. The ground structure method has been refined,
simplified and optimized, resulting in an easy-to-use imple-
mentation for truss topology optimization in structured
orthogonal domains (Sokół 2011). Using an approach taken
from computational geometry and the field of video-games,
the method was extended to concave unstructured domains
with the possibility of holes (Zegard and Paulino 2014a;
2014b).

The optimal (least-weight) truss for a single load case,
under elastic and linear conditions, subjected to stress con-
straints can be formulated as a linear programming problem
(Ohsaki 2010; Hemp 1973), which can be efficiently solved
using the interior-point algorithm (Karmarkar 1984; Wright
2004). Defining the stress limits in tension and compres-
sion as σT and σC respectively, the stress limit ratio is

Fig. 4 Box representations: (a) Box defined implicitly; (b) Box
discretized into 12 triangles

κ = σT /σC and the single load-case formulation of the
method becomes:

min
s+,s−

V

σT

= lT
(
s+ + κs−

)

s.t. BT
(
s+ − s−

) = f
s+
i , s−

i ≥ 0 ,

(1)

where V is the truss’ volume, s+ and s− are slack variables
associated with member under tension and compression
respectively, BT is the nodal equilibrium matrix built from
the directional cosines of the truss’ members and f is the
vector of nodal forces. The optimal volume is typically
calculated for σT = 1, and the optimal solution to (1)
should be scaled by 1/σT for values other than unity. This is
the plastic layout optimization version of the ground struc-
ture method (Gilbert and Tyas 2003; Achtziger 2007; Sokół
2011; Zegard and Paulino 2014a; Zegard 2014), and is the
method of choice in the present work. However, it should
be noted that the manufacturing approach proposed here is
also applicable to the elastic layout optimization version of
the method (Christensen and Klarbring 2009; Ramos and
Paulino 2014).

This brief overview of the method is presented for the
purpose of completeness. The purpose of this is to introduce
the method, and the reader can refer to Ohsaki (2010) for
more details and explanations.

3.2 Export procedure for ground structures

The output for three-dimensional ground structures is gener-
ated using a cylinder of appropriate radius for each member,
and a sphere at the nodes with radius equal to the largest
member connecting to it. An example of output for a
three-dimensional ground structure is shown in Fig. 5a.

The output for two-dimensional ground structures is an
extrusion of the two-dimensional representation. Given an

Fig. 5 Sample output for ground structures: (a) Three-dimensional
ground structure composed of 6 members; (b) Two-dimensional
ground structure composed of 3 members
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extrusion height he, a member with cross-sectional area ai

is represented by a slender box of width wi = ai/he. The
nodes are represented by cylinders of height he (as opposed
to spheres in the three-dimensional case), with radius in
accordance to the largest member connecting to them. An
example of output for a two-dimensional ground structure is
shown in Fig. 5b.

The X3D format has support for implicit boxes, cylinders
and spheres, thus making the output highly efficient. On the
other hand, in order to output to an STL file, these shapes
must be first tessellated into triangles (discretized surface).
The box’s surface can be tessellated into 12 triangles with
no loss of quality. The cylinder and sphere, however, will
undergo a loss of information compared to their implicit
representations because of the discretization.

The ground structure output procedure can be further
refined to include fillets in the joints and thus provide a bet-
ter connection between the members. Chen (2006) reviews
some of the available solutions, and proposes an approach
to achieve simplified tessellations with the possibility of
fillets.

4 Density-based topology optimization

4.1 Overview of density-based topology optimization

Density-based topology optimization is a method that tries
to answer “What is the best distribution of material within
a prescribed domain?”. It does so by discretizing the design
domain and optimizing density variables associated to each
element within the discretization. It is a gradient-based iter-
ative method that in its most popular variation, the so-called
nested formulation (Bendsøe and Sigmund 2003; Chris-
tensen and Klarbring 2009), alternating steps of design
update and analysis are performed at each iteration (i.e. the
structural equilibrium is implicitly satisfied).

The method owes its popularity to the fact that it is
an Eulerian approach: the domain does not need to be
remeshed to account for the new boundary between material
and void, or between two (or more) materials. The relation-
ship between elastic modulus Ei of the i-th element and
its density ρi is typically defined using the Solid Isotropic
Material with Penalization (SIMP), or power-law, as pro-
posed by Bendsøe (1989) and Zhou and Rozvany (1991):

Ei (ρi) = ρ
p
i E0 with p ≥ 1 , (2)

where p is a penalization factor: high values of p make it
uneconomical to use intermediate values between solid and
void; ρ = 1 and ρ = 0 respectively. The structural equilib-
rium will encounter computational difficulties due to void
regions because the associated variables have zero-stiffness.

To overcome this problem, a lower limit on the design vari-
able is typically used. More recently, the modified SIMP
uses an Ersatz material (very weak material) instead to
represent the void, thus turning this into a two-material
optimization problem (Sigmund 2007).

The topology optimization problem is not well-posed:
the objective can always be decreased by increasingly more
and smaller details (Sigmund and Petersson 1998). For the
discretized problem, this means that a refinement in the
discretization will result in a more detailed and (usually) dif-
ferent topology; i.e. the solution is mesh-dependent. For the
problem to be well-posed and reduce the mesh-dependency,
the problem needs to be relaxed (Bendsøe and Kikuchi
1988) or restricted (the latter being more popular in current
approaches). There are a variety of restriction methods for
SIMP problems: perimeter control (Ambrosio and Buttazzo
1993; Haber et al. 1996), sensitivity filter (Sigmund 1997),
density filter (Bruns and Tortorelli 2001; Bourdin 2001),
projection filter (Guest et al. 2004; Sigmund 2007; Xu et al.
2010; Wang et al. 2011).

This work uses the density filter, for it is a relatively
simple approach while still providing reasonable result
quality. The density filter defines the elements’ physical
densities ρ as the weighted average of the design vari-
ables ρ. The weighting function is local in nature and
operates over the variables in a neighborhood of radius
rmin. The SIMP with density filtering is a class of the so
called two-field SIMP, because it makes use of a design
variable ρ and a density variable ρ field (Sigmund and
Maute 2013). This filter can also be viewed as a convolution
operation over the design variables, and implicitly controls
the minimum length-scale of the resulting topology. How-
ever, it should be noted that the manufacturing approach
proposed here is also applicable to other restriction
methods.

Defining the elastic modulus for the solid material and
Ersatz materials as E0 and Emin respectively, the density-
based topology optimization formulation using the modified
SIMP law is:

min
ρ

J (ρ, u (ρ))

s.t.
∑Ne

i ρivi − (f ) (V0) ≤ 0
gi (ρ, u (ρ)) ≤ 0 i = 1 . . . Nc

Ek

(
ρk

) = Emin + ρ
p
k (E0 − Emin) k = 1 . . . Ne

ρ = Hρ

0 ≤ ρj ≤ 1 j = 1 . . . Ne

with K (ρ)u = f ,

(3)

where J (·) is the objective function, ρ are the design vari-
ables, ρ are the physical densities, vi is the volume of the
i-th element, f is the domain’s volume fraction allocated for
the solid phase, V0 = ∑Ne

i vi is the volume of the design
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domain, gi (·) are additional constraints (optional), Ek is the
elastic modulus of the k-th element, H is the filter matrix
with weight coefficients, Ne is the number of elements
in the discretization, and Nc are the number of additional
constraints. In addition, the nested formulation solves for
structural equilibrium after each design phase; with u being
the nodal displacements, K the stiffness matrix, and f the
nodal forces.

The filter matrix H contains the weights coefficients
relating each design variable with the neighboring density
variables:

with Hij = h (i, j) vj
∑Ne

k h (i, k) vk

h (i, j) = max
{

0 , [rmin − dist (i, j)]q
}

(4)

The operator dist (i, j) is defined as the distance between
density variable ρi and design variable ρj , and rmin is the
user-defined filter radius. The order of the filter is defined
by the exponent q, where q = 1 results in the linear
filter (convolution with a cone for two-dimensional prob-
lems). Figure 6 graphically illustrates the distance filter in a
regular two-dimensional mesh using linear (q = 1),
quadratic (q = 2) and cubic (q = 3) weighting functions.

The method for p = 1 (refer to (2)) corresponds to
the variable thickness sheet problem, that for compliance
minimization (i.e. J (ρ, u (ρ)) = uT f) is known to be con-
vex and with a unique solution (Petersson 1999). The usage
of values p > 1 is justified by the desire to obtain “clean”
solid–void solutions with a smaller amount of intermediate
variables. Thus, a relatively common value for the penal-
ization variable is p = 3 (Sigmund 2001). However, the
problem becomes non-convex for values of p > 1 (i.e.
the problem has multiple local minima), and thus the solu-
tion obtained is likely not the global optimum. The initial
guess for the design variables is typically equal to the vol-
ume fraction f throughout the domain, and the solution
is allowed to evolve in relatively small steps towards a
converged design.

The density filter has the downside of encouraging a
smooth transition region between solid and void, which is
also true for other types of filtering. There are a number of
approaches to reduce the amount of intermediate densities
in the transition region, mainly projection and continua-
tion (Allaire and Kohn 1993; Allaire and Francfort 1993;
Sigmund and Petersson 1998).

The domain may also include passive elements: these
elements (and their associated design variables) can be
prescribed to be void or solid, and are referred to as passive-
void and passive-solid respectively. The (unknown) density
variables to be optimized are called active. The number of
active, passive-void and passive-solid variables are Na , Npv

and Nps respectively, with Ne = Na +Npv +Nps . It is often

desirable to specify a volume fraction f � for the design
domain only (i.e. the active region). This volume fraction
f � is related to the total volume fraction f by:

f = f �
∑Na

j vj + ∑Nps

k vk

∑Na

j vj + ∑Nps

k vk + ∑Npv

l vl

= f �
∑Na

j vj + ∑Nps

k vk

V0
(5)

This brief overview of the method was presented for the
purpose of completeness. Given the many (recent) devel-
opments related to this method, it is impossible to provide
a complete summary in the present manuscript. Thus, the
reader can refer to Bendsøe and Sigmund (2003) for more
details and explanations.

4.2 Export procedure for density-based topology
optimization

The continuous nature of the density variable ρ in SIMP
is not physical: a solid–void (or 0–1) solution is desired

Fig. 6 Convolution (weighting) functions for a regular two-
dimensional mesh patch. The elements have a unit size and the shaded
elements have weights different than zero. a Linear filter. b Quadratic
filter. c Cubic filter
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instead. Thus, the solution requires to be interpreted. The
solid boundary can be defined by a cutoff (or threshold)
value: densities ρ > cutoff ≈ 0.5 are considered to be
solid. The interpreted solution is no longer optimal and
the volume constraint may be violated. More sophisticated
approaches can ensure that these variations are not signif-
icant (Sigmund 2007; Xu et al. 2010). Nonetheless, taking
cutoff ≈ 0.5 does yield reasonably good results, especially
if the results have a relatively small amount of intermediate
densities.

The isosurface is the three-dimensional analogous to the
two-dimensional contour line. The isosurface is calculated
by interpolating four-dimensional data: each point t in the
domain is associated with 3 coordinates and a single density
value {xt , yt , zt , ρt }. To ensure the closure of the isosurface,
a layer of void elements (ρ = 0) is added next to the bound-
ary of the domain. The surface is tessellated (discretized)
into triangles that can be directly outputted to an STL file
for manufacturing. This also applies if the desired output is
X3D, or a number of other popular file formats such as OBJ,
3DS, FBX and others.

The visualization of three-dimensional density-based
topologies is difficult due to the four-dimensional nature
of the data. To visualize and inspect the solution, the
results can be sliced at some plane and the resulting three-
dimensional data can then be plotted. A simple graphical
tool named TOPslicer was developed for slicing three-
dimensional density-based topology optimization data, and
therefore facilitate the inspection of results prior to man-
ufacturing. In addition, different cutoff values and their
resulting solid can be visualized and compared on the fly.
For problems where symmetry was exploited in the analysis,
TOPslicer can mirror the results in one or more coordinate
axis to restore the complete model. Once the result has
been inspected and approved, the final isosurface can be
exported to X3D and/or STL for manufacturing. Figure 7
shows TOPslicer working with sample data for an edge-
loaded cantilever beam. TOPslicer is distributed as part of
the Electronic Supplementary Material accompanying this
publication, and guidelines for the input are given in the
Appendix.

4.3 Issues with density-based topology optimization

4.3.1 Filters in three-dimensional topology optimization

Linear filters are often used in two-dimensional density-
based topology optimization (Sigmund 2001; Bendsøe and
Sigmund 2003; Andreassen et al. 2011; Liu and Tovar
2014). However, it has been pointed out that linear fil-
ters do not clearly define the solid–void boundary, as they
create a smooth transition region between solid and void.
The filter is necessary to make the problem well-posed

Fig. 7 Screenshot of the TOPslicer tool: the edge-loaded cantilever
problem is loaded and its symmetry is restored. The solution is sliced
to inspect the quality of the solution prior to exporting the cutoff iso-
surface for manufacturing (STL) or for communication and editing
(X3D). The slice plot clearly shows the density values in the cutting
plane and the isosurface for the chosen cutoff value

and prevent checkerboard patches in the solution (Dı́az
and Sigmund 1995; Sigmund and Petersson 1998). The
checkerboard problem is a numerical artifact common in
meshes with traditional elements (e.g. triangles, quadrilater-
als, hexahedra, wedges to name a few), where the resulting
topology is artificially stiff when exhibiting a checker-
board solid–void pattern. In practice, the filter implicitly
introduces a minimum length scale of the details in the
topology.

Higher-order filters q > 1 are efficient at reducing the
amount of intermediate material at the boundary due to
their rapid decay (Almeida et al. 2009). The effect of filters
in three-dimensional density-based topology optimization
has not received the attention two-dimensional filters have
had. A number of factors contribute to this: the increased
complexity of three-dimensional analysis, limited compu-
tational power, and the complexity of three-dimensional
plotting. Given a filter with specific rmin and exponent q,
the effect of the filter in two and three-dimensional space is
different: the blurring (or smearing) effect is increased in
three-dimensions.

Consider a two-dimensional regular and orthogonal mesh
with square elements of unit size, and a single design and
density variable per element located at the center. Taking
rmin = 1.3 and q = 1 in (4), the resulting convolu-
tion kernel in two-dimensions is shown in Fig. 8a. Using
these parameters for an equivalent three-dimensional mesh
of hexahedral elements, the convolution kernel involves 6
neighboring elements instead of 4, as shown in Fig. 8b.
The weight for the design variable at the center decreases
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Fig. 8 Topology optimization filters in two and three dimensions. The
meshes are regular and orthogonal with elements of unit dimension.
The filter is linear of size rmin = 1.3. a Two-dimensional filter patch:
the filter weight associated with the center element is H(2D)

ii = 0.5200,
plus 4 adjacent elements. b Three-dimensional filter patch: the filter
weight associated with the center element is H(3D)

ii = 0.4194, plus 6
adjacent elements

from H(2D)
ii = 0.5200 to H(3D)

ii = 0.4194. The difference
in Hii increases with the filter radii: the elements inside
a two-dimensional filter scales with r2, compared r3 in
three-dimensions. The variation of the weight Hii with the
filter radius for regular and orthogonal meshes is shown in
Fig. 9a.

Considering a regular and orthogonal mesh with a given
filter radius rmin and filter exponent q(2D) in 2D; a three-
dimensional exponent q(3D) can be found such that H(2D)

ii =
H(3D)

ii . In order to maintain the weight Hii equivalent, the
weight coefficients of the neighboring design variables must
decrease. This results in a decrease of the material being
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Fig. 9 Comparison of two and three-dimensional radial filters of var-
ious orders: (a) weight coefficient for the central element Hii for
different filter radii; (b) Required three-dimensional filter exponent
q(3D) that results in the same filter weight for the center element Hii

as in two-dimensions

leaked to the neighboring elements, while maintaining the
filter radius unchanged (control over the minimum length-
scale). Figure 9b plots the required q(3D) that results in same
value for Hii : the filter exponent in three-dimensional filters
q(3D) should be higher compared to two-dimensional filters.
Maintaining the same filter radius will cause the implicit
control over minimum length-scale to be similar, but not
equal. These conclusions are not restricted to density fil-
ters, but extend to sensitivity filters and projection schemes
(three-field SIMP) as well.

The effect of high order filters can be further exam-
ined with an example. The three-dimensional cantilever in
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Ly

Lx

Lz

p
Fig. 10 Rectangular cantilever clamped at the left side and loaded at
the right by a distributed force applied at the lower edge

Fig. 10 is clamped at one end, and loaded at the bottom edge
of the opposite tip. The objective function is the minimiza-
tion of structural compliance (maximization of stiffness);
that is J = uT Ku = uT f. The problem is symmetric, and
thus only a half-domain is modeled. The domain is dis-
cretized using Lx × Ly × Lz = 216 × 72 × 72 regular
hexahedra (8-node) elements, resulting in 216 × 36 × 72
for the half-domain being modeled. The material’s Poisson’s
ratio is ν = 0.3 and Emin = 10−9E0. The filter radius is
rmin = 6, the penalization is p = 3 and the volume fraction
is f = 0.1 (10 % of the domain’s volume).

The cutoff (or threshold) used is cutoff = 0.5, i.e. the
solid is defined by the domain region with density ρ ≥
0.5. The resulting isosurface for the case of a linear fil-
ter (q = 1) exhibits an unnatural thinning at the ends
of one of its members (Fig. 11a). This is caused by the
filter, for it generates intermediate densities in the vicin-
ity of the joints, providing additional stiffness in those
regions (even when penalized). Consequently, the struc-
ture requires a smaller cross-sectional area to carry the
loads, i.e. the member is thinned when aided by these
intermediate variables. It should be noted that this issue

is not particular of additive manufacturing, and is likely
to affect other manufacturing processes such as casting or
milling.

The isosurface obtained from a cubic filter (q = 3) does
not suffer from this thinning problem (Fig. 11a). Due to its
rapid decay, the cubic filter does not spread the material in
the vicinity of the joint when compared to the linear filter.
Figure 11b slices the resulting topologies along the partic-
ular member to highlight the intermediate densities in the
vicinity of the joints.

4.3.2 Continuation of the penalization variable

Knowing that the compliance minimization problem is con-
vex for p = 1 (Petersson 1999), but better approximates
solid–void solutions with values p >> 1, motivates the
use of a continuation approach on the penalization param-
eter (Allaire and Kohn 1993; Allaire and Francfort 1993;
Sigmund and Petersson 1998). This consists in initially
optimizing for p = 1 (unique solution), and gradually
increasing the penalization value during the optimization
process to reduce the amount of intermediate density val-
ues, thus driving the solution closer towards a 0–1 design
(solid–void). While this technique often converges to better
designs, this cannot be guaranteed nor proven mathemat-
ically due to the multiple local minima for p > 1. The
penalization parameter can be safely increased to values
of p > 4, that with constant penalization would likely
converge to a worse design.

Alternatively, a continuation scheme could be used on
the filter radius instead, i.e. gradually decrease the fil-
ter radius during the optimization process (Sigmund and
Maute 2013). This approach may result in checkerboarded
regions or small length-scale topologies if introduced too
early in the optimization process, and is thus considered less
robust.

Fig. 11 Topology optimization
results for the edge-loaded
cantilever problem using
density-based topology
optimization with linear and
cubic filtering (q = 1 and q = 3
respectively). Plots show the
ρ = 0.5 isosurface (density
cutoff): (a) Zoom of a detail
displaying the unnatural thinning
at the ends of a member; (b)
Slice of the resulting topology
highlighting the intermediate
densities in the vicinity of the
joints caused by the filter

a

b
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Fig. 12 Density-based optimization of the bridge problem. Domain
is loaded on the top surface and supported by thin strips at opposite
edges on the bottom face. a Domain, loads and supports: The model
size is Lx × Ly × Lz = 440 × 88 × 88, the bridge slab is represented
by a passive-solid region of height hs = 2, and the support strips
have width equal to Ls = 17 at both ends. Results are displayed for
the ρ = 0.5 isosurface. b Symmetric quarter-domain result for con-
stant penalization p = 3, with detail of the interrupted members. c
Symmetric quarter-domain result using the continuation approach for
the penalization p = {1.0 , 2.0 , 3.0 , 3.5 , 4.0 , 4.25}. Members are
continuous from the support strips to the loaded slab

The effect of continuation at improving the result-
ing topologies can be further examined with a suitable

example. The three-dimensional bridge domain in Fig. 12a
is discretized using Lx × Ly × Lz = 440 × 88 × 88 reg-
ular hexahedral (8-node) elements of unit size. The domain
is fixed on the bottom plane at strips of length Ls = 17
at each end (18 rows of nodes). The domain has a passive-
solid slab on the top surface of height hs = 2, on top
of which a vertical distributed load is applied. The objec-
tive function is the minimization of structural compliance
(maximization of stiffness); that is J = uT Ku = uT f.
The problem is double-symmetric and thus only a quarter-
domain is modeled: the model in the optimization consists
of 220 × 44 × 88 elements. The material’s Poisson’s ratio
is ν = 0.3 and Emin = 10−9E0. The filter radius is
rmin = 5.28, the continuation on the penalization is p =
{1.0 , 2.0 , 3.0 , 3.5 , 4.0 , 4.25} and the volume fraction
is f = 0.1 (10 % of the design domain’s volume).

The distributed force on the bridge slab causes the mem-
bers to spread too thin in an effort to support the load
everywhere. By doing so, the members’ density drops
below the solid cutoff value, resulting in the members end-
ing abruptly just before the slab as shown in Fig. 12b.
This issue can be alleviated by reducing the cutoff den-
sity. This however, will result in an undesirable (artificial)
increase of the volume fraction. By increasing the penal-
ization in the last iterations, i.e. p > 4, the solution is
forced to further define the members. This prevents the
attempt of the solution to support the loaded slab every-
where, but clearly define the support points as shown in
Fig. 12c instead.

5 Examples & applications

The optimal structures analyzed and discussed in the present
work were manufactured using FDM and SLS technolo-
gies. Nonetheless, the work is not restricted to these additive
manufacturing processes. Additional examples and pictures
can be found in Zegard (2014).

5.1 Examples of manufactured results

Figures 13 and 14 are examples of manufactured optimal
ground structures in three-dimensions. The manufactured
torsion ball problem (Michell 1904) is particulary useful in
educational settings to gain a better understanding of the
underlying geometry behind the optimal solution (problem
was numerically addressed in Zegard and Paulino 2014b;
Zegard 2014). The Lotte tower models can aid in the
exploration of new geometries and structural system pat-
terns as well as better communicate ideas and concepts.
Figure 15 is an example of a manufactured two-dimensional
ground structure (problem was numerically addressed in
Zegard and Paulino 2014a; Zegard 2014).
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a b c

Fig. 13 Torsion ball problem: (a) Optimal structure to balance a
moment pair with no geometrical restrictions in the domain derived
by Michell (1904); (b) Ground structure method solution for the tor-
sion ball problem (approximation of the optimal solution) based on the

work by Zegard and Paulino (2014b); (c) Manufactured model based
on the ground structure method solution using an SLS process [scale
in inches]

Figure 16 display manufactured optimal density-based
structures. The edge-loaded cantilever problem in Fig. 16a
was manufactured from a result using a linear filter, and
thus exhibits the unnatural thinning of members addressed
in Section 4.3.1. Figure 16b shows an equivalent bridge
problem to the one shown in Section 4.3.2, with a domain
discretized using Lx × Ly × Lz = 500 × 50 × 100 regu-
lar hexahedra (8-node) elements, f = 0.1, rmin = 6 and
Ls = 20 at each end (21 rows of nodes).

The X3D output can be easily visualized in a modern
web browser with no additional download. This facilitates
the communication and exploration of the designs by all
involved parties. Figure 17a shows a topology optimized

pedestrian bridge optimized with Lx × Ly × Lz = 440 ×
88 × 88 regular hexahedra (8-node) elements, f = 0.1,
rmin = 5.28 and Ls = 17 at each end (18 rows of
nodes), visualized within a web browser. The design can
then be manufactured to be used as an architectural model
by incorporating additional elements into the design as
shown Fig. 17b.

The tools developed for additive manufacturing, specifi-
cally TOPslicer, were successfully deployed and tested in a
class environment as part of a homework in the Structural
Design Optimization class at the University of Illinois at
Urbana-Champaign, during the fall semester of 2014. Stu-
dents, working in pairs, used an in-house modified version

2r

H

2a

2r

H

2a

a b c d

Fig. 14 Lotte tower problem: (a) Lotte tower competition design in
Seoul, South Korea [Image courtesy of Skidmore, Owings & Mer-
rill LLP]; (b) Ground structure method solution for a laterally loaded
design domain based on the Lotte tower; (c) Ground structure method

solution for a torsionally loaded design domain based on the Lotte
tower; (d) Manufactured models based on the ground structure method
solutions using an FDM process [scale in inches]
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Fig. 15 Flower problem: (a) Donut-shaped domain supported at the
inner ring and loaded at 5 points in the outer ring; (b) Ground structure
method solution for the flower problem (approximation of the optimal

solution) based on the work by Zegard and Paulino (2014a); (c) Man-
ufactured model based on the ground structure method solution using
an FDM process [scale in inches]

of TOP3D (Liu and Tovar 2014) in conjunction with TOP-
slicer, to optimize a problem of their choice and generate
STL output suitable for additive manufacturing. Students
were constrained to a 2.5 × 2.5 × 4 in build volume, but

Fig. 16 Examples of manufactured three-dimensional density-based
topology optimization results: (a) Edge-loaded cantilever beam model
used to further examine the unnatural member thinning problem from
Section 4.3.1 [scale in inches]; (b) Slab-loaded bridge problem dis-
cretized with Lx × Ly × Lz = 500 × 50 × 100 regular hexahedra
(8-node) elements [scale in inches]

were otherwise free to define their problem and optimiza-
tion parameters. Figure 18 shows all 24 models built as part
of this activity.

Fig. 17 Application and usage of the X3D output for the optimization
of a pedestrian bridge: (a) Pedestrian bridge problem with terrain being
displayed in a web browser (no download required). The viewer can fly
through, zoom and rotate the model on-the-fly; (b) Architectural model
of the pedestrian bridge manufactured from the X3D output used for
communication, and using an FDM process [scale in inches]
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Fig. 18 Topology optimized
structural models created by
students as part of a homework
in the Structural Design
Optimization class at the
University of Illinois at
Urbana-Champaign, during the
fall semester of 2014 [scale in
inches]. Models were
manufactured using an FDM
process

5.2 Application in a class environment

5.3 Application in the medical field

Our current capability of of restoring the visual appearance
and functionality of the human body after severe trauma is
often partial. Patients who suffer from traumatic bone loss,
cancer, malformation or other illnesses often require bone
structure replacement, which is a long process that struggles
to recreate the appearance and functionality of the original
structure.

Topology optimization and additive manufacturing tech-
nologies offer a path to potentially change the current med-
ical reconstructive procedures: Given structural, biological,
manufacturing and surgical requirements, typically dictated
by the medical doctor, an appropriate optimization problem
can be formulated and solved (Sutradhar et al. 2010). The
result will be a patient-specific replacement topology that
is structurally optimal and functional. The solution obtained
can then be manufactured, and used in the reconstructive
process.

Using density-based optimization with SIMP, the pro-
cess begins by defining the optimization problem: domain,
loading, boundary conditions, active/passive-void zones
and optimization parameters. For the specific problem in
Fig. 19a, the domain is discretized in 108 × 63 × 81 regu-
lar hexahedra (8-node) elements with dimension 0.0333 in

(problem dimensions are 3.6 × 2.1 × 2.7 in). This results in
a total of 551,124 design variables and 1,716,096 degrees-
of-freedom. It should be noted that the problem is generated

procedurally, and thus the domain, loading, boundary con-
ditions and passive-void zones can be modified on a patient-
specific basis. The objective function is the minimization
of structural compliance (maximization of stiffness); that
is J = uT Ku = uT f. The material’s Poisson’s ratio is
ν = 0.3 and Emin = 10−9E0. The filter used has a radius
of rmin = 6 units = 0.2 in and order q = 3. The SIMP
penalization exponent p is increased by continuation from
p = 1.0 up to p = 4.25.

The resulting topology is shown in Fig. 19b. This result is
embedded and rendered in its intended position in a skull in
Fig. 19c. The manufactured model (FDM process) is shown
in Fig. 19d, with a cast of an upper jaw made from the
main author’s teeth. In addition, the manufactured model
is displayed alongside a human skull replica in Fig. 19e
for reference purposes. Nonetheless, the technique requires
the use of bio-compatible metals or human cell printing—
technologies that are currently available and are rapidly
evolving towards its usage in patients (Salmi et al. 2012;
Salmi 2013; EOS GmbH 2014; Sutradhar et al. 2014).

5.4 Achieving larger length scales

There is ongoing work on achieving large length scales
in additive manufacturing. However the precision and the
application scope of the current approaches is less than
desirable. One possible path towards large length scales
relies on the partition of the model: the X3D format is
particularly useful for the 3D editing required to parti-
tion and splice the model. This would ultimately lead to
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Fig. 19 Craniofacial
reconstruction problem: (a)
Domain, loads, supports and
passive-void zones. These are
procedurally generated to meet
patient-specific needs; (b)
Topology optimized result for
the domain previously shown;
(c) Rendering of the resulting
optimized topology embedded
in a human skull; (d)
Manufactured model based on
the topology optimized result
(using an FDM process) with a
cast of the main author’s teeth
for reference [scale in inches];
(e) Manufactured model (using
an FDM process) with a human
skull replica as reference [scale
in inches]
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a large model being built from multiple smaller pieces.
Figure 20 shows a 3 f t bridge based on the model shown
in Fig. 16b built from 3 separate pieces and joined together
after manufacturing.

6 Summary & conclusions

Additive manufacturing presents itself as the final and miss-
ing link in a complete structural optimization framework:
given a problem with requirements and limitations, the
problem can be optimized with the method of choice, and
the resulting structure can be (now) manufactured with ease.

In addition, the three-dimensional computer model can be
used to rapidly communicate design concepts and changes,
thus aiding in the rapid development of new (optimal)
structures.

Two optimization methods were explored, and based on
these, designs were obtained and manufactured: the ground
structure method and the density-based method using SIMP.
Each of these methods has strengths and weaknesses, but
together provide valuable information of the optimal struc-
tural mechanism, while providing the user a wider range
of design options (Fig. 21). The solutions obtained from
these methods do not directly translate into manufacturable
models, and thus some post-processing and interpretation is
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Fig. 20 Three foot long bridge obtained with density-based topology
optimization using SIMP (scaled version of the result in Fig. 16b). The
bridge was split into 3 pieces, 1 foot long each, manufactured using an
FDM process and assembled afterwards

required. This work also outlines some issues that may arise
in the process and makes suggestions on how to alleviate
them.

The framework and techniques developed here are not
restricted to buildings and bridges and their implementation
in other fields looks particularly promising. In that regard,

Design domain,
loading and supports

Ground structure
method

Density-based
method with SIMP

Manufacturing Manufacturing

P

Lx

Ly

Lz

Fig. 21 Given an optimization problem, the framework described in
the present manuscript allows two distinct (but related) optimal solu-
tions to be obtained and manufactured: a ground structure (truss-like)
solution and a density-based (continuum) solution

an example with a medical application was shown. In addi-
tion, manufactured models have been successfully used in
educational (Section 5.2) and research settings (Fig. 13),
where they actively help to gain a deeper understanding of
the method and its outcomes.

The rapid evolution of the additive manufacturing field
is eliminating a large number of limitations that previously
plagued the manufacturing of optimal structures. Additive
manufacturing machines are becoming faster, more precise
and able to accommodate larger scale models. However,
until the technology develops towards very large length
scales, the splitting of a model and its manufacture in pieces
opens up the possibility of large structures and components
(Fig. 20).
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Appendix: input for TOPslicer

TOPslicer has support for various three-dimensional data
array formats. The data in a three-dimensional array (or
3D matrix) can be organized in a several ways depending
on how the indices span the data. MATLAB was strongly
influenced by Fortran, and both were targeted at numerical
analysis involving matrices. As a consequence, both MAT-
LAB and Fortran use column-major ordering: the data’s first
index spans the rows of the matrix (vertical direction), and
the second index spans the columns (horizontal direction).
If this idea is extended to three-dimensional positions, it
implies that some data is traversed by its indices first in
the y axis, and then in the x axis (e.g the entry A7,1 is 7
spaces away from the origin on the y axis). Other program-
ming/scripting languages (typically not based on matrices)
use row-major ordering, where the more natural x–y–z data
arrangement is used.

Take for example the three-dimensional array shown in
Fig. 22a. Using MATLAB’s column-major ordering, the
size of this array is 3 × 4 × 2, with the indices for some key
entries are shown in Fig. 22b. However, using row-major
ordering, the size of the array is 4 × 3 × 2, with the same
indices shown in Fig. 22c.

The user menu in TOPslicer allows the user to spec-
ify what ordering was used in the input data: column-
major(MATLAB’s default), row-major (arguably the most
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Fig. 22 Data ordering in a three-dimensional array ρ: (a) Three-
dimensional array of size Nx = 4, Ny = 3 and Nz = 2, where each
cell represents a stored value. (b) Example for column-major order-
ing, with the indices for some key entries shown: the array ρ has size
3 × 4 × 2. (c) Example for row-major ordering, with the indices for
some key entries shown: the array ρ has size 4 × 3 × 2.

intuitive), and additionally, TOPslicer also has support for
the (rather unconventional) format used in TOP3D (Liu and
Tovar 2014). That said, failure to select the correct order-
ing will only result in the data being displayed either rotated
along some axis, or mirrored along some plane(s).
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Lewiński T, Rozvany GIN (2008a) Analytical benchmarks for topo-
logical optimization—Part IV: square-shaped line support. Struct
Multidiscip Optim 36(2):143–158
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