Utility library for detecting and removing outliers from normally distributed datasets using the Smirnov-Grubbs test.
Both the two-sided and the one-sided version of the test are supported. The former allows extracting outliers from both ends of the dataset, whereas the latter only considers min/max outliers. When running a test, every outlier will be removed until none can be found in the dataset. The output of the test is flexible enough to match several use cases. By default, the outlier-free data will be returned, but the test can also return the outliers themselves or their indices in the original dataset.
>>> from outliers import smirnov_grubbs as grubbs >>> import pandas as pd >>> data = pd.Series([1, 8, 9, 10, 9]) >>> grubbs.test(data, alpha=0.05) 1 8 2 9 3 10 4 9 dtype: int64
>>> import numpy as np >>> data = np.array([1, 8, 9, 10, 9]) >>> grubbs.test(data, alpha=0.05) array([ 8, 9, 10, 9])
>>> grubbs.min_test_indices([8, 9, 10, 1, 9], alpha=0.05) [3]
>>> grubbs.max_test_outliers([8, 9, 10, 1, 9], alpha=0.05) [] >>> grubbs.max_test_outliers([8, 9, 10, 50, 9], alpha=0.05) [50]
This software is licensed under the MIT License.
Thanks to @lukius .
Update setup.py
Publish to pypi
Create this project.
TODO: Figure out how to actually get changelog content.
Changelog content for this version goes here.
Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
TODO: Figure out how to actually get changelog content.
Changelog content for this version goes here.
Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
TODO: Figure out how to actually get changelog content.
Changelog content for this version goes here.
Donec et mollis dolor. Praesent et diam eget libero egestas mattis sit amet vitae augue. Nam tincidunt congue enim, ut porta lorem lacinia consectetur. Donec ut libero sed arcu vehicula ultricies a non tortor. Lorem ipsum dolor sit amet, consectetur adipiscing elit.
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
File Name & Checksum SHA256 Checksum Help | Version | File Type | Upload Date |
---|---|---|---|
outlier_utils-0.0.3-py2-none-any.whl (6.0 kB) Copy SHA256 Checksum SHA256 | py2 | Wheel | Apr 24, 2016 |
outlier_utils-0.0.3-py3-none-any.whl (6.0 kB) Copy SHA256 Checksum SHA256 | py3 | Wheel | Apr 24, 2016 |
outlier_utils-0.0.3.tar.gz (5.2 kB) Copy SHA256 Checksum SHA256 | – | Source | Apr 24, 2016 |