The Dodecahedron, the Icosahedron and E8



Here you can see the slides of a talk I’m giving:

The dodecahedron, the icosahedron and E8, Annual General Meeting of the Hong Kong Mathematical Society, Hong Kong University of Science and Technology.

It’ll take place on 10:50 am Saturday May 20th in Lecture Theatre G. You can see the program for the whole meeting here.

The slides are in the form of webpages, and you can see references and some other information tucked away at the bottom of each page.

In preparing this talk I learned more about the geometric McKay correspondence, which is a correspondence between the simply-laced Dynkin diagrams (also known as ADE Dynkin diagrams) and the finite subgroups of \mathrm{SU}(2).

There are different ways to get your hands on this correspondence, but the geometric way is to resolve the singularity in \mathbb{C}^2/\Gamma where \Gamma \subset \mathrm{SU}(2) is such a finite subgroup. The variety \mathbb{C}^2/\Gamma has a singularity at the origin–or more precisely, the point coming from the origin in \mathbb{C}^2. To make singularities go away, we ‘resolve’ them. And when you take the ‘minimal resolution’ of this variety (a concept I explain here), you get a smooth variety S with a map

\pi \colon S \to \mathbb{C}^2/\Gamma

which is one-to-one except at the origin. The points that map to the origin lie on a bunch of Riemann spheres. There’s one of these spheres for each dot in some Dynkin diagram—and two of these spheres intersect iff their two dots are connected by an edge!

In particular, if \Gamma is the double cover of the rotational symmetry group of the dodecahedron, the Dynkin diagram we get this way is E_8:

So, in this case, the points in the minimal resolution map

The basic reason \mathrm{E}_8 is connected to the icosahedron is that the icosahedral group is generated by rotations of orders 2, 3 and 5 while the \mathrm{E}_8 Dynkin diagram has ‘legs’ of length 2, 3, and 5 if you count right:

In general, whenever you have a triple of natural numbers a,b,c obeying

\displaystyle{ \frac{1}{a} + \frac{1}{b} + \frac{1}{c} > 1}

you get a finite subgroup of \mathrm{SU}(2) that contains rotations of orders a,b,c, and a simply-laced Dynkin diagram with legs of length a,b,c. The three most exciting cases are:

(a,b,c) = (2,3,3): the tetrahedron, and E_6,

(a,b,c) = (2,3,4): the octahedron, and E_7,

(a,b,c) = (2,3,5): the icosahedron, and E_8.

But the puzzle is this: why does resolving the singular variety \mathbb{C}^2/\Gamma gives a smooth variety with a bunch of copies of the Riemann sphere \mathbb{C}\mathrm{P}^1 sitting over the singular point at the origin, with these copies intersecting in a pattern given by a Dynkin diagram?

It turns out the best explanation is in here:

• Klaus Lamotke, Regular Solids and Isolated Singularities, Vieweg & Sohn, Braunschweig, 1986.

In a nutshell, you need to start by blowing up \mathbb{C}^2 at the origin, getting a space X containing a copy of \mathbb{C}\mathrm{P}^1 on which \Gamma acts. The space X/\Gamma has further singularities coming from the rotations of orders a, b and c in \Gamma. When you resolve these, you get more copies of \mathbb{C}\mathrm{P}^1, which intersect in the pattern given by a Dynkin diagram with legs of length a,b and c.

I would like to understand this better, and more vividly. I want a really clear understanding of the minimal resolution S. For this I should keep rereading Lamotke’s book, and doing more calculations.

I do, however, have a nice vivid picture of the singular space \mathbb{C}^2/\Gamma. For that, read my talk! I’m hoping this will lead, someday, to an equally appealing picture of its minimal resolution.

You can use Markdown or HTML in your comments. You can also use LaTeX, like this: $latex E = m c^2 $. The word 'latex' comes right after the first dollar sign, with a space after it.

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s