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We model happiness as a measurement tool used to rank alternative
actions. Evolution favors a happiness function that measures the in-
dividual’s success in relative terms. The optimal function is based on
a time-varying reference point—or performance benchmark—that is
updated over time in a statistically optimal way in order to match the
individual’s potential. Habits and peer comparisons arise as special
cases of such an updating process. This updating also results in a
volatile level of happiness that continuously reverts to its long-term
mean. Throughout, we draw a parallel with a problem of optimal
incentives, which allows us to apply statistical insights from agency
theory to the study of happiness.

I. Introduction

For a long time, utility was assumed to depend only on the absolute
level of an individual’s economic conditions. However, a large body of
research now shows that the relative level of these conditions also plays
a central role: an individual’s utility, whether defined in terms of de-
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cision making or hedonic experience, tends to be sharply influenced
by his personal history and social environment. Examples include Mar-
kowitz (1952), Stigler and Becker (1977), Frank (1985), Constantinides
(1990), Easterlin (1995), Clark and Oswald (1996), and Frederick and
Loewenstein (1999).

In the present paper, we study hedonic utility and how it motivates
choice. As a matter of terminology, we equate hedonic utility with “hap-
piness.” We are interested, specifically, in the following patterns.1 First,
the hedonic impact of sustained changes in economic conditions has a
tendency to diminish over time, such as becoming accustomed to an
expensive lifestyle (i.e., habit formation). Second, the level of happiness
that an individual derives from his economic success is usually affected
by the success of his peers (i.e., peer comparisons). Third, happiness
is influenced by the individual’s prior expectations concerning his own
success. And fourth, while happiness is volatile, it tends to revert over
time to a relatively stable long-term mean. Taken together, these features
mean that the individual is mainly concerned not with his absolute level
of success, but rather with the difference between his success and a
benchmark that changes over time. Moreover, since these features cross
cultural boundaries and age groups, it is reasonable to assume that, at
a general level, they are innate.

In this paper, using economic tools, we argue that the above features
can be evolutionarily advantageous in the sense of improving the in-
dividual’s ability to propagate his genes. Our goal, in other words, is to
provide a biological foundation for these traits.

We view happiness as a decision-making device that allows the indi-
vidual to rank alternative courses of action (Damasio [1994] presents
neurological evidence consistent with this approach). In particular, we
study an abstract choice setting in which, in every period of his life, an
individual compares alternative input choices x toward the production
of a random output y. Consider, for example, a hunter-gatherer search-
ing for fruit: x describes his foraging strategy and y his level of success.
A higher y increases the individual’s prospects for survival and repro-
duction and therefore his ability to propagate his genes. We refer to
the expected value of y as the individual’s fitness.

Associated with each level of y, the individual experiences a real-valued
happiness level V, and he measures the desirability of alternative choices
x by means of the expected value of happiness conditional on his choice:

. Throughout, we assume that the happiness function V is innate.E[VFx]
In addition, we assume that the individual’s measurement isE[VFx]
subject to a set of physical constraints that limit its precision. These
constraints are described below.

1 See Kahneman, Diener, and Schwarz (1999) for a review of the underlying psychology.
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Our plan is to show that, given our set of physical constraints, a
happiness function V that is based on the individual’s relative success—
and exhibits the traits previously described—can lead to a more accurate
ranking of choices and, therefore, better decisions from a fitness
perspective.

A. Evolutionary Approach

Our model is based on the following stylized evolutionary approach.
We begin with a class of environments that are presumably represen-
tative of the ancestral world in which we evolved. For these environ-
ments, we find the happiness functions that maximize the individual’s
expected level of success (i.e., his fitness) subject to our set of physical
constraints. Finally, we show that these fitness-maximizing functions ex-
hibit the desired traits. The idea behind this approach is to characterize
the theoretical end point of a natural selection process in which, via
trial and error, the fitness-maximizing happiness functions have come
to replace all the rest. This stylized approach is also employed in dif-
ferent contexts by Binmore (1994), Robson (2001b), Samuelson (2004),
and Samuelson and Swinkels (2006).

The theoretical problem of finding the fitness-maximizing happiness
functions can be conveniently stated as a metaphorical principal-agent
problem. As is customary in the literature, the principal represents the
process of natural selection, and the agent represents an individual
carrying a set of genes. In the present context, the principal designs
the innate happiness function of the agent, with the goal of maximizing
the propagation of the agent’s genes. Importantly, the happiness func-
tion is only a means to this end: the principal does not directly care
about the agent’s happiness level. The agent, on the other hand, is born
with the happiness function designed by the principal and, via his ac-
tions, seeks only to maximize his level of happiness. In the process,
however, he inadvertently serves the principal’s goal.

Crucially, this theoretical exercise refers to the ancestral environment
in which humans evolved, not the modern world. In particular, when
talking about fitness-maximizing happiness functions, we refer to func-
tions that optimized genetic multiplication during hunter-gatherer times
(before agriculture and animal domestication were developed). In mod-
ern times, on the other hand, we presumably share most of the innate
characteristics of our hunter-gatherer ancestors. But since the techno-
logical landscape has changed so rapidly since the rise of agriculture,
our happiness functions need no longer optimally promote the present
multiplication of our genes.
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B. Assumptions and Results

The key assumptions behind our results are two physical constraints that
restrict the agent’s precision when ranking alternative choices. The first
constraint is a limit on the agent’s perception sensitivity. We assume
that two alternative choices and cannot be ranked by the agentx x1 2

whenever the difference between his expected happiness levels
and is smaller than some minimum threshold. TheE[VFx ] E[VFx ]1 2

second constraint is a bound on the range of values that V can take. In
Section III, we provide a physiological motivation for these constraints
based on the function of nerve cells, and we also discuss laboratory
experiments on rats that are supportive of these assumptions.

As explained below, because of these imperfections, the agent will be
capable of a more accurate ranking across choices when he measures
the fitness associated with each choice relative to the fitness of alternative
options, as opposed to measuring fitness in absolute terms. This is the
starting point for all our results.

A close analogy can be drawn with a specific feature of human vision.
The nerve cells in our eyes gauge the color and luminosity of an item
relative to its direct surroundings, not in absolute terms. In particular,
a typical light-processing cell has a center and a periphery, and its level
of activation is proportional to the difference in the amount of light
received across these two regions. Accordingly, the information it sends
to the brain is mainly about contrast.2 This property enhances the brain’s
ability to identify difficult items. Analogously, a happiness function that
measures the merit of alternative choices directly in terms of their dif-
ferences enhances the agent’s capacity to single out the most efficient
among them.

In previous work, Frederick and Loewenstein (1999) and Robson
(2001a) present related arguments. Frederick and Loewenstein com-
pare a happiness function that changes over time with an eye that,
independently of the property described above, is capable of adjusting
to the general luminosity of the environment (e.g., through changes in
its pupil). Likewise, Robson compares happiness with a man-made mea-
surement instrument, such as a voltmeter, that can be calibrated to fit
the problem at hand. Both forms of adaptation rescale the incoming
information so that it better matches the instrument’s effective range
of activation, therefore allowing for a more accurate discrimination
across stimuli. At a general level, this notion is also present in our
approach.

2 A noticeable consequence is the fact that the color and luminosity of a particular item
are perceived very differently depending on the color and luminosity of its direct sur-
roundings. For a detailed exposition and examples, see Kandel, Schwartz, and Jessell (2000,
519).
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Throughout our analysis, we draw a parallel between the evolutionary
problem and a principal-agent problem of optimal incentives under
moral hazard, where V corresponds to a performance payment for the
agent. In both cases, the principal who designs V seeks to maximize the
signal value of this function.3 This parallel is central to our approach
since it allows us to apply statistical concepts from incentive theory to
the study of happiness. Moreover, thanks to these statistical concepts,
we can construct a unified theory for multiple aspects of happiness.

The optimal happiness functions we derive are based on a purely
relative measure of success. In any given period, the agent’s happiness
depends exclusively on the difference between his output y and an
endogenous reference point , which serves as a performance bench-ŷ
mark (the difference is the carrier of happiness). This referenceˆy ! y
point is positioned according to the current opportunities faced byŷ
the agent and is updated over time in tandem with changes in these
opportunities. A by-product of this updating process is that, over time,
the agent’s happiness will tend to its mean.

We illustrate this dynamic process in an environment in which the
optimal reference point is updated every period to equal the conditional
expectation of output for that period. Whenever possible, this condi-
tional expectation will exploit information contained in past levels of
output, together with any additional information contained in the out-
put of peers. From here, we derive a rationale for habits and, simulta-
neously, for peer comparisons. Both these phenomena arise as special
cases of the same general process: a reference point that is updated
over time in a statistically meaningful way. On the basis of this notion,
we derive optimal reference points with specific functional forms.

Below, we derive two types of happiness functions. The first type are
step functions that deliver the maximum level of happiness whenever
the agent exceeds his performance benchmark , and vice versa. Theseŷ
step functions are optimal under the two assumptions described above
on limited perception and bounded happiness. The second type, de-
rived in Appendix A, have a smoother S-shape. These functions arise
when a third assumption is added, namely, that the agent has an in-
formation advantage over the principal when selecting his actions. In
this case, the principal responds by spreading the slope of the happiness
function more evenly across the output domain.

We begin our analysis with a static model in which the agent lives for

3 In the standard agency problem, maximizing the signal value of V is the best way to
counteract the agent’s temptation to shirk. In the current evolutionary problem, on the
other hand, there is no equivalent temptation to shirk because the agent does not have
an exogenous effort cost. In this case, maximizing the signal value of V is the best way to
overcome the agent’s measurement limitations.
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one period. We then extend this model to a dynamic setting in which
his reference point changes over time.

II. Static Model

Consider a representative agent (i.e., a hunter-gatherer) who faces an
abstract one-shot project. To fix ideas, suppose that this project amounts
to an opportunity to collect fruit. The agent first observes the current
state of nature s, which describes the physical configuration of the world,
such as the presence of fruit and dangers in specific locations. Next, he
selects a course of action , which represents the strategy adopted,x ! X
such as traveling in a certain direction or climbing a particular tree.
The combination of x and s randomly determines a level of output

, namely, the amount of fruit collected.4 Denote the conditionaly ! !
probability distribution of output by , a function known by thef(yFx, s)
agent. Once y is realized, the agent experiences a one-dimensional level
of happiness given by (as discussed below, V will also potentiallyV(y)
depend on additional arguments). The agent is born with this happiness
function.

The origin of V is an evolutionary trial-and-error process, which we
call the principal. The metaphorical goal for the principal when creating
V is to promote the production of y, which is simply another way to say
that in a population of individuals endowed with a diversity of happiness
functions, those producing higher levels of y will have a reproductive
advantage. For concreteness, we assume that the principal seeks to max-
imize the expected value of y, which we call fitness. (In our model, this
maximization leads to the same results as maximizing the expected value
of any other increasing function of y.)

Rather than studying the evolutionary trial-and-error dynamics, we
are interested in describing the limiting outcome once sufficient ex-
perimentation and selection have taken place, while holding the envi-
ronment fixed. We represent this limiting outcome by means of an
optimization problem in which the principal directly selects a happiness
function that maximizes her objective. (In general, an evolutionary pro-
cess in which genetic traits are passed on to offspring with small random
variations might converge to a local maximum that is not globally op-
timal. However, for the technologies considered below, the global op-
timum will coincide with a local maximum that is unique.)

Throughout, we assume that V is a function of the agent’s output y

4 Beyond this example, output y is meant to summarize the achievement of proximate
evolutionary goals, namely, those tangible goals that favored the ultimate evolutionary
goal of genetic replication during the ancestral environment. Examples presumably in-
clude wealth, health, and sex, as well as the well-being of friends and kin. Accordingly,
the decision variable x represents the actions taken in pursuit of these goals.
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rather than his choice of input x. This means that the principal effec-
tively delegates the choice of x to the agent, who has the advantage of
knowing the current environmental details s. Binmore (1994, 151) and
Robson (2001b) follow a similar approach. On the other hand, notice
that could also potentially adjust to the state s. After analyzing ourV(y)
basic model, we consider this case.

The agent measures the desirability of alternative choices x, given the
current state s, via his calculation of the expected value of happiness:

. This calculation leads to a state-contingentE[VFx, s] p V(y)f(yFx, s)dy∫
utility function , built by the agent himself, whichu(x, s) { E[VFx, s]
delivers a decision criterion. In what follows, we assume that the agent
can freely dispose of y. This allows us to focus without loss on nonde-
creasing happiness functions.

III. Measurement Imperfections

In the absence of any further constraints, the evolutionary problem has
a simple solution: the principal can select the identity function

. Under this function, the principal and agent’s objectives be-V(y) p y
come perfectly aligned since they both seek to maximize the expected
value of y. However, once our measurement constraints are introduced,
this function will no longer be optimal.

A. Limited Perception

Our first constraint imposes a limit on the agent’s ability to perceive
small differences in his objective . Given any pair of choicesE[VFx, s]

and , we assume that there exists a minimum threshold suchx x e 1 01 2

that whenever the difference between and is smallerE[VFx , s] E[VFx , s]1 2

than or equal to e, the agent fails to perceive a difference between these
two choices. Below, we treat e as exogenous, but our results hold for all
small values of e. Formally, we describe this imperfection by means of
a satisficing set.

Definition 1. For any given happiness function V, perception
threshold , and state s, the agent’s satisficing set is the sete 1 0 S(V, e, s)
of all actions x that deliver an expected happiness that is withinE[VFx, s]
e distance of the optimized value , namely,′max E[VFx , s]′x

′S(V, e, s) { x ! X : max E[VFx , s] ! E[VFx, s] ≤ e .{ }′x

Condition 1 (Limited perception). We assume that the agent ran-
domly draws his choice from S(V, e, s). Moreover, this draw has full
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support and is monotonic in the sense that, given e and s, the probability
assigned to any subset of S is inversely proportional to the size of S.

This condition imposes a coarseness in the agent’s perception anal-
ogous to the coarseness present in any of our five senses. Our senses,
like any other type of signaling activity in our nervous system, are based
on the stimulation and firing of individual nerve cells. These nerve cells,
however, do not have infinite sensitivity to differences in stimulation,
and their firing rates are also subject to errors (see, e.g., Kandel et al.
2000, chap. 21). The overall result is that when two stimulus levels are
sufficiently similar, the individual fails to tell them apart.5

As a preliminary exercise, it is useful to revisit the principal’s problem
when this first constraint alone is present. In particular, suppose that
the principal uses a rescaled happiness function , for someV(y) p Ay
constant . In this case, for any given state s, the agent’s satisficingA 1 0
set is given by

′S(Ay, e, s) { x ! X : max E[AyFx , s] ! E[AyFx, s] ≤ e ,{ }′x

where the happiness function V has been replaced by Ay. Given the
linearity of the expectation operators, this set is equal to

e e′S y, , s { x ! X : max E[yFx , s] ! E[yFx, s] ≤ .( ) { }′A Ax

From here we learn that all the agent’s potential choices (those within
his satisficing set) lead to an expected value of output within distancee/A
of the highest achievable level . Moreover, a larger con-′max E[yFx , s]′x

stant A is equivalent to a smaller perception threshold e. This means
that the principal can virtually eliminate all choice errors by selecting
an arbitrarily large constant A. Therefore, in and of itself, the limited
perception constraint favors a happiness function that is arbitrarily
steep.

5 Experiments with rats are also consistent with this type of limited sensitivity. For ex-
ample, Gallistel et al. (1991) and Simmons and Gallistel (1994) offer individual rats a
choice between two alternative levers that, when pressed, deliver electrical pulses to the
pleasure center of their brains. By activating the associated nerve cells, these electrical
pulses create a highly desirable effect (indeed, when offered the levers, rats will abandon
all other activities). The trade-off faced by the rats is that only one lever can be pressed
at a time (before the experiment begins, they sample both levers). Across trials, the
researcher can reliably induce a given rat to spend more time pressing a specific lever by
increasing the amount of electricity delivered by this lever while holding the alternative
constant, provided that this increase is sufficiently large. Small increases, however, lead to
essentially random responses.
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B. Bounded Happiness

Our second constraint is a limit on the range of values that happiness
V can take. We assume, in particular, that V must fall within a bounded
range , for some finite limits and . Below, we treat[V , V ] V Vmin max min max

and as exogenous, but our results are identical for any suchV Vmin max

limits.
Condition 2 (Bounded happiness). For all y, .V(y) ! [V , V ]min max

We view these bounds as a physical limit on our nervous system. As
explained by Kandel et al. (2000, 21–32), the fundamental signals in
our nervous system are electrical pulses called action potentials, which
are fired by individual nerve cells. (A specific hedonic state, e.g., would
result from a particular firing pattern among a group of cells.) Each
one of these electrical pulses is binary (i.e., all or nothing), and they
always have the same magnitude. This means that the information trans-
mitted by a given cell is based on the frequency of these pulses, not
their individual magnitudes. In addition, owing to a chemical recovery
process (called the refractory period), there is a maximum rate at which
these pulses can be fired. This limit imposes a physical bound on the
potential activity of each cell and therefore a bound on any system
composed of a finite number of cells.6

Once again, as a preliminary exercise, it is useful to revisit the prin-
cipal’s problem when only this second constraint is present. For con-
creteness, consider the case in which output y is distributed over a
bounded domain of arbitrary size. In addition, consider a[y , y ]min max

linear happiness function , with . Since output isV(y) p Ay " B A 1 0
bounded, regardless of the happiness bounds, there always exist levels
of A and B such that is contained within . Moreover,V(y) [V , V ]min max

given that the agent makes no mistakes, he will always choose an action
that fully maximizes his expected happiness . But since AE[Ay " BFx, s]
is positive, this is equivalent to maximizing the expected value of y. Thus
the principal and agent’s objectives are again fully aligned.7

From the above exercises, we learn that neither one of the two con-
straints, taken on its own, constitutes a meaningful restriction for the

6 The rat experiments described in the previous footnote also provide support for the
bounded happiness assumption (see esp. Simmons and Gallistel 1994). The electrical
pulses delivered to the pleasure center of the rat’s brain cause its nerve cells to fire action
potentials in direct proportion to the amount of electricity received. These action poten-
tials are responsible for the desirable experience (nerve cells function in the same fun-
damental way in rats as in humans). But once the researcher increases the amount of
electricity beyond a given level—by increasing current (which increases the number of
active neurons) and pulse frequency (which increases the firing rate of each active neu-
ron)—the rat’s pleasure center becomes saturated with action potentials, and beyond this
level, the rat no longer responds to further increases in electricity.

7 On the other hand, when the domain of y is unbounded, this result can still be
approximated to an arbitrary degree by means of an arbitrarily small A.
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principal. In either case, she can induce arbitrarily efficient decisions
by merely rescaling the identity function . Notice, moreover,V(y) p y
that these rescaled functions are still based on the absolute level of
output.

The principal’s problem becomes very different, however, when the
two constraints are combined. In particular, recall that the limited per-
ception constraint favors an arbitrarily steep happiness function (with
an arbitrarily large A), but such a function would exceed the bounds
imposed by the second constraint regardless of the size of these bounds.
As shown below, this trade-off will lead to happiness functions that are
steep only where it matters the most. These functions, in particular, will
concentrate their slope over a performance benchmark, or reference
point, that targets the agent’s output potential. Moreover, the use of
this benchmark means that output will effectively be measured in relative
terms. We derive specific shapes for these functions below: they will be
either step functions (in the main text) or S-shaped curves (in App.
A).

In general, the principal would benefit from both a larger happiness
range and a smaller perception threshold e. This means that[V , V ]min max

the natural selection process would presumably operate over these di-
mensions as well. However, as mentioned above, our results are not
affected by the specific values of and e, provided that the[V , V ]min max

range remains finite and e remains small but strictly positive.[V , V ]min max

IV. Output Technologies

In order to obtain explicit solutions for the principal’s problem, we
consider output technologies of the form

y p E[yFx, s] " z, (1)

where z is a zero-mean exogenous shock that is realized after x is selected.
We assume that this shock z is drawn from a continuous density func-

tion with full support in that is single-peaked and strictly monotonic!
on either side of its mean (such as a normal).8 We also assume that (a)

is continuous in x; (b) the choice space X is a compact andE[yFx, s]
convex subset of ; and (c) for all states s,N ′! max E[yFx , s] 1′x

, so that the agent’s choice problem is nontrivial.′min E[yFx , s]′x

Let denote the conditional probability distributions for yf(yFx, s)
associated with these technologies. For any given state s, these distri-
butions have the following properties. First, they are single-peaked at

8 Our results do not depend on the fact that the output domain is unbounded. This
assumption is made merely for expositional convenience. In particular, given the agent’s
limited perception, the happiness bounds would bind regardless of the size of the output
domain.
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their mean . Second, they are single-crossing in x: for all andE[yFx, s] x 1

such that , the distributions andx E[yFx , s] ( E[yFx , s] f(yFx , s)2 1 2 1

intersect for only one value of y (between their two means).f(yFx , s)2

And third, they are ordered across x according to first-order stochastic
dominance. These are the key distributional properties we employ.

V. An Efficiency Index

It is useful to summarize the quality of the agent’s decision x using a
one-dimensional index J, which we call the efficiency of his decision. We
define this efficiency index as follows:

′E[yFx, s] ! min E[yFx , s]′xJ(x, s) { .′ ′max E[yFx , s] ! min E[yFx , s]′ ′x x

Notice that is affected by the agent’s choice x only through theJ(x, s)
first term in the numerator: . In particular, for any given stateE[yFx, s]
s, this term ranges from to , depending on′ ′min E[yFx , s] max E[yFx , s]′ ′x x

the quality of the agent’s decision. Accordingly, for any given s, the
efficiency index J ranges from zero to one.

From the definition of J, expected output becomes
′ ′E[yFx, s] p J 7 max E[yFx , s] " (1 ! J) 7 min E[yFx , s], (2)

′ ′x x

where the arguments of J have been omitted for clarity. From this
expression, we learn that the agent’s choice x affects output only through
J.

A one-dimensional choice problem.—In what follows, for analytical pur-
poses, we view the agent as directly choosing an efficiency level J from
the interval [0, 1], as opposed to choosing a multidimensional action
x from . This step is valid because the choice of x affects output onlyN!
through its impact on J. As a result, we can directly focus on J while
sending x to the background.

Expressed as a function of J, the output technology in (1) becomes

y p E[yFJ, s] " z, (3)

where the expectation corresponds to the right-hand side ofE[yFJ, s]
(2):

′ ′E[yFJ, s] p J 7 max E[yFx , s] " (1 ! J) 7 min E[yFx , s]. (4)
′ ′x x

For all states s, this expectation is continuous and increasing in J. This
means that higher values of J are strictly preferred by the principal.

Notice that the state s can potentially play two different roles. First,
it can affect expected output directly, independently of the efficiency
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of the agent’s decision J. This occurs through its impact over the terms
and . Through these terms, s influences′ ′max E[yFx , s] min E[yFx , s]′ ′x x

the agent’s overall output potential. For example, s can capture the
season of the year in which the hunter-gatherer searches for fruit, with
a more favorable season leading to a higher value for .′max E[yFx , s]′x

Second, since J is originally a function of both x and the state s, the
latter can influence what the optimal choice of x happens to be. For
example, in addition to representing the season of the year, s can in-
dicate which particular trees are likely to have fruit. However, once the
choice problem is expressed in terms of J, this second role is sent to
the background.

VI. Optimal Happiness Functions

We begin our analysis with the simplest case in which, conditional on
J, the expectation is independent of s. Formally, the termsE[yFJ, s]

and in equation (4) are independent of′ ′max E[yFx , s] min E[yFx , s]′ ′x x

s. (In Sec. VII below, we consider the more general case.) Output now
simplifies to

y p E[yFJ] " z. (5)

The associated densities have the following properties (inheritedf(yFJ)
from the original densities ): they are single-peaked at their meanf(yFx, s)

, single-crossing in J, and increasing in J in the first-order sto-E[yFJ]
chastic sense.

A. The Agent’s Satisficing Set

In terms of his efficiency choice , the agent’s satisficing set isJ ! [0, 1]
given by

′S̃(V, e) { J ! [0, 1] : max E[VFJ ] ! E[VFJ] ≤ e . (6){ }′J

As before, when selecting J, the agent will come only within e distance
of maximizing his expected happiness. Remark 1 helps us characterize
this satisficing set.

Remark 1. Under the technologies in (5), for any nondecreasing
happiness function V, the expected value of happiness is non-E[VFJ]
decreasing in J and therefore is maximized when .J p 1

Proof. Recall that for any pair of decisions , the conditionalJ 1 J1 2

distribution dominates in the first-order stochastic sense.f(yFJ ) f(yFJ )1 2

As a result, the expected value of any nondecreasing function isV(y)
weakly higher under J1 than under J2. QED



314 journal of political economy

From this remark, it follows that the agent’s satisficing set is an
interval.

Lemma 1. Under the technologies in (5), for any nondecreasing
happiness function V, the agent’s satisficing set is given by theS̃(V, e)
interval , where the lower limit is given by the[J (V, e), 1] J (V, e)min min

smallest value of (possibly zero) such thatJ ! [0, 1] E[VFJ] ≥
.E[VF1] ! e

Proof. From remark 1, we know that . From′max E[VFJ ] p E[VF1]′J

this fact and the definition of in (6), it follows that a choiceS̃(V, e)
belongs to the satisficing set if and only ifJ ! [0, 1]

E[VFJ] ≥ E[VF1] ! e.

Since is nondecreasing in J (again from remark 1), this inequalityE[VFJ]
implies that the satisficing set is an interval with an upper limit equal
to one. Moreover, the lower limit of the satisficing set corresponds to
the smallest value of satisfying this inequality, as stated in theJ ! [0, 1]
lemma. QED

B. The Agent’s Choice

According to condition 1 (limited perception), the agent will randomly
draw his choice J from the interval . Let denote[J (V, e), 1] E[JFV, e]min

the expected value of this choice.
Remark 2. Under condition 1 and the technologies in (5), the

expectation is increasing in . In other words, the ex-E[JFV, e] J (V, e)min

pected efficiency of the agent’s choice increases when his satisficing set
shrinks.

Proof. Condition 1 implies that the agent’s random draw of J is
monotonic: the smaller his satisficing set , the larger the[J (V, e), 1]min

probability assigned to any subset of this interval. As a result, the ex-
pected value of J must increase as shrinks. QED[J (V, e), 1]min

C. The Principal’s Problem

The principal’s objective is to maximize the expected output E[yFJ]
considering that the agent’s efficiency choice J is randomly drawn from

. But since is linear in J (from eq. [4]), maximizing[J (V, e), 1] E[yFJ]min

is equivalent to maximizing the expected efficiency level chosenE[yFJ]
by the agent, . Accordingly, the principal’s problem becomesE[JFV, e]

max E[JFV, e]
V

subject to V(y) ! [V , V ] for all y.min max
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Moreover, from remark 2, maximizing is equivalent to max-E[JFV, e]
imizing the lower limit of the agent’s satisficing set . This ob-J (V, e)min

servation allows us to restate the principal’s problem more compactly:

max J (V, e) (P1)min
V

subject to V(y) ! [V , V ] for all y.min max

Intuitively, this problem corresponds to excluding the maximum num-
ber of inefficient choices from the agent’s satisficing set.J ! 1

Definition 2. Let J* denote the optimized value for problem (P1).
For any positive e, this value J* is less than one. In addition, provided

that e is small, J* is larger than zero (i.e., at least some inefficient choices
can be excluded from the satisficing set). This is the case we focus on.

The following lemma allows us to solve for the optimal V using a dual
approach.

Lemma 2. Suppose that is a solution to problem (P1), namely,V *
. In addition, suppose that . Then must alsoJ (V *, e) p J* J* 1 0 V *min

solve

max E[VF1] ! E[VFJ*] (P2)
V

subject to V(y) ! [V , V ] for all y.min max

Proof. Suppose not. Then there must exist a (satisfying theV ( V *
constraint) such that . Moreover,E[VF1] ! E[VFJ*] 1 E[V *F1] ! E[V *FJ*]
given that , we must have (since thisJ* 1 0 E[V *F1] ! E[V *FJ*] p e
equality defines the lower bound of the agent’s satisficing set). When
these expressions are combined, it follows that . ButE[VF1] ! E[VFJ*] 1 e
this implies that , a contradiction to the fact that solvesJ (V, e) 1 J* V *min

problem (P1). QED
This lemma is central to our analysis. It tells us that any optimal

specializes in maximizing the difference in expected happiness be-V *
tween choosing the ideal and choosing the less efficient .J p 1 J* ! 1
By maximizing this difference, the principal prevents the agent from
choosing an even less efficient level . All other inefficient choicesJ ! J*

, by definition, can never be excluded from the agent’s satis-J ! [J*, 1)
ficing set.

Using this lemma, we can characterize the optimal V.
Proposition 1. The principal’s problem (P1) is solved by a step

happiness function such thatV *

ˆV for all y ≥ ymaxV *(y) p { ˆV for all y ! y,min

where the threshold is uniquely determined by the equalityŷ



316 journal of political economy

. Moreover, this solution is unique up to a subset ofˆ ˆf(yF1) p f(yFJ*)
measure zero.

Proof. The objective in the dual problem (P2) from lemma 2 is
equal to

V(y)[ f(yF1) ! f(yFJ*)]dy.!
This integral is maximized by setting for every y such thatV(y) p Vmax

and for every y such that .f(yF1) ≥ f(yFJ*) V(y) p V f(yF1) ! f(yFJ*)min

Moreover, from the single-crossing of f, we have for allf(yF1) 1 f(yFJ*)
and for all . Finally, since al-ˆ ˆy 1 y f(yF1) ! f(yFJ*) y ! y f(yF1) ( f(yFJ*)

most everywhere, this solution is unique up to a measure zero subset
and therefore solves problem (P1) as well. QED

This result can be derived graphically. Figure 1a plots two conditional
densities . The bold curve represents , the most desirablef(yFJ) f(yF1)
density for the principal, and the dashed curve represents . Recallf(yFJ*)
that the dual objective in lemma 2 is to maximize the difference in
expected happiness between these two alternatives. As depicted in figure
1b, this is achieved by delivering the maximum possible happiness

for all values of y that are more likely to arise under thanV J p 1max

under (i.e., all values such that ), and vice versa.J p J* f(yF1) 1 f(yFJ*)
As a result, we obtain a step function with a threshold that lies whereŷ
the two densities intersect, namely, between their two peaks andE[yFJ*]

.E[yF1]
Intuitively, recall that the limited perception condition favors an ar-

bitrarily steep happiness function that minimizes the agent’s mistakes.
However, because of the happiness bounds, this function cannot be
steep over the entire domain. In order to cope with this trade-off, the
principal chooses a function that is infinitely steep only at a critical
point (the reference point), while keeping to the bounds at all other
points.9

A key property of this function is that it depends exclusively on
relative output . Thanks to this feature, specializes in com-ˆy ! y V *
municating the merit of alternative choices J relative to each other,
with no reference to the absolute level of fitness associated withE[yFJ]
each one.

D. Optimal Incentives

A statistical parallel can be drawn between the principal’s dual problem
(P2)—leading to the step function above—and a problem of optimal

9 In Sec. VII and App. A, we discuss the case of smoother S-shaped curves.
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Fig. 1.—The optimal V

incentives (e.g., Holmstrom 1979; Levin 2003). In particular, we can
interpret V as a performance bonus, J as an effort variable, and the
bounds for V as a two-sided limited-liability constraint. Under this in-
terpretation, the one-step bonus above maximally punishes the agent
following a deviation to J*. Accordingly, we can view this bonus as
implicitly testing the null “ ” against the alternative “ ” onJ p 1 J p J*
the basis of the realization of y. Under this test, the null is precisely
rejected when the likelihood ratio exceeds one, whichf(yFJ*)/f(yF1)
constitutes an optimal statistical test. In this way, the principal maximizes
the signal value of V. This statistical theme will be present throughout.
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E. The Limit When e r 0

For expositional purposes, it is convenient to work with the limit as e
converges to zero. Even though we treat e as exogenous, the optimal
happiness functions that arise in this limit serve as an approximation
for the happiness functions that are optimal for small values of e.

Proposition 2. For any given , let denote the optimale 1 0 V *(e)
happiness function characterized by proposition 1. As e converges to
zero, converges pointwise to the step functionV *(e)

V for all y ≥ E[yF1]maxV(y) p {V for all y ! E[yF1].min

Proof. See Appendix B.
The intuition behind this result is as follows. As , the agent’se r 0

mistakes become arbitrarily small. Consequently, the optimized lower
bound for the satisficing set J* converges to one, and therefore,

converges to . Graphically, this means that the lowerE[yFJ*] E[yF1]
dashed density in figure 1a converges to the higher bold one. But this
implies that the happiness threshold , which lies between the two peaksŷ
of these densities, and , must converge to , as claimedE[yFJ*] E[yF1] E[yF1]
by the proposition.

Up to a measure zero subset, this limiting function uniquely maxi-
mizes the derivative

!
E[VFJ]F p V(y)f (yFJ)F dy,Jp1 ! J Jp1!J

which represents the limiting version of the objective in the dual prob-
lem (P2). Maximizing this derivative guarantees that marginal deviations
away from have a maximal impact over the agent’s objective, thusJ p 1
improving his ability to discriminate. In terms of optimal incentives, this
problem corresponds to a first-order approach in which all incentive
power is focused over small effort deviations (e.g., Rogerson 1985; Levin
2003). As before, the optimal happiness function communicates differ-
ences across choices, not their absolute fitness levels.

VII. Extended Technologies

Here we return to the more general technologies in (3) in which ex-
pected output can depend directly on s. From equation (4),E[yFJ, s]
this means that the extreme values and′ ′max E[yFx , s] min E[yFx , s]′ ′x x

vary with s.
For the time being, we assume that these extreme values are a function
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of a subset of s, denoted Q. This variable Q represents, for example,
current weather conditions. Accordingly, output becomes

y p E[yFJ, Q] " z, (7)

with associated densities . In addition, we assume that the prin-f(yFJ, Q)
cipal can use Q as an argument of the agent’s happiness function, so
that happiness becomes .V(y, Q)

In this case, since Q enters both the technology and the happiness
function, it effectively becomes a parameter that indexes all our former
results. In fact, save for this indexation, the optimal happiness functions
are identical to those derived in the previous section. Specifically, in
the limit for small e, the optimal function is given by

ˆV for all y ≥ y(Q)maxV(y, Q) p { ˆV for all y ! y(Q),min

where the threshold , now a function of Q, satisfiesŷ(Q)

ŷ(Q) p E[yFJ, Q]F .Jp1

As before, this threshold corresponds to the peak of the output density
conditional on the optimal choice .f(yFJ, Q) J p 1

The difference with the basic model is that the agent’s reference point
can now explicitly adapt to the environment. For instance, in a day with
good weather in which output is likely to be high (as measured by Q),
the agent’s reference point will automatically shift to the right. We derive
specific examples of this adaptation in the dynamic version of the model
in Sections VIII and IX.

S-shaped happiness functions.—Before we proceed, it is worth empha-
sizing that all the happiness functions derived so far have an extreme
step shape. These functions, in particular, can be interpreted as limiting
versions of S-shaped curves with a slope that is entirely concentrated
over the threshold . The reason for this shape is that the principal canŷ
fine-tune the happiness functions using all information Q that is relevant
for output. This allows her to precisely target incentives where they
matter the most.

In order to obtain functions with a smoother, more realistic, S-shape,
we consider an extension of the model in Appendix A. In this extension,
output is affected by an additional state variable q, observed by the
agent before choosing his action, that is too detailed to be encoded in
V. As a result, the agent effectively has an information advantage over
the principal. In response, the principal designs S-shaped happiness
functions with slopes that are more evenly spread over the output do-
main. In this way, she provides incentives that are targeted more broadly.

These S-shaped functions share the same key feature with the step
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functions considered so far: they both depend exclusively on the dif-
ference between output y and a performance benchmark that adaptsŷ
over time in tandem with the agent’s output potential. This feature is
the main focus of our paper. In what follows, with the exception of
Appendix A, we focus on step functions in order to make the analysis
more transparent.

VIII. Dynamic Model

Here we extend the model to a dynamic setup in which the agent lives
for multiple periods . We equate every period with onet p 1, 2, …
separate project. At the beginning of period t, the agent observes a state

and selects an action . Output is then given bys x ! Xt t

y p E[yFx , s ] " z ,t t t t t

which satisfies the same properties as above, with independently andz t

identically distributed across time.
Once again, we can reformulate the agent’s choice problem so that,

every period, he chooses an efficiency level instead of aJ ! [0, 1]t

multidimensional action . In this case, output simplifies toxt

y p E[yFJ, Q ] " z , (8)t t t t t

where Qt represents the relevant subset of the state that affects outputst

directly. After output is realized, the agent experiences a happiness level
, which we allow to depend on both and Qt.V ! [V , V ] yt min max t

The agent’s objective for period t is to maximize the expected value
of , as opposed to some expected discounted value of future happinessVt

levels. In other words, everything the agent cares about, present and
future, is already reflected in his present hedonic utility. This model
captures forward-looking behavior by interpreting a given project as
being forward-looking itself and motivated by current happiness. Con-
sider, for example, a hunter-gatherer who eats in excess of his current
needs in order to accumulate fat, or who helps a friend, precisely be-
cause it makes him happy today (a modern counterpart would be an
individual who invests in his retirement funds because it increases his
present happiness level).10

Notice that every period of this dynamic model is identical to the

10 In subsection B below, we also briefly discuss the case in which the agent cares about
future happiness above and beyond .Vt
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static model studied so far. It follows that, in the limit for small e, the
optimal happiness function for any given period t is given by

ˆV for all y ≥ y(Q )max t tV(y , Q ) pt t t { ˆV for all y ! y(Q ),min t t

where the optimal threshold satisfiesŷ(Q )t

ŷ(Q ) p E[yFJ, Q ]F . (9)t t t t J p1t

As before, these limiting functions serve as an approximation of the
happiness functions that are optimal for small values of e, all of which
have thresholds close to (9). In what follows, we denote moreŷ(Q )t
compactly by . In addition, recall that in the limit when , theŷ e r 0t

agent’s equilibrium action becomes . This action also serves asJ p 1t

an approximation for the actions selected for small e.
The dynamic properties of this model arise from the fact that willŷt

be optimally updated over time in order to track changes in the un-
derlying state of technology Qt. This updating is governed by the con-
ditional expectation operator in (9), which means that the information
contained in Qt will be used in a statistically meaningful way. In what
follows, we use this fact to derive specific examples.

A. Habit Formation

We proceed with two simple examples in which incorporates a habitŷt

due to an Qt that is correlated across time. Possible causes for this cor-
relation include shocks that determine the agent’s intrinsic ability and
shocks to the environment, both of which can potentially persist over
time.

Example 1: A Markovian habit. Suppose that output is given by
, where vt is a random shock that follows the Markovian pro-y p J " vt t t

cess . Equivalently, output can be expressed asv p v " z y p J "t t!1 t t t

. This technology satisfies equation (8) with , which isv " z Q p vt!1 t t t!1

correlated across time. Notice that can be inferred from the laggedvt!1

equality . As a result, output becomesy p J " v y p J " (y !t!1 t!1 t!1 t t t!1

. In equilibrium, once , this equation reduces toJ ) " z J p J p 1t!1 t t t!1

, from which it follows that (the best predictor of )y p y " z y yt t!1 t t!1 t

becomes the optimal reference point:

ŷ p E[yFJ, Q ]F p y .t t t t J p1 t!1t

In this case, the agent will experience a high level of happiness if and
only if his current output exceeds what he achieved one period ago.
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Analogous to an optimal incentive scheme, in order to best guide the
agent, the principal will employ her most accurate source of information
regarding Jt. From the equality , we learn thaty ! y p J ! J " zt t!1 t t!1 t

the most accurate source is the difference . As a result, thisy ! yt t!1

difference becomes the carrier of happiness. In contrast, if the reference
point did not adapt, as vt drifts to extreme values, all decisions Jt would
appear increasingly good or increasingly bad, and thus increasingly
similar.

On the other hand, observe that a reduction in Jt will affect inyt

exactly the same way as a low realization of , implying that these twoz t

variables cannot be distinguished by . As a consequence, the principalVt

must punish the agent following low realizations of , and vice versa:z t

luck will inevitably affect happiness.
In fact, in equilibrium, the sole carrier of happiness becomes the

random shock (i.e., ). This implies that the expected valueˆz y ! y p zt t t t

of happiness is the same for every period, regardless of past levels of
output: the effects of luck are always short-lived. These features are
shared by all the examples that follow.

In many languages, the word “happiness” is closely linked to “fortune”
and “luck.” For the ancient Greeks, for example, happiness (eudaimonia)
was ultimately determined by the will of the gods: “When viewed through
mortal eyes, the world’s happenings—and so our happiness—could only
appear random, a function of chance” (McMahon 2004, 7).

Example 2: Autoregressive habits. Suppose that output is given by
, and vt follows the autoregressive process #y p J " v v p " a v "t t t t k t!kkp1

for arbitrary constants ak. In this case, Qt is the vector .z (v , v , …)t t!1 t!2

Following steps similar to those in example 1, output becomes y pt

. In equilibrium, this equation reduces to#
J "" a (y ! J ) " zt k t!k t!k tkp1

, from which we obtain# #y p " a y " (1 !" a ) " zt k t!k k tkp1 kp1

# #

ŷ p E[yFJ, Q ]F p a y " 1 ! a ." "( )t t t t J p1 k t!k kt
kp1 kp1

The reference point is now a weighted average between past levels
of output and the equilibrium efficiency level . In this case, theJ p 1t

individual could potentially adapt more gradually over time, or even
adapt only to a partial extent (i.e., when the sum of the ak coefficients
is smaller than one). The specific weights guarantee that the carrier of
happiness employs only the new information contained in .ˆy ! y yt t t



evolutionary efficiency and happiness 323

B. Habits and Forward-Looking Behavior

In our model, the presence of habits does not deter the agent from
seeking . A possible interpretation is that the agent is simply un-J p 1t

aware of these habits and therefore does not take them into account.
This interpretation is consistent with a common conclusion in the psy-
chology literature that the average individual sharply underestimates
the degree to which he will habituate to an improvement in his eco-
nomic conditions (see, e.g., Gilbert et al. 1998; Loewenstein and
Schkade 1999).11

Nonetheless, the presence of habits still opens the possibility that an
agent who recognizes the existence of these habits, and manages to
internalize their effect, might benefit from a deviation. Whether such
a profitable deviation exists depends on how the reference point isŷt

determined outside equilibrium. So far, this issue has not been dis-
cussed.

Consider the technologies of example 2. In general, there are several
alternative formulations for the reference point, all of which are equiv-
alent in equilibrium. For example, may correspond to an exogenousŷt

function of past levels of output, namely,
# #

ŷ p a y " 1 ! a ." "( )t k t!k k
kp1 kp1

Alternatively, may equal the best predictor of conditional onŷ y J pt t t

and all past information, namely,1
#

ŷ p E[yFJ, Q ]F p a v " 1"t t t t J p1 k t!kt
kp1

(where the values of are inferred from the technological equalitiesvt!k

). In this case, the agent uses her best cognitive abilitiesv p y ! Jt!k t!k t!k

to form an output expectation conditional on , only to then com-J p 1t

pare her actual success against this self-imposed benchmark. Whenyt

for all k, both formulations coincide. The difference arisesJ p 1t!k

outside equilibrium.
In the former case, a reduction in Jt will reduce future reference

points by reducing , thus increasing the expected value of future hap-yt

piness. As a result, the deviation might indeed be beneficial.12 In the
latter case, in contrast, the agent understands that a reduction in Jt will
not affect his future reference points because they depend only on the

11 See also Burnham and Phelan (2001) and Frey and Stutzer (2004) for a discussion
of biased predictions.

12 For example, if the agent maximizes a geometrically discounted sum of future hap-
piness levels at rate b, a marginal deviation away from will be beneficial if and onlyJ p 1t

if .# k" b a 1 1kkp1
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underlying technological shocks vt, and not on the particular realization
of . This case describes an agent who cannot change his future outputyt

expectations by merely reducing Jt. Therefore, a deviation is never ben-
eficial. In this case, maximizing a present discounted sum is# t" b Vt"ttp0

identical to maximizing current happiness alone.Vt

IX. Multiple Agents

In order to derive peer effects, we extend the model to include multiple
agents i. During each period t, the agents simultaneously select efficiency
levels . These choices randomly determine an output level for eachi iJ yt t

agent. Let denote the average output across agents, and let iȳ w {t t

denote relative output. Our new assumption is that agents willi ¯y ! yt t

experience common productivity shocks (e.g., because of a shared en-
vironment). This implies that peer output will be valuable when assessing
individual performance.13 Dropping the i superscript, we focus on tech-
nologies such that

w p E[wFJ, Q ] " z . (10)t t t t t

Throughout, we assume that these technologies satisfy our previous
assumptions with in the place of . In addition, we assume that isw y zt t t

independent across agents and that the population average for these
shocks is zero (i.e., an exact law of large numbers applies). Finally, we
allow V to depend on as well as on Qt.ȳt

From (10), notice that the output density depends on¯f(yFJ, y , Q )t t t t

and only through the agent’s relative position . As a result, hap-¯y y wt t t

piness can be expressed without loss as . It follows that thisV(w , Q )t t t

model is identical to the model with a single agent, with replacingwt

.yt

Consequently, in the limit for small e, the optimal is a step functionVt

with for all , and for all ,ˆ ˆV(w , Q ) p V w ≥ w V(w , Q ) p V w ! wt t t max t t t t t min t t

where the new benchmark is given by

ŵ p E[wFJ, Q ]F .t t t t J p1t

Example 3: Static peer comparisons. Suppose that output for each
agent is given by . The term Gt represents an aggregatey p J " G " zt t t t

shock that is shared by all agents, whereas is the idiosyncratic shockz t

from (10). Both Gt and are realized after Jt is selected. No restrictionsz t

13 If the principal directly benefitted from relative output , peer effects would im-wt

mediately arise (see, e.g., Cole, Mailath, and Postlewaite [1992] for the potential benefits
conveyed by ). Here we show how these effects can extend beyond any direct advantagewt

of achieving a high .wt
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over the distribution of Gt are imposed. In equilibrium, by averaging
across agents we obtain . Therefore,¯ ¯y p 1 " G y ! y p w p (J !t t t t t t

, which satisfies (10) (in this case, Qt is redundant). The optimal1) " z t

reference point for becomes . Accordingly, theˆw w p E[wFJ]F p 0t t t t J p1t

reference point for is given by .ˆ ¯y y p yt t t

The carrier of happiness now becomes the agent’s relative success
. The reason why enters the happiness function is that it filters¯ ¯y ! y yt t t

out the aggregate shock Gt, and therefore it increases the statistical
power of the measurement device. The resulting happiness function is
analogous to a relative performance scheme inside a firm. By tightening
the connection between effort and reward, the effect of this scheme is
to magnify the cost of withdrawing effort (e.g., Lazear and Rosen 1981;
Green and Stokey 1983).

In related work, Samuelson (2004) proposes an additional biological
role for peer influences. His work differs from the present approach in
terms of both the particular phenomenon under investigation and the
mechanism leading to the results. Samuelson is interested in peer im-
itation (e.g., why we follow the crowd in our consumption decisions),
as opposed to the hedonic effects of relative success (e.g., why we derive
more happiness from the size of our office, our salary, or our health,
when it compares favorably to that of our peers). In particular, he argues
that by introducing peer consumption in the agent’s utility function,
evolution can bias the agent toward imitating his peers as opposed to
making an independent decision. In this way, the agent relies less on
his own imperfect cognitive skills.

Habits and peers.—A distinctive implication of our model arises when
habits and peer comparisons are combined. We begin with a simple
example that joins examples 1 and 3.

Example 4: A Markovian habit and dynamic peer comparisons.
Suppose that output for each agent is given by , wherey p J " G " vt t t t

Gt is an arbitrary aggregate shock, and vt is an idiosyncratic shock that
follows the Markovian process . The difference from ex-v p v " zt t!1 t

ample 1 is the presence of Gt, and the difference from example 3 is the
persistence of the idiosyncratic shock. Using this technology, we can
write . Moreover, in equilibrium,y ! y p (J ! J ) " (G ! G ) " zt t!1 t t!1 t t!1 t

. Combining these expressions, we obtain¯ ¯y ! y p G ! G w p (J !t t!1 t t!1 t t

, which satisfies (10) once (withJ ) " w " z J p 1 Q p w pt!1 t!1 t t!1 t t!1

). As a result, the reference point in terms of becomes¯v ! v wt!1 t!1 t

. Accordingly, the reference point in terms of becomesŵ p w yt t!1 t

ˆ ¯ ¯y p y " y ! y .t t!1 t t!1
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This reference point is not the mere sum of and , which would¯y yt!1 t

imply that the carrier of happiness is the difference between theˆy ! yt t

increase in output and the average peer output . This¯Dy p y ! y yt t t!1 t

difference would lead to a comparison between an innovation and an
absolute level, which is hard to justify on statistical grounds. Rather, the
carrier of happiness becomes a double difference:

ˆ ¯y ! y p Dy ! Dy .t t t t

In this case, while and reduce current happiness, has the¯ ¯y y yt!1 t t!1

opposite effect. We interpret this effect as a generalized process of ha-
bituation that extends to the output of peers. Consider, for example, a
sudden and permanent increase in , with held constant. This increaseȳ yt t

will initially shift the reference point to the right, with a likely decrease
in happiness. But after one period, will enter the reference point withȳt

a negative sign, shifting it back to its original level. As a result, the agent
will have successfully coped.

Equivalently, the carrier of happiness can be expressed as the change
in the agent’s relative position:

ˆy ! y p w ! w .t t t t!1

This expression again represents a double difference: the agent com-
pares his current output with the output of his peers in order to¯y yt t

obtain his relative social position . And, on top of this, he compareswt

with the social position he occupied one period ago. This leadsw wt t!1

to a twice-relative happiness function: an advance in social position
increases happiness, and vice versa, but this effect is only short-lived.

We conclude with a result that encompasses all the examples above.
Proposition 3. Suppose that output for each agent is given by

, where Gt is an arbitrary aggregate shock, and vt followsy p J " G " vt t t t

the autoregression for arbitrary constants ak and#
v p " a v " z zt k t!k t tkp1

independently and identically distributed. Then the optimal reference
point for period t is given by

# #

ˆ ¯ ¯y p a y " y ! a y ." "t k t!k t k t!k
kp1 kp1

Proof. See Appendix B.
The carrier of happiness is now a generalized double difference:

# #

ˆ ¯ ¯y ! y p y ! a y ! y ! a y ." "( ) ( )t t t k t!k t k t!k
kp1 kp1

The term corresponds to a conventional habit, whereas the#" a yk t!kkp1

term again represents a habituation to peers. Regardless of# ¯" a yk t!kkp1

the properties of the aggregate shocks (including any intertemporal
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correlations), the same coefficients ak enter both forms of habituation.
The reason is that is affected by the aggregate shock , which isy Gt!k t!k

redundant when assessing Jt. Subtracting from filters out thisȳ yt!k t!k

shock. The implication is that lagged output and lagged peer output
have the opposite effect over happiness. Consider, for example, an in-
dividual with a stable level of wealth who compares himself with a neigh-
bor who is currently wealthier. The above formulation allows him to be
happier when, for as long as he remembers, this neighbor has always
been wealthy, as opposed to the case in which their relative fortunes
have been recently reversed.

The carrier of happiness can also be expressed in terms of changes
in social position:

#

ˆy ! y p w ! a w ."t t t k t!k
kp1

In this case, the individual compares his current social position againstwt

a weighted sum of the positions he occupied in the past. A key property
of this formulation is that a strong process of peer comparisons (where
only relative position matters) can coexist with a strong process of habit
formation (through coefficients ak with a sum that is close, or#" akkp1

even equal, to one).
In an extension to the present paper (Rayo and Becker 2007), we

argue that this simultaneous presence of strong habits and strong peer
comparisons can help account for several results obtained in the hap-
piness surveys. Moreover, we argue that this feature has been absent
from standard utility formulations, where habits and peer comparisons
are effectively treated as substitutes for each other.

X. Concluding Remarks

We have modeled happiness as a biological measurement instrument
that guides the agent’s decisions. Analogous to an eye that specializes
in measuring differences between neighboring objects, a happiness
function that evaluates economic success in relative terms serves as a
more accurate decision guide. In our model, in particular, the agent’s
success is evaluated against a reference point that constantly changes
over time in tandem with his opportunities. This reference point inte-
grates information that can best predict the agent’s performance, in-
cluding information contained in his past levels of output as well as the
output of his peers. As a result, the agent is concerned not with his
absolute level of success, but rather with his success relative to a bench-
mark that reflects his own history and social environment.

Throughout, we have suggested a statistical parallel between happi-
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ness and an optimal incentive scheme that seeks to promote effort. This
parallel allows us to rationalize multiple aspects of happiness using well-
known concepts from incentive theory. Indeed, when viewed from an
economic perspective, happiness appears to have multiple signs of sta-
tistical inference. For example, in addition to accounting for habits and
peer comparisons, this incentive approach rationalizes why luck has an
impact over happiness and why this impact is short-lived.

Our discussion of habits and peer comparisons is far from exhaustive.
Possible extensions could address the issue of habituation patterns that
differ according to the type of good involved, as well as the fact that
some goods are more prone to social comparisons than others. In both
cases, statistical principles may prove to play a role.

Appendix A

An Illustration of S-Shaped Functions

In the text, we considered the case in which output was determined exclusively
by the agent’s efficiency choice J and a state variable Q. Moreover, Q was observed
by the agent before choosing J and could also be encoded in the agent’s hap-
piness function. This fact allowed the principal to perfectly target incentives via
extreme step functions. Here, we extend the model by allowing the agent to
observe an additional detailed signal q, which provides further information
regarding his output potential but which can no longer be encoded in V. In
this case, the principal no longer foresees the full set of contingencies that can
directly influence output. Anticipating this information disadvantage, the prin-
cipal will design smoother happiness functions that spread incentives more
evenly over the output domain.

For analytical convenience, for this exercise we assume that both state variables
Q and q, as well as output y, are discrete, taking only integer values. At the
beginning of the period, the two states are realized and observed by the agent.
Conditional on Q, the finer state q can take different values ranging2N " 1
from to , for arbitrary . The realization of q is determined byQ ! N Q " N N ≥ 0
a probability distribution function with mean . We assume thatP(qFQ) q p Q

is increasing in q to the left of its mean and decreasing to the right.P(qFQ)
Next, the agent selects , and output y is realized. We assume that,J ! [0, 1]

conditional on q, output is independent of Q. Namely, Q influences output only
indirectly via its effect on the distribution of q. Specifically, we assume that,
given q and J, output takes one of two values:

q with probability Jy p (A1){q ! 1 with probability 1 ! J.

In this case, the agent’s efficiency choice J simply transfers probability weight
from a low to a high realization of output. This binary structure is by no means
critical for the results, but makes the analysis more transparent. Finally, after
output is realized, the agent experiences a happiness level , which canV(y, Q)
depend on the first state Q, but not on q. Throughout, given free disposal of
output, we assume without loss that is nondecreasing in y.V(y, Q)
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A. Symmetric Information

As a preliminary step, consider the case in which the states Q and q are always
identical to each other (formally, and ), which means thatN p 0 P(q p QFQ) p 1
information is symmetric between principal and agent. From (A1), conditional
on Q, only two values of the agent’s happiness function are relevant for his
decision, namely, and , depending on whether output is highV(Q, Q) V(Q ! 1, Q)
( ) or low ( ). Let DV denote the difference between these twoy p Q y p Q ! 1
happiness values, which we assume is strictly positive (otherwise, the agent would
be indifferent among all his decisions).

Conditional on J and Q, the agent’s expected happiness is given by

E[VFJ, Q] p J 7 V(Q, Q) " (1 ! J) 7 V(Q ! 1, Q)

p J 7 DV " V(Q ! 1, Q). (A2)

Since this expression is increasing in J, and therefore is maximized when
, the agent’s satisficing set is again an interval , where theJ p 1 [J (V, e), 1]min

lower bound solves . From (A2), this lowerJ (V, e) E[VFJ , Q] p E[VF1, Q] ! emin min

bound takes a simple form14

e
J (V, e) p 1 ! ,min DV

where a larger slope DV is equivalent to a smaller perception error e.
From this expression it follows that the principal’s problem of maximizing

Jmin reduces to maximizing the slope DV (subject to the happiness bounds Vmax

and Vmin). This maximization is achieved by setting

V for all y ≥ QmaxV(y, Q) p {V for all y ≤ Q ! 1,min

which is a simple version of the step functions derived in the text.15

B. Private Information

Consider now the case in which, for each value of Q, the state q can take multiple
values that are observed only by the agent (i.e., ). We begin with the simpleN ≥ 1
case in which q can take one of three values (i.e., ), given by , Q,N p 1 Q ! 1
and . Suppose that the associated distribution is symmetric aroundQ " 1 P(qFQ)

. In addition, let denote the probability of the intermediateq p Q p { P(QFQ)
state, and normalize the happiness range to [0, 1].[V , V ]min max

We proceed by fixing Q and solving for the optimal function given this state.
From the principal’s point of view, given Q, output y can take four values, ranging
from to . Denote these values, in increasing order, by .Q ! 2 Q " 1 y , … , y1 4

14 This expression implicitly assumes that e does not exceed DV. Otherwise, the lower
bound Jmin would become zero. However, provided that e is small, this will not occur
under the optimal happiness function.

15 Another case in which step functions are optimal occurs when q can take multiple
values for each value of Q (i.e., ), but neither principal nor agent observes q up-N ≥ 1
front. In this case, as in the text, information remains symmetric and, conditional on Q,
the distributions of y remain single-crossing in J (since the probability distributions

are assumed to be single-peaked at their mean). Therefore, a reasoning similarP(qFQ)
to that in the text applies.
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Fig. A1.—Private information

Accordingly, the happiness function can also take four values, denoted V ,1

. From the agent’s point of view, on the other hand, once q is learned,… , V4

output can take only two values—from (A1). For example, in the intermediate
state , output can take only one of the intermediate values and , asq p Q y y2 3

shown in figure A1.
Associated with each state q, the agent faces a different satisficing set. Denote

the lower bounds of these sets by (where the dependence on V and eJ (q)min

has been dropped for simplicity). Consider again the intermediate state q p
. Under this state, the agent’s expected payoff equals . Accord-Q JV " (1 ! J)V3 2

ingly, the lower bound of his satisficing set (which solves J (Q)V " [1 !min 3

) becomesJ (Q)]V p V ! emin 2 3

e
J (Q) p 1 ! .min V ! V3 2

Similarly, the lower bounds for the satisficing sets in the extreme states Q ! 1
and become andQ " 1 J (Q ! 1) p 1 ! e/(V ! V ) J (Q " 1) p 1 ! e/(V !min 2 1 min 4

.V )3

The principal now faces a trade-off: she cannot maximize the lower bound
for any given state without simultaneously reducing the lower bound for an
adjacent state. For example, the lower bound for the intermediate state q p

would be maximized by setting and , but this would eliminateQ V p 0 V p 12 3

all incentives in the two extreme states. Similarly, incentives can be improved
in the extreme states by increasing and reducing , but this would reduceV V2 3

incentives in the intermediate state.
In order to derive an exact solution for this problem, we must assume a specific

form for the randomizations followed by the agent within his satisficing sets.
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Here, for simplicity, we assume that these randomizations are uniform (but very
similar results are obtained under more general distributions). In this case, the
principal’s objective can be expressed as a weighted average of the lower bounds

:16J (q)min

Q"1

P(qFQ) 7 J (q) p" min
qpQ!1

1p 7 J (Q) " (1 ! p) 7 [J (Q ! 1) " J (Q " 1)]. (A3)min min min2

Substituting for the values of and eliminating redundant terms, we canJ (q)min

express this objective equivalently as

1 1 1 1
! p 7 " (1 ! p) 7 " .( )[ ]V ! V 2 V ! V V ! V3 2 2 1 4 3

Accordingly, the principal seeks to minimize the expression in brackets by
selecting four values within the happiness range [0, 1]. This problemV , … , V1 4

is solved by setting

(V , V , V , V ) p (0, m, 1 ! m, 1),1 2 3 4

where

!1
1/2p

m { 2 " 2( )[ ]1 ! p

is a decreasing function of p.
For example, as illustrated in figure A1, when , we obtain , and V1 1p p m p3 3

becomes a straight line. On the other hand, when , we obtain , and1 1p 1 m !3 3
the optimal V becomes S-shaped: the slope between the intermediate values

and is larger than the slope between the extreme values and andy y y y2 3 1 2

between and . The reason is that a p larger than induces the principal to1y y3 4 3
place more weight on the intermediate state relative to the extreme ones. In
the limit when , m converges to zero, and the optimal V converges to a stepp r 1
function with and , that is, the type of function thatV p V p 0 V p V p 11 2 3 4

was optimal under symmetric information between principal and agent.

C. A Greater Number of States

Consider now the case in which q can take values for each value of Q2N " 1
(ranging from to ) for arbitrary . As above, we fix Q and solveQ ! N Q " N N ≥ 1
for the optimal function given this state. For any given q, output can again take
one of two values: q and . Let and denote the happiness levelsq ! 1 V Vq q!1

16 To see this, notice that the expected value of output given Q (the principal’s pay-
off) is , where represents the expected draw of J from" P(qFQ) 7 {q ! 1 " E[JFq]} E[JFq]q

the satisficing set . Moreover, under uniform randomizations, this expected[J (q), 1]min

draw equals . The objective in (A3) follows from substituting for this(1/2)[1 " J (q)]min

value and eliminating redundant terms.
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associated with these values, and let . Accordingly, for any givenDV { V ! Vq q q!1

q, the agent faces a satisficing set with a lower bound given by17J (q)min

e e
J (q) p 1 ! p 1 ! . (A4)min V ! V DVq q!1 q

Under the assumption of uniform randomizations within the agent’s satisficing
sets, from the same reasoning as above, the principal’s problem simplifies to
maximizing the weighted average of these lower bounds . Her choiceJ (q)min

variables are now happiness levels ranging from to , where2N " 2 V V(Q!N )!1 Q"N

is the lowest possible level of output given Q and is the highest.(Q ! N ) ! 1 Q " N
Accordingly, her problem becomes

Q"N

max P(qFQ) 7 J (q)" min
qpQ!NV ,…,V(Q!N )!1 Q"N

subject to V , … , V ! [V , V ].(Q!N )!1 Q"N min max

When we substitute for the values of in the principal’s objective usingJ (q)min

(A4) and eliminate redundant terms, this problem further simplifies to
Q"N 1

min P(qFQ) 7 (A5)"
DVqpQ!NV ,…,V q(Q!N )!1 Q"N

subject to V , … , V ! [V , V ].(Q!N )!1 Q"N min max

The following proposition provides the solution to this problem as a function
of the prior distribution . A numerical example is provided below.P(qFQ)

Proposition 4. Problem (A5) is uniquely solved by setting

V p V ,Q"N max

V p V ,(Q!N )!1 min

and, for all q,
1/2DV p P(qFQ) 7 C,q

where C is a constant equal to
!1

Q"N

1/2(V ! V ) 7 P(qFQ) ."max min [ ]
qpQ!N

Proof. See Appendix B.
From this proposition, we learn that the optimal happiness function uses the

full range , and, for any given q, it has a slope proportional to[V , V ] DVmin max q

the square root of the probability of that state, . In this way, the optimal1/2P(qFQ)
function concentrates a higher slope over output ranges that are more likely
given Q.

Figure A2 presents an example with and . FigureN p 10 [V , V ] p [0, 1]min max

A2a graphs two distribution functions that are discrete versions of normalP(qFQ)
densities. Both densities are centered around an arbitrary Q, with standard de-

17 As before, this expression implicitly assumes that e does not exceed . ProvidedDVq

that e is small, this will indeed be the case under the optimal happiness function.
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Fig. A2.—S-shaped curves

viations of 1.8 and 2.8. Figure A2b, on the other hand, presents the two associated
optimal happiness functions derived from proposition 4. As before, a more
disperse density leads to a function with a slope that is more evenly spread.

D. Adaptation over Time

Notice that all happiness functions derived in this appendix are fully indepen-
dent of the absolute value of output y. Indeed, they can all be expressed as a
function of the difference between y and the intermediate state Q. Accordingly,
the carrier of happiness becomes . As in the text, the particular benchmarky ! Q

corresponds to the ex ante expected value of output conditional onŷ p Q
. Consequently, as Q changes over time, these S-shaped functions also shiftJ p 1

in tandem with the agent’s output potential.
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Appendix B

Proofs

Proof of Proposition 2

For any given , let denote the optimized value of problem (P1).e 1 0 J*(e) ! 1
In addition, let denote the threshold for the corresponding optimal functionŷ(e)

, characterized in proposition 1. In particular, is uniquely determinedˆV *(e) y(e)
by the equality

ˆ ˆf(y(e)F1) p f(y(e)FJ*(e)).

Since the densities and are single-peaked at their respectivef(yF1) f(yFJ*(e))
means and , the above equality means that the threshold ˆE[yF1] E[yFJ*(e)] y(e)
must lie between these two means:

ˆE[yFJ*(e)] ! y(e) ! E[yF1]. (B1)

We now claim that, as , . To see this, consider any feasible hap-e r 0 J*(e) r 1
piness function that is nondecreasing and nonconstant. Since the densitiesV0

are stochastically increasing in J, the expected happiness is in-f(yFJ) E[V FJ]0

creasing in J. It follows that , the lower limit of the agent’s satisficingJ (V , e)min 0

set under , must converge to one as . But, by definition,V e r 0 J*(e) ≥0

, which implies that must also converge to one.J (V , e) J*(e)min 0

This claim implies that, as , . Therefore, from (B1), thee r 0 E[yFJ*(e)] r E[yF1]
threshold must converge to . The proposition follows as a result. QEDŷ(e) E[yF1]

Proof of Proposition 3

Using the above technology, we can write

# # #

y ! a y p J ! a J " G ! a G " z ." " "t k t!k t k t!k t k t !k t
kp1 kp1 kp1

Thus, in equilibrium,

# # #

¯ ¯y ! a y p 1 ! a " G ! a G ." " "( )t k t!k k t k t !k
kp1 kp1 kp1

Combining these two expressions we obtain

# #

w p a w " (J ! 1) ! a (J ! 1) " z ," "t k t!k t k t!k t
kp1 kp1

which satisfies (10) once for all k. The result follows from settingJ p 1t!k

(so that ) and rearranging terms. QED#ˆJ p J p 1 w p " a wt t!k t k t!kkp1
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Proof of Proposition 4

Consider a relaxed version of problem (A5):
Q"N 1

min P(qFQ) 7"
DVqpQ!NV ,…,V q(Q!N )!1 Q"N

Q"N

subject to DV ≤ V ! V ," q max min
qpQ!N

where the new constraint is implied by (but does not imply) the original con-
straint. In this relaxed problem, the effective choice variables are the slopes

(for ). Expressed in terms of these new choice variablesDV q p Q ! N, … , Q " Nq

, the relaxed problem is strictly convex and can therefore be solved using aDVq

simple Lagrangian. In particular, if we let l denote the multiplier for the con-
straint, the first-order condition for each value of isDVq

P(qFQ)
! " l p 0.2(DV )q

When combined with the fact that the constraint must bind (i.e.,
), these first-order conditions deliver a unique solution:Q"N" DV p V ! Vq max minqpQ!N

1/2 !1/2DV p P(qFQ) 7 lq

!1
Q"N

1/2 1/2p P(qFQ) 7 (V ! V ) 7 P(qFQ) ,"max min [ ]
qpQ!N

where the second equality follows from solving for by adding across all!1/2l
values of and using the binding constraint. Notice that these values forDVq

are the ones stated in the proposition.DVq

Consider now the original problem (A5). When we set andV p VQ"N max

and use the same slopes derived in the relaxed problem, theV p V DV(Q!N )!1 min q

original constraint is satisfied, and therefore a solution to (A5) is achieved.
Moreover, uniqueness of this solution follows from the fact that the solution of
the relaxed problem is unique and, given these unique values for , the onlyDVq

way to satisfy the original constraint is by setting andV p V V pQ"N max (Q!N )!1

. QEDVmin
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