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Over 40 years ago, future Nobel Prize winner Daniel 
Kahneman and Amos Tversky1 proved their perspicacity 
by anticipating the current crisis of replicability—the 
doubt that the same or another researcher can reproduce 
(repeatedly) the same phenomenon or empirical rela-
tionship with subsequent empirical investigations, imply-
ing that the phenomenon may be illusory. Presciently, in 
their 1971 Psychological Bulletin article entitled “Belief in 
the Law of Small Numbers,” Tversky and Kahneman 
wrote that “most psychologists have an exaggerated 
belief in the likelihood of successfully replicating an 
obtained finding” (p. 105). Their article title was a play on 
The Law of Large Numbers. This well-proved law dates 
back to Jacob Bernoulli in 1713, and “guarantees that 
very large samples will indeed be highly representative 
of the population from which they are drawn” (Bernoulli, 
1713, p. 106). But Tversky and Kahneman noted that 
humans, even highly sophisticated researchers, have 
“strong” but “wrong” intuitions that “the law of large 
numbers applies to small numbers as well” (p. 106).

In the last 2 years, these powerful but misguided intu-
itions have contributed to a profound reconsideration of 
social science practice and culture. The replicability of 
the totality of psychology’s findings is now being ques-
tioned and challenged. Critics note that disturbingly few 
successful replication studies are in our literature 
(Carpenter, 2012; Makel, Plucker, & Hegarty, 2012; Open 
Science Collaboration, 2012; Yong, 2012; but see the 
“many labs” project, Klein et al., 2014). This serves as 
proof either that our phenomena are fundamentally false 
(i.e., those replication studies that have been attempted 
fail to produce supportive findings) or that journals are 
biased against replication studies whatever their result 
(Giner-Sorolla, 2012; Neuliep & Crandall, 1990, 1993; 
Rosenthal, 1979). This feeling of mistrust was further 
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Abstract
The current crisis in scientific psychology about whether our findings are irreproducible was presaged years ago by 
Tversky and Kahneman (1971), who noted that even sophisticated researchers believe in the fallacious Law of Small 
Numbers—erroneous intuitions about how imprecisely sample data reflect population phenomena. Combined with 
the low power of most current work, this often leads to the use of misleading criteria about whether an effect has 
replicated. Rosenthal (1990) suggested more appropriate criteria, here labeled the continuously cumulating meta-
analytic (CCMA) approach. For example, a CCMA analysis on a replication attempt that does not reach significance 
might nonetheless provide more, not less, evidence that the effect is real. Alternatively, measures of heterogeneity 
might show that two studies that differ in whether they are significant might have only trivially different effect sizes. We 
present a nontechnical introduction to the CCMA framework (referencing relevant software), and then explain how it 
can be used to address aspects of replicability or more generally to assess quantitative evidence from numerous studies. 
We then present some examples and simulation results using the CCMA approach that show how the combination of 
evidence can yield improved results over the consideration of single studies.
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fueled by high-profile failures to replicate effects (see 
e.g., Bargh, Chen, & Burrow, 1996, and the subsequent 
failed replications by Doyen, Klein, Pichon, & Cleeremans, 
2012; Harris, Coburn, Rohrer, & Pashler, 2013). The ulti-
mate result, some conclude, is that the “scientific litera-
ture is too good to be true” (Bakker, van Dijk, & Wicherts, 
2012, p. 543; Francis, 2012); one cannot believe anything 
published, and psychology is filled with mostly invalid 
and false explanations. An article in The Chronicle of 
Higher Education (Bartlett, 2012) was titled “Is Psychology 
About to Become Undone?”

In this article, we argue that the erroneous belief in the 
Law of Small Numbers, in combination with the typically 
low levels of statistical power of psychological (and other 
similar types of) research, has contributed to this crisis by 
leading to inappropriate criteria applied to deem an 
attempt at a replication unsuccessful. We present an alter-
native and, we believe, superior way to assess evidence 
of replication.

The Criterion of Successful Replication

Tversky and Kahneman (1971) posed the following 
hypothetical question to sophisticated researchers, 
including members of the elite Mathematical Psychology 
Group:

Suppose you have run an experiment on 20 
subjects, and have obtained a significant result 
which confirms your theory (z = 2.23, p < .05, two 
tailed). You now have cause to run an additional 
group of 10 subjects. What do you think the 
probability is that the results will be significant, by 
a one-tailed test, separately for this group? (p. 105)

The median answer they obtained from their panel 
of expert researchers was .85, which was almost 
double the actual probability (which they show to 
be about .48). The authors attribute their 
respondents’ extraordinary inaccuracy to the 
ingrained but fallacious idea that a rather small 
sample “randomly drawn from a population is 
highly representative, that is, similar to the 
population in all essential characteristics.” (p. 105)

The correct general answer to such a hypothetical is 
precisely whatever is the statistical power of the test per-
formed in the replication study. Power is commonly des-
ignated 1-β (where β is the probability of a Type II, or 
false negative, error). Power is generally determined by 
four factors: (a) the population effect size, which is tech-
nically unknown, but is commonly estimated or guessed 
at; (b) the total sample size, N; (c) the “sidedness” of the 
test (whether one tailed, directional; or two tailed, 

nondirectional); and (d) the chosen alpha level, which in 
psychology is typically fixed at .05.2 Cohen (1962) esti-
mated that the typical power of published psychological 
studies does not exceed 0.5; Sedlmeier and Gigerenzer 
(1989) found a similar value among studies conducted in 
the subsequent 25 years, indicating that the low power of 
most earlier published behavioral research was not recti-
fied by Cohen’s revelation. It has apparently escaped rec-
ognition by most that, with the low levels of power that 
replication attempts generally have, even a true effect 
will disturbingly often fail to appear successfully repli-
cated if we apply the criterion that Simonsohn (2013) 
notes is typically employed in the literature: achieving 
conventional levels of significance.

The Continuously Cumulating Meta-
Analytic (CCMA) Approach

In the lead chapter for the book entitled Handbook of 
Replication Research in the Behavioral and Social Sciences, 
Rosenthal (1990) critiqued the practice we highlighted 
above (i.e., determining successful replication based on 
whether or not the study also achieved significance). He 
described several more appropriate criteria derived from 
the meta-analytic framework he helped to popularize. 
Standard meta-analysis is generally seen as retrospective 
in nature—a literature review that looks backward to 
summarize a large set of completed studies. The slight 
variation we now term continuously cumulating meta-
analysis (CCMA) performs the exact same meta-analytic 
calculations but does so in a continuing fashion after each 
new replication attempt completes. In CCMA, instead of 
misleadingly noting simply whether each replication 
attempt did or did not reach significance, we combine the 
data from all the studies completed so far and compute 
various meta-analytic indexes3 to index the degree of con-
fidence we can have that a bona fide phenomenon is 
being investigated. In other words, the individual effect 
sizes of the entirety of completed studies are pooled into 
a single estimate. The resulting pooled estimate generally 
is more trustworthy because it is based on far more data 
than each individual study. As we discuss below, meta-
analysis also allows quantification of the heterogeneity of 
results. The CCMA approach therefore shifts the question 
from whether or not a single study provided evidential 
weight for a phenomenon to the question of how well all 
studies conducted thus far support conclusions in regards 
to a phenomenon of interest.

Simulating Replication Attempts

To illustrate the CCMA framework and how it can outper-
form a focus on individual studies (and their significance 
level), we performed a set of simulations.4 We drew 
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random samples from two normal populations with the 
identical standard deviations (σ = 1), but the mean of one 
population (µI) was .5 greater than the other (µII). Thus, 
in these populations, Cohen’s d = 

µ µ
σ

I II-
 = 0.5, which 

is commonly categorized as a “medium” effect size 
(Cohen, 1988; r = 0.243), and is in the range of effect 
sizes typically found in published psychological research 
by recent reviews (Anderson, Lindsay, & Bushman, 1999; 
Hall, 1998; Lipsey & Wilson, 1993; Meyer et al., 2001; 
Richard, Bond, & Stokes-Zoota, 2003; Tett, Meyer, & 
Roese, 1994). We set our cell size at 25 (nI = nII = 25) in 
each of two groups for a total sample size of N1 = 50),5 
which reflects the median cell size found in recent 
 summaries of extant research (Marszalek, Barber, 
Kohlhart, & Holmes, 2011; Wetzels et al., 2011). Power 
calculators, (e.g., http://www.danielsoper.com/statcalc3/
calc.aspx?id=49) show that power = .41 for a two-tailed 
test with these parameters (one-tailed power = .54), 
which is consistent with the median levels of power that 
Cohen (1962) and Sedlmeier and Gigerenzer (1989) 
found in published research.

We drew 10,000 random samples per population 
group, calculated t tests on each, and tabulated the pro-
portion of samples for which the test reached the .05 
level. All of our results for the sample sizes and effect 
sizes above, as well as several other possible sample 
sizes and effect sizes, are presented in Table 1 (we also 
list various criteria by which a replication attempt could 
be evaluated; we discuss each criterion in turn through-
out the article).

As a specific example, the results for just the very first 
of the 10,000 simulated Study 1s are presented in the top 
row of Table 2.

As shown, this simulated Study 1 yielded a mean dif-
ference between the two groups of 0.64 (compared with 
the population value of 0.5) and a pooled standard devi-
ation of 1.03 (compared with the population 1.0), yield-
ing an effect size estimate of 0.62 (compared with the 
population value of 0.50), and t(48) = 2.20, p = .033 (two 
tailed), which fell below the hallowed .05 level and 
would therefore be declared significant. Overall, as 
shown in the first Criterion 1 entry in Table 1, 42% (very 
close to the power calculator value of .41 noted earlier 
and listed in the 4th row of Table 1) of the 10,000 sam-
ples had results that similarly reached this level. In other 
words, across 10,000 simulated Study 1s testing this real, 
medium-sized effect, 42% reached significance.

Then, to simulate a replication attempt with the same 
sample size N (i.e., N1 = N2), we drew a second set of 
two samples from the same two populations. As a spe-
cific example, examining just the very first of the 10,000 
replication attempt samples, whose results are pre-
sented in the second row of Table 2, and comparing to 
the illustrative Study 1 in the line above, we found it 
yielded a substantially smaller mean difference of 0.40, 

and a slightly larger pooled standard deviation of 1.07. 
The effect size estimate here, as a result, was substan-
tially smaller (0.37), as was the t test, t = 1.31, p = .198 
(two tailed), which failed to reach the .05 level. Many 
researchers might regard the second study with the very 
nonsignificant results as a failure to replicate and would 
express doubt about the robustness of the effect and 
perhaps even abandon this line of inquiry. Over the 
10,000 samples, as shown in Criterion 2 of Table 1, only 
41% of the replication attempt samples reached signifi-
cance (the value of power again, as Tversky & 
Kahneman, 1971, noted) and would be declared a suc-
cessful replication by the “achieve significance” dichoto-
mous standard.

Thus, with typical levels of power and effect sizes, if 
one uses p < .05 as the criterion for a successful replica-
tion, both power calculations and our simulations show 
one will only attain this criterion about 40% of the time 
when the phenomenon under study is real. Moreover, in 
only 17% (~.422) of the 10,000 samples were both the 
original and the replication study significant at .05 
(Criterion 3 in Table 1).

Clearly, we expect too much from low power attempts 
at replication. We could only appropriately use the 
“achieve significance” dichotomous standard for a suc-
cessful replication if studies in the field commonly had 
much higher power: the .80–.95 that so many writers 
(e.g., Cohen, 1962, 1988; Ellis, 2010) advocate. Until and 
unless behavioral science research typically proceeds 
with a much higher degree of power than it currently 
does, we cannot hope for our discoveries to have the 
high levels of reproducibility (at conventional levels of 
significance) that other sciences enjoy. Similar points 
have been argued by Cumming (2008), for example, who 
discourages the use of p values to indicate replication 
and champions confidence intervals instead.

In the absence of higher levels of power in typical 
social science studies, the CCMA perspective we propose 
recommends an alternative, and more appropriate, crite-
rion that can be used in place of achieving significance to 
decide the robustness of a phenomenon under study and 
whether or not a replication was successful (Rosenthal, 
1990). A researcher following CCMA procedures, instead 
of regarding the second study in isolation and making a 
dichotomous decision about whether it replicated, would 
combine both studies.6 Combining the results of the first 
sample and first replication study in Table 2 yields, as 
shown, Zoverall = 2.42 and an overall p value (two-tailed) 
of .016, which is smaller than that of the first study alone 
(see Table 2). The effect-size confidence interval, of 
course, is similarly narrower after the second study’s 
results are combined with the original (not shown). Thus, 
a CCMA approach would conclude that after both studies 
were conducted, there is more, not less, evidence that the 
effect is real. Criterion 4 in Table 1 shows the impact of 
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using this superior approach over the 10,000 samples: 
69% reached significance (as opposed to only 41% when 
considering only Study 2’s results in isolation.) Note that 
the second power line of Table 1 shows what a power 
calculator would show when the N entered is the sum of 
the two sample sizes: 70%, virtually the same as the 
CCMA simulated value.

Meta-analysis also provides tests of whether the two 
studies results differ from one another. This issue of the 
difference in results was similarly presaged by another of 
Tversky and Kahneman’s (1971) hypotheticals:

Suppose one of your doctoral students has 
completed a difficult and time-consuming 
experiment on 40 animals .  .  . One comparison 
yields a highly significant t = 2.70, which is surprising 
and could be of major theoretical significance.

Now suppose the student has repeated the initial 
study with 20 additional animals, and has obtained 
an insignificant result in the same direction, t = 1.24. 
What would you recommend now?

Check one (the number of respondents checking 
each alternative is in parentheses):

(a)  He should pool the results and publish his 
conclusion. (0)

(b)  He should report the results as a tentative 
finding. (26)

(c)  He should run another group of [median — 
20] animals. (21)

(d)  He should try to find an explanation for the 
difference between the two groups. (30) (pp. 
107–108)

As can be seen, not a single one of the Tversky and 
Kahneman (1971) expert respondents thought that (a) 
was the best answer.7 The meta-analytic and CCMA 
approach, on the other hand, advocates exactly that. But 
Alternative (d), which was the modal response, suggests 
we should directly compare (as well as combine) the two 
studies’ results.

Again, human intuition cannot be relied upon, as the 
experts succumbed once more to belief in the false Law 
of Small Numbers by perceiving the difference between 
the two results as sizable and worthy of explanation. 
Tversky and Kahneman declared “Response d is indefen-
sible . . . the difference between the two studies does not 
even approach significance . . . the attempt to ‘find an 
explanation for the difference between the two groups’ is 
in all probability an exercise in explaining noise” (p. 108).

The CCMA framework again offers the appropriate 
way to correct fallible intuition and assess quantitatively 
whether the two studies in Table 2 have obtained results 
that differ.8 The question of whether effect sizes are 
homogenous or heterogeneous can be tested in different 
ways. Here, we focus on two such methods: The Q statis-
tic, which can be compared against the χ2 distribution to 
provide a significance test for effect-size heterogeneity,9 

Table 1. Probability of Significance (p < .05) by Various Criteria, for a Range of Study Sample Size (N) Cases and Effect Size (d) 
Cases

Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9

Study 1 N (N1) 50 50 80 80 50 50 80 80 50
Study 2 N (N2) 50 80 50 80 50 80 50 80 50
d 0.5 0.5 0.5 0.5 0.2 0.2 0.2 0.2 0.0
Power (two tailed) according to power calculator 

for Study 1, given its N
.41 .41 .60 .60 .10 .10 .14 .14 0

Power (two tailed) according to power calculator 
with combined Study 1 & 2 Ns

.70 .79 .79 .88 .17 .20 .20 .24 0

Criterion
 1. Study 1 achieves .05 .42 .41 .61 .60 .10 .11 .14 .15 .05
 2. Study 2 achieves .05 .41 .60 .42 .60 .11 .14 .11 .14 .05
 3. Studies 1 & 2 both achieve .05 .17 .25 .26 .36 .01 .02 .01 .02 .00
 4. CCMA achieves .05 .69 .80 .81 .88 .16 .19 .20 .25 .05
 5. CCMA achieves .05 and Q-test non significant .65 .76 .77 .84 .15 .18 .19 .23 .05
 6. CCMA achieves .05 and I2 is below 50% .58 .67 .68 .74 .13 .16 .17 .21 .04
 7. Study 2 achieves .05 .41 .60 .42 .60 .11 .15 .10 .15 .04
 8. CCMA achieves .05 .92 .95 .96 .98 .62 .58 .71 .68 .30
 9. CCMA achieves .05 and Q-test non significant .87 .90 .92 .94 .58 .54 .67 .64 .28
 10. CCMA achieves .05 and I2 below 50% .78 .79 .84 .85 .49 .43 .60 .56 .25

Note: Criterion 7–10 are all based on the samples in which Study 1 achieves p < .05. CCMA = continuously cumulating meta-analysis.
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and the I2 measure (Higgins, Thompson, Deeks, & Altman, 
2003), which is purely descriptive (rather than involving a 
significance test). Readers can find formulas and exam-
ples for calculating each of these by going to Rosenthal 
and Rubin (1982) and Higgins et al., respectively. The 
developers of the I2 index (Higgins et al., 2003) recom-
mend the standard of 25% and 50% for designating small 
and moderate degrees of heterogeneity, respectively. 
Patsopoulos, Evangelou, and Ioannidis (2008), consider 
both of those values. Ioannidis, Patsopoulos, and 
Evangelou (2007) recommend that confidence intervals 
around I2 should be routinely computed.

As applied to the illustrative Study 1 and replication 
attempt portrayed in Table 2, Q = .38, p =.54, and I2 = .0. 
Any intuition that suggested the initial results failed to 
replicate would have to confront the reality that there 
was barely any statistical difference between the two 
study’s results. Additional results (not shown) indicate 
that, over all 10,000 samples, only 4.8% of the simulated 
replication attempts had a significant Q statistic (just 
about what would be expected, since the null hypothesis 
of homogeneity was true); moreover, 76% of all the sam-
ples had a very small I2 of 25% or less, and 85% had an 
I2 of less than 50%.

If one had found substantially different effect sizes for 
the two studies (e.g., a significant Q value and/or a 
descriptively large I2 value), this result would indicate 
that homogeneity of effect size is violated, even if the 
effect sizes are in the same direction—in other words, 
these indicators would suggest that the two studies yield 
divergent results. In the context of replication, some 
would consider this a failure to replicate (Valentine et al., 
2011). In any event, it should certainly caution us against 
interpreting the pooled result as an appropriate summary 
measure of effect sizes (since the effect sizes were so dis-
similar that it is not meaningful to consider a common 
effect), and spark instead a search for the explanation for 
the difference between the two groups (i.e., the modera-
tors of effect size).

In contrast, if the second study’s results meet the com-
bined criterion that the difference in effect sizes between 
studies is descriptively quite small and nonsignificant, 

whereas the pooled result itself is significant, it should 
increase our confidence that the phenomenon is genuine. 
The proportion of samples that achieved a significant 
pooled estimate and had a nonsignificant heterogeneity Q 
statistic (Criterion 5, Table 1) was 65%, only slightly 
reduced from the 69% in which heterogeneity was not 
considered. The proportion of samples that achieved a sig-
nificant pooled CCMA value and whose descriptive I2 was 
below 50% was 58%, only slightly lower. We argue that, in 
the face of the typically low levels of power of current 
behavioral research, these CCMA values are among the 
more appropriate indices of the robustness of effects and 
also give a more appropriate picture of what should count 
as a successful replication. To aid researchers in obtaining 
results from a CCMA analysis as described above, we pro-
vide supplementary materials (also available online at 
http://www.human.cornell.edu/hd/qml/software.cfm) in 
the form of an annotated Excel spreadsheet and a tem-
plate for R code that uses the “meta” package by Schwarzer 
(2007). (See the Supplementary Materials section.)

Attempting Replications Only After the 
Initial Study Is Significant

A number of writers (e.g., Pashler & Harris, 2012) have 
pointed out that replication studies are generally under-
taken, even by the original researchers, when the original 
study achieves significance. Initial studies investigating a 
clearly nonsignificant relationship or phenomenon are 
shelved (or “file-drawer”-ed; Cooper, 1979; Rosenthal, 
1979; see also, http://www.psychfiledrawer.org/about 
.php), not published, and largely dismissed as false starts.

Thus, if we are to accurately assess how our proposed 
criteria would fare in the face of this real-world tendency 
for researchers to only follow up significant Study 1s, we 
need to investigate the above alternatives as conditional 
criteria of a successful replication (i.e., conditional on the 
initial study being significant.) To do so, our simulation 
set aside those 58% of samples in which Study 1 did not 
achieve significance, and we studied these various crite-
ria only for the 42% of Study 1s that attained significance. 
Given a significant effect in Study 1, how often is the 
effect in Study 2 significant? Of course, this value was 
within simulation-rounding error of the power calculator 
value of the test: 41% (see Criterion 7 in Table 1).10 The 
probability that the CCMA pooled value over the two 
studies achieved significance was a reassuring 92% of the 
samples, as noted by Criterion 8 in Table 1. Likewise, in 
87% of the samples in which Study 1 reached p < .05, 
significance was also achieved for the CCMA pooled 
effect and heterogeneity was nonsignificant (Criterion 9 
in Table 1). Finally, in 78% of the samples in which Study 
1 reached p < .05, significance was achieved for the 
CCMA pooled effect and I2 was less than 50% (Criterion 

Table 2. Results From a Simulated Study and a Replication 
Attempt, With a CCMA Analysis

Study
Mean 
diff spooled t p

ES (Cohen’s 
d) Z

Original 0.64 1.03 2.19 0.033 0.62 2.13
Replication 

attempt
0.40 1.07 1.31 0.198 0.37 1.29

CCMA results 0.016 0.49 2.42

Note: Homogeneity test was nonsignificant, Q(1) = .38, p = .54, I2 = 
0.00. ES = effect size.
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10 in Table 1). Thus, after an original study obtains sig-
nificance, the proper course for the subsequent attempt 
is to pool its result with Study 1 and look for differences 
in effect sizes using either significance tests and the Q 
statistic, the descriptive I2 measure, or some other descrip-
tive index of heterogeneity. The bottom line about the 
Case 1 results in Table 1 (which were based on the typi-
cal sample sizes of 25 per group and the typical effect 
size of 0.50) is that the chances of running another study 
(with the same N) and obtaining a successful replication 
by this CCMA approach is about 80%.

Table 1 also contains additional columns for other pos-
sible sample sizes (80 and 50 for each of the two studies— 
either 40 or 25 per group) and other effect sizes (d = 0.2, 
commonly deemed a “small” effect size, as well as a null 
effect of d = 0.0; see Cases 8 and 9 of Table 1). As can be 
seen, small effect-size studies have a disappointing likeli-
hood of achieving significance (generally less than a 20% 
chance) either individually or even when pooled. 
Nevertheless, Table 1 shows that if the initial N = 50 study 
does achieve significance (despite the low odds), the 
pooled result (Criterion 8) has a power of .71 (Case 8) to 
be significant in the large sample size (N = 80, with 40 per 
group) condition. And even if both the original and the 
replication attempt study use only 25 subjects per group, 
the combined pooled criterion is above 60%. True null 
effects (Case 9 of Table 1), however, tend not to obtain 
significance by any criteria (other than the conditional 
ones, due to the fact that the original study was a Type 1 
error—in such cases, the cumulative estimate of the effect 
will move closer and closer to zero as additional studies 
accumulate, as discussed later in this article).

Additional Replication Attempts and 
the Life-Course of Replications

The CCMA approach advocates recomputing meta-ana-
lytic indices described in the first section as each new 
replication attempt is completed. Our confidence should 
increase that the phenomenon under study is genuine 
and true to the degree that the combined criterion 
remains significant, whereas indices of heterogeneity 
(e.g., Q and I2) remain small and nonsignificant. Larger Q 
and I2 values should prompt the search for plausible 
moderator variables (i.e., dissimilar features of those 
studies with distinctly differing effect size values).

Figure 1 depicts this outcome (using the combined 
criterion of significant CCMA and nonsignificant Q sta-
tistic) over the course of a series of replication attempts, 
given various effect sizes. These “life-course trajectories” 
in Figure 1 are for the example of the following sequence 
of total sample sizes in replication Studies 1 through 7: 
50, 50, 20, 70, 70, 50, 80. (We also examined other sam-
ple sizes and effect sizes, but figures did not differ 

appreciably.) Compared with what appears a more-or-
less random walk trajectory for the probability that indi-
vidual studies attain significance, the CCMA approach 
tends toward consistently higher pooled significance. As 
can also be seen, the CCMA life course of a true effect 
is much different than for a null effect (i.e., when d = 0). 
Even for a small effect size, undertaking a series of rep-
lication attempts and cumulating their results eventually 
leads to high probabilities of (combined-pooled) signifi-
cance. Incidentally, this was exactly the result of a recent 
replication conducted by the Many Labs project” (Klein 
et al., 2014). The authors of this orchestrated replication 
attempt found that of 13 classic findings in psychology 
(e.g., the anchoring effect), 10 soundly replicated. As an 
example, the replication attempts of the Quote 
Attribution study (Lorge & Curtiss, 1936), saw several 
nonsignificant replications (some even with opposite 
signs); however, the pooled effect estimate of all repli-
cations was extremely narrow and centered around a 
positive effect of about d = 0.25.

In fact, the meta-analytic perspective discourages alto-
gether dichotomous decisions based on .05, even for 
meta-analytic results such as CCMA tests, and instead 
advocates employing only continuous descriptive crite-
ria—for example, effect size estimates and their confi-
dence intervals (continuous p levels can also be useful, 
but not dividing them into two categories, the “signifi-
cant” and the non-significant). This general preference 
for confidence intervals and effect sizes (and confidence 
intervals around effect sizes) has been advocated by 
numerous authors (e.g., Cumming, 2013; Cumming & 
Finch, 2001; Thompson, 2002). As is well-known, the .05 
criterion for what constitutes convincing evidence is 
completely arbitrary. As Rozeboom (1960) states, 
“Acceptance of a proposition is not an all-or-none affair; 
rather it is a matter of degree” (pp. 420–421). In Rosnow 
and Rosenthal’s (1989) words, “surely, God loves the .06 
nearly as much as the .05” (p. 1277). Imagine how 
research reports would change if the word significant 
were stricken from our scientific vocabulary. Researchers 
would need to argue for each finding’s importance anew 
without relying on rarely applicable one-size-fits-all rules 
of thumb.

Recommendations

Our recommendations on how to improve the assess-
ment of evidential weight of numerous studies are based 
on our understanding of the perfidious impact of belief 
in the Law of Small Numbers and on the CCMA approach 
presented here. First, and most important, we need to 
recognize that the core problem is the very low statistical 
power of most research in psychological and behavioral 
science combined with the failure of our intuition to 
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anticipate its pernicious effects. The call for higher power 
is certainly not a new one (see, e.g., Cohen, 1962; Lakens 
& Evers, 2014, this issue; Sedlmeier & Gigerenzer, 1989), 
however it is worth repeating. In fact, there are some 
reassuring signs that this trend is very recently changing 
(e.g., the Many Labs replication project prioritized ade-
quately powered replication attempts; Perugini, Gallucci, 
& Costantini, 2014, this issue; Stanley & Spence, 2014, this 
issue). If all psychological research were carried out with 
power near .95—or even .80—replication problems 
would arguably diminish. True effects would virtually 
always achieve significance and virtually always be repli-
cable, and researchers would start being more interested 
in effect sizes. We wouldn’t have to contend with falla-
cious beliefs such as the Law of Small Numbers, we’d 
instead have suitably large numbers. Arguably, p hacking 
(Simmons, Nelson, & Simonsohn, 2011) and other ques-
tionable research practices ( John, Loewenstein, & Prelec, 
2012) would diminish, because significance in high-pow-
ered studies would in fact be achieved without tricks. If 
psychology is serious about solving its inferential prob-
lems and achieving the credibility and reproducibility of 

the physical sciences, this requirement will do the trick 
(Cohen, 1994).

It is interesting to note that Tversky and Kahneman’s 
(1971) own intuition failed on this point. They wrote “We 
refuse to believe that a serious investigator will know-
ingly accept a .50 risk of failing to confirm a valid research 
hypothesis” (p. 110). On this they were clearly overly 
optimistic. Virtually all investigators and almost all publi-
cation outlets have contributed to the field being overrun 
with very underpowered studies despite decades of 
knowing of the problem.

In any event, we need a better lens with which to view 
replication efforts than whether they achieve significance. 
The field has come to accept meta-analysis as the stan-
dard for conducting retrospective literature reviews. We 
need to adopt a similar perspective, a continuously 
cumulating meta-analysis (CCMA), to evaluate the valid-
ity of research results as each replication attempt is 
obtained. We have demonstrated that such an approach 
yields not only a more accurate, but also a richer picture 
of the pooled effect of numerous studies. The pooled 
effect estimates are a mathematically sound way to 

Fig. 1. Probability of achieving a significant result for a single study (dashed line) or a significant CCMA estimate (solid lines) using Criterion 
5 from Table 1 for a sequence of studies with the sample sizes specified along the x axis when testing effect sizes ranging from d = 0 to d = .5.
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combine effects and indices of heterogeneity help to 
quantify the amount of discrepancies among studies.

The CCMA approach however is no panacea to fix 
each and every problem in the field. If studies in the lit-
erature have been p hacked and thereby overestimate 
effect sizes, this will bias the CCMA estimate as well. 
Likewise, publication bias (and the omission of negative 
results in the literature) can influence CCMA estimates. 
However, indices of heterogeneity and measures like the 
funnel plot (Sterne & Egger, 2001) can help to identify 
publication bias. In addition, alternative measures such 
as p curves (Lakens, 2014; Nelson, Simonsohn, & 
Simmons, 2014; Schimmack, 2012) can help to identify if 
studies have been severely p hacked and such studies 
could be excluded from a CCMA. Using and encouraging 
others to use CCMA could also help decrease p hacking 
and publication bias: If a nonsignificant Study 2 can be 
published as part of a package of studies that together 
produce a significant CCMA, researchers will be more 
likely to include nonsignificant individual findings in 
their papers (see also Maner, 2014, this issue).

However, the CCMA approach need not be confined 
to replication studies, but can likewise be used to com-
bine internal replications of multistudy articles. This 
would be far more informative then simply reporting 
whether each single study succeeded or failed. We have 
reviewed the statistical tools to conduct CCMA analyses 
and hope that readers will implement these tools in their 
own research and encourage others to do so when 
reviewing articles or replication proposals.
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Notes

1. Tversky passed away before the Nobel prize was given to 
Kahneman, but Kahneman (2002) acknowledged they were 
essentially joint winners.
2. A fifth determinant is the properties of the exact statistical 
procedure conducted.
3. A huge literature exists on meta-analytic techniques. 
Good readable summaries are Lipsey and Wilson (2001) and 
Rosenthal (1984). Many reasonable meta-analytic indices have 
been proposed, and we don’t mean to imply by our choices 
of ones to feature here that these are necessarily the superior 

ones. The indices we feature are Zoverall, which we refer to as 
CCMA (for formulas and discussion, see Rosenthal, 1984, 1990; 
Rosenthal & Rubin, 1979, 1982); Q (Hedges, 1982; Rosenthal, 
1984; Rosenthal & Rubin, 1982); and I2 (Higgins et al., 2003).
4. Many of the results presented herein can be analytically 
derived, but we used simulations throughout for consistency 
and to make the points concrete.
5. Our notation uses lower case n with Roman numeral sub-
scripts to refer to sample size per group (generally we consider 
only two groups of equal size, so nI = nII), and capital N with 
numeric subscripts to refer to sample size per study.
6. The easiest way of doing so is by converting each of the one-
tailed p values to a Z. The Excel function NORMSINV is one 
way of obtaining these values. For example, consider the sec-
ond row of Table 2, in which t = 1.31 and p = .198. The .198 is 
the two-tailed p value. To obtain the Z for the one-tailed p value 
(which is shown to equal 1.29), use “=NORMSINV(1−.198/2)”. 
Then the various resulting Z values are summed and the total 
is divided by the square-root of the number of Zs (or studies), 
in this case √2. Alternative meta-analytic formulas (for exam-
ple, those given by Borenstein, Hedges, Higgins, & Rothstein, 
2011) are also available for computing a significance test of 
the pooled effect estimate. These meta-analytic pooled esti-
mates can be based on either fixed or random-effects models. 
If assuming direct replications, a fixed-effect model is appropri-
ate. Our results in Tables 1 and 2 are based on fixed-effects 
models. Random-effects models have slightly larger standard 
errors and thus wider confidence intervals. We obtained results 
for random-effects models as well, but other than being slightly 
less powerful, patterns of results did not change.
7. Tversky and Kahneman (1971) actually added the words “as 
fact” at the end of the phrase for Alternative (a), which is per-
haps why not a single respondent chose it. They also thought 
that Alternatives (b) and (c) were acceptable and could “be 
justified on some grounds” (p. 108).
8. The CCMA approach produces the same mean estimate of 
the cumulative effect size as a standard Bayesian approach but 
adds the investigation of homogeneity. On the other hand, it 
loses information about the distribution of the posterior, which 
might also be quite interesting.
9. These indices weight large N studies more highly than low N 
studies, based on the recognition that their respective effect-size 
estimates are differentially precise. The statistical power of the 
Q test has been frequently recognized as rather low (Huedo-
Medina, Sánchez-Meca, Marín-Martínez, & Botella, 2006), in that 
it fails to detect as significant even sizable differences in effect 
size. This poses an especial problem for tests of homogeneity 
because the researcher commonly hopes not to reject the null 
hypothesis. Some (e.g., Berlin, Laird, Sacks, & Chalmers, 1989; 
Fleiss, 1993; Petitti, 2001) recommend raising the power of such 
tests by raising their alpha to .10 rather than .05.
10. The homogeneity of the effect size Q-statistics being signifi-
cant remained quite similar at 5.6% (not shown).
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