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Abstract

The nascent Yootopia Project at Yahoo! Research brings together
three related research agendas: mechanisms for group decision making,
prediction, and payment infrastructure. The currency (scrip system) is
called Yootles and underlies (but is orthogonal to) the group decision and
prediction mechanisms. We present an array of currency-agnostic decision
mechanisms for small groups, describing new and existing mechanisms for
(1) choosing among a short list of options, (2) choosing among an effec-
tively innumerable list of options, as in meeting scheduling, (3) allocating
shared goods and responsibilities, (4) public good provision, and (5) bi-
lateral trade. We list desirable mechanism properties and describe the
tradeoffs that the mechanisms make among them. Finally, we describe a
small step towards synthesis of group decisions and group prediction: an
interface for friendly wagers.

1 Introduction

There are plenty of established mechanisms for making group decisions, from
arguing to sophisticated voting systems. Often choosing an outcome involves
explicit negotiation, compromising, quid pro quoing, etc. Yet these mecha-
nisms often fail to make the choice that would have maximized group welfare.
There are many classic pitfalls in group decision making (like various forms of
groupthink) that can be addressed with more structure in the decision-making
process.

Group prediction is a related problem and suffers similarly from a lack of
structure. Experts are hard to identify, they have biases, and are notoriously
bad judges of their own degree of certainty. Prediction markets are an increas-
ingly popular approach to incentivizing information revelation and intelligently
aggregating it to predict the future [Surowiecki, 2005].

To achieve greater social welfare1 and fairness in everyday decision making
we suggest there is a need for a common metric for strength of preferences
(utility), and the ability to directly transfer utility from one person to another.
Of course, these are the roles that money plays in society but money is commonly

1I.e., sum of the participants’ utilities.
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eschewed for these valuable purposes in settings such as social groups and within
organizations. For this reason, as well as to provide a currency for prediction
markets, we introduce yootles.2 The mechanisms we describe here, however, are
currency-agnostic.

Key to adoption of this approach to group decision making is accessibility
and ease of use. We have implemented an SMS (Short Message Service) phone
interface to the mechanisms presented here, with a web interface to them at
http://yootopia.org. We document this interface in Appendix B.

Consider first the value of a common metric for utility. People often have
no way to compare preferences. “I want” vs. “I really want” may do a poor job
of comparing how much we value different options—a prerequisite for making
socially optimal choices. Second, groups often have at best extremely rudimen-
tary means for compensating the people on the losing end of decisions. Decision
mechanisms with yootles payments (i.e. auctions) address both of these short-
comings through explicit compensation and preference elicitation.3

Admittedly, when one is not in the habit of quantifying one’s preferences,
it can seem a daunting task. Nonetheless, it is quite possible to do and with
practice can even become simple. When you are unsure of your own value for
a particular outcome, we find a simple binary search is extremely effective at
pinning down your indifference point. “Would I take that plane ticket if it were
free?” “Definitely.” “Would I buy it if it cost $1000?” “No way.” “$500?”
“Uhh, No.” “$250?” “Definitely.” “$375?” “Yeah, I guess.” “$438?” “Uhh,
well...” The point where you are truly torn is your true utility.4

But why not just use an existing currency (like dollars) for these purposes?
In fact, in some settings an exchange rate will quickly emerge and then yootles
would be money in every sense. But some groups may want to level the play-
ing field among a group of people of varying financial means. This is difficult
to enforce but a like-minded group can achieve this property by agreeing, for
example, to only use yootles for decision-making and prediction tasks. Yootles
may also simply provide a more explicit framework for casting currency as a de-
scriptor of a person’s utility—a concept that most people outside certain fields
like economics and artificial intelligence are not used to. Finally, there may
be various social impediments to the adoption of government currency for the
purposes we propose. Paying for influence in group decisions is not palatable to
many. And spending one’s own money in the context of one’s job is avoided in
corporate culture.

Yootles, just like with government currency, work because of mutual agree-
ment. And just like with with money, the whole economy is nothing but a
scorekeeping system for owed favors (broadly defined). Participants start with
a balance of zero and simply owe or are owed yootles. All yootles transac-

2The name is a variant on utils or utiles—a hypothetical unit of utility or happiness.
3Quantifying one’s preferences can be awkward and difficult when not in the habit of doing

it, however. When unsure of your own value for a particular outcome, we find a quick mental
binary search is extremely effective at pinning down your indifference point.

4One advantage of iterative mechanisms, which we will discuss later, is to spare the par-
ticipants this sometimes painful introspection [Parkes, 2005].
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tions, debts, and balances are tracked in a ledger system. This paper presents
group decision making as a key application of the yootles infrastructure, being
launched by Yahoo! Research at www.yootles.com. We largely defer discussion
of this payment infrastructure and prediction markets in Yootopia, though these
are all interrelated.

Key to adoption of this approach to group decision making is accessibility
and ease of use. We have implemented an SMS (Short Message Service) phone
interface to the mechanisms presented here, with a web interface to them at
http://yootopia.org. We document this interface in Appendix B.

2 Desirable Mechanism Properties

Following are commonly desirable mechanism properties for group decision-
making, often treated as constraints on a mechanism designer [Mas-Colell et al.,
1995]. Famous impossibility results [Green and Laffont, 1979] preclude achiev-
ing all of these properties in any mechanism simultaneously and in the next
section we describe various tradeoffs that can be made among these properties.

Fundamental to the study of mechanisms is the notion of an agent’s pref-
erences. We refer to an agent’s type synonymously with preferences to refer
to the private information an agent has that affects its utility for the different
outcomes. Typically, this is simply the utility values it would get from each
possible outcome of the decision mechanism.

EFF (Social Efficiency) A socially efficient (a.k.a. socially optimal or welfare
optimal) mechanism always chooses the outcome that maximizes total utility
(a.k.a. social welfare). The degree of social efficiency of a mechanism is the sum
of everyone’s utility for the choice the mechanism made divided by the greatest
social welfare over all possible choices.

PAR (Pareto Efficiency) A Pareto efficient mechanism is one which guarantees
an outcome that cannot be improved upon without making some participant
worse off. This is commonly viewed as a minimum requirement for a mechanism.
It may be forgivable to find a suboptimal solution but to offer solution A when
every single participant at least weakly prefers B will be viewed as a failure on
the part of the mechanism designer. Note that EFF =⇒ PAR.5

(DS)IC (Dominant Strategy Incentive Compatibility) In a dominant strat-
egy incentive compatible (a.k.a. strategy-proof or non-manipulable) mechanism
it is in every participant’s best interest to truthfully report their preferences,
no matter how anyone else is playing the game. We will use the terms IC and
DSIC interchangeably. Note that DSIC does not imply EFF or PAR, the Pris-
oners’ Dilemma being a famous counterexample where the dominant strategy

5Proof: Consider a mechanism that is socially efficient but not Pareto efficient. Then
someone’s utility can be increased without decreasing anyone else’s. This yields greater social
efficiency, which is a contradiction.
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is defection despite mutual cooperation yielding strictly greater utility for both
players.

BNIC (Bayes-Nash Incentive Compatibility) In a Bayes-Nash incentive com-
patible mechanism it is in every participant’s best interest to truthfully report
their preferences, so long as everyone else is also using the strategy of truthful
bidding.6 This assumes, however, that there is a common-knowledge distribu-
tion from which agents’ preferences are drawn (and that they have no other
information about these preferences). Since this assumption tends not to hold
in practice, it will often mean little to claim the BNIC property for practical
mechanisms. Note that since any dominant strategy equilibrium is also a Nash
equilibrium, IC =⇒ BNIC. By *IC we will mean the set of both properties,
{BNIC,DSIC}.

BB (Budget Balance) In a budget balanced mechanism, the sum of all pay-
ments made is zero. In other words, the only payments are transfers to other
participants. A BB mechanism does not run a surplus or require a subsidy.
(Weak budget balance means that the mechanism never requires a subsidy but
may run a surplus.) We will typically view budget balanced mechanisms as
advantageous but if a for-profit entity is designing the mechanism, they may
prefer to maximize the surplus (revenue) generated. In this case the mechanism
would be said to be aiming for Revenue Maximization (REV). The literature
on “optimal auctions” [Myerson, 1981] refers to this design goal, especially in
the context of mechanisms for selling goods to multiple buyers.

IR (Individual Rationality) In an individually rational mechanism, no risk-
neutral agent will strictly prefer to opt out of the mechanism rather than par-
ticipate. Any mechanism in which participants may place bids of zero and
guarantee that they do no worse than opting out altogether is IR. Note that
any mechanism can be made IR by including “opt out” in the strategy space.

EQ (Fairness or Equitability) The degree of fairness of an outcome for n people
is n times the utility of the least happy person divided by the total utility
(equivalently, the ratio of the minimum utility to the average utility). In other
words, perfect fairness means everyone is equally happy. We call a mechanism
fair, or equitable, if it guarantees perfectly fair outcomes.

ENV (Envy-freeness) An envy-free mechanism yields outcomes in which no
one wants to trade places with anyone else.

SMP (Simplicity) For many applications, the complexity (either computa-
tional or cognitive) of a mechanism may need to be minimized. Like many of

6The Revelation Principle actually guarantees that, with some caveats, we can turn any
mechanism into one that is Bayes-Nash incentive compatible.
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the above, this goal may need to be traded off against other mechanism proper-
ties [Nisan and Ronen, 1999]. For the purposes of small group decision making,
we will consider a mechanism to have the property SMP if the mechanism can
be conducted easily without a computer.

Some of the above mechanism properties may be further specialized. A
mechanism has a property ex ante if it has the property in expectation before
any of the participants’ preferences are known. A mechanism has a property
ex interim if, from the perspective of any particular participant, it has that
property in expectation with only the participant’s preferences known. Finally,
a mechanism has a property ex post if it has the property regardless of any of
the participants’ preferences.

If the mechanism includes a randomization device we model that by having
Nature be one of the participants and the result of the randomization constitutes
Nature’s “preferences”. Flipping a coin, then, to decide who gets the last piece
of cake is ex ante fair and ex interim fair from the perspective of the participants
other than Nature. It is ex post quite unfair.

3 Auctions for Group Decisions

We now describe a potpourri of decision mechanisms for various group decisions.
We start with some trivial, degenerate, and mundane mechanisms before contin-
uing on to some widely applicable and well-known mechanisms, as well as some
practical original mechanisms. We do this to highlight the improvements that
can be made over some of the mechanisms traditionally applied to the domain
of group decision making.

Table 1 summarizes the properties of the mechanisms we describe in this
section.

Most of the mechanisms we consider here take a set of reported agent pref-
erences and return one of a set of possible outcomes along with a payment
(positive or negative) to or from each agent. This makes them direct revelation
mechanisms (DRMs) or, simply, direct mechanisms.7 A DRM is a sealed-bid
mechanism where the bids are in fact agents’ full preference functions, mapping
every possible outcome to a utility value. Mechanisms of this form are very gen-
eral. A voting mechanism, for example, ignores the magnitudes of the reported
nonzero valuations for options and sets all the payments to zero. A bilateral
bargaining mechanism takes the buyer’s and seller’s valuation and reservation
prices, chooses an outcome from the set {trade, no trade}, and sets the
payments to be a sale price and the negative of the sale price (in the case of
outcome trade).

The Revelation Principle [Mas-Colell et al., 1995] in fact guarantees that
for any mechanism, involving arbitrarily complicated sequences of messages be-

7The Revelation Principle [Mas-Colell et al., 1995] in fact guarantees that for any arbitrarily
complicated mechanism, there exists a DRM that is equivalent in terms of how it maps
preferences to outcomes and is BNIC.

5



EFF PAR IC BNIC BB EQ ENV SMP
Coin Flip 0 0 1 1 1 0 0 1

Dictatorship 0 1 1 1 1 0 0 1
Voting 0 1 0 0 1 0 0 1
VCG 1 1 1 1 0 0 0 0

SGA(1/3, 0) 1 1 0 1 1 > 0 0 1
SGA(1/2, 0) 1 1 0 0 1 2/3* 0 1
SGA(0, 1) 1 1 0 0 1 > 0 0* 1

DAUC 0* 1 0 0 1 > 0 0 0
NFA 0* 1 0 0 1 0* 0* 1

Table 1: Properties of decision mechanisms. Starred entries indicate that the
property holds (= 1) when players bid truthfully despite it not being an equilib-
rium (i.e., for altruistic agents). SGA is the two-player shared-good auction with
uniform types. The entry for voting applies to many common voting systems
including approval voting, Borda count, and instant runoff.

tween participants, there exists a direct revelation mechanism that is equivalent
in terms of how it maps preferences to outcomes and is BNIC. Consider a meta-
mechanism that consists of the original mechanism with proxies inserted that
take reported preferences from the agents and play a Nash equilibrium on the
agents’ behalf in the original game (every game with a finite number of possible
actions has a Nash equilibrium [Nash, 1951]). Similarly, the revelation principle
means that if a mechanism has a dominant strategy equilibrium then we can
construct one that is DSIC.

Sometimes reporting preference functions is straightforward—as in the case
of specifying a utility for each of a short list of options—while for other social
choice functions it is prohibitive. And even when reporting preference functions
is straightforward, the mechanism may not be able to find a Nash equilibrium
of the game. So although it is theoretically without loss of generality to con-
sider only direct revelation mechanisms, indirect mechanisms are important in
practice [Conitzer and Sandholm, 2004] (see Section 3.9).

3.1 Coin Flip

We start with perhaps the simplest of all decision procedures. The coin flip
mechanism refers more generally to picking an option for a group of partici-
pants by choosing among the options randomly (picking the ith of n outcomes
with probability 1/n). This mechanism has the advantage of being ex interim
fair (EQ). It is also trivially IC in that the outcome is independent of the
participants’ bids (no bids in fact are asked for). The biggest downside of ran-
domization as a mechanism is efficiency—an option may be chosen that makes
everyone miserable, with no possible bias toward options that are better for the
group. Thus, Coin Flip fails to achieve PAR or EFF.

6



Coin Flip does achieve two properties that are harder to come by in more
sophisticated mechanisms. It trivially balances the budget (BB), and with rea-
sonable constraints on the possible outcomes (excluding, for example, the “rob
agent i blind” option), Coin Flip is individually rational (IR). Any mechanism
with no payments is of course trivially budget balanced and typically satisfies
individual rationality as well.

Like many decision mechanisms, Coin Flip will not in general be envy-free
(ENV). For example, if the randomly chosen option is to give agent i the last
piece of cake, everyone but i will be envious. Envy-freeness is typically achieved
with payments—if agent i paid more for the cake than any of the others thought
it was worth then the ENV property would be satisfied.

Of course, for all its shortcomings, the coin flip mechanism has extremely
low cognitive and computational complexity (SMP).

3.2 Dictatorship

Dictatorship means throwing out every participant’s preferences except for one
(the dictator) and optimizing with respect to only the dictator’s preferences.
This has greater expected efficiency than Coin Flip and does achieve Pareto
efficiency (as long as the dictator breaks ties magnanimously) but otherwise is
no better than Coin Flip.

Incentive compatibility is trivially satisfied since either your preferences are
disregarded or followed completely. Not surprisingly, for many decision problems
Dictatorship is the least fair mechanism, though if a dictator is chosen randomly,
then this mechanism, like Coin Flip, is ex ante fair. For all of the other properties
(BB, IR, ENV, SMP) the story for Dictatorship is identical to that for Coin Flip.

3.3 Voting

We define voting very generally as any decision mechanism (i.e., mapping from
preferences to outcomes) that never involves payments. Thus, Coin Flip and
Dictatorship both qualify as degenerate forms of voting. It turns out in fact
that for choosing among more than two options, Dictatorship and mechanisms
like Coin Flip that may rule out options even when unanimously preferred are
the only voting mechanisms that are dominant strategy incentive compatible.
This is the famous Gibbard-Satterthwaite impossibility theorem [Gibbard, 1973,
Satterthwaite, 1975, Gibbard, 1977].

Just as Coin Flip and Dictatorship are degenerate decision mechanisms that
take full preferences, largely ignore them, and return an outcome, many voting
mechanisms take full preferences and ignore all but the ranking information.
For Borda count, for example, the n options are sorted for each agent by utility
and reassigned a number from one to n. In the case of approval voting all
positive utilities are mapped to one. In fact, in our implementation of approval
voting positive utilities are mapped to one and the rest to zero unless there are
no positive utilities reported in which case negative utilities are mapped to zero
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and the zero utilities (the default when unspecified) are mapped to one. This
provides a convenient way to approve of all except a set of options.

In every decision mechanism discussed in this paper, including the degener-
ate mechanisms, all voting systems, and the auction-based mechanisms in the
next sections, the social choice is made by applying any filters to the preferences
and then choosing the option with the highest sum. Payments (generally made
from the winners to the losers) are calculated as a function of the chosen op-
tion and the reported utilities but, again, for voting mechanisms the payments
are always set to zero. As described below, our principle motivation for prefer-
ring auction mechanisms over voting is to achieve greater social efficiency and
fairness.

Voting, of any form, is not socially efficient (EFF) in that it does not guaran-
tee the outcome maximizing total utility. This is because it does not fully take
into account the strength of participants’ preferences. For example, consider a
vote to choose a restaurant that includes a steakhouse and a Thai restaurant. If
Alice is a vegetarian and abhors the steakhouse option, the most influence she
can exert is to rank it last or otherwise put the full weight of her vote elsewhere.
If the steakhouse is otherwise popular, any voting mechanism will choose it even
if the others prefer it only mildly over Thai. Given the others’ mild preferences
and Alice’s strong preference, Thai is clearly the socially optimal choice, con-
trary to the result of the vote. Note that this is a problem with all possible
variants of voting (approval voting, Borda count, instant runoff, etc.) because
fundamental to any voting system is the requirement that each participant have
equal influence on the outcome. As we will see in the subsequent subsections,
auction-based mechanisms remove this constraint.

In the restaurant example above, the steakhouse option is Pareto efficient
since some participants prefer it to Thai (Thai is Pareto efficient as well). Voting
mechanisms in fact are Pareto efficient (PAR) in general since they will always
pick an option that at least some people prefer.

We know (Gibbard-Satterthwaite) that no reasonable voting system achieves
IC and many voting mechanisms are famously susceptible to strategizing. In
many political elections, for example, expressing your truthful preference for a
third party candidate is tantamount to wasting your vote if you are convinced
that, given your expectation of others’ strategies, your first choice is unlikely to
win. In principle (the revelation principle) there exist BNIC voting mechanisms
but this is of little practical value due to the reliance on a common knowledge
distribution of voter preferences. Thus we characterize voting systems generally
as not BNIC in Table 1.

Voting does not achieve fairness (EQ), even ex ante, since preferences may
be polarized such that certain participants can expect to be unhappy with the
outcome. Voting is of course commonly thought of as fair in the colloquial sense
of giving every participant an equal opportunity to influence the decision.

For budget balance (BB), individual rationality (IR), and envy-freeness (ENV),
the story for voting systems is the same as that for Coin Flip and Dictatorship.
Finally, many forms of voting have the advantage of being computationally sim-
ple (SMP), requiring only a show of hands or paper ballots. This property is
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lost, however, for more sophisticated voting mechanisms.

3.4 Vickrey-Clarke-Groves (VCG) Mechanism

None of the decision mechanisms discussed up to this point have involved pay-
ments. As discussed in Section 1, the use of payments allows the explicit com-
parison of strength of preferences as well as the ability to redistribute utility to
achieve greater fairness. We start with a classic mechanism that achieves what
none of the previous mechanisms can: social efficiency.

The VCG [Vickrey, 1961, Clarke, 1971, Groves, 1973] mechanism is impres-
sively versatile (though many criticisms have been levvied against it, for exam-
ple, that it is vulnerable to collusion). It can be applied whenever agents can
specify their full preferences and when finding the socially optimal choice given
those preferences is computationally feasible. For the group decisions we are
addressing, these requirements are largely met. As we will see, VCG achieves
most of the key mechanism properties at the expense of BB.

The mechanism proceeds by collecting sealed bids from each agent, which
the mechanism takes to be their (possibly strategically falsified) preferences. It
then selects the outcome O∗ that maximizes total reported utility. IC is then
achieved thanks to a simple rule for establishing the payments: each agent pays
the externality8 it imposes on the rest of the group. In other words, for each
agent i, the mechanism solves the subproblem with all agents but i, yielding
outcome O∗

−i. If O∗ = O∗
−i, i.e., i is not pivotal, then i’s participation cost the

group nothing and i pays nothing. But if the social optimum changes without
i (O∗ 6= O∗

−i) then i was pivotal in the final decision and pays precisely what
it cost the rest of the group: payi =

∑
j 6=i Uj(O∗

−i) −
∑

j 6=i Uj(O∗). In words,
a pivotal agent i pays the difference between the total utility of everyone else
without i, and their utility with i.

Intuitively this means that if an agent’s preferences do not impact the rest
of the group, the auction costs it nothing. If an agent does pay, its payment is
entirely insensitive to the amount of its bids (conditional on being asked to pay
at all—i.e., influencing the outcome). For this reason, it is a dominant strategy
for agents to report their preferences truthfully in VCG.

Incentive compatibility in VCG comes at the cost of budget balance (BB).
In fact, when the externalities are negative (as is the case for choosing among
contentious options) VCG maximizes revenue among all efficient mechanisms.
When externalities are positive (as is the case for chore division) VCG requires
a subsidy. Another potential complaint about VCG is a low degree of fairness
(EQ) and lack of envy-freeness (ENV). Next we consider mechanisms that
address these shortcomings.

8An agent’s externality is the aggregate utility (often negative) that the other participants
derive from its participation. For example, telephone usage has positive externalities (the
more others use the technology the more useful it is); for road usage, the externalities are
negative due to congestion.
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3.5 Shared-Good Auction (SGA): Two-Person “Voting”

Consider the problem of two people trying to decide between two options. Unless
both players prefer the same option, no standard voting mechanism (with either
straight votes or a ranking of the alternatives) can help with this problem.
VCG is a nonstarter with no one to provide a subsidy and third-party payments
tantamount to a pure efficiency loss (burning money).

Instead we propose a simple auction: each player submits a bid and the
player with the higher bid wins, paying some function of the bids to the loser in
compensation. Reeves [2005] considered a special case of this auction and gave
the example of two roommates using it to decide who should get the bigger
bedroom and for how much more rent. We also find it a most practical way to
allocate tasks for which two people have joint responsibility—e.g., deciding who
books flights for a joint trip.

We sometimes refer to this mechanism as an un-sharing auction—it allows
one agent to sell its half of a good to the other joint owner (or pay the other to
take on its half of a “bad”).

We define a space of mechanisms for this problem that satisfy BB, IR, and
(with a minor caveat noted below) EFF. The following is a payoff function
defining a space of games parameterized by the function f .

u(t, a, t′, a′) =


t− f(a, a′) if a > a′

t−f(a,a′)+f(a′,a)
2 if a = a′

f(a′, a) if a < a′,

(1)

where u() gives the utility for an agent who has a value t for winning (its type)
and chooses to bid a (its action) against an agent who has value t′ and bids
a′. Finally, f() is some function of the two bids.9 In the tie-breaking case the
payoff is the average of the two other cases, i.e., the winner is chosen by the flip
of a fair coin.

We next consider a restriction of the class of mechanisms defined by Equa-
tion 1:

Definition 1. SGA(h, k) is the mechanism defined by Equation 1 with f(a, a′) =
ha + ka′.

These are games in which the winner pays a linear function of the two bids.
For example, in SGA(1/2, 0) the winner pays half its own bid to the loser; in
SGA(0, 1) the winner pays the loser’s bid to the loser. We now give Bayes-Nash
equilibria for such games when agents’ values (types) are uniformly distributed
on an interval.

Theorem 1. That is, for h, k ≥ 0 and types U [A,B] with B ≥ A + 1 the
following is a symmetric Bayes-Nash equilibrium of SGA(h, k):

a(t) =
t

3(h + k)
+

hA + kB

6(h + k)2
.

9 Reeves [2005] considered the case f(a, a′) = a/2.
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We provide the proofs of theorems in Appendix A.
We can now characterize the truthful mechanisms in this space. According

to Theorem 1, SGA(1/3, 0) is BNIC for U [0, B] types. The following theorem
says this is the only truthful mechanism for uniform types.

Theorem 2. With U [0, B] types (B > 0), SGA(h, k) is BNIC if and only if
h = 1/3 and k = 0. Furthermore, for U [A,B] types with A > 0 there is no
setting of h and k such that SGA(h, k) is BNIC.

Of course, by the revelation principle, it is straightforward to construct a
mechanism that is BNIC for any U [A,B] types. However, to be a proper auction
[Krishna, 2002] the mechanism should not depend on the types of the partici-
pants. In other words, the mechanism should not be parameterized by A and B.
With this restriction, the revelation principle fails to yield a BNIC mechanism
for arbitrary uniform types.

By construction the game is budget balanced (BB) regardless of the strate-
gies since there is a single transfer payment from the winner to the loser. Like-
wise, individual rationality (IR) is guaranteed by construction since either agent
can opt out by bidding zero and guaranteeing itself zero payoff.

The caveat to the claim of efficiency for SGA is that the strategies must be
monotone increasing in type, i.e., greater utility for winning can never lead you
to bid less. This is the case for the Nash equilibrium in Theorem 1, for truthful
bidding, and arguably for any other sane bidding strategy. If additionally both
agents play the same monotone strategy then the agent with the higher type
will always win. Since the transfer payments, being budget-balanced, do not
contribute to the efficiency, SGA will achieve the efficient outcome (EFF).10

The shared-good auction is ex post fair when the winning agent pays half
its surplus to the loser in compensation. For example, SGA(1/2, 0) would be ex
post fair (EQ) if played altruistically. When played strategically with U [A,B]
types, we can calculate the degree of fairness from the Nash equilibrium in
Theorem 1, which for h = 1/2 and k = 0 reduces to (2t + A)/3. The utility
of the least happy agent is min( 2tw+A

6 , tw − 2tw+A
6 ), where tw is the winner’s

type, which reduces to (2tw + A)/6 since tw ≥ A. Since the total utility is tw,
the degree of ex post fairness is 2/3+A/(3tw) and (taking the expectation with
respect to tw) the degree of ex ante fairness is 2/3 + A/(A + 2B).

Theorem 3. For strategic agents with U [A,B] types (B ≥ A + 1) playing the
symmetric equilibrium given by Theorem 1, there is no setting of h and k such
that SGA(h, k) guarantees ex post fairness (EQ).

Finally, we consider the remaining properties of SGA. The shared-good
auction is Pareto efficient (PAR) since someone ends up with the good. When
h and k are such that the winner pays at least the loser’s bid to the loser—i.e.,
k ≥ 1—then the mechanism is envy-free (ENV). Finally, it is straightforward

10The total social welfare, then, is the type of the player with the highest type, i.e., the
first order statistic of the type distribution. The expected social welfare for U [A, B] types is
A/3 + 2B/3.
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to collect bids, pick the largest, and pay a simple function of the bids, with no
computational assistance (SMP). This is especially true for h = 0 and k = 1—
i.e., when the winner pays the loser the loser’s bid. It is this last case, SGA(0, 1),
that we generalize in the next section.

3.6 A General Decision Auction (DAUC)

The SGA family comprise versatile decision mechanisms for two players. We now
generalize to the n-player case with the Decision Auction (DAUC)—a budget
balanced mechanism that modifies VCG by redistributing the VCG surplus so
as to increase fairness with limited impact on incentive compatibility.

Others have proposed similarly motivated modifications of VCG. Cavallo
[2006] has characterized preference distributions for which the surplus can be
partially redistributed with no loss of IC or EFF. Faltings [2004] proposes the
simple method of achieving BB by arbitrarily excluding some participants from
the decision and funneling the surplus to them. This retains IC at the cost
of some EFF. Parkes et al. [2001] apply a similarly motivated VCG payment
adjustment approach in the setting of combinatorial exchanges.

DAUC uses a related method for redistributing the surplus. After making
the VCG payments each participant receives back a piece of the surplus in pro-
portion to the difference between their highest bid and their bid for the winning
option (participants whose highest bid was placed for the winning option will
thus not recieve any payout). This, in effect, means that losers get compen-
sated in proportion to how badly they wanted some other result. If someone is
neutral among the options and bids zero across the board, they will not recieve
any payment, whereas someone who really wanted one of the losing options will
recieve a higher payout—provided that at least one person was pivotal in the
auction. If no one is pivotal then, like straight VCG, the mechanism does not
require any payments. Note that in the case of two agents and two options this
mechanism reduces to SGA(0, 1). Thus we know from above that at least in the
two-player case with uniform types, the Decision Auction is efficient even when
played strategically.

The redistribution of payments amongst the losers means that this mecha-
nism is not incentive compatible (IC). For example, placing your highest bid for
something you know will lose will garner you more of the redistributed surplus.
Likewise, if you suspect you will be pivotal and may need to pay close to your
full bid to influence the outcome, you may prefer to reduce your bid in order
to lose (have a less preferred option chosen) and get compensated. In general,
however, you can’t have greater influence on the chosen outcome by changing
your bids, you can only capitalize on losing. This can be considered a form of
partial incentive compatibility in the sense that, among a small group of people
who care foremost about finding the social optimum, reasonable participants
are unlikely to try to capitalize off the rest of the group. This is in contrast to
straight voting, for example, where strategizing may be required to keep your
vote from being wasted.

DAUC also retains incentive compatibility in a different sense: a sufficiently
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risk-averse agent, assuming a minimally diffuse distribution of others’ prefer-
ences, will not inflate its bids since doing so entails a risk of a negative utility
(paying more for an outcome than it’s worth). Truthful bidding, in fact, is a
minimax strategy11 in DAUC.

In general, when dealing with mechanisms that are not incentive compatible,
it is useful to introduce some notion of the degree of incentive compatibility of
the mechanism. To these ends we would like to measure how much an agent
stands to gain by bidding its best response to truthful bidding. This can be
done for the two-player version of this game, as it reduces to SGA(0, 1), and we
get the following result:

Theorem 4. For two players with types U [0, B] truthful bidding is an ε-equili-
brium in DAUC, where ε = B3

72 .

For example, for the case of U [0, 1] types, an agent can improve its utility
1/72 by deviating from truth-telling—a gain of 4%. Proof of this theorem is
provided in the full version of this paper.

3.7 Nominally Fair Auction (NFA)

What if, hypothetically, we trusted participants to just play nicely (altruisti-
cally)? What mechanism properties besides *IC could we achieve? The answer
is all of them. NFA—for Nominally (or perhaps Naively) Fair Auction—is a sim-
ple direct revelation mechanism achieving, with altruistic agents, every property
in Section 3 (except *IC). Like VCG, it chooses the social optimum from re-
ported preferences (which in the case of VCG are the true preferences due to
IC) but allocates payments to maximize fairness, i.e., to make everyone equally
happy. Specifically, with n agents, let bi be the ith agent’s bid for the winning
option, and U be the total utility for the winning option. Then each agent i
receives (or pays if negative) U/n− bi. Since the sum of these payments is zero,
regardless of the strategies, we achieve BB regardless of agent strategies.

NFA is not generally BNIC. Consider the two-player case where this mech-
anism reduces to SGA(1/2, 0). With types drawn from U [A,B], we see from
the equilibrium strategy that the game is not BNIC except for agents with the
lowest possible value A (the Nash equlibrium is (2t+A)/3). As for DAUC, how-
ever, we can find the degree of incentive compatibility in the two-player case of
NFA:

Theorem 5. For two players with types U [0, B] truthful bidding is an ε-equili-
brium in NFA, where ε = B3

48 .

There are cases where NFA is BNIC, if not DSIC. Consider the case of
allocating a shared good with a known common utility (perhaps no one wants

11A minimax strategy is found by considering for each strategy the lowest possible utility
if that strategy is followed (as if the other players cared for nothing but to harm you) and
picking the one for which this minimum is maximized. In other words, it is the strategy which
maximizes worst-case utility.
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the good itself but it has a known resale value). It is in equilibrium to bid the
full value of the good, which amounts to splitting the good evenly among all
participants. In fact, any time there is complete information reasonable people
tend to pick NFA [Schelling, 1960].12

NFA is also envy-free (ENV) with altruistic bidders. Suppose it weren’t and
for some set of preferences an agent wanted to trade places with another. But
by social efficiency, the one who wanted it most got it. By fairness, the two
are receiving equal utility after the payments. Thus, the agent would receive
less utility by switching, which is a contradiction. Finally, NFA is cognitively,
computationally, and mathematically simple (SMP). (At least, it is no more
complicated than splitting a dinner bill.)

Bilateral Trade Using NFA, we can also cast Bilateral Trade (a.k.a. bargain-
ing) as a group decision problem. Myerson and Satterthwaite [1983] show that
it is impossible for any mechanism to achieve EFF, IR, and BB in bilateral trade
for any reasonable (essentially, overlapping) distribution of preferences. In order
to use NFA for bilateral trade, the seller submits a negative bid for how much it
will cost to give up the good in question—option trade—with an implicit zero
bid for option no trade. The buyer submits a positive bid for how much they
would be willing to pay for option trade, with zero for option no trade. (Of
course, either agent may strategically misreport these numbers.) If the buyer’s
bid and seller’s bid sum to greater than zero then, appropriately, trade will
be chosen, otherwise no trade. Since NFA splits the reported surplus evenly
this means that the selling price is fixed halfway between the (magnitude of)
the seller’s and buyer’s values. Chatterjee and Samuelson [1983] give the Nash
equilibrium of this game for U [0, 1] types for a seller (1) and a buyer (2):

a1(t1) = 2t1/3 + 1/4
a2(t2) = 2t2/3 + 1/12.

Note that NFA does not apply to the case of multilateral trade as the mech-
anism shares surplus over all participants. This is clearly not correct if the final
outcome is a transaction that involves only some subset of the bidders—i.e. in
the case of general trade we don’t want to reward bidders just for participating
in the auction.

Joint Purchase Joint Purchase (a.k.a. public good provision) refers to the
problem of n agents deciding if a good to be shared is worth the collective
cost. In order to apply NFA to Joint Purchase, we introduce the special player,
Nature (see Section 2). Since the seller is not participating in the auction, but
rather the good has an exogenous price, we need a way to include the actual
price of the good in the auction. We have Nature submit a negative bid equal to
the price of the good. The participants will submit their (presumably positive)

12Consider the example of Alice selling her car to her friend Bob when they know the
dealership would buy it for $1000 and sell it for $2000. They’ll naturally choose a sale price
of $1500, per NFA. We see how NFA achieves this result below.
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bids. The set of possible choices consists of {buy, no buy}. The mechanism
proceeds as described above, selecting the option that maximizes total utility,
and calculating payments, with the one additional caveat that Nature makes
and recieves no payments. Since Nature is really just a placeholder for the
cost of the good in question, we don’t want to share the surplus with it. The
two-player version of this game was suggested by Reeves [2005].

Here we give the Nash equilibrium of NFA for two players both reporting
nonnegative values for a single option, with an exogenous cost (negative bid
from Nature) of c ≥ 2/3.

Theorem 6. For the game defined by the payoff function

u(t, a, t′, a′) =

{
t− a + a+a′−c

2 if a + a′ ≥ c

0 otherwise,

and types distributed U [0, 1], the following is a symmetric Bayes-Nash equilib-
rium:

a(t) = 2t/3 + c/4− 1/6.

3.8 Sequential Pie Auction

Using auction mechanisms for voting can be controversial. A common objection
is captured by the mantra “One person, One vote.” The Sequential Pie Auction
mechanism addresses this objection by explicitly giving each participant the
same number of votes (one or two, as we will see below) and then giving them
the opportunity to buy and sell their votes from each other in a series of auctions.

While vote buying is taboo in political elections it is common for small
group voting (“I’ll support your proposal if you make these concessions”). And
although such mechanisms will still meet resistance on the grounds that vote
buying should not be explicit, we argue that the distinction is rather meaning-
less.

The Sequential Pie Auction mechanism is as follows:

1. Pick a number of votes, k, to give to each of the n participants such that
the total number of votes is an even number (i.e., k = 1 if n is even, else
k = 2).

2. While votes are not all owned by the same person, repeat:

(a) Pick the two biggest equal size blocks of votes such that each of the
two blocks are owned by different people, breaking ties arbitrarily.

(b) Hold a shared-good auction to reallocate all the votes in both blocks
to one of the two people.

Note that the special case of n = 2 is simply a single shared-good auction—both
players have an equal stake in the decision and the first and only iteration of
the auction gives the choice to one or the other.
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3.9 Iterative Decision Auction

We now consider iterative mechanisms [Parkes, 2006]. The above mechanisms
handle the case of voting on a small list of options. The iterative decision
auction addresses the case when there are so many options that it is prohibitive
for participants to explicitly assign values to each of them—for example, picking
a time for a meeting. In this mechanism, a default option is chosen arbitrarily
and broadcast to the participants who then increase their bids (from the default
of zero on all options) on a subset of the options (of their choosing) which
they prefer to the current default. Based on the current bids, the socially
optimal choice is re-broadcast as the new default option and the process repeats.
When none of the participants respond to the default by increasing any of their
bids, the auction ends and the current default is chosen, with payments made
according to any of the above mechanisms (DAUC, NFA, VCG, etc).

The iterative decision auction retains the key properties of the mechanism
that is used to decide the payments based on the final bids and last default
option broadcast (we call this the base mechanism). For example, its degree of
budget balance is naturally the same as the base mechanism since no payments
are made until the final bids are fed to the base mechanism. Similarly, the social
efficiency, fairness, and individual rationality are inherited from the base mech-
anism. Disregarding the cognitive/computational burden of constructing and
transmitting one’s full preferences, the iterative decision auction also inherits
the incentive compatibility of the base mechanism.

4 A Simple Prediction Mechanism

As described in the next section, we have implemented a simple interface for
friendly wagers as the first step toward integrating group decision-making with
group prediction. The wagering system allows participants to enter probabilities
of various outcomes, providing the average of the probabilities as an aggregate
measure of the consensus judgment. To motivate participation, users also specify
a worst-case amount of yootles they are willing to lose if they are wrong. The
system then computes fair odds based on the reported probabilities of pairs
of participants. Fair odds are taken to be 1−p

p to 1 where p is the average of
the reported probabilities. In this way, the participants have equal assessments
of the expected payout of the wager. Finally, the payouts are scaled by the
mininum of the amounts the participants were willing to risk. When the actual
outcome resolves, one of the participants specifies this to the mechanism, which
then effects the appropriate yootles payouts (from the loser of the bet to the
winner).

Our next goal is to integrate full-fledged prediction markets in Yootopia.
In particular, we would like to implement conditional prediction markets that
depend on policy (group decision) questions in the spirit of Robin Hanson’s
Futarchy13 to further marry group prediction and group decisions.

13http://hanson.gmu.edu/futarchy.html
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5 Implementation

We have created an auction/voting/wagering system implementing the mecha-
nisms described in this paper. This system needs to have the properties that it
be easy to use, (nearly) universally available, and easily modifiable so that new
mechanism types can be implemented quickly without disturbing existing auc-
tions. To that end, the system uses SMS (Short Message Service) text messages
from participants for all tasks required to create and run an auction or wager.
Alternatively, participants without SMS access can also use a web browser to
access the same capabilities, using the same commands as SMS participants.
Users can even interact with the yootles system via a command line tool, writ-
ten using a provided Perl API. The bulk of the interface is self-explanatory, and
can be read by either visiting the website (currently at http://yootopia.org)
or texting the keyword yootles to the phone code 4INFO (44636). The inter-
face allows the user to create an auction or wager, designate the mechanism used
to run the auction, bid or bet, check results, and transfer payments according
to the mechanism results. Each auction is designated by a short keyword at
creation time which is used for all subsequent commands. Any user can create
an auction, which can also be created simply by bidding on an unknown auction
name. Any other user can bid on that auction if they know the keyword, and
they will receive the current results of the auction. Bidding without specifying
an amount will also return the current auction results. At the end of the auc-
tion any participant can initiate a yootle payout process to automatically enter
payments (if any) into the ledger system. Using the same command users can
also make arbitrary payments that are not associated with an auction keyword.

Wagering uses the same system, except that users specify their expected
probability of a given outcome and the maximum amount of yootles they are
willing to lose. After the wager is resolved, any participant specifies whether
the specified outcome occurred, and payments are given out accordingly. We
use a ledger system to keep track of yootle balances for all users in the system.

Planned enhancements include adding restrictions for who can bid in a given
auction and resolving auction name conflicts by changing to a local rather than
global namespace, using the auction creator’s realm of trusted users.14 Also,
additional security restrictions so that only designated owners of an auction can
change its mechanism or payout proceeds are necessary. The documentation
of this system is included in Appendix B and (more up to date) at http:
//yootopia.org.

6 Conclusion

We have introduced a currency (yootles) for facilitating group decision making
and prediction. While in many settings yootles will become equivalent to any
regular, government-issued currency their use can be kept intentionally separate,
allowing for them to function in situations where there may be reasons to eschew

14See http://ripplepay.com/about.
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the use of money. We propose use of an online ledger system to track balances,
and peer-to-peer credit networks to mitigate issues of default.

Our primary focus in this paper is on an array of decision mechanisms for
common group decision problems. In particular we introduce a new mechanism
(DAUC) for redistributing the VCG surplus to achieve greater fairness while
retaining a semblance of incentive compatibility. We also introduce a mecha-
nism (NFA) for achieving all desirable mechanism properties in the case that
agents play altruistically. For many applications this is less useful but we de-
scribe applications of NFA to domains where it is a sensible mechanism when
played strategically (bilateral trade and joint purchase). Additionally we are
able to give limited results on the degree of incentive compatibility of these two
mechanisms (in the restricted case of two-players), finding that DAUC is closer
to incentive compatible than NFA.

For domains such as meeting scheduling where the submission of full prefer-
ences is costly we propose iterative versions of the above mechanisms. Finally,
we describe our implementations of these mechanisms in a new service from
Yahoo! Research.
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Appendix

A Proofs

A.1 Proof of Theorem 1

We show that for the two-player game with types U [A,B] and payoff function

u(t, a, t′, a′) =


t− ha− ka′ if a > a′

t−ha−ka′+ha′+ka
2 if a = a′

ha′ + ka if a < a′,

with h, k ≥ 0 and B ≥ A + 1 that the following is a symmetric Bayes-Nash
equilibrium strategy:

t

3(h + k)
+

hA + kB

6(h + k)2
. (2)

Consider first the special case that h = k = 0. Equation 2 prescribes a
strategy of bidding ∞ and it is clear that this is a dominant strategy in a game
where the winner is the high bidder with no payments required.15 We will now
assume that h + k > 0.

Define m ≡ 1
3(h+k) and c ≡ hA+kB

6(h+k)2 and let T be a random U [A,B] variable
giving the opponent’s type. Noting that the tie-breaking case (a = a′) happens
with zero probability16 given that (2) is a continuous function of a uniform
random variable, we write the expected utility for an agent of type t playing
action a as

EU(t, a) = ET [u(t, a, T, mT + c)]
= E[t− ha− k(mT + c) | a > mT + c] Pr(a > mT + c)]

+ E[h(mT + c) + ka | a < mT + c] Pr(a < mT + c)

= E

[
t− ha− kmT − kc

∣∣∣∣ T <
a− c

m

]
Pr

(
T <

a− c

m

)
+ E

[
hmT + hc + ka

∣∣∣∣ T >
a− c

m

]
Pr

(
T >

a− c

m

)
(3)

We consider three cases on the range of a and find the optimal action a∗i for
each case i.

Case 1: a ≤ Am + c. ( =⇒ a−c
m ≤ A)

The probabilities in (3) are zero and one, respectively, and so the expected
utility is:

EU(t, a) = hm
A + B

2
+ hc + ka.

15This assumes that the space of possible bids includes ∞. More generally, the dominant
strategy is the supremum of the bid space but if this is not itself a member of the bid space
(as is the case if the bid space is R) then there is in fact no Nash equilibrium of the game.

16In the same sense that a real random variable with support of measure greater than zero
has zero probability of occurring at a prespecified value in its support.
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This is an increasing function in a, implying an optimal action at the right
boundary: a∗1 = Am + c. Thus the best expected utility for case 1 is

EU(t, a∗1) =
2A + B

6
.

Case 2: a ≥ Bm + c. ( =⇒ a−c
m ≤ B)

The probabilities in (3) are one and zero, respectively, and so the expected
utility is:

EU(t, a) = t− ha− km
A + B

2
− kc.

This is a decreasing function in a, implying an optimal action at the left bound-
ary: a∗2 = Bm + c. Thus the best expected utility for case 2 is

EU(t, a∗2) = t− A + 2B

6
.

Case 3: Am + c < a < Bm + c.
Knowing that a−c

m is between A and B it is straightforward to compute the
probabilities in (3) and the conditional expectation of T . So we write EU(t, a)
as: (

t− ha− km
A + a−c

m

2
− kc

) (
a− c

m
−A

)
+

(
hm

B + a−c
m

2
+ hc + ka

) (
B − a− c

m

)
=(−108a2h4 − 432a2kh3 − 648a2k2h2 − 432a2k3h− 108a2k4 + 36aAh3

+ 72ath3 + A2h2 + 4B2h2 + 4ABh2 + 72aAkh2 + 36aBkh2 − 36Ath2

+ 216akth2 + 36aAk2h + 72aBk2h + 8A2kh + 8B2kh + 2ABkh

+ 216ak2th− 60Akth− 12Bkth + 36aBk3 + 4A2k2 + B2k2

+ 4ABk2 + 72ak3t− 24Ak2t− 12Bk2t)/(24(h + k)2).

Since this is a concave function of a the maximum is where the derivative with
respect to a is zero, that is (skipping the tedious algebra for which we used
Mathematica):

∂ EU(t, a)
∂a

= 0

=⇒ a∗3 =
t

3(h + k)
+

hA + kB

6(h + k)2
.

Since A ≤ t ≤ B =⇒ Am + c ≤ a∗3 ≤ Bm + c, a∗3 is in fact in the allowable
range for case 3. The expected utility for case 3 is then

EU(t, a∗3) =
3t2 + A2 + B2 + A(B − 6t)

6
.
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It now remains to show that neither EU(t, a∗1) nor EU(t, a∗2) is greater than
EU(t, a∗3) for any t.

Since t ≥ A there exists a δ ≥ 0 such that t = A + δ. And since B ≥ A + 1
there exists an ε ≥ 0 such that B = A + 1 + ε. First, EU(t, a∗3) ≥ EU(t, a∗2)
because

(δ − 1)2 ≥ 0

=⇒ δ2 − 2δ + 1 ≥ 0

=⇒ δ2 + 1 ≥ 2δ

=⇒ (A + δ −A)2 + 2A + 1 ≥ 2A + 2δ

=⇒ (t−A)2 + 2A + 1 ≥ 2t

=⇒ t2 + A2 + 2A + 1 ≥ 2At + 2t

=⇒ 3t2 + 3A2 + 6A + 3 + (3Aε + ε2 + 4ε) ≥ 6At + 6t

=⇒ 3t2 + A2 + (A2 + 2A + 2Aε + ε2 + 2ε + 1) + (A2 + A + Aε)− 6At

≥ 6t−A− 2A− 2− 2ε

=⇒ 3t2 + A2 + (A + 1 + ε)2 + A(A + 1 + ε)− 6At ≥ 6t−A− 2(A + 1 + ε)

=⇒ 3t2 + A2 + B2 + AB − 6At ≥ 6t−A− 2B.

Finally, EU(t, a∗3) ≥ EU(t, a∗1) because

(t−A)2 ≥ 0

=⇒ t2 − 2At + A2 ≥ 0

=⇒ t2 + A2 ≥ 2At

=⇒ 3t2 + 3A2 ≥ 6At

=⇒ 3t2 + 3A2 + (3Aε + ε2 + ε) ≥ 6At

=⇒ 3t2 + 3A2 + 3A + 3Aε + ε2 + ε− 6At ≥ 3A

=⇒ 3t2 + (A2 + A + ε)− 6At + (A2 + 2A + 2Aε + ε2 + 2ε

+ 1) + A2 ≥ 3A + ε + 1

=⇒ 3t2 + A(A + 1 + ε)− 6At + A2 + (A + 1 + ε)2

≥ 2A + (A + ε + 1)

=⇒ 3t2 + AB − 6At + A2 + B2 ≥ 2A + B. �

A.2 Proof of Theorem 3

First, note that to prove any fairness results for SGA, we must take k = 0.
When k > 0 the payment made by the winner is a function of both a and a′.
Since a′ is independent of the utility associated with the actual outcome, we
can’t make any guarantees on fairness when the payment is in part a function
of a′. In other words, to achieve fairness we want to only consider the utility of
the actual outcome, namely t—the type of the winner.

22



Let’s look at the degree of fairness of an SGA(h, 0) auction. Recall that
degree of fairness is n·uminP

i ui
where n is the number of participants and ui the

utility of each participant for the final outcome. In SGA(h, k) the degree of
fairness is 2(ha + ka′)/t, in our case k = 0, so 2ha/t. We know that agents are
bidding strategically according to the equilibrium given in Theorem 1, so we
know that a is a function of the winning agent’s type, t, and h. Substituting
this into the equation for degree of fairness, we get:

2h(t/3h + A/6h)
t

=
2t + A

3
· 1

t
=

2
3

+
A

3t

We see that the degree of fairness is independent of h and is roughly 2/3 with
some additional additive function of A and t. Note, the only time the auction
is completely fair, is when t = A. Recall that A is the lowest possible type for
any agent. For an agent with lowest possible type to win, the other agent must
also have had type A, since in general t ≥ A, and if the losing agent had even
a slightly higher value, it would have won the auction. �

A.3 Proof of Theorem 4

In order to show that truthful bidding is an ε-equilibrium, we want to show
that an agent stands to gain no more than ε by playing their best response to
truthful bidding.

Since the two-player case of DAUC reduces to SGA(0, 1) we can use Equation
3 from the proof of Theorem 1 to find the expected utility of each strategy. First
note that the theorem gives three cases over the range of a, however, we notice
also that cases one and two tell us that a will fall into the range examined in
case three. Therefore we can take the simplified version of the equation given
in Case 3:

EU(t, a) =
(

t− ha− km
A + a−c

m

2
− kc

) (
a− c

m
−A

)
+

(
hm

B + a−c
m

2
+ hc + ka

) (
B − a− c

m

)
.

(4)

For an opponent strategy of truthful bidding, m = 1 and c = 0, and since
h = 0 and k = 1 the above becomes:

EU(t, a) = (t− A + a

2
)(a−A) + a(B − a). (5)

We want to compare the expectation over all t for two specific actions,
namely truthful bidding (a = t), and the best-response strategy (a = 5t/6)
given by Reeves [2005].

We integrate with respect to t over the interval [0, B] to find that EU(t, t) =
B3

3 , and that EU(t, 5t/6) = 25B3

72 . You lose B3

72 by bidding truthfully. �
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A.4 Proof of Theorem 5

As above we use case 3 version of Equation 3 from Theorem 1 with an opponent
strategy of truthful bidding. Since h = 1/2 and k = 0 in the two-person case of
NFA, Equation 3 becomes:

EU(t, a) = (t− a/2)(a−A) +
(

B + a

4

)
(B − a). (6)

We compare the expectation over all t for truthful bidding (a = t), and the
best-response strategy given by Reeves [2005] (a = t/2) by integrating with
respect to t over the interval [0, B]. We find that EU(t, t) = B3

3 , and that
EU(t, t/2) = 17B3

48 . You lose B3

48 by bidding truthfully. �

B API and SMS Interface to Decision Mecha-
nisms

We have implemented the mechanisms described in this paper as an SMS appli-
cation, which is a direct mapping to the underlying yootles API. The current
interface can be used for mechanisms in their sealed-bid or iterative forms. In
the latter case participants simply resubmit bids in light of partial results. See
http://yootopia.org for the most up-to-date documentation of the system.

B.1 Keywords

yootles
Responds with a welcome message and list of available commands.

yhelp
Responds with a menu for more detailed help.

yreg name
Allows a user to register their phone. This is optional and only has the effect

of referring to the user as name instead of their phone number in subsequent
messages from the server.

ydel tag
Deletes the auction or wager called tag. If tag is “phone” this command

has a special meaning...

ydel phone
Disconnects a user from their current phone number. This allows the user

to connect their account to a different phone number, and allows others to use
the old phone number.
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ydel tag option
Deletes the given option in the auction called tag.

ybid tag (option amount)*
Allows a participant to cast a vote or place a bid. The tag parameter

refers to a previously created auction, or an auction called tag is created if it
doesn’t exist. The server replies to each bid with intermediate auction results.
Any number of option amount pairs may be specified, giving the particpant’s
bids for each of the named options. Options specified in a particpant’s bid are
automatically appended to the list of options for the vote. Any unspecified
option defaults to a zero bid and all bids are renormalized by a translation
constant so that the minimum bid is zero (i.e., from each bid subtract the
minimum bid, assuming more than one option). Bid commands may be reissued
in which case they override the previous amount (and thus erroneous options
can be voided by repeating them with a zero bid).

If no option amount pairs are specified, the null bid serves simply to ping
the server for the latest results.

Finally, if no option is specified and only one amount, the option defaults
to the sender’s own name (if registered) or phone number. This simplifies the
interface in the common case that the list of options and the list of participants
coincide. Note also that for the case of “drawing straws” each participant can
place a negative bid for themself which is equivalent to a positive bid of the
same magnitude for everyone else.

ywager tag probability amount
Places a bet in wager tag (which has possible outcomes of “yes” and “no”),

with a specified probability of “yes” between 0 and 1, and a worst-case amount
that the participant is willing to lose. (The ywager command is now also
generalized to support any number of possible outcomes.)

yreset tag
Purges all the options and bids/bets from auction or wager tag.

ypay tag
Confirm the payments specified in auction tag’s results and transfer them

on the yootles ledger.

ypay tag outcome
Resolves a wager called tag with the specified outcome (must be either “yes”

or “no”), and credits or debits participants the appropriate number of yootles
based on their bets and probabilities.

ypay amount recipient comment*
An alternative use of the ypay keyword simply transfers the given amount

of yootles to the recipient on the ledger. (If the amount is negative this is a
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payment in the opposite direction.) Anything typed after recipient goes in
the comments field for the yootles transaction.

ycred user [amount]
Extend an amount of credit to a user (by default 0.02).

ymech tag mech parameters*
The ymech keyword sets the decision mechanism to be used for auction tag.

The default option for ymech is dauc for the decision auction. Following is a
fuller list of mechanisms coming soon. In all of them, the winning option is the
one with the greatest sum after the bids (votes) are interpreted.

dauc Decision Auction—either the sealed-bid version (Section 3.6) or iterative
version (Section 3.9) depending on whether participants resubmit bids in
response to partial results.

nfa Nominally Fair Auction (Section 3.7).

apr Approval Voting—For each participant their positive bids are mapped to
one and their nonpositive bids are mapped to zero.

bor Borda Count—With n options, each participant’s bids are mapped to a
number of points with n points to their most preferred option and 1 to
their lowest (ties broken arbitrarily). The option with the highest sum of
points wins.

rng Range voting—In Range Voting, voters’ bids are renormalized to range
from 0 to 1. As in all mechanisms, the default bid for all options is 0. The
option with the highest total is chosen.

irv Instant Runoff Voting—In Instant Runoff Voting, if no option gets a simple
majority (more than half the participants rated it highest) then the option
which the least number of people ranked highest is eliminated (if your
ranking was A-B-C and A is eliminated then your new ranking is B-C)
and the process repeats until a simple first-choice majority winner is found.

wei Weighted Voting—Each participant’s bids are adjusted translationally so
the lowest bid is zero and then rescaled so they sum to one. This is a
generalization of plurality voting in which an agent may divide its one
vote among any number of options.

jpa Joint-Purchase Auction (Section 3.7).

fav Favor Auction—A generalization of Bilateral Trade, described in Sec-
tion 3.7. This is a front-end for NFA. The buyer places a positive self-bid
and the seller a negative self-bid. The sale price, if the bids overlap, is the
average of the two bids.

exch An exchange, or call market mechanism.
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C Yootles Questions, with Answers

1. What prevents someone from bidding a million yootles to get their way?

You can only bid as many yootles as you have plus whatever credit line
other users have extended to you.

2. Will rich participants be able to walk all over the poor, by buying yootles
with money?

Different groups may evolve different conventions. One such convention
may be a general understanding that it’s not kosher to buy yootles with
dollars, either directly or indirectly. This of course is not strictly enforce-
able which is why it could only be loosely enforced in the form of a social
taboo. If yootles are purchasable with money, yootling serves as a means
for wealth redistribution.

3. What if I’m generous with yootles and my friend is stingy?

Being generous with yootles violates the spirit of yootles. Yootles are
a measure of your utility. Be generous in your actions, not your yootle
transfers. Remember that a yootle that you give away is in essence an
IOU for a favor done, so being generous with your yootles is like being
generous in accepting favors from someone else. A person who is stingy
with yootles is someone who is generous with their time, or with giving
way to others’ desires.

4. Are yootles susceptible to inflation? And how do I judge the value of a
yootle?

Yes, if an entity goes more negative than it can make good on, this causes
inflation for the same reason that the government printing excess money
causes inflation. And, like money, yootles are susceptible to inflation in
the sense that if people come to expect, say, an hour of cooking to fetch
a million yootles then bids will inflate accordingly. In other words, price
bubbles can form. Any number of things can ground the value of a yootle,
including another currency. This is possible even if money and yootles are
never exchanged. The expectation (along with some adjustments by the
central bank) could keep the value of a yootle grounded (insomuch as your
local currency is grounded). Another way to ground the value of a yootle
is to make it worth an hour of unskilled labor. This is the rationale for
a local currency in Ithaca, New York: Ithaca Hours (although in reality,
Hours are grounded strictly in dollars).

5. Should there be an interest rate?
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Yes, humans, being mortal, have a fundamental discount factor—utility
now is better than utility later. The current incarnation of the yootles
ledger sets a universal (but modifiable) interest rate of 5.375%. The up-
coming version of the ledger will allow any pair of participants to choose a
custom interest rate (including zero or even negative), and in fact multiple
interest rates for different chunks of credit they extend to each other.

6. How about letting people get out of yootle debt by donating to charity?

That’s a very nice idea (thanks to Dave Pennock), but it’s not a perfect
solution. The charity would have to itself be a yootles account which would
sell yootles to anyone who’s negative and use the cash for charity. The
charity account would be exempt from the requirement that it not stay
negative indefinitely. However many negative yootles the charity account
has is how many positive dollars the group has donated. The downside is
that the further negative the charity account goes, the more inflated the
yootles currency is. Say I’m feeling philanthropic and pay 1000 yootles in
some auction which I later replace from the charity account. That’s 1000
yootles I flooded the group with and a yootle will be devalued accordingly.
It also may undermine some good incentive properties: you now want to
make me pay more, even if I’m not paying you, because if I go negative
I’ll probably end up paying a charity that you presumably care about.

7. Why is yootle inflation bad?

• You lose the property that a yootle is worth a dollar, which may
make it harder to quantify your preferences.

• It’s harder to learn about your preferences over time when the value
of a yootle is changing.

• It destroys a nice application of the yootles system: tracking debts
(small or large) of real money between members of the group.

• And, most generally, it hurts social efficiency.

8. How can you ensure that a yootle will always be worth a dollar?

If yootles become more (or less) valuable, the central bank can inject
yootles into the system (or tax them out).

9. I’m an altruist. I get utility (“yootility”) from increasing others’ utility.
What happens with me in the system?

We would try to change your worldview and get you to trust in the In-
visible Hand. Presumably what you really want is to maximize social
welfare—not simply to maximize everyone’s utility intentionally at your
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own expense. Participating sincerely in a yootles-based system is a better
way to achieve that than you operating on your assumptions about others’
utility functions. Once people are accustomed to expressing their utility
functions it’s amazing how much more effectively they can increase each
other’s utility.

10. What is the connection to RipplePay.com?

Our new ledger system was inspired by RipplePay. RipplePay begins with
the insight that logging an IOU on a ledger is in a very real sense the same
as paying someone. They have run with this idea and have implemented
an alternative to the current yootles ledger system in which all debts are
tracked pairwise between individuals who trust each other.

29


	Introduction
	Desirable Mechanism Properties
	Auctions for Group Decisions
	Coin Flip
	Dictatorship
	Voting
	Vickrey-Clarke-Groves (VCG) Mechanism
	Shared-Good Auction (SGA): Two-Person ``Voting''
	A General Decision Auction (DAUC)
	Nominally Fair Auction (NFA)
	Sequential Pie Auction
	Iterative Decision Auction

	A Simple Prediction Mechanism
	Implementation
	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5

	API and SMS Interface to Decision Mechanisms
	Keywords

	Yootles Questions, with Answers

