結論しか出さない機械学習システムでは使い物にならない
最新の機械学習の手法は本質的にブラック・ボックスだ。機械学習に結論に至った理由を説明させるため、米国国防先端研究計画局(DARPA)は複数の研究に投資している。 by Will Knight2017.03.15
米国の諜報機関や軍事作戦の要員は、膨大な量のデータの解析や保有する自律システム数の増加に対応するため、機械学習に大きく頼ることになるかもしれない。だが米軍は、盲目的にアルゴリズムを信頼したくはない。
米国国防先端研究計画局(DARPA、米国国防総省の下位組織で、最新テクノロジーの用途の研究開発機関)は、判断した理由を自身で説明できる人工知能を目指して、複数のプロジェクトに投資している。目的の達成手段はさまざまで、説明を提供するように調整された機械学習システムの追加や、自らを説明する機能を意図的に組み込んだ新たな機械学習手法もある。
DARPAでAIテクノロジー (結果の根拠を部分的に説明するテクノロジーなど)を開発する研究に投資しているデビッド・ガニング・プログラム・マネージャーは「DARPAでAIの研究開発が急増している主な原因は、機械学習、特に深層学習のせいです」という。
深層学習などの機械学習の手法は、シリコンバレーを席巻し、音声認識や画像分類の性能が大幅に向上した。また、機械学習の手法はこれまで以上にさまざまな状況で利用されており、警察や裁判所、医療分野等、誤りが重大な結果を招きかねない分野にまで広がっている。しかし、深層学習はデータのパターンを発見することには非常に優れているが、結論にどう達したのか人間には理解できない。学習過程には非常に複雑な数学が使われており、学習過程を人間が理解できる形に翻訳する方法は多くの場合存在しない。
しかも、深層学習の学習過程の解明は特に難しいとはい …