前回の続き。
前回ですが、「理解不能な単語・抽象的な単語」が、生徒の理解を妨げてしまっているという話をしました。今回は、これを取り除くための、最も効果的な、そして最も簡単な方法をお話しします。
理解させるためには〇〇を使う
これは私だけでなく、数々の友人も言っていることです。おそらく我々凡人の大半はこうなのではないか?と思います。生徒に(ヒトでもいいです)ものを理解させるためには、アレが必要です。
「商業は差異が生む価値を利潤にしている」
なんて文章を読んだとき、みんな
は??コイツ人間??
とでも思いますよね。だから筆者はこう付け加えるわけです。
例えば、~~
と。
要するに、具体的なものを持ち込む必要がある、ということ。例え話です。
例えば(あら、使っちゃった)さっきの文章でいくと、
「君たちが持っている服とか、筆箱とか、下敷きとか、そういうのってどうして買ったのか、考えたことはあるかい?たぶん、『みんなと違うものを揃えたいから』って人もいるんじゃないかな。それが『差異』ね。違うものを買って、みんなに差をつけたい!注目されたい!ってね。
みんな、オンリーワンになりたいわけだよ。そういう『違う』ってのは、それだけで価値が出る。商業……つまり、モノを売る人たちは、そこを利用するのさ。『ぼくたち、他の商品と違うもの、売ってまっせ』なんて言って、違うものをみんなに買わせるんだよね。君たちがもし制服がいやだ、と感じるなら、それはたぶん『みんなと同じはいやだから』という理由かもしれない。そうだとすれば、服屋はそこにつけこんで、利潤……つまり利益を得ているわけだね」
ちなみに、上の『商業は……』からの部分も、やっぱり例え話になっています。
私の文章は恐らく、他の人の1.5倍くらいたとえ話が多い気がします。あくまで気がするだけです。だから文章が長くなるんですね。残念。
たとえ話を使わずにわかりやすく解説するアタマがないのでこうしているだけです。読みにくく感じたらすみません。
ただ、問題があります。例え話をするときの問題点が2つ。これは絶対に覚えておいてください。
1つ目:下手な例え話はしないほうがマシ
(以下、分かる方のみでOK)
アボガドロ数を理解させるのに、「田中が6.0×10^23人いたら、それは山田と同じだろ?このとき、1人の山田をアボガドロ数というんだ」と教えた先生がウチの学校にいました。
みんな
ちょっと何言ってるかわかんない(TMZW)
という顔をしていましたし、これは当然です。意味がわからないんだもの。習った当時はへえそういうものなのね、なんて無理やり覚えてましたが、今ならわかります。
あの例え話、やっぱり意味不明ですよ。
どうして田中と山田が同じなのか。
どうして原子の話なのに人を持ち出すのか。
なぜ1人の山田をアボガドロ数と呼ぶのか。
結局、彼はどう説明すればよかったのか?というと、できるだけアボガドロ数と同じ使われ方しているものを探して、それで例えればよかったんです。例えばね。
「鉛筆、皆さん知ってますよね。鉛筆ってどう数えますか。『本』ですよね。
でも、何本か集まると、別の言い方をするようになります。はい。『ダース』ですね。鉛筆は鉛筆でも、鉛筆が12本集まると、『鉛筆1ダース』と呼ぶじゃないですか。そしたらそれを応用して、鉛筆6本のとき『鉛筆0.5ダース』なんて呼べますよね。36本なら『鉛筆3ダース』ですよね。
アボガドロ数もそれとおんなじです。原子が1個、2個と数えていって、個の単位で数えるのは不便なので、原子が6.0×10^23個集まったら、それを『原子1mol』って呼ぼう、そう決めただけにすぎないんですよ」
結構有名な例ですが。
下手な例え話して生徒を混乱させるくらいなら、言わない方がまだマシです。
2つ目:例えた時点で本質から逸れているぞ
数学とか、物理の抽象的な言葉を例えるときには特に注意しましょう。例え話というのはあくまでわかってもらうためのものにすぎませんから、わかった気にさせちゃダメだね!という話です。
関数って何ですか?という質問に対し、「関数とは数の集合に値をとる写像の一種のことだよ(Wikipediaより引用)」と答えるのは△というか、たぶんわかってくれません。相手が同じ立場・格上ならまだしも、一次関数覚えたての中学生に言うことではないです。そのとき例え話でもって説明するのはいいんですが、例えた時点で一定の厳密さ・正しさを失くしていることには自覚せねばなりません(99%反省的)。
関数というのはね……と解説した後、「でも、これは数学的には正しくないからね」と付け加える必要があります。どこまで厳密さをなくし、分かりやすさに走って良いのか?という部分は、教える側の技量によります。おまけに、その例えが正しいのかどうかわかっていないと、どこまでが厳密でないのか、さえ判断がつきません。
あ、私が下手な例え話を続ける理由ですか。そこは傷つくのでツッコミなしでお願いします……。
無駄話のチカラ
上の話を聞いて、例え話とかムズくてやってられんわ!!と思う方、安心してください。ここからが本番ですよ。具体的でなおかつ、厳密さ・正しさを失わずに済む方法があります。それが無駄話です。
日常にその計算がどう使われるのか?
その言葉は日常でどう生きているのか?
その言葉は何に関係しているのか?
偉人たちはそのことをどう考えたのか?
こういうものを無駄話と呼ぶことにします。無駄話が一番効力を発揮するのはやはり、「抽象的な言葉・意味不明な言葉」に対してです。おまけに、生徒たちに学問への意欲を与えることだってできます。
例えば、因数分解わかんなーい!!と話す生徒には、登記簿で因数分解を使う場面なんかを説明します。因数分解って聞くと難しそうだけど、やってることは結局コレとほぼ一緒なんだよね。そんなに難しくないし、使うじゃん、なんて。自分で言っといて厳密性もクソもないですが。
その後、時間が余っていたらこう説明します。因数分解は暗号にも使われていて、秘密を守ってくれているんだよ!と。実例を見せたり、その難しさについて話したりすれば、「じゃあオレらって、今すごいことやってんのな!」なんて、納得してくれます。学習への意欲なんてそんなもんでいいんです。『数学は論理的思考を養うから』とか、『やらなきゃいけないから』なんて一辺倒な回答より、よっぽど意欲に繋がっている気がするんですが、どうでしょうか。
円周率って何よ?意味不明なんだけど なんて言う生徒には、円周率の求め方から説明し、円周率がないとチップスターもカップ麺も食べられないよ、なんて言えば、だいたいの生徒は納得します。時間があれば、円周率を生徒と一緒に測りたいくらいです。
圧力の話とかも。天気図にも見られる気圧の読み取りが、日常にどう役立つかとか、おいしいお米の炊き方とか、マクデブルクの半球の話とか、宇宙空間の真空の話とか、そういう無駄話をしてやれば、たいていの子は目を輝かせます。中学生ともなればネットで集めた知識を得意げに話しだす子もいますし、微笑ましく思いながら話を聞きます。
歴史もいきますか。「ギルガメシュ叙事詩」なんて言葉を丸暗記させるのは楽ですが、そこに出てくるお話をいくつか知っていれば、彼らの暗記を助けることができます。自然をぶっ壊すと、いつか人間に報いが帰ってくる……いわば「もののけ姫」とか「平成狸合戦ぽんぽこ」みたいな価値観のお話が出てきたり。こんなの無駄話以外の何でもないですが、却って生徒たちに記憶を植え付けることができる……と思います。
化学なら、ベンゼンが代表の「ケクレ構造」(六員環、化学に出てくるあの正六角形です)は、ケクレの夢に出てきた『自分の尻尾を噛みながら回る蛇』から着想を得た、とかいう眉唾エピソード。これが正しいかどうか、というのはそんなに大事じゃないと思います。興味を引き出すのが目的なんですから。
あとは、偉人変人の話とか。アルキメデスの「エウレカ!」とか、ピタゴラス教の話とか、原子理論を作ったボーアの変人エピソードとか、そういう無駄話をすると、生徒も
この公式を作った人たちも、人間らしいんだね
なんて言います。もちろん私は「今から話すことはたぶん嘘なんだけどね」という前置きをしますが、これらのエピソードがたとえ嘘だったとしても、生徒たちが机に向かう意欲を作れたのなら、それでいいじゃないか派なのです。
無駄話なしで教えられるか?
思えば、その人自身の評価は抜きにして、「教え方の上手な先生」と皆に言われていた先生は、異常にこういう無駄話エピソードを多く持っていました。そうじゃなければ、めちゃくちゃ例え方がうまかった。両方もってる先生は神と崇められてました。
ものごとを教えるためには、まず生徒たちに興味を持ってもらわなければならない。そのために一番効果的なのは「具体的なものを挙げる」ことであり、凡人が上手な例えをするのは難しいので、やっぱり無駄話を知ろう!となったんじゃないでしょうか。
彼らは、数学的な厳密性の話はあとに回して、とりあえず生徒が想像しやすいような、日常のものごとに絡めて話すのがすごく得意でした。正しさだ何だ言っても、結局生徒がついてきてくれなきゃ意味がないんですよね。
だから、以前「オレは無駄な話はしない、それを覚悟で聞いてくれ」なんて言う先生がいたときは驚きました。いやいや、無駄話しなかったらそれこそ、教科書読むだけで済んじゃうじゃないか。アンタの話聞かなくていいじゃないか、なんて思ったものです。
そういう人の話は本気では聞かないことにしています。無駄話こそ先生にとっての最高の武器であり、我々凡人にとっての至高の「理解のための道具」です。将来、勉強が難しくなってもなんとか食いしばるための道具でもあります。
だから、無駄話が無駄でしかないなんて人は、教えることに向いていないんじゃないか?と、勝手に思いました。悪いとかじゃないですよ。ある意味、「抽象的思考のみを経て、結論にたどり着ける」という天才かもしれませんから。
ただ、生徒(という普通の人たち)を教える上では、わかりやすさが何より大事であり、わかりやすさのための武器が無駄話だと勝手に思ってますので、そこを否定しちゃう先生ってのはどうなのかなー?と。
ちなみに、授業で習った勉強の内容はほとんど忘れましたが、先生がした無駄話だけ、えらく脳に残ってるんですよ。離れないです。
なんででしょうか。そういう無駄なことのほうが大事って、脳が言っているんでしょうか。
無駄に見えるものこそ、本当に大切なものである……なんて言ってみました。