
Skill Flows: A Theory of Human Capital and

Unemployment

Ross Doppelt∗

June 21, 2012

Abstract

I present a theoretical macroeconomic model that captures the fact that temporary

job losses lead to life-long earnings losses, the severity of which depends on aggregate

labor-market conditions. Workers accumulate both general and match-specific human

capital on the job, while suffering human capital depreciation during unemployment.

The model features endogenous growth from aggregate human-capital accumulation,

business cycles from stochastic productivity shocks, and a time-varying distribution of

skills. Learning by doing also changes the wage bargain by making the worker’s outside

option less attractive. I solve for a competitive equilibrium and derive conditions under

which it will be efficient.
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1 Introduction

A well-documented fact of the empirical labor literature is that temporary job losses lead to

large earnings losses that are highly persistent, if not permanent. Moreover, the severity of

these losses depends on aggregate labor-market conditions. This gives rise to the question:

How do aggregate labor-market conditions change in an environment where workers are

subject to lifetime earnings losses from being unemployed? To provide an answer, I take

a stochastic version of the Mortensen-Pissarides (1994) search model and add on-the-job

skill formation. When employed, agents accumulate two types of human capital. Some of

this human capital is general and will benefit the worker in future jobs, while some human

capital is match-specific. Once a worker loses her job, she loses all of her match-specific

human capital, and her general skills depreciate as she spends time in unemployment.

This innovation changes two important aspects of the economy, which drive model’s

predictions at both high and low frequencies. First, human-capital formation has impor-

tant consequences for the wage bargaining process. The standard model predicts that the

worker’s share of output depends on aggregate labor-market conditions. When it’s easy to

find a job, the worker has a valuable outside option, which boosts wages. But when workers

accumulate match-specific human capital, the worker’s outside option becomes less relevant

as she gains tenure. With general human capital, unemployment spells represent not only

losses of income, but losses of potential work experience. Consequently, spells of joblessness

are especially damaging, so workers have less leverage when bargaining. Skill accumulation

will also influence the cyclical properties of the wage bargain. Imagine that firms pay work-

ers for their time, but workers pay firms for the opportunity to gain experience. During a

boom, the value of labor to the firm goes up, but so does the value of experience to the

worker. Ultimately, wages respond less to aggregate labor-market conditions. In turn, skill

accumulation enhances the effects of business-cycle shocks on firms’ hiring decisions.

Second, adding human capital to the model also creates an endogenous component to

labor productivity. In the long run, skill accumulation leads to endogenous growth, and the

trend rate of output growth is negatively correlated with unemployment. Over the business
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cycle, the employed human capital stock is subject to composition effects; during booms,

more aggressive hiring draws in unemployed workers, who have lower skills on average than

employed workers. These composition effects are only temporary. A persistent recession can

drag down labor productivity because lengthy downturns will degrade the aggregate stock

of human capital. In addition, I can characterize the behavior of the entire distribution of

human capital. The model suggests that high unemployment can contribute to an increase

in skill dispersion.

Beyond the positive features of the model, I solve the planner’s problem associated with

this economy. In this environment, the planner is not concerned with job flows, per se,

but with skill flows; labor-market conditions are only relevant insofar as they determine the

evolution of human capital, which is the driving force of output and productivity growth.

Nevertheless, it turns out that a version of the Hosios (1990) condition still holds: The plan-

ner’s allocation will coincide with the market allocation when the elasticity of the matching

function with respect to vacancies is exactly equal to the firm’s bargaining power. This result

is surprising because there is a human-capital externality, as well as a search externality. A

worker’s stock of general human capital depends upon her complete employment history, so

the skills she gains on the job remain relevant long after her match is terminated. Firms do

not take this into account when posting vacancies; employers only care about productivity

gains made by their own employees on their current jobs. However, the Hosios condition

breaks down if we modify the matching process to make the firm’s free entry condition

depend on the distribution of general human capital in the unemployed population.

I will now review the facts that motivate the model. There is a large literature that

measures the earnings losses associated with unemployment.1 This line of research has

consistently found that the damage from unemployment persists long after a worker finds a

new job. Figure A.1 reproduces results from Davis and von Wachter (2011); this figure shows

the effect of job loss on earnings for men under age 50 with at least three years of job tenure

who are separated in a mass layoff event. Year zero on the horizontal axis is the period in

which the worker is displaced, and the vertical axis shows earnings losses as a fraction of
1Examples include Jacobson, LaLonde, and Sullivan (1993); Couch and Placzek (2010); and von Wachter,

Song, and Manchester (2009). See Davis and von Wachter (2011) for a good review.
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average pre-displacement earnings. The behavior of a worker’s earnings immediately after

losing her job is not surprising: Earnings drop precipitously and then rebound. What’s

striking is the fact that earnings never seem to recover fully from a one-time job loss.

Moreover, the magnitude of lost earnings depends upon aggregate labor-market conditions.

During recessions, when the average unemployment duration is long, the drop in earnings is

more severe. This earnings profile is consistent with the notion that workers become more

productive as they gain experience: An unemployment spell represents a loss of potential

experience and a diminution of human capital. And, the longer the unemployment spell,

the greater is the loss in human capital.2

At the macro level, the data display a negative correlation between unemployment and

productivity growth at low frequencies. Figure A.2 plots Hodrick-Prescott trends for the

unemployment rate and the growth rate of aggregate labor productivity. The correlation

coefficient between these series is -.5895. Other authors have also presented cross-country

evidence on the negative correlation between unemployment and trend growth; see, for

example, Pissarides and Vallanti (2007). This correlation is often interpreted to mean that

productivity gains drive down unemployment, but it’s not clear that the direction of causality

runs in only one direction. If the individual earnings dynamics in Figure A.1 were driven by

on-the-job accumulation of human capital, then one would expect aggregate productivity

growth to go up when unemployment goes down because the aggregate stock of human

capital grows more quickly when more people are employed.

A final pattern to note is the upward trend in wage dispersion. Inequality has increased

markedly in recent decades. Figure A.3 plots the log coefficient of variation in average

hourly wages for both men and women. Not only does the coefficient of variation increase

over time, it appears to exhibit geometric growth. This geometric growth is evident for the

entire period 1961-2002 for men and after 1980 for women. At the same time, the distribution
2It’s also possible that firms fire their least productive workers. However, Davis and von Wachter use

worker fixed effects, which should capture such selection effects. Plus, if firms did select their least productive
workers to be laid off, it’s reasonable to think that the workers who lose their jobs in expansions are of
even lower quality than those who lose their jobs during recessions, yet the workers who lose their jobs in
expansions suffer less severe earnings losses. From a theoretical standpoint, a story about skill accumulation
is not mutually exclusive with a story about worker selection; I study the former now and defer the latter
to future research.
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of skills, as measured by education and experience, has become more spread out. No cyclical

pattern is evident in Figure A.3, but as other authors have documented, alternative measures

of dispersion show that earnings inequality becomes more severe during recessions, when

unemployment is high. See, for example, Krueger et al. (2010) and Heathcote et al. (2010).

There is reason to think that the relationship between unemployment and wage dispersion

is related to the earnings dynamics in Figure A.1: When workers become unemployed, they

experience a drop in earnings power, so as displaced workers find new jobs, they cause the

distribution of wages to fan out.

In addition to being consistent with the aforementioned facts, the model that I build

makes contributions to several areas of the theoretical literature. First, numerous authors

have debated whether rapid trend growth will increase or decrease steady-state unemploy-

ment. The two main theories in this debate are associated with Aghion and Howitt (1994)

and Mortensen and Pissarides (1998).3 Both pairs of authors posit that technology follows

an exogenous trend and examine how this trend influences labor demand. In Aghion and

Howitt’s model, technology is embodied in a worker-firm match, so the productivity of a

worker hired at date t is frozen at the date-t level of technology until the match is dissolved.

Rapid growth generates a “creative destruction” effect, where firms dispense with workers

after a shorter amount of time in order to take advantage of new technology. In Mortensen

and Pissarides’s model, technology is disembodied, so the productivity of all workers is the

same and constantly growing. Rapid growth generates a “capitalization” effect, where firms

are more willing to pay the up-front cost of hiring in order to reap the benefits of better

technology in the future. More recently, Elsby and Shapiro (2011) pointed out that tech-

nological growth compounds the returns to experience that workers would experience in a

static economy, so trend growth increases labor supply.

One unsatisfying feature of all three models is that growth is exogenous, so it is assumed

that growth determines the rate of unemployment. However, going back to Lucas (1988,

1993), growth theory has tried to incorporate the aggregate implications of workers becoming

more productive by accumulating human capital on the job. This premise suggests that
3See chapter three of Pissarides (2000) for a summary and additional references.
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unemployment could influence growth. Laing et al. (1995) and Chen et al. (2011) have

models of endogenous growth with frictional labor markets, schooling, and human-capital

accumulation. But these, too, leave some important issues unresolved. Unemployment

arises in Laing et al. only as workers leave school and search for their first jobs, which the

workers hold for the rest of their lives. In Chen et al., human capital is a public good that

is not embodied in individual workers. Therefore, neither model can capture the earnings

dynamics of Figure A.1. In contrast, I model how the human capital of individual workers

changes during spells of employment and unemployment. Then, by aggregating, I highlight

the direct link between labor-market conditions and the (endogenous) rate of growth.

This model also contributes to the literature on the role of human capital in labor-

market dynamics. One branch of this literature is focused on the distribution of wages in

the steady state. Recent examples include Burdett and Coles (2010), Burdett et al. (2010),

and Carrillo-Tudela (2010). These models feature more sophisticated wage-determination

mechanisms and generate elegant predictions about the distribution of wages and skills.

However, these models are not well suited for looking at business cycles. Wages in this paper

will be determined by Nash bargaining, which will allow me to analyze how human capital

interacts with aggregate shocks. In addition, I can look at the separate effects of general

and match-specific human capital and how they change over the cycle. Another branch of

literature is focused on the determination of worker flows; examples include Ljungqvist and

Sargent (1998, 2008), Pissarides (1992), and Esteban-Pretel (2007), amongst others. These

papers generate their results by using numerical techniques (Esteban-Pretel), abstracting

from the process that drives aggregate shocks (Pissarides), or both (Ljungqvist and Sargent).

I complement this line of research by constructing a tractable environment that lends itself

to pen-and-paper solutions but is still rich enough to feature endogenous growth, business

cycles, and an evolving skill distribution.

I will proceed as follows. Section 2 contains the model. Section 3 defines an equilibrium

and proves the equilibrium’s existence and uniqueness. Section 4 analyzes labor-market dy-

namics, in particular wage determination and vacancy creation. Section 5 analyzes produc-

tivity and growth dynamics by looking at the behavior of aggregate human-capital flows.
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Section 6 examines the distributional implications of the model. Section 7 discusses the

welfare properties of the model. Section 8 discusses possibilities for future research and

concludes. Proofs are in Appendix B.

2 The Model

2.1 Technology

There is a continuum of workers indexed by i ∈ [0, 1]. Agent i has two types of human

capital: general and match-specific. Let xi be the stock of general human capital of agent

i, and let yi be the stock of match-specific human capital for agent i.4 Almost everywhere,

an individual’s general human-capital stock evolves according to:

ẋi

xi
= eiα−

(
1− ei

)
δ, (2.1)

where ei ∈ {0, 1} is an indicator variable for whether agent i is employed:

ei =


1 if agent i is employed

0 if agent i is unemployed.
(2.2)

In other words, when an agent is employed, her stock of general human capital grows at

a constant rate α; when unemployed, her stock of human capital decays at rate δ. This

geometric growth of human capital is like the process used by Burdett et al. (2010), except

with skill depreciation during unemployment. In addition, when an agent loses her job, she

instantly loses a fraction ζ of her general human capital stock; this instant depreciation of

human capital is like the “microeconomic turbulence” at work in Ljungqvist and Sargent

(1998). I will maintain the assumption that α− λζ ≥ 0; this assures that, in expectation, a

worker does not lose general human capital by accepting a job. All unemployed agents have

match-specific productivity yi = 1; then, once a worker actually matches with a firm, her
4Because all variables will change over time, I will tend to omit time subscripts, except where they are

needed for clarity.
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match-specific human capital evolves according to:

ẏi

yi
= eiρ. (2.3)

When a worker loses her job, yi resets to one. Define a worker’s total stock of human capital

as:

ki = xiyi. (2.4)

As I’ll show in Section 4, an agent’s earnings will be linear in xi and ki. Consequently,

this specification for human capital accumulation is consistent with the earnings behavior

in Figure A.1. I will not take a stand on the relative importance of each component of the

skill-accumulation process. If we just wanted to create earnings losses from job loss, it would

suffice to model either xi or yi, not both. However, I will argue that these different forms

of skill play different roles in determining wages and shaping the distribution of earnings.

Similarly, a permanent earnings loss could be captured by either instant depreciation (ζ) or

gradual decay (δ) of general human capital.5 I include both because they have different im-

plications for aggregate labor-market dynamics, and including both allows for comparability

with other authors.

There is an aggregate productivity variable that follows a two-state Markov switching

process.6 Denote the exogenous state variable by s ∈ {0, 1}. At Poisson rate β, a business-

cycle shock arrives, and s switches values. Aggregate productivity is given by zs, where

z0 < z1. There is one worker per firm, which produces goods with linear technology. That

is, the flow output of a firm matched with worker i in state s is zski.

Matching is standard, following Mortensen and Pissarides (1994). Let θ be the vacancy-

unemployment ratio; let q (θ) be the rate at which a firm finds a worker; let θq (θ) be the rate

at which a worker finds a firm; let λ be the constant and exogenous rate of job termination.
5In fact, we could generate permanent earnings losses without any decay of human capital by setting

δ = 0, so skills would simply stagnate during unemployment. We could even set 0 > δ > −α, so that agents
gained skill during unemployment, as long as they gained skills even more rapidly during employment. This
model abstracts from human capital accumulated in school, but it’s well known that school enrollment
expands during recessions when unemployment is high. Setting 0 > δ might capture some of this learning
that takes place off the job.

6The model can accomodate a richer Markov process for the aggregate shocks, but specializing to two
states provides for a cleaner exposition.
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I will maintain the assumption that λ > ρ. Standard regularity conditions on q (·) apply:

I will assume that q (·) is continuous, decreasing, convex, and θq (θ) is strictly increasing.

Search is undirected: An agent’s stock of human capital affects neither her probability of

being matched with an employer when unemployed, nor her chance of being separated when

employed. Aggregate employment is given by e ≡
´
eidi. Given a level of market tightness

θ, the law of motion for e is:

ė = θq (θ) (1− e)− λe. (2.5)

Define the aggregate stocks of human capital for the employed and unemployed populations

as xe ≡
´
xieidi, xu ≡

´
xi
(
1− ei

)
di, y ≡

´
yieidi, and k ≡

´
kieidi. Notice that total

output will be given by zsk. Likewise, we can define the average stocks of human capital

for the employed and unemployed as x̄e ≡ xe

e , x̄
u ≡ xu

1−e , ȳ ≡
y
e , and k̄ ≡

k
e . Given a level

of market tightness θ, the laws of motion for xe, xu, k, and y are:

ẋe = αxe − λxe + θq (θ)xu (2.6)

ẋu = −δxu − θq (θ)xu + λ (1− ζ)xe (2.7)

k̇ = (α+ ρ) k − λk + θq (θ)xu (2.8)

ẏ = ρy − λy + θq (θ) (1− e) . (2.9)

Equation (2.6) shows that changes in xe come from two sources: (1) Individual employees

gaining skills and (2) the movement of workers into and out of unemployment. In a given

instant, the stock of employed general human capital expands by αxe from on-the-job accu-

mulation of human capital. Simultaneously, employed workers lose their jobs at rate λ, and

their human capital becomes unemployed. Hence, job destruction causes the stock of em-

ployed general human capital to decline by λxe. Meanwhile, unemployed workers find jobs

at rate θq (θ), so the stock of employed human capital is augmented by θq (θ)xu. Similar

logic explains the components of equations (2.7), (2.8), and (2.9).
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2.2 Workers

Following Burdett and Coles (2010) and Burdett et al. (2010), I will assume that an un-

employed worker gets utility from leisure (or value from home production) of bxi, where

b < z0.7 Denote by Ws

(
xi, yi

)
the flow earnings of an employed agent in state s with

human capital
(
xi, yi

)
. All agents have linear utility and discount future payoffs at constant

rate r. Goods are non-storable, so there is neither borrowing nor saving. To ensure bound-

edness of payoffs, I will maintain the assumption that r > α. A worker at time t0 seeks to

maximize:

Et0
[ˆ ∞

t=0

exp {−tr}
[
eit0+tWs(t0+t)

(
xit0+t, y

i
t0+t

)
+
(
1− eit0+t

)
bxit0+t

]
dt

]
, (2.10)

where s (t0 + t) is the exogenous state at time t0 + t. The only choice facing a worker is

whether or not to work when matched with a firm; wages are determined by Nash bargaining,

so in equilibrium, it will be the case that the employee always chooses to work. Let Us
(
xi
)

denote the value that agent i associates with being unemployed in state s with human

capital xi. Let Hs

(
xi, yi

)
denote the value that agent i associates with being employed

in state s with human capital
(
xi, yi

)
. As will be made clear in Section 3, I will seek a

recursive equilibrium in which market tightness and the wage function are constant within

each exogenous productivity regime s. Agent i’s Bellman equation when unemployed in

state s is:

rUs
(
xi
)

= bxi+β
[
U1−s

(
xi
)
− Us

(
xi
)]

+θsq (θs)
[
Hs

(
xi, 1

)
− Us

(
xi
)]

+U ′s
(
xi
)
ẋi. (2.11)

7The flow value of leisure is scaled by xi for three reasons. First, the economy will be growing in the long
run, so after enough time, b would play no virtually role in the agent’s problem if it were not normalized
by something that is, on average, growing. Second, we might think of b as standing in for unemployment
benefits, which are typically designed to be an increasing function of the wages a worker would be making
if employed. Third, this assumption makes the model solution much more tractable.
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Agent i’s Bellman equation when employed in state s is:

rHs

(
xi, yi

)
= Ws

(
xi, yi

)
+ β

[
H1−s

(
xi, yi

)
−Hs

(
xi, yi

)]
+λ
[
Us
(
xi (1− ζ)

)
−Hs

(
xi, yi

)]
+
∂Hs

(
xi, yi

)
∂xi

ẋi +
∂Hs

(
xi, yi

)
∂yi

ẏi. (2.12)

2.3 Firms and Bargaining

To search for a worker to hire, a potential firm owner can post a vacancy at flow cost κx̄u.8

Let Gs
(
xi, yi

)
denote the value that a firm owner associates with employing worker i in

state s, and let Vs denote the the value that a potential firm owner associates with opening

a vacancy in state s. The Bellman equation for a firm owner is:

rGs
(
xi, yi

)
= zsx

iyi −Ws

(
xi, yi

)
+ β

[
G1−s

(
xi, yi

)
−Gs

(
xi, yi

)]
+λ
[
Vs −Gs

(
xi, yi

)]
+
∂Gs

(
xi, yi

)
∂xi

ẋi +
∂Gs

(
xi, yi

)
∂yi

ẏi. (2.13)

The Bellman equation for a potential firm owner posting a vacancy is:

rVs = −κx̄u + q (θs)

[´
Gs
(
xi, 1

) (
1− ei

)
di´

(1− ei) di
− Vs

]
+ β [V1−s − Vs] + V̇s. (2.14)

Free entry requires that firms have zero expected profit from posting a vacancy:

Vs = V̇s = 0, ∀s. (2.15)

Workers and firms engage in Nash bargaining to determine Ws

(
xi, yi

)
; workers have bar-

gaining power η ∈ [0, 1]. Axiomatic Nash bargaining yields the usual first-order condition:
8There are two reasons for scaling the vacancy cost by the average human capital stock of the unem-

ployed. First, this is a balanced-growth assumption that appears in all models that have both growth and
unemployment: With long-run growth, it’s necessary to scale the vacancy cost by the overall sophistication
of the economy. Otherwise, the vacancy cost would become trivial relative to output, vacancies would grow
arbitrarily large, and unemployment would tend to zero. Second, this normalization ensures a one-to-one
mapping from the exogenous state s to market tightness θs. In principle, this assumption could be relaxed,
but the model could not be solved by hand. I will revisit this assumption in Section 7.
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ηGs
(
xi, yi

)
= (1− η)

[
Hs

(
xi, yi

)
− Us

(
xi
)]
. (2.16)

3 Equilibrium

The features of the model lend themselves to a tractable solution. I will seek an equilibrium

that is block recursive. That is, market tightness θ will be constant within each exogenous

productivity regime s, so the job-finding rate and the vacancy-filling rate will follow a Markov

switching process. The market tightness function θs will not depend on the distribution of

human capital across workers; however, once we characterize θs, we can characterize the

evolution of the aggregate endogenous state variables and the skill distribution.

The strategy will be to exploit the homogeneity of the dynamic programming problems,

allowing us to replace the partial differential equations with ordinary differential equations.

I conjecture that Ws

(
xi, yi

)
/xi does not depend on xi. Then, there exists a function ws (·)

such that Ws

(
xi, yi

)
= ws

(
yi
)
xi. Moreover, if θs is constant for a given s, then we can see

that the Bellman equations (2.11), (2.12), and (2.13) have solutions that are homogeneous

of degree one in xi; i.e., there exist functions us, hs (·), and gs (·) such that:

Us
(
xi
)

= usx
i (3.1)

Hs

(
xi, yi

)
= hs

(
yi
)
xi (3.2)

Gs
(
xi, yi

)
= gs

(
yi
)
xi. (3.3)

We can interpret us as the marginal value of general human capital for an unemployed

worker in state s; we can interpret hs
(
yi
)
as the marginal value of general human capital

for an employed worker in state s with match-specific human capital yi; and we can interpret

gs
(
yi
)
as the marginal value of general human capital for a firm in state s paired with a

worker with match-specific human capital yi. We can replace (2.11), (2.12), (2.13), and
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(2.14) with:

rus = b+ β [u1−s − us] + θsq (θs) [hs (1)− us]− δus (3.4)

rhs
(
yi
)

= ws
(
yi
)

+ β
[
h1−s

(
yi
)
− hs

(
yi
)]

+λ
[
(1− ζ)us − hs

(
yi
)]

+ αhs
(
yi
)

+ h′s
(
yi
)
ẏi (3.5)

rgs
(
yi
)

= zsyi − ws
(
yi
)

+ β
[
g1−s

(
yi
)
− gs

(
yi
)]

−λgs
(
yi
)

+ αgs
(
yi
)

+ g′s
(
yi
)
ẏi (3.6)

κ = q (θs) gs (1) . (3.7)

The homogeneity of the Bellman equations implies that the Nash-bargaining condition be-

comes:

ηgs
(
yi
)

= (1− η)
[
hs
(
yi
)
− us

]
. (3.8)

We are now prepared to define a competitive equilibrium where Us
(
xi
)
, Gs

(
xi, yi

)
,Hs

(
xi, yi

)
,

and Ws

(
xi, yi

)
are homogeneous in xi, and market tightness is a function only of the ex-

ogenous state s.

Definition 1. A recursive homogeneous equilibrium is:

1. A wage function ws
(
yi
)

2. A market-tightness function θs

3. Value functions us, gs
(
yi
)
, and hs

(
yi
)

4. Random variables e, xe, xu, y, and k

such that:

1. The value functions satisfy (3.4), (3.5), and (3.6)

2. Free entry (3.7)

3. Nash bargaining (3.8)

4. e, xe, xu, k, and y evolve according to (2.5), (2.6), (2.7), (2.8), and (2.9).

Theorem 2. There exists a unique homogeneous equilibrium.

Proof. See appendix.
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4 Labor-Market Dynamics

We can now characterize market tightness and the wage function in a recursive homogeneous

equilibrium. The first thing to note is that market tightness is positively correlated with

the aggregate productivity variable.

Proposition 3. Market tightness will be procyclical; i.e., θ1 > θ0. Moreover, if −θ q
′(θ)
q(θ) is

weakly decreasing in θ, then ∂θ
∂z is an increasing function of α, ρ, and δ, whereas ∂θ

∂z is a

decreasing function of ζ.

Proof. See appendix.

It is interesting to see how on-the-job accumulation of human capital relates to two

prominent criticisms of the baseline Mortensen-Pissarides model. The first criticism is that

the baseline model over-predicts the sensitivity of employee compensation to aggregate labor-

market conditions. The second, related criticism is that the baseline model under-predicts

the sensitivity of market tightness to productivity shocks. These arguments are due to

Shimer (2005) and Hall (2005). Those authors claim that when a positive productivity shock

hits the Mortensen-Pissarides economy, the value of being unemployed increases because it

becomes easier to find a job. This improves the bargaining position of workers, so wages

absorb most of the productivity gain. Consequently, profits go up only modestly, so firm

owners do not have a strong incentive to post additional vacancies.

In the present model, hiring remains procyclical, but the degree of procyclicality de-

pends on the parameters of the skill-acquisition process. Faster human-capital accumulation

(higher α or ρ) will make market tightness more sensitive to changes in aggregate productiv-

ity. Interestingly, though, human-capital depreciation will increase the cyclical sensitivity of

market tightness if human capital decays continuously during unemployment (higher δ), but

market tightness becomes less cyclically sensitive if human capital evaporates instantly with

job loss (higher ζ). It is easiest to interpret these results in the context of a social planner’s

problem.9 An aggregate productivity shock makes all workers’ human capital more produc-

tive. So, if workers accumulate human capital quickly, then there is more value in putting
9In Section 7, I will solve the planner’s problem in detail.
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people to work during a boom. Similarly, if human capital decays continuously during un-

employment, it becomes more important to keep people out of unemployment when human

capital is most productive. This is not the case when human capital depreciates instantly

upon job loss. In that case, human capital is not lost from people being unemployed; rather,

human capital is lost when people transition from employment to unemployment. Hence,

if job loss leads to a sudden drop in human capital, it is better to have an uninterrupted

unemployment spell than an unemployment spell of equal duration interrupted by a very

brief employment spell.

Let’s consider how human-capital accumulation affects the wage-determination process.

We see that on-the-job learning creates a wedge in the wage equation.

Proposition 4. The wage equation in a recursive homogeneous equilibrium is given by:

ws
(
yi
)

= ηzsy
i + (1− η) b+ ηκθs − (1− η) (α+ δ + λζ)us. (4.1)

Proof. See appendix.

If we fix yi = 1 and α = δ = ζ = ρ = 0, then the above is just like the wage equation that

appears in a standard Mortensen-Pissarides model. The static Nash outcome is a convex

combination of the firm’s reservation (zs) and the worker’s reservation (b); there is also a

search wedge given by ηκθs, representing the worker’s outside option of continuing to search.

For non-zero values of α, δ, ζ, and ρ, there is a new wedge given by − (1− η) (α+ δ + λζ)us.

This learning-by-doing wedge represents the fact that giving a worker employment not only

gives her an instantaneous flow of wages, it also gives her more human capital, which will

make her better off if she suddenly separates from her job. It makes sense, then, that

the wedge is equal to an unemployed worker’s marginal value of general human capital us,

scaled by the firm’s bargaining power (1− η) and the rate of human-capital accumulation the

worker enjoys plus the rate of human-capital depreciation the worker avoids (α+ δ + λζ).

It’s almost as though firms pay employees for the value of their time, employees pay firms

for the value of the experience they gain, and the difference is the wage we observe.

To contrast the present model with a textbook Mortensen-Pissarides model, we can think
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about general human capital as creating an impatience effect for unemployed workers. It is

instructive to consider the case where ζ = ρ = 0 and yi = 1. Then, the Bellman equations

(3.4), (3.5), and (3.6) become:

(r + δ)us = b+ β [u1−s − us] + θsq (θs) [hs (1)− us] (4.2)

(r − α)hs (1) = ws (1) + β [h1−s (1)− hs (1)] + λ [us − hs (1)] (4.3)

(r − α) gs (1) = zs − ws (1) + β [g1−s (1)− gs (1)]− λgs (1) . (4.4)

The above equations, combined with (3.7) and (3.8), look just like the equations that charac-

terize an equilibrium in a textbook Mortensen-Pissarides model, except with one difference:

It appears as though employed workers and firm owners discount the future at rate r − α,

whereas unemployed workers discount the future more heavily at rate r+ δ. In other words,

the unemployed behave as though they are more impatient than their employed selves and

their prospective employers. Moreover, the difference in the effective rate of time preference

equals the difference in human-capital growth rates α + δ. I emphasize the differing rates

of effective time preference because bargaining theory suggests that impatient agents are

at a disadvantage.10 Because being unemployed carries the cost of foregone human-capital

accumulation, an unemployed worker is more eager to arrive at a bargain over wages, and

the magnitude of this impatience effect is governed by the potential for on-the-job skill

formation.

The model also shows us how match-specific human capital also makes the worker’s

outside option less relevant in determining wages over the life of a job. Recall that ws
(
yi
)

is the worker’s earnings per unit of general human capital, so total earnings will be equal to
10Rubinstein (1982) showed that the more impatient agent in a non-cooperative bargaining game will

receive a lower payout. Binmore, Rubinstein, and Wolinsky (1986) showed how Rubinstein’s alternating-
offers game produces outcomes equivalent to axiomatic Nash bargaining, which determines wages in the
present model. In addition, a higher discount rate is equivalent to having a lower degree of bargaining
power, captured by η.
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ws
(
yi
)
xi. Thus, the worker’s share of output with tenure t will be given by:

Worker’s share in state s with tenure t = η +
(1− η) b+ ηκθs − (1− η) (α+ δ + λζ)us

zs exp {ρt}
.

(4.5)

The cyclically-varying objects in the above expression are θs, zs, and us, but as tenure

grows long, these factors receive less weight in determining how much of the produce from

the match goes to the worker. In fact, as a worker’s tenure goes to infinity, the worker’s

share converges to η, the static Nash outcome. After workers build up a lot of match-

specific human capital, the search wedge vanishes from the worker’s share because looking

for employment elsewhere would amount to starting over in a less productive job. The

learning-by-doing wedge also vanishes, because a growing fraction of the worker’s skills are

exclusively valuable to her current employer.

Finally, let’s look at how general human-capital accumulation affects the cyclical prop-

erties of wages. Notice that the magnitude of the learning-by-doing wedge in equation (4.1)

is procyclical: It’s better to be unemployed in a boom than in a recession, so u1 > u0.11

This suggests that the learning-by-doing wedge blunts the cyclicality of ws
(
yi
)
. When a

positive productivity shock hits the economy, zs and θs increase, which puts upward pres-

sure on wages. However, us also increases, which puts downward pressure on wages. To be

more precise, we can decompose cyclical movements in wages into two components: cyclical

changes in labor productivity and cyclical changes in market tightness.

Proposition 5. The cyclical change in wages can be decomposed as:

w1

(
yi
)
− w0

(
yi
)

= ηyi (z1 − z0) + ηκ

[
1− (α+ δ + λζ) (r + δ)

r + δ + 2β

]
(θ1 − θ0) . (4.6)

Proof. See appendix.

We see that human capital dampens the contribution of aggregate labor-market condi-

tions to the cyclical change in wages. The contribution of aggregate labor-market conditions

will be determined by the quantity multiplying (θ1 − θ0) in equation (4.6). If workers gain
11This can be seen formally from the characterization of us given in the Appendix.
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skills quickly on the job (i.e. if α is large), or if job loss leads to a large loss of human

capital (i.e. if ζ or δ is large), then the quantity multiplying (θ1 − θ0) decreases. In the

standard model without human-capital accumulation, workers are in a better bargaining

position during booms because it would be easier for them to find another job if they chose

to quit; this fact allows them to extract higher wage payments. However, the value of the

experience workers gain on the job will also rise during a boom, which offsets the importance

of the worker’s outside option.

5 Productivity and Growth Dynamics

The dynamics of productivity and growth will be determined by the dynamics of aggregate

human capital. Now that we’ve characterized the behavior of market tightness, we can

see how output zsk moves immediately after a shock. Suppose s switches from the low

state to the high state. This has two immediate impacts on zsk. First, the increase in zs

causes output to jump up discontinuously. Secondly, the increase in zs causes the hiring rate

θsq (θs) to increase; as can be seen from equation (2.8), the stock of employed human capital

k accelerates as unemployed workers find jobs at a faster rate. In the short run, both of

these effects would be present in a model without skill accumulation: If the stock of human

capital in the economy were just equal to the number of bodies in the labor force, we would

still expect a positive productivity shock to drive down the unemployment rate, thereby

driving up the level of output. In this model, however, the elevated hiring rate leads to the

accumulation of new human capital. Thus, the dynamics of human capital accumulation

play an important role over longer horizons.

Let’s begin by looking at general human capital, because the accumulation of these skills

drives long-run growth. Recall that xe and xu evolve according to equations (2.6) and (2.7).

Defining x ≡ (xe, xu)
′, we can write this concisely as a linear system of ordinary differential

equations:
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ẋ = Qsx (5.1)

Qs ≡

 α− λ θsq (θs)

(1− ζ)λ − [δ + θsq (θs)]

 . (5.2)

The nice thing about the coefficient matrix Qs is that the coefficients are constant within

each particular productivity regime. So, almost everywhere, we can characterize aggregate

human capital flows using the typical tools for linear differential equations.

Proposition 6. Let tn be the time of the nth switch in the exogenous state s. For t ≤

tn+1 − tn, the path of human capital is given by:

xtn+t = Ωsdiag (exp {γst}) Ω−1
s xtn , (5.3)

where γs is a vector containing the eigenvalues of Qs, and Ωs is an orthonormal matrix,

the columns of which are the corresponding eigenvectors.

Proof. See appendix.

Definition 7. The trend growth rate in state s, denoted τs, is the maximal eigenvalue of

Qs:

τs ≡ max
i
{γi,s} . (5.4)

Proposition 6 delivers an analytic solution for the path of general human capital. We see

that xe and xu can be written as a linear combination of two geometrically growing variables,

and the rates of geometric growth will be given by the eigenvalues of Qs. This fact motivates

the definition of trend growth: If the economy remains in state s for a sufficiently long time,

the growth rate of general human capital will converge to τs, the maximal eigenvalue of Qs.

The law of motion for k (2.8) makes it clear that the growth rate of output will converge to

τs as well.12

12It’s straightforward to compute the exact path of k by writing
(
ẋe, ẋu, k̇

)
jointly as a linear system of
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Proposition 8. Trend growth τs is well defined and an increasing function of s. If α >

λ+ δ + θsq (θs), then τs > 0. Otherwise, the sign of trend growth in state s is given by:

τs R 0 ⇐⇒ θsq (θs) R

(
λ− α
α− ζλ

)
δ. (5.5)

Proof. See appendix.

Proposition 8 illustrates a direct link between labor-market conditions and the economy’s

capacity for growth. When a shock induces a change in labor-market tightness, it affects the

average length of an unemployment spell, which is given by [θsq (θs)]
−1. In turn, the average

unemployment duration determines how much human capital a worker can expect to lose

when she is separated from her job. Furthermore, aggregate human capital will be non-

stationary: Switches in the level of zs induce changes in the growth rates of xe, xu, and k.

Besides propagating business-cycle shocks, human-capital accumulation implies a negative

relationship between steady-state unemployment and long-run growth: An economy with

a higher job-finding rate will have both lower unemployment and a higher growth rate

of human capital. Proposition 8 gives the exact conditions under which human capital

accumulation can generate endogenous growth. Suppose that λ > α.13 Then, then the

hiring rate needs to exceed a certain threshold
(
λ−α
α−ζλ

)
δ in order for trend growth to be

positive. This threshold is lowered by faster individual skill accumulation (higher α), and

the threshold is raised by shorter employment spells (higher λ) and greater skill depreciation

(higher δ or ζ). If the hiring rate is too low, then the labor market is too weak to afford

workers the opportunity to accumulate skills, so the economy cannot sustain positive growth.

In principle, it’s possible to have θ1q (θ1) >
(
λ−α
α−ζλ

)
δ > θ0q (θ0). In that case, the economy

alternates between states of growth and depression.

Human capital also adds an endogenous component to labor productivity. Output per

worker in this economy is given by zsk̄. Combining the employment law of motion (2.5)

differential equations. Likewise, (ẏ, ė) jointly form an affine system of differential equations, which also has
an analytical solution; whereas (xe, xu, k) can be explosive, (y, e) is stable.

13This is a very reasonable supposition. For instance, when time is measured in years, an average job
spell of ten years would correspond to λ = .1, so assuming that λ > α would mean that general skills of
employed workers grow at less than 10% per year.

20



with the law of motion for employed human capital (2.8) yields:

˙̄k

k̄
= α+ ρ− θsq (θs)

(
1− e
e

)(
k̄ − x̄u

k̄

)
(5.6)

In the short run, we see how endogenous composition effects influence productivity dynamics

immediately after an exogenous shock. We would typically expect that there is a higher

average skill level amongst the employed, relative to the unemployed; i.e. x̄u < k̄.14 Suppose

that this is the case, and there is a positive productivity shock. Then, equation (5.6) shows

that an increase in the job-finding rate θsq (θs) will induce the average human capital of the

employed population k̄ to decelerate. So, if exogenous productivity shifts from z0 to z1, then

labor productivity will jump up discontinuously, but after this initial jump, productivity will

slow down. The reason is that firms begin hiring more aggressively, which pulls less skilled

workers into the labor force. One can see the same composition effects when looking at ˙̄y/ȳ

or at ˙̄xe/x̄e. Consequently, given the wage equation (5.6), there is a composition effect for

average wages as well. In the long run, though, the growth rate of labor productivity will

be equal to τs.

6 Characterizing the Skill Distribution

Because the wage received by agent i is a function of xi and yi, tracking the distribution of

human capital, conditional on employment status, tells us about the distribution of wages.

Although I will provide laws of motion to characterize how these distributions change at

any point in time, I will focus primarily on the limiting behavior of the skill distributions as

the amount of time spent in an exogenous state s grows large. This will allow me to analyze

the effects of persistent business cycles on the skill distribution.
14One can show that if the exogenous state s is constant for a sufficiently long time, then the ratio x̄u/k̄

will converge to a value less than one.
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6.1 Match-Specific Human Capital

I will begin by looking at the distribution of match-specific human capital. Define the

cumulative distribution function of yi, conditional on being employed:

F yt (y) ≡
´
I
[
yit ≤ y

]
eidi´

eitdi
, (6.1)

where I [·] is the indicator function. Likewise, define the density as fyt (y) ≡ ∂
∂yF

y
t (y).15

Theorem 9. Suppose that the initial distribution F y0 (y) has support [1,∞) and is every-

where continuously differentiable. Then, the distribution of yi is characterized by the fol-

lowing partial differential equation:

∂

∂t
F yt (y) = −ρyfyt (y) + θsq (θs)

(
1− et
et

)
[1− F yt (y)] . (6.2)

Proof. See appendix.

To gain some intuition for this result, we can write the above equation as:

∂

∂t
[F yt (y) et] = −ρyfyt (y) et︸ ︷︷ ︸

Learning by doing

−λF yt (y) et︸ ︷︷ ︸
Job Loss

+ θsq (θs) (1− et)︸ ︷︷ ︸
Finding Employment

. (6.3)

Notice that F yt (y) et is the measure of employed workers with match-specific human capital

less than or equal to y. A measure fyt (y) et of workers gain match-specific skills at rate

ρy, thereby removing themselves from the set of workers with yi ≤ y. At rate λ, employed

workers with yi ≤ y lose their jobs, and at rate θsq (θs), unemployed workers find employ-

ment and start their jobs with yi = 1. Suppose that the economy remains in state s for

a long time. Then, from the employment law of motion (2.5), we see that θsq (θs)
(

1−et
et

)
will converge to λ. Hence, a time-invariant distribution, corresponding to ∂

∂tF
y
t (y) = 0,

satisfies:

ρyfyt (y) = λ [1− F yt (y)] . (6.4)
15I will assume that the density is defined for the initial distribution, and the distribution will be well

defined subsequently.
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The above differential equation is solved by the cumulative distribution function of a Pareto

distribution with tail index λ
ρ :

F yt (y) = 1− y−
λ
ρ . (6.5)

This implies that a low job-separation rate or a high growth rate of match-specific human will

contribute to dispersion of yi. Notice that the limiting distribution of yi does not depend on

the exogenous state s. This is because the amount of match-specific human capital a worker

accumulates in an employment spell is governed by how long she keeps her job, not how

easily she found it. Data presented by Heathcote et al. (2010), however, suggest that wage

dispersion increases during recessions. Even if we added exogenous shocks to the separation

rate, they would make the distribution of yi become more equal during recessions.16 In

addition, the fact that the distribution of yi is stationary disallows an upward trend in wage

dispersion, like the one in Figure A.3. This suggests that the behavior of wage dispersion

is not well explained by the distribution of match-specific human capital. Hence, I turn to

the distribution of general human capital.

6.2 General Human Capital

6.2.1 An Individual in the Steady State

Before looking at the entire distribution of general human capital and how it changes over

time, let’s take a moment to consider how human-capital growth for an individual agent

behaves in a non-stochastic version of the model. With a fixed value of z, the job-finding rate

θq (θ) will remain fixed, and the employment rate will converge monotonically to e = θq(θ)
λ+θq(θ) .

Steady-state employment is an increasing function of the job finding rate, which in turn is

an increasing function of z. In addition to being a fixed point for the mass of workers who

are employed, the steady-state value of e also characterizes a stationary distribution for

idiosyncratic employment states of individuals. That is, if the economy is in the steady

state, e also represents the unconditional probability of a given individual being employed.
16It would not be difficult to add exogenous shocks to λ to the model. I chose to omit shocks to λ because of

Shimer’s (2012) conclusion that “fluctuations in the employment exit probability are quantitatively irrelevant
during the last two decades.”
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From the technology for human-capital accumulation (2.1), the unconditional variance of

agent i’s human-capital growth is a function of steady-state employment:

V
[
ẋi

xi
| steady state

]
= (α+ δ)

2
(1− e) e (6.6)

So, the variance of individual human-capital growth is a concave function of e, and this

variance is largest when the steady-state employment rate is one half (i.e. when θq (θ) = λ).

If the stochastic economy remains in a given productivity regime for a long enough

time, then the employment rate will converge to a constant. Then, we can apply the same

reasoning as we did in the preceding paragraph. Suppose that the limiting employment rate

is greater than one half for both exogenous productivity regimes. Then, agent i can expect

her stock of general human capital to fluctuate more when the economy has a prolonged

recession than when the economy has a prolonged boom. The mechanism is employment

volatility: If a worker is less consistently employed, then she will accumulate human capital

at a more variable rate.

6.2.2 The Aggregate Distribution

Define the conditional cumulative distribution functions as:

F et (x) ≡
´
I
[
xit ≤ x

]
eitdi´

eitdi
(6.7)

Fut (x) ≡
´
I
[
xit ≤ x

] (
1− eit

)
di´ (

1− eit
)
di

. (6.8)

Theorem 10. Suppose that the initial conditional distributions are continuously differ-

entiable with support R+. Then, the evolution of the conditional cumulative distribution

functions is characterized by the following system of partial differential equations:

∂

∂t
F et (x) = −αxfet (x) + θsq (θs)

(
1− et
et

)
[Fut (x)− F et (x)] (6.9)

∂

∂t
Fut (x) = δxfut (x) + λ

et
1− et

[
F et

(
x

1− ζ

)
− Fut (x)

]
, (6.10)
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where f lt (x) ≡ ∂F lt (x)
∂x , l ∈ {e, u}, is the conditional density.

Proof. See appendix.

A more accessible way of writing Theorem 10 is to write:

∂

∂t
[etF

e
t (x)] = −αxfet (x) et︸ ︷︷ ︸

Learning by doing

−λetF et (x)︸ ︷︷ ︸
Job Loss

+ θq (θ) (1− et)Fut (x)︸ ︷︷ ︸
Finding Employment

. (6.11)

The above is the time derivative of the mass of the set of workers who are both employed

and have human capital less than or equal to x. The most skilled workers in this set have

mass fet (x) et, and the rate at which they exit this set is the rate at which they accumulate

human capital, which is equal to αx. Hence, αxfet (x) et workers per instant flow out of

this set due to learning by doing. A fraction λ of this set of workers exits the state of

employment, so λetF et (x) workers per instant flow out of this set by exiting employment.

Finally, a mass (1− et)Fut (x) of workers are unemployed and have human capital less than

or equal to x, and these workers find jobs at rate θq (θ). Similar accounting explains the

components of the law of motion for Fut (x).

I will turn my attention to the coefficient of variation for general human capital.17 Define

the (squared) conditional coefficient of variation as the ratio of human-capital variance to

mean squared, conditional on employment state:

clt ≡
´ (
x− x̄lt

)2
f lt (x) dx(

x̄lt
)2 , l ∈ {e, u} . (6.12)

Proposition 11. Suppose that the initial conditional distributions are continuously dif-

ferentiable with finite second moments, and that fe0 (0) = fu0 (0) = 0. The coefficients of

variation (ce, cu) are jointly characterized by an affine system of differential equations with

time-varying coefficients. If the economy remains in state s for a sufficiently long time, then
17Obviously, there are many other measures of wage dispersion, the time derivatives of which we could

calculate by virtue of knowing Theorem 10. However, it becomes unwieldy to keep track of how the entire
probability distribution function − an infinite-dimensional object − evolves over time; the time derivative of,
say, the Gini coefficient is similarly unwieldy. As will become clear in a moment, the advantage of looking at
the coefficient of variation is that we can characterize its evolution with a two-variable system of differential
equations.
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ċe

ce and ċu

cu converge to a positve constant, denoted ιs. If the employment rate converges to a

value sufficiently close to one, then 0 < ι1 < ι0.

Proof. See appendix. See equations (B.92) and (B.93) for the expressions for ċe and ċu.

Proposition 11 says that skill inequality will be trending upward over time.18 The con-

clusion implied by the model is that disparate employment experiences across workers causes

the skill distribution to fan out over time, so unemployment can contribute to growing wage

dispersion. For economies that are near full employment, a lower level of unemployment

corresponds to a slower increase in skill dispersion. Consequently, a persistent boom will

decelerate inequality. In addition, the model predicts that the coefficient of variation will

grow geometrically in the long run, which is exactly what we see in Figure A.3. Undoubt-

edly, the trend in wage dispersion has to do with factors besides on-the-job accumulation of

human capital, but there is reason to believe that the distribution of skills plays an impor-

tant part. For example, Lemieux (2006) looks at wage data from the CPS and concludes

that much of the growth in wage dispersion between 1973 and 2003 can be explained by

composition effects linked to education and experience. Lemieux attributes the majority of

these composition effects to education, with experience playing a supporting role. Although

the distribution of educational attainment did change considerably, I suspect that Lemieux’s

approach underestimates the importance of skills gained on the job because he controls for

potential experience rather than actual experience. The difference is important in light of

the model presented here; a worker observed in the late 1980s who has spent ten years in

the labor force is likely to have accumulated less human capital on the job than a worker

observed in the late 1990s who has spent ten years in the labor force. Even if the magnitude

is unclear, the source of wage dispersion at work in the model appears to be one, though

certainly not the only, source of wage dispersion in the data.
18One might worry that this result comes from the fact that agents are infinitely lived, but this result is

robust to the introduction of some demographics. If agents die at Poisson rate µ, and new agents are born
into unemployment with average skills, then a necessary condition for ιs ≤ 0 is µ ≥ λ. In other words,
for the coefficient of variation to converge to a constant, workers must die at a faster rate than they are
separated from their jobs. Although it’s mathematically possible for ce and cu to converge in the long run,
this will not happen within the empirically reasonable portion of the parameter space.
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7 Welfare

Consider the problem facing a social planner who chooses market tightness to maximize

flow consumption, subject to the laws of motion for the aggregate state variables. Flow

consumption is given by:

flow consumption = production of employed + consumption of unemployed

−vacancy creation costs

= zsk + bxu − κx̄u × vacancies

= zsk + (b− κθ)xu. (7.1)

Notice that the planner doesn’t care about the level of employment, per se, because employ-

ment doesn’t enter into the expression for flow consumption, nor does it enter into the laws

of motion for k, xe, nor xu. The planner chooses market tightness as a means of controlling

skill flows, not job flows. Given an initial condition and the planner’s choice of market

tightness, we can compute the implied path of employment; in this context, however, we

can interpret employment as an optimal utilization rate of the economy’s human capital

stock. The planner’s dynamic programming problem is given by:

rvs (k, xe, xu) = max
θ

{
zsk + (b− κθ)xu +

∂vs
∂k

k̇ +
∂vs
∂xe

ẋe +
∂vs
∂xu

ẋu
}

+β [v1−s (k, xe, xu)− vs (k, xe, xu)] (7.2)

s.t.:


ẋe = (α− λ)xe + θq (θ)xu

ẋu = − [δ + θq (θ)]xu + λ (1− ζ)xe

k̇ = (α+ ρ− λ) k + θq (θ)xu.

The first-order condition is:

κ =

[
∂vs (k, xe, xu)

∂k
+
∂vs (k, xe, xu)

∂xe
− ∂vs (k, xe, xu)

∂xu

]
[1− ε (θ)] q (θ) , (7.3)
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where ε (θ) ≡ −θ q
′(θ)
q(θ) is the elasticity of the vacancy-filling rate with respect to market

tightness. The left-hand side of equation (7.3) is the marginal cost of opening a vacancy.

The right-hand side of equation (7.3) is the marginal benefit of opening a vacancy: Creating

a new vacancy decreases the vacancy-filling rate from q (θ) to [1− ε (θ)] q (θ), and when a

vacancy is filled, the human capital of the newly matched worker augments k and xe but is

subtracted from xu.

Theorem 12. Suppose that ε (θ) is a constant ε. If ε = η, then:

vs (k, xe, xu) = Gs

(
xe,

k

xe

)
+Hs

(
xe,

k

xe

)
+ Us (xu) , (7.4)

and the values of market tightness chosen by the planner coincide with the values of market

tightness in the competitive equilibrium.

Proof. See appendix.

Theorem 12 is a generalization of a result originally derived by Hosios (1990): With

frictional labor markets, the economy will be constrained efficient only when the elasticity

of the matching function with respect to vacancies is exactly equal to the bargaining power

of firms in the Nash problem.19 The mechanism at work in Hosios’s model is a congestion

externality. When one firm posts a vacancy, it becomes easier for unemployed workers to

find jobs, but it becomes harder for all the other firms posting vacancies to find workers.

This congestion externality exists in the present model as well, but we also need to consider

the role of skill accumulation. It’s not too surprising that the Hosios condition is robust

to the introduction of match-specific human capital. As a worker gets better at her job,

her outside option does not change, nor does the outside option for the firm owner change.

Moreover, the match-specific human capital that a worker accumulates at her current job

has no bearing on her next job. General human capital, which is embodied in the worker,

behaves differently. A worker’s stock of general human capital depends on her complete

employment history. The worker will benefit from the experience she gains on her current
19Hosios examined a non-stochastic environment; Shimer (2005) extended this result to an economy with

business-cycle shocks. Theorem 12 would be true in a version of this model with a richer Markov process
governing the aggregate shocks.
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job even when she moves on to her next job, whereas firm owners only benefit from the

productivity of current employees. However, recall that in the wage equation (4.1), we saw

that the learning-by-doing wedge was scaled by the bargaining power of firms. Thus, the

firm can extract some of the value of new human capital from the worker. When ε = η,

the firm’s power to make the worker pay for her experience will cause the private value of

posting a vacancy to coincide with the social value of posting a vacancy.

But there is potentially another externality from the accumulation of general human

capital: When a firm hires a worker today, that worker’s next employer will also benefit

from the experience that the employee gains in the current job. Hence, if individual firms

hire aggressively, they boost the average quality of the labor force, which makes it more

profitable for more firms to post more vacancies. Likewise, weak hiring depletes the quality

of the labor force, which reduces the incentives for vacancy creation. Pissarides (1992) calls

this the “thin market” externality. Because of the assumed form of vacancy-creation costs,

however, this thin-market externality plays no role in the present model. Recall that the cost

of posting a vacancy is κx̄u, and the expected benefit to posting a vacancy is q (θs) gs (1) x̄u.

Suppose that there is a prolonged slump that results in a drop in x̄u. Both the costs and

the benefits of posting a vacancy fall in equal proportion, so it makes no difference what

the average quality of the pool of prospective hires is. In principle, we can reintroduce

the thin-market externality by changing the specification for vacancy-creation costs. One

strategy would be to make the vacancy-creation cost a function of past x̄u:

κt = κ (ν + τ)

ˆ t

−∞
exp {−ν (t− j)} x̄uj dj, (7.5)

where κ and ν are scalar parameters, and τ is the trend growth rate associated with the

non-stochastic economy. With this distributed-lag specification, there would exist a unique

balanced growth path; along this balanced growth path, κt/x̄ut would be equal to κ, and the

allocation would be identical to the one that would prevail under the original specification.20

20It would be possible to use different specifications for κt, but other choices could lead to multiple balanced
growth path. Pissarides (1992) examines the thin-market externality in an overlapping-generations economy
without long-run growth, and he finds multiple steady-state equilibria.
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But off the balanced growth path, κt would adjust more rigidly than x̄ut . Then, if a recession

diminished the quality of prospective hires, the cost of posting a vacancy would rise relative

to the benefit. Unfortunately, this specification would make it impossible to solve the

stochastic model by hand. Investigating the importance of the thin-market externality with

a quantitative approach would be interesting, but that undertaking falls outside the scope

of this paper.

8 Conclusions and Future Research

The model I have presented has numerous implications for labor-market dynamics, business

cycles, and long-run growth. Workers must effectively compensate their employers for the

skills that they gain and can take with them to their next job. Because skills are more

valuable during booms, allowing workers to accumulate general human capital affects the

cyclicality of wage determination. If workers accumulate match-specific human capital as

well, then a worker’s outside option becomes less and less relevant as her tenure grows long.

Both general and match-specific human capital can make vacancy creation more sensitive to

aggregate shocks. In the long run, the economy grows endogenously as agents accumulate

human capital. With human capital coming from on-the-job learning, the model establishes

a link between labor-market conditions and the economy’s capacity for growth. As workers

have differing employment experiences, wage inequality will also trend upward over time.

One direction in which to extend this theory would be a more comprehensive welfare

analysis. As I mentioned, this model could be modified to incorporate the thin-market

externality discussed in Pissarides (1992). Another interesting modification would be risk-

averse preferences, which would make workers even more sensitive to the lifetime earnings

losses associated with unemployment. In turn, a planner would like to curb the upward trend

in wage dispersion that appears in the present model. Finally, one could use this framework

to analyze public employment policies. If the government were to post vacancies for hiring

civil servants, it could create distortions in the labor market; however, this public-sector

hiring could stem the loss of human capital associated with recessions.
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My focus in this paper has been entirely theoretical, but it’s straightforward to adapt

the model to discrete time, which would facilitate a quantitative exploration. Work by

other authors suggests that the other forces I have discussed will be important in empirical

applications. In a calibrated real business cycle model, Esteban-Pretel (2007) considers two

classes of agents with different levels of skill in a Mortensen-Pissarides model, and he finds

more volatility of hiring and unemployment, addressing the criticisms of Shimer (2005) and

Hall (2005). In an estimated DSGE model with a representative worker, Chang et al. (2002)

show that learning by doing can propagate non-technology shocks as well. As discussed in

Section 7, a quantitative version of my model in discrete time could incorporate the thin-

market externality and quantify its relevance. In addition to capturing these effects, an

estimated version of my model would have the novelty of incorporating the role of human

capital accumulation at low frequencies. There is good reason to think that this innovation

will be quantitatively important. Cogley (2001) demonstrates that trend misspecification

is an especially damaging source of bias in estimated rational-expectations models. When

agents are maximizing present discounted values of payoffs, their responses to shocks are

sensitive to the long-run structure of the economy. Thus, incorrect assumptions about

trend growth inject misspecification into both the low- and high-frequency components of

the model. Canova (2008) argues that DSGE models should account for growth using a

flexible statistical model that is auxiliary to the economic model used to explain business

cycles. He writes: “I share with Cogley the point of view that economic theory has not

much to say about non-cyclical fluctuations.”21 This attitude, I think, is misguided. A bet-

ter approach would be to use an economic model, such as the one I have constructed here,

to explain both the trend and the cycle. In related research, Comin and Gertler (2006) doc-

ument “medium-term” fluctuations in the U.S. economy, linking slower-moving components

of output to several factors often included in endogenous growth models; however, one factor

not considered by Comin and Gertler is human capital. An estimated version of my model

seems like a promising way of quantifying the relative importance of skill accumulation in

explaining both growth and business cycles.
21Canova (2008), p. 19. Cogley does not actually assert this point of view; however, this quotation fairly

represents Canova’s argument.
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A Figures

Figure A.1: Permanent Earnings Loss, Estimated by Davis and von Wachter (2011)

The image shown here is Figure 5A from the working-paper version of Davis and von
Wachter; it appears as Figure 4 in the published version. The earnings losses computed
by Davis and von Wachter are measured relative to a counterfactual earnings trend. Those
authors control for worker effects, calendar-year effects, age, and interaction terms between
calendar-year fixed effects and individual average earnings in the five years preceding dis-
placement. Davis and von Wachter use the administrative data on W2 earnings used in von
Wachter, Song, and Manchester (2009). See these these two papers for additional details
and discussion.
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Figure A.2: Productivity Growth and Unemployment at Low Frequencies

The unemployment rate is the quarterly average of monthly unemployment for workers ages
20 and above. The growth rate of labor productivity is 400 times the log difference in
quarterly output per manhour in the non-farm business sector. Both series are treated with
a Hodrick-Prescott filter using a smoothing parameter of 1600.
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Figure A.3: Trends in Wage Dispersion

This figure is constructed using data from Eckstein and Nagypal (2004). Those
authors use data from the March CPS for full-time (35+ hours per week) full-
year (40+ weeks per year) employees between the ages of 22 and 65. See the
appendix of Eckstein and Nagypal for details; the raw data is available from
<http://faculty.wcas.northwestern.edu/~een461/QRproject/>.
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B Proof Appendix: For Online Publication

B.1 Theorem 2

Claim. There exists a unique homogeneous equilibrium.

Proof. I will first show that an equilibrium can be characterized by a single, implicit function

of θ ≡ (θ0, θ1)
′. To do so, I will show that the value functions are affine in yi. Then, I will

show that the function that characterizes θ has a unique solution.

Observe that:

(r + δ + β)us = b+ βu1−s + θsq (θs) [hs (1)− us]

= b+ βu1−s + θsq (θs)
η

1− η
gs (1)

= b+ βu1−s +
ηκ

1− η
θs, (B.1)

where the first equality comes from (3.8), and the second equality comes from (3.7). Define:

u ≡
[
u0 u1

]′
(B.2)

Π ≡

 0 1

1 0

 . (B.3)

We can write:

u = [(r + δ + β) I− βΠ]
−1

[
b12×1 +

ηκ

1− η
θ

]
. (B.4)

I will now demonstrate the form that gs
(
yi
)
must take. In Proposition 4, I show that

ws
(
yi
)
is an affine function of yi. So, we can express the wage equation as:

ws
(
yi
)

= w0
s + w1

sy
i, (B.5)
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for scalars
{
w0
s , w

1
s

}
s∈{0,1}. In light of (3.6), we can write gs

(
yi
)
as:

[(r − α+ β + λ) I− βΠ]

 g0

(
yi
)

g1

(
yi
)
 = −

 w0
0

w0
1

+

 z0 − w1
0

z1 − w1
1

 yi + ρ

 g′0
(
yi
)

g′1
(
yi
)
 yi.
(B.6)

In more concise vector notation:

[(r − α+ β + λ) I− βΠ] g
(
yi
)

= −w0 +
(
z−w1

)
yi + ρg′

(
yi
)
yi. (B.7)

Thus, we see that gs
(
yi
)
assumes the form:

gs
(
yi
)

= g0
s + g1

sy
i + g2

s ·
(
yi
)ξ
, (B.8)

where
{
g0
s , g

1
s , g

2
s

}
s∈{0,1} and ξ are coefficients to be determined. Because hs

(
yi
)

= η
1−η gs

(
yi
)
+

us, it must also be the case that:

hs
(
yi
)

= h0
s + h1

sy
i + h2

s ·
(
yi
)ξ
, (B.9)

where
{
h0
s, h

1
s, h

2
s

}
s∈{0,1} are coefficients to be determined. Define:

Ns
(
yi
)
≡ hs

(
yi
)

+ gs
(
yi
)
. (B.10)

In turn, we can write Ns
(
yi
)

= N0
s + N1

s y
i + N2

s ·
(
yi
)ξ, where {N0

s , N
1
s , N

2
s

}
s∈{0,1} are

coefficients to be determined. Summing equations (3.5) and (3.6), we see that this form
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implies:

[
N0
s +N1

s y
i +N2

s ·
(
yi
)ξ]

× (r − α+ β) = (r − α+ β)
[
hs
(
yi
)

+ gs
(
yi
)]

= ws
(
yi
)

+ λ
[
us − hs

(
yi
)]
− λζus + βh1−s

(
yi
)

+ h′s
(
yi
)
ẏi

+zsy
i − ws

(
yi
)
− λgs

(
yi
)

+ βg1−s
(
yi
)

+ g′s
(
yi
)
ẏi

= zsy
i + λ (1− ζ)us − λ

[
hs
(
yi
)

+ gs
(
yi
)]

+β
[
h1−s

(
yi
)

+ g1−s
(
yi
)]

+
[
h′s
(
yi
)

+ g′s
(
yi
)]
ẏi

= zsy
i + λ (1− ζ)us − λNs

(
yi
)

+ βN1−s
(
yi
)

+N ′s
(
yi
)
ẏi

= zsy
i + λ (1− ζ)us − λ

[
N0
s +N1

s y
i +N2

s ·
(
yi
)ξ]

+β
[
N0

1−s +N1
1−sy

i +N2
1−s ·

(
yi
)ξ]

+
[
N1
s + ξN2

s ·
(
yi
)ξ−1

]
ρyi

= λ (1− ζ)us − λN0
s + βN0

1−s

+
[
zs − λN1

s + ρN1
s + βN1

1−s
]
yi

+
[
ρξN2

s − λN2
s + βN2

1−s
] (
yi
)ξ
. (B.11)

Evidently, the coefficients are characterized by:

(r − α+ β)N0
s = λ (1− ζ)us − λN0

s + βN0
1−s (B.12)

(r − α+ β)N1
s = zs − λN1

s + ρN1
s + βN1

1−s (B.13)

(r − α+ β)N2
s = ρξN2

s − λN2
s + βN2

1−s. (B.14)

First, I will show that N2
s = 0 ∀s. We see that N2 ≡

(
N2

0 , N
2
1

)′ must satisfy:

[(r − α+ β + λ− ρξ) I− βΠ] N2 = 02×1. (B.15)

The above implies that N2 is zero, or the matrix premultiplying N2 has reduced rank.

However, we see that this matrix cannot have reduced rank, because the determinant is
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strictly positive:

det [(r − α+ β + λ− ρξ) I− βΠ] = det

 (r − α+ β + λ− ρξ) −β

−β (r − α+ β + λ− ρξ)


= (r − α+ β + λ− ρξ)2

+ β2

> 0. (B.16)

Hence, N2 = 02×1, and we can conclude that Ns
(
yi
)
is affine. It remains to determine the

coefficients
{
N0
s , N

1
s

}
s∈{0,1}. In vector notation, we can write (B.12) and (B.13) as:

N0 ≡
[
N0

0 N0
1

]′
= λ (1− ζ) [(r − α+ β + λ) I− βΠ]

−1
u (B.17)

N1 ≡
[
N1

0 N1
1

]′
= [(r − α+ β + λ− ρ) I− βΠ]

−1
z. (B.18)

Note that adding (1− η) gs
(
yi
)
to both sides of (3.8) yields:

gs
(
yi
)

= (1− η)
[
Ns
(
yi
)
− us

]
. (B.19)

Hence, the free-entry condition (3.7) becomes:

κ = q (θs) (1− η) [Ns (1)− us] . (B.20)

Define:

q̃ (θ) ≡
[

1
q(θ0)

1
q(θ1)

]′
. (B.21)
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Combining the above results, we see that θ is characterized by the following implicit function:

02×1 =
κ

1− η
q̃ (θ) + u−N0 −N1

=
κ

1− η
q̃ (θ)− [(r − α+ β + λ− ρ) I− βΠ]

−1
z

+
[
I− λ (1− ζ) [(r − α+ β + λ) I− βΠ]

−1
]

× [(r + δ + β) I− βΠ]
−1

[
b12×1 +

ηκ

1− η
θ

]
. (B.22)

To establish that this implicit function has a unique solution, I will show that the Jacobian

is positive definite. The Jacobian of the above expression is:

J =
κ

1− η

 − q′(θ0)

[q(θ0)]2
0

0 − q′(θ1)

[q(θ1)]2

+ J0J1. (B.23)

J0 ≡ ηκ

1− η

[
I− λ (1− ζ) [(r − α+ β + λ) I− βΠ]

−1
]

(B.24)

J1 ≡ [(r + δ + β) I− βΠ]
−1
. (B.25)

Note that the first term in J is a diagonal matrix, and since q (·) is decreasing, all of the

elements along the main diagonal are strictly positive. Hence, the first term in the above

expression is a positive definite matrix. It remains to show that J0J1 is positive definite.

Because both J0 and J1 are symmetric 2× 2 matrices, if each of these matrices is positive

definite, then their product will be positive definite as well. Sufficient conditions for a

symmetric 2 × 2 matrix to be positive definite are that the upper-left element is strictly

positive and greater in absolute value than the upper-right element. Observe that:

J1 =

 r + δ + β −β

−β r + δ + β


−1

=
1

(r + δ + β)
2 − β2

 r + δ + β β

β r + δ + β

 . (B.26)

It is clear that the above matrix satisfies the conditions for being positive definite. Also,
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observe that:

1− η
ηκ

J0 = I− λ (1− ζ)

(r − α+ β + λ)
2 − β2

 r − α+ β + λ β

β r − α+ β + λ


=

 1− λ(1−ζ)(r−α+β+λ)

(r−α+β+λ)2−β2 − λ(1−ζ)β
(r−α+β+λ)2−β2

− λ(1−ζ)β
(r−α+β+λ)2−β2 1− λ(1−ζ)(r−α+β+λ)

(r−α+β+λ)2−β2

 . (B.27)

Note that:

1− λ (1− ζ) (r − α+ β + λ)

(r − α+ β + λ)
2 − β2

> 0

⇐⇒ (r − α+ λ)
2

+ 2β (r − α+ λ) > λ (1− ζ) (r − α+ β + λ)

⇐⇒ (r − α+ 2β + λζ) (r − α+ λ) > λ (1− ζ)β

⇐⇒ (r − α+ β + λζ) (r − α+ λ) + (r − α)β > −λζβ,

which must hold, since r > α and all parameters above are positive. Also, note that:

1− λ (1− ζ) (r − α+ β + λ)

(r − α+ β + λ)
2 − β2

>
λ (1− ζ)β

(r − α+ β + λ)
2 − β2

⇐⇒ 1− λ (1− ζ) (r − α+ 2β + λ)

(r − α+ β + λ)
2 − β2

> 0

⇐⇒ (r − α+ β + λ)
2 − β2 > λ (1− ζ) (r − α+ 2β + λ)

⇐⇒ (r − α+ λ)
2

+ 2β (r − α+ λ) > λ (1− ζ) (r − α+ 2β + λ) .

For the above to hold, it is sufficient to show that:

(r − α+ λ)
2

+ 2β (r − α+ λ) > λ (r − α+ 2β + λ)

⇐⇒ (r − α+ λ)
2

+ 2β (r − α) > λ (r − α+ λ)

⇐⇒ (r − α) (r − α+ λ) + 2β (r − α) > 0,

which again must be true because r > α. Thus, J0 is also positive definite.
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B.2 Proposition 3

Claim. Market tightness will be procyclical; i.e., θ1 > θ0. Moreover, if −θ q
′(θ)
q(θ) is weakly

decreasing in θ, then ∂θ
∂z is an increasing function of α, ρ, and δ, whereas ∂θ

∂z is a decreasing

function of ζ.

Proof. Recall equation (B.22) from the proof of Theorem 2, which provides an implicit

function that characterizes θ:

02×1 = q̃ (θ)− [(r − α+ β + λ− ρ) I− βΠ]
−1

z

+
[
I− λ (1− ζ) [(r − α+ β + λ) I− βΠ]

−1
]

× [(r + δ + β) I− βΠ]
−1

[
b12×1 +

ηκ

1− η
θ

]
. (B.28)

Premultiplying both sides of the above by
[

1 −1

]
yields:

[
1 −1

]
× [(r − α+ β + λ− ρ) I− βΠ]

−1
z =

κ

1− η

[
1

q (θ0)
− 1

q (θ1)

]
+

[
1 −1

]
×
[
I− λ (1− ζ) [(r − α+ β + λ) I− βΠ]

−1
]

× [(r + δ + β) I− βΠ]
−1 ηκ

1− η
θ. (B.29)
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Note that:

[
1 −1

]
× [(r − α+ β + λ− ρ) I− βΠ]

−1
=

1

(r − α+ β + λ− ρ)
2 − β2

×
[

1 −1

]

×

 (r − α+ β + λ− ρ) β

β (r − α+ β + λ− ρ)


=

(r − α+ λ− ρ)

(r − α+ β + λ− ρ)
2 − β2

[
1 −1

]
. (B.30)

Also, note that:

[
1 −1

]
×
[
I− λ (1− ζ) [(r − α+ β + λ) I− βΠ]

−1
]

=

[
1 −1

]

×

 1− λ(1−ζ)(r−α+β+λ)

(r−α+β+λ)2−β2 − λ(1−ζ)β
(r−α+β+λ)2−β2

− λ(1−ζ)β
(r−α+β+λ)2−β2 1− λ(1−ζ)(r−α+β+λ)

(r−α+β+λ)2−β2


=

[
1− λ (1− ζ) (r − α+ λ)

(r − α+ β + λ)
2 − β2

][
1 −1

]
. (B.31)

Also, note that:

[
1 −1

]
[(r + δ + β) I− βΠ]

−1
=

[
1 −1

]
1

(r + δ + β)
2 − β2

×

 (r + δ + β) β

β (r + δ + β)


=

(r + δ)

(r + δ + β)
2 − β2

[
1 −1

]
. (B.32)
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Thus:

(r − α+ λ− ρ)

(r − α+ β + λ− ρ)
2 − β2

(z0 − z1) =
κ

1− η

[
1

q (θ0)
− 1

q (θ1)

]
+

ηκ

1− η

[
1− λ (1− ζ) (r − α+ λ)

(r − α+ β + λ)
2 − β2

]

× (r + δ)

(r + δ + β)
2 − β2

(θ0 − θ1) . (B.33)

The left-hand side of the above expression is negative. Because [q (θ)]
−1 is an increasing

function of θ, it must be the case that [q (θ0)]
−1 − [q (θ1)]

−1 has the same sign as θ0 − θ1.

Also, the expressions multiplying [q (θ0)]
−1 − [q (θ1)]

−1 and θ0 − θ1 are positive, so the sign

of the right-hand side (which, of course, must be the sign of the left-hand side) must be the

sign of θ0 − θ1. Thus, we see that θ1 > θ0. Dividing both sides of the above expression by

(z1 − z0) yields:

(r − α+ λ− ρ)

(r − α+ β + λ− ρ)
2 − β2

=

[
q (θ1)

−1 − q (θ0)
−1

θ1 − θ0

]
ηκ

1− η

(
θ1 − θ0

z1 − z0

)

+

[
1− λ (1− ζ) (r − α+ λ)

(r − α+ β + λ)
2 − β2

]

× (r + δ)

(r + δ + β)
2 − β2

ηκ

1− η

(
θ1 − θ0

z1 − z0

)
. (B.34)

Taking the limit as z1 − z0 → 0, we get:

(r − α+ λ− ρ)

(r − α+ β + λ− ρ)
2 − β2

=
ηκ

1− η
ε (θ)

θq (θ)

∂θ

∂z

+
ηκ

1− η

[
1− λ (1− ζ) (r − α+ λ)

(r − α+ β + λ)
2 − β2

]

× (r + δ)

(r + δ + β)
2 − β2

∂θ

∂z
, (B.35)
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where ε (θ) ≡ −θ q
′(θ)
q(θ) . Thus:

∂θ

∂z
=

(r−α+λ−ρ)
(r−α+β+λ−ρ)2−β2

1−η
ηκ

ε(θ)
θq(θ) +

[
1− λ(1−ζ)(r−α+λ)

(r−α+β+λ)2−β2

]
(r+δ)

(r+δ+β)2−β2

. (B.36)

Because computation of ∂θ∂z involves taking the limit as z1− z0 goes to zero, equation (B.22)

implies that the value of θ that appears on the right-hand side of (B.36) is characterized by:

0 =
κ

1− η
1

q (θ)
− z

(r − α+ λ− ρ)
+

[
1− λ (1− ζ)

r − α+ λ

]
1

r + δ

[
b+

ηκ

1− η
θ

]
. (B.37)

Differentiating the above expression with respect to parameter values yields:

0 <
∂θ

∂α
(B.38)

0 <
∂θ

∂ρ
(B.39)

0 <
∂θ

∂δ
(B.40)

0 >
∂θ

∂ζ
. (B.41)

Suppose that ε (θ) is weakly decreasing in θ. Then, ε(θ)
θq(θ) is a strictly decreasing function of

θ. This implies, along with the signs of the above partial derivatives, that ε(θ)
θq(θ) is decreasing

in α, ρ, and ζ, and ε(θ)
θq(θ) is increasing in ζ. Now, observe that:

0 <
∂

∂α

[
(r − α+ λ− ρ)

(r − α+ β + λ− ρ)
2 − β2

1− η
ηκ

]
(B.42)

0 <
∂

∂ρ

[
(r − α+ λ− ρ)

(r − α+ β + λ− ρ)
2 − β2

1− η
ηκ

]
(B.43)

0 <
∂

∂ζ

[[
1− λ (1− ζ) (r − α+ λ)

(r − α+ β + λ)
2 − β2

]
(r + δ)

(r + δ + β)
2 − β2

]
(B.44)

0 >
∂

∂α

[[
1− λ (1− ζ) (r − α+ λ)

(r − α+ β + λ)
2 − β2

]
(r + δ)

(r + δ + β)
2 − β2

]
(B.45)

0 >
∂

∂δ

[[
1− λ (1− ζ) (r − α+ λ)

(r − α+ β + λ)
2 − β2

]
(r + δ)

(r + δ + β)
2 − β2

]
. (B.46)
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It follows that an increase in α or ρ increases the numerator of equation (B.36) while

decreasing the denominator; an increase in δ decreases the denominator of (B.36); and an

increase in ζ increases the denominator of equation (B.36). Thus, ∂θ∂z is increasing in α, ρ,

and δ, but decreasing in ζ.

B.3 Proposition 4

Claim. The wage equation in a recursive homogeneous equilibrium is given by:

ws
(
yi
)

= ηzsy
i + (1− η) b+ ηκθs − (1− η) (α+ δ + λζ)us. (B.47)

Proof. Note that:

(r − α+ β)us = b+ θq (θ) [hs (1)− us] + βu1−s − (α+ δ)us (B.48)

(r − α+ β)hs
(
yi
)

= ws
(
yi
)

+ λ
[
us − hs

(
yi
)]
− λζus

+βh1−s
(
yi
)

+ h′s
(
yi
)
ẏi (B.49)

(r − α+ β) gs
(
yi
)

= zsy
i − ws

(
yi
)
− λgs

(
yi
)

+ βg1−s
(
yi
)

+ g′s
(
yi
)
ẏi. (B.50)

Hence:

(r − α+ β)
[
hs
(
yi
)
− us

]
= ws

(
yi
)

+ λ
[
us − hs

(
yi
)]
− λζus + βh1−s

(
yi
)

+ h′s
(
yi
)
ẏi

− [b+ θq (θ) [hs (1)− us] + βu1−s − (α+ δ)us]

= ws
(
yi
)
− b− λ

[
hs
(
yi
)
− us

]
− θq (θ) [hs (1)− us]

+ (α+ δ + λζ)us + β
[
h1−s

(
yi
)
− u1−s

]
+ h′s

(
yi
)
ẏi

= ws
(
yi
)
− b− λ η

1− η
gs
(
yi
)
− θq (θ)

η

1− η
gs (1)

+ (α+ δ + λζ)us + β
η

1− η
g1−s

(
yi
)

+
η

1− η
g′s
(
yi
)
ẏi

= ws
(
yi
)
− b− λ η

1− η
gs
(
yi
)
− θ η

1− η
κ+ (α+ δ + λζ)us

+β
η

1− η
g1−s

(
yi
)

+
η

1− η
g′s
(
yi
)
ẏi. (B.51)

49



Multiplying the above by 1− η, equating it with η (r − α+ β) gs
(
yi
)
, and canceling redun-

dant terms yields:

ws
(
yi
)

= ηzsy
i + (1− η) b+ ηκθ − (1− η) (α+ δ + λζ)us. (B.52)

B.4 Proposition 5

Claim. The cyclical change in wages can be decomposed as:

w1

(
yi
)
− w0

(
yi
)

= ηyi (z1 − z0) + ηκ

[
1− (α+ δ + λζ) (r + δ)

r + δ + 2β

]
(θ1 − θ0) . (B.53)

Proof. Recalling equation (B.4), notice that:

(1− η) (u1 − u0) = (1− η)

[
−1 1

]
u

=

[
−1 1

]
[(r + δ + β) I− βΠ]

−1
[(1− η) b12×1 + ηκθ]

=
(r + δ) ηκ

(r + δ + β)
2 − β2

[
−1 1

]
θ

=
(r + δ) ηκ

r + δ + 2β
(θ1 − θ0) . (B.54)

Taking the difference between the wage equation (4.1) evaluated at s = 1 and s = 0 yields:

w1

(
yi
)
− w0

(
yi
)

= ηyi (z1 − z0) + ηκ (θ1 − θ0)− (α+ δ + λζ) (1− η) (u1 − u0)

= ηyi (z1 − z0) + ηκ (θ1 − θ0)− (α+ δ + λζ)
(r + δ) ηκ

r + δ + 2β
(θ1 − θ0)

= ηyi (z1 − z0) + ηκ

[
1− (α+ δ + λζ) (r + δ)

r + δ + 2β

]
(θ1 − θ0) (B.55)
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B.5 Proposition 6

Claim. Let tn be the time of the nth switch in the exogenous state s. For t ≤ tn+1− tn, the

path of human capital is given by:

xtn+t = Ωsdiag (exp {γst}) Ω−1
s xtn , (B.56)

where γs is a vector containing the eigenvalues of Qs, and Ωs is an orthonormal matrix, the

columns of which are the corresponding eigenvectors.

Proof. An eigendecomposition of Qs allows us to write:

Qs = Ωsdiag (γs) Ω−1
s , (B.57)

γs is a vector containing the eigenvalues of Qs, and Ωs is an orthonormal matrix, the ith

column of which is the ith eigenvector of Qs. Define atn+t ≡ Ω−1
s xtn+t; it follows that

ȧtn+t ≡ Ω−1
s ẋtn+t. Note that:

ẋtn+t = Qsxtn+t = Ωsdiag (γs) Ω−1
s xtb+t = Ωsdiag (γs) atn+t. (B.58)

Premultiplying both sides of the above by Ω−1
s yields ȧtn+t = diag (γs) atn+t. Hence,

ai,tn+t = exp {γi,st}ai,tn ; in vector notation:

Ω−1
s xtn+t = atn+t = diag (exp {γst}) atn = diag (exp {γst}) Ω−1

s xtn . (B.59)

Premultiplying both sides of the above by Ωs completes the proof.

51



B.6 Proposition 8

Claim. Trend growth τs is well defined and an increasing function of s. If α > λ+δ+θsq (θs),

then τs > 0. Otherwise, the sign of trend growth in state s is given by:

τs R 0 ⇐⇒ θsq (θs) R

(
λ− α
α− ζλ

)
δ. (B.60)

Proof. Observe that the eigenvalues of Qs are given by:

α− λ− δ − θsq (θs)±
√

4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]
2

2
(B.61)

The first thing to notice is that the expression under the radical above is positive, so both

eigenvalues of Qs are real. Hence, taking the maximum over the eigenvalues is a well-defined

operation. Also, it is clear that τs will be the eigenvalue associated with the plus sign. If

α− λ− δ − θsq (θs) > 0, then τs will be positive. Suppose α− λ− δ − θsq (θs) ≤ 0. Then,

τs R 0 if, and only if:

√
4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]

2

2

+
α− λ− δ − θsq (θs)

2
R 0

⇐⇒
√

4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]
2 R −α+ λ+ δ + θsq (θs)

⇐⇒ 4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]
2 R [−α+ λ+ δ + θsq (θs)]

2

⇐⇒ 4θsq (θs) (1− ζ)λ+ ((α− λ) + δ)
2

+ 4 (α− λ) θsq (θs) R (δ − (α− λ))
2

⇐⇒ θsq (θs) R

(
λ− α
α− ζλ

)
δ. (B.62)

To see that τs is increasing in s, it is sufficient to show that τs is increasing in the job-finding

rate θsq (θs), since the job-finding rate is increasing in θs, and I’ve already shown that θs is
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increasing in s. Note that:

∂τs
∂θsq (θs)

= −1

2
+

1

4

4 (1− ζ)λ+ 2 [α− λ+ δ + θsq (θs)]√
4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]

2

=
2 (1− ζ)λ+ α− λ+ δ + θsq (θs)

2

√
4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]

2

−

√
4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]

2

2

√
4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]

2
. (B.63)

Hence, ∂τs
∂θsq(θs)

R 0 if, and only if:

2 (1− ζ)λ+ α− λ+ δ + θsq (θs) R
√

4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]
2

⇐⇒ [2 (1− ζ)λ+ α− λ+ δ + θsq (θs)]
2 R 4θsq (θs) (1− ζ)λ+ [α− λ+ δ + θsq (θs)]

2

⇐⇒ [2 (1− ζ)λ+ (α− λ+ δ)]
2 R (α− λ+ δ)

2

⇐⇒ α− ζλ+ δ R 0. (B.64)

which must hold under the maintained assumption that a− ζλ ≥ 0.

B.7 Theorem 9

Claim. Suppose that the initial distribution F y0 (y) has support [1,∞) and is everywhere

continuously differentiable. Then:

∂

∂t
F yt (y) = −ρy ∂

∂y
[F yt (y)] + θsq (θs)

(
1− et
et

)
[1− F yt (y)] . (B.65)

Proof. This proof (and the proof of Theorem 10) makes extensive use of the law of large

numbers on a continuum of random variables. That is, if {X (i) | i ∈ [0, 1]} is a continuum

of pairwise uncorrelated random variables, each of which with expected value X̄, then:

ˆ 1

0

X (i) di = X̄, (B.66)
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with probability one. A formal justification of this can be found in Uhlig (1996). Note that

for any y ≥ 1:

F yt+∆ (y) et+∆ =

ˆ
I
[
yit+∆ ≤ y

]
eit+∆di

=

ˆ
I
[
yit+∆ ≤ y

]
eit+∆e

i
tdi+

ˆ
I
[
yit+∆ ≤ y

]
eit+∆

(
1− eit

)
di

= (1−∆λ)

ˆ
I
[
yit+∆ ≤ y

]
eitdi

+∆θsq (θs)

ˆ
I
[
yit+∆ ≤ y

] (
1− eit

)
di+ o (∆)

= (1−∆λ)

ˆ
I
[
yit + ∆ẏit ≤ y

]
eitdi

+∆θsq (θs)

ˆ
I
[
yit + ∆ẏit ≤ y

] (
1− eit

)
di+ o (∆)

= (1−∆λ)

ˆ
I
[
yit ≤

y

1 + ∆ρ

]
eitdi

+∆θsq (θs)

ˆ
I
[
yit ≤ y

] (
1− eit

)
di+ o (∆)

= (1−∆λ)F yt

(
y

1 + ∆ρ

)
et + ∆θsq (θs) (1− et) + o (∆) . (B.67)

Subtracting F yt (y) et from both sides of the above and dividing by ∆ yields:

F yt+∆ (y) et+∆ − F yt (y) et

∆
= −et

∆

[
F yt (y)− F yt

(
y

1 + ∆ρ

)]
− λF yt

(
y

1 + ∆ρ

)
et

+θsq (θs) (1− et) +
o (∆)

∆

= −etρy
[
F yt (y)− F yt (y −∆ρy)

∆ρy

]
−λF yt

(
y

1 + ∆ρ

)
et + θsq (θs) (1− et) +

o (∆)

∆
. (B.68)

Taking the limit of the above expression as ∆→ 0 yields:

∂

∂t
[F yt (y) et] = −etρy

∂

∂y
[F yt (y)]− λF yt (y) et + θsq (θs) (1− et) . (B.69)

54



Applying the product rule to the left-hand side of the above and rearranging terms yields:

∂

∂t
F yt (y) = −ρy ∂

∂y
[F yt (y)] + θsq (θs)

(
1− et
et

)
[1− F yt (y)] . (B.70)

B.8 Theorem 10

Claim. Suppose that the initial conditional distributions are continuously differentiable with

support (0,+∞). Then, the evolution of the conditional cumulative distribution functions

is characterized by the following system of partial differential equations:

∂

∂t
F et (x) = −αxfet (x) + θsq (θs)

(
1− et
et

)
[Fut (x)− F et (x)] (B.71)

∂

∂t
Fut (x) = δxfut (x) + λ

et
1− et

[
F et

(
x

1− ζ

)
− Fut (x)

]
, (B.72)

where f lt (x) ≡ ∂F lt (x)
∂x , l ∈ {e, u}, is the conditional density.
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Proof. Note that:

et+∆F
e
t+∆ (x) =

ˆ
I
[
xit+∆ ≤ x

]
eit+∆di

=

ˆ
I
[
xit+∆ ≤ x

]
eit+∆e

i
tdi+

ˆ
I
[
xit+∆ ≤ x

]
eit+∆

(
1− eit

)
di

= (1−∆λ)

ˆ
I
[
xit+∆ ≤ x

]
eitdi

+∆θq (θ)

ˆ
I
[
xit+∆ ≤ x

] (
1− eit

)
di+ o (∆)

= (1−∆λ)

ˆ
I
[
xit + ∆ẋit + o (∆) ≤ x

]
eitdi

+∆θq (θ)

ˆ
I
[
xit + ∆ẋit + o (∆) ≤ x

] (
1− eit

)
di+ o (∆)

= (1−∆λ)

ˆ
I
[
(1 + ∆α)xit + o (∆) ≤ x

]
eitdi

+∆θq (θ)

ˆ
I
[
(1−∆δ)xit + o (∆) ≤ x

] (
1− eit

)
di+ o (∆)

= (1−∆λ)

ˆ
I
[
xit ≤

x− o (∆)

1 + ∆α

]
eitdi

+∆θq (θ)

ˆ
I
[
xit ≤

x− o (∆)

1−∆δ

] (
1− eit

)
di+ o (∆)

= (1−∆λ) etF
e
t

(
x− o (∆)

1 + ∆α

)
+∆θq (θ) (1− et)Fut

(
x− o (∆)

1−∆δ

)
+ o (∆) (B.73)

Subtracting etF et (x) from both sides of the above and dividing by ∆ yields:

et+∆F
e
t+∆ (x)− etF et (x)

∆
=

et
∆

[
F et

(
x− o (∆)

1 + ∆α

)
− F et (x)

]
− λetF et

(
x− o (∆)

1 + ∆α

)
+θq (θ) (1− et)Fut

(
x− o (∆)

1−∆δ

)
+
o (∆)

∆

= −et
[

α

1 + ∆α
x+

o (∆)

∆

1

1 + ∆α

]

×

F et (x)− F et
(
x−

[
∆α

1+∆αx+ o(∆)
1+∆α

])
∆α

1+∆αx+ o(∆)
1+∆α


−λetF et

(
x− o (∆)

1 + ∆α

)
+θq (θ) (1− et)Fut

(
x− o (∆)

1−∆δ

)
+
o (∆)

∆
. (B.74)
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Taking the limit as ∆→ 0 yields:

∂

∂t
[etF

e
t (x)] = −etαx

∂

∂x
[F et (x)]− λetF et (x) + θq (θ) (1− et)Fut (x) . (B.75)

Applying the product rule to the left-hand side of the above expression and rearranging

terms yields:

∂

∂t
F et (x) = −αxfet (x) + θsq (θs)

(
1− et
et

)
[Fut (x)− F et (x)] . (B.76)

Similarly, note that:

(1− et+∆)Fut+∆ (x) =

ˆ
I
[
xit+∆ ≤ x

] (
1− eit+∆

)
di

=

ˆ
I
[
xit+∆ ≤ x

] (
1− eit+∆

) (
1− eit

)
di

+

ˆ
I
[
xit+∆ ≤ x

] (
1− eit+∆

)
eitdi

=

ˆ
I
[
xi + ∆ẋi ≤ x

] (
1− eit+∆

) (
1− eit

)
di

+

ˆ
I
[
(1− ζ)

(
xit + ∆ẋi

)
≤ x

] (
1− eit+∆

)
eitdi+ o (∆)

= [1−∆θq (θ)]

ˆ
I
[
xi + ∆ẋi ≤ x

] (
1− eit

)
di

+∆λ

ˆ
I
[
(1− ζ)

(
xit + ∆ẋi

)
≤ x

]
eitdi+ o (∆)

= [1−∆θq (θ)]

ˆ
I
[
xi ≤ x

1−∆δ

] (
1− eit

)
di

+∆λ

ˆ
I
[
xit ≤

x

(1− ζ) (1 + ∆α)

]
eitdi+ o (∆)

= [1−∆θq (θ)] (1− et)Fut
(

x

1−∆δ

)
+∆λetF

e
t

(
x

(1− ζ) (1 + ∆α)

)
+ o (∆) . (B.77)
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Subtracting (1− et)Fut (x) from both sides of the above and dividing by ∆ yields:

(1− et+∆)Fut+∆ (x)− (1− et)Fut (x)

∆
=

(
1− et

∆

)[
Fut

(
x

1−∆δ

)
− Fut (x)

]
+
o (∆)

∆

−θq (θ) (1− et)Fut
(

x

1−∆δ

)
+λetF

e
t

(
x

(1− ζ) (1 + ∆α)

)

= (1− et)
δx

(1−∆δ)

Fut
(
x+ ∆δx

(1−∆δ)

)
− Fut (x)

∆δx
(1−∆δ)


−θq (θ) (1− et)Fut

(
x

1−∆δ

)
+
o (∆)

∆

+λetF
e
t

(
x

(1− ζ) (1 + ∆α)

)
. (B.78)

Taking the limit as ∆→ 0 yields:

∂

∂t
[(1− et)Fut (x)] = (1− et) δx

∂

∂x
[Fut (x)]− θq (θ) (1− et)Fut (x) + λetF

e
t

(
x

1− ζ

)
.

(B.79)

Applying the product rule to the left-hand side of the above expression and rearranging

terms yields:
∂

∂t
Fut (x) = δxfut (x) + λ

et
1− et

[
F et

(
x

1− ζ

)
− Fut (x)

]
. (B.80)

B.9 Proposition 11

Claim. Suppose that the initial conditional distributions are continuously differentiable with

finite second moments, and that fe0 (0) = fu0 (0) = 0. The coefficients of variation (ce, cu)

are jointly characterized by an affine system of differential equations with time-varying

coefficients. If the economy remains in state s for a sufficiently long time, then ċe

ce and ċu

cu

converge to a positve constant, denoted ιs. If the employment rate converges to a value

sufficiently close to one, then ι1 < ι0.
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Proof. I will begin by deriving the laws of motion for ce and cu. Observe that for l ∈ {e, u}:

ċlt
clt

=
d
dt

´ (
x− x̄lt

)2
f lt (x) dx´ (

x− x̄lt
)2
f lt (x) dx

− 2
d
dt x̄

l
t

x̄lt

=

´ [
−2
(
x− x̄lt

)
f lt (x) d

dt x̄
l
t +
(
x− x̄lt

)2 ∂
∂t

[
f lt (x)

]]
dx

´ (
x− x̄lt

)2
f lt (x) dx

− 2
d
dt x̄

l
t

x̄lt

=
2
´ (
x− x̄lt

)
f lt (x) dx d

dt x̄
l
t +
´ (
x− x̄lt

)2 ∂
∂t

∂
∂x

[
F lt (x)

]
dx´ (

x− x̄lt
)2
f lt (x) dx

− 2
d
dt x̄

l
t

x̄lt

=

´ (
x− x̄lt

)2 ∂
∂x

∂
∂t

[
F lt (x)

]
dx´ (

x− x̄lt
)2
f lt (x) dx

− 2
d
dt x̄

l
t

x̄lt
. (B.81)

I will now compute all of the pieces of the above expression. From the laws of motion for

aggregate human capital and employment, we have:

d
dt x̄

e
t

x̄et
=

ẋet
x̄et
− ėt
et

= α+ θq (θ)
xu

xe
− θq (θ)

(
1− e
e

)
= α+ θq (θ)

(
1− e
e

)(
x̄u − x̄e

x̄e

)
(B.82)

d
dt x̄

u
t

x̄ut
=

ẋut
x̄ut

+
ėt

1− et

= λ (1− ζ)
xe

xu
− δ −

(
e

1− e

)
λ

= λ

(
e

1− e

)[
(1− ζ) x̄e − x̄u

x̄u

]
− δ. (B.83)

Assuming the second moments of all these distributions exist, integration by parts gives us

for l ∈ {e, u}:

ˆ (
x− x̄lt

)2 ∂

∂x

[
f lt (x)

]
dx =

[(
x− x̄lt

)2
f lt (x)

]∞
x=0
− 2

ˆ (
x− x̄lt

)
f lt (x) dx

=
(
x̄lt
)2
f lt (0) . (B.84)
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Assuming that f lt (0) = 0 means that the above is zero. Note that:

ˆ
(x− x̄et )

2
fut (x) dx =

ˆ
[(x− x̄ut ) + (x̄ut − x̄et )]

2
fut (x) dx

=

ˆ
[(x− x̄ut ) + (x̄ut − x̄et )]

2
fut (x) dx

=

ˆ
(x− x̄ut )

2
fut (x) dx+ 2 (x̄ut − x̄et )

ˆ
(x− x̄ut ) fut (x) dx

+ (x̄ut − x̄et )
2
ˆ
fut (x) dx

=

ˆ
(x− x̄ut )

2
fut (x) dx+ (x̄ut − x̄et )

2
. (B.85)

Likewise:

ˆ
(x− x̄ut )

2
fet

(
x

1− ζ

)
dx =

ˆ ([
x

1− ζ
− x̄e

1− ζ

]
−
[
x̄ut

1− ζ
− x̄e

1− ζ

])2

fet

(
x

1− ζ

)
dx

× (1− ζ)
2

= (1− ζ)
2
ˆ [

x

1− ζ
− x̄e

1− ζ

]2

fet

(
x

1− ζ

)
dx

+ (1− ζ)
2

[
x̄ut

1− ζ
− x̄e

1− ζ

]2

= (1− ζ)
2
ˆ [

x

1− ζ
− x̄e

1− ζ

]2

fet

(
x

1− ζ

)
dx+ (x̄ut − x̄e)

2

=

ˆ
(x− x̄e)2

fet

(
x

1− ζ

)
dx+ (x̄ut − x̄e)

2
. (B.86)

Note that:

ˆ (
x− x̄lt

)2
x
∂

∂x
f lt (x) dx =

[(
x− x̄lt

)2
xf lt (x)

]∞
x=0
−
ˆ [

2
(
x− x̄lt

)
x+

(
x− x̄lt

)2]
f lt (x) dx

= −3

ˆ (
x− x̄lt

)2
f lt (x) dx. (B.87)

Hence:
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ˆ
(x− x̄et )

2 ∂

∂x

∂

∂t
[F et (x)] dx =

ˆ
(x− x̄et )

2 ∂

∂x

[
−αxfet (x) + θq (θ)

(
1− e
e

)
[Fut (x)− F et (x)]

]
dx

= −α
[ˆ

(x− x̄et )
2
fet (x) dx+

ˆ
(x− x̄et )

2
x
∂

∂x
fet (x) dx

]
+θq (θ)

(
1− e
e

)[ˆ
(x− x̄et )

2
fut (x) dx−

ˆ
(x− x̄et )

2
fet (x) dx

]
= 2α

ˆ
(x− x̄et )

2
fet (x) dx

+θq (θ)

(
1− e
e

)[ˆ
(x− x̄et )

2
fut (x) dx−

ˆ
(x− x̄et )

2
fet (x) dx

]
= θq (θ)

(
1− e
e

)
×
[ˆ

(x− x̄ut )
2
fut (x) dx−

ˆ
(x− x̄et )

2
fet (x) dx+ (x̄ut − x̄et )

2

]
+2α

ˆ
(x− x̄et )

2
fet (x) dx. (B.88)

It follows that:

ċet
cet

=

´
(x− x̄et )

2 ∂
∂x

∂
∂t [F et (x)] dx´

(x− x̄et )
2
fet (x) dx

− 2
d
dt x̄

e
t

x̄et

=
2α
´

(x− x̄et )
2
fet (x) dx+ θq (θ)

(
1−e
e

) [´
(x− x̄ut )

2
fut (x) dx−

´
(x− x̄et )

2
fet (x) dx+ (x̄ut − x̄et )

2
]

´
(x− x̄et )

2
fet (x) dx

−2

[
α+ θq (θ)

(
1− e
e

)(
x̄u − x̄e

x̄e

)]
= θq (θ)

(
1− e
e

)[
cu

ce

(
x̄u

x̄e

)2

+ 1− 2
x̄u

x̄e
+

1

ce

(
x̄ut − x̄et
x̄et

)2
]
. (B.89)

61



For the unemployed, we have:

ˆ
(x− x̄ut )

2 ∂

∂x

∂

∂t
[Fut (x)] dx =

ˆ
(x− x̄ut )

2 ∂

∂x

[
δxfut (x) + λ

e

1− e

[
F et

(
x

1− ζ

)
− Fut (x)

]]
dx

= δ

ˆ
(x− x̄ut )

2

[
fut (x) + x

∂

∂x
fut (x)

]
dx

+λ
e

1− e

ˆ
(x− x̄ut )

2

[
fet

(
x

1− ζ

)
− fut (x)

]
dx

= −2δ

[ˆ
(x− x̄ut )

2
fut (x) dx+

ˆ
(x− x̄ut )

2
x
∂

∂x
fut (x) dx

]
+λ

e

1− e
(1− ζ)

2
ˆ (

x

1− ζ
− x̄ut

1− ζ

)2

fet

(
x

1− ζ

)
dx

−λ e

1− e

ˆ
(x− x̄ut )

2
fut (x) dx

= −2δ

ˆ
(x− x̄ut )

2
fut (x) dx

+λ
e

1− e

ˆ
(x− x̄et )

2
fet (x) dx+ (x̄ut − x̄et )

2

−λ e

1− e

ˆ
(x− x̄ut )

2
fut (x) dx (B.90)

Hence:

ċut
cut

=
d
dt

´
(x− x̄ut )

2
fut (x) dx´

(x− x̄ut )
2
fut (x) dx

− 2
d
dt x̄

u
t

x̄ut

= −2δ + λ
e

1− e

[ ´
(x− x̄et )

2
fet (x) dx´

(x− x̄ut )
2
fut (x) dx

+
1´

(x− x̄ut )
2
fut (x) dx

(x̄ut − x̄et )
2 − 1

]

−2

[
λ

(
e

1− e

)(
x̄e − x̄u

x̄u

)
− δ
]

= −2δ + λ
e

1− e

[
ce

cu

(
x̄e

x̄u

)2

+
1

cu

(
x̄ut − x̄et
x̄u

)2

− 1

]

−2

[
λ

(
e

1− e

)(
x̄e − x̄u

x̄u

)
− δ
]

= λ
e

1− e

[
ce

cu

(
x̄e

x̄u

)2

+
1

cu

(
x̄ut − x̄et
x̄u

)2

− x̄e

x̄u

]
. (B.91)

Thus, we get the following affine system of differential equations:
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ċe = θq (θ)

(
1− e
e

)(
x̄u

x̄e

)
(1 + cu)

(
1 +

x̄u − x̄e

x̄e

)
−θq (θ)

(
1− e
e

)(
x̄u

x̄e

)
(1 + ce)

(
1 +

x̄u − x̄e

x̄u

)
(B.92)

ċu = λ
e

1− e

(
x̄e

x̄u

)[
(1 + ce)

(
x̄e

x̄u

)
+

(
x̄u − x̄e

x̄e

)
− (1 + cu)

]
. (B.93)

Concisely, we can write the above as:

ċt = Pt (ct − c̄t) (B.94)

ct ≡
[
cet cut

]′
, (B.95)

where the elements of Pt and c̄t depend on model parameters and θq (θ), e, and x̄u

x̄e . Within

state s, the job-finding rate θsq (θs) is constant. From the employment law of motion (2.5),

we see that e converges to θsq(θs)
θsq(θs)+λ

. It’s straigtforward to show from the laws of motion for

xe (2.6) and xu (2.7) that xu

xe also converges to a constant as the amount of time in state s

grows long; it follows that x̄u

x̄e converges to a constant as well. Thus, as the amount of time

spent in state s grows long, Pt and c̄t converge to constants Ps and c̄s. If ċt = Ps (ct − c̄s),

then the growth rate of ce and cu converges to the maximal eigenvalue of Ps.22 Define ιs

to be the maximal eigenvalue of Ps.

I will now show that ιs is positive. If system (B.94) did have a steady state and system

(B.94) were not explosive, then ce and cu would converge to that steady state. But since ce

and cu are coefficients of variation, we know that the must be positive. Hence, to show that

system (B.94) is explosive, it is sufficient to show that it does not have a steady state with

ce > 0 and cu > 0. Define χs to be the limiting value of x̄
u

x̄e in state s. The ċe = 0 locus and

22To see this, let Ψs be a vector of the eigenvalues of Ps on the main diagonal, and let Υs be a matrix
containing the corresponding eigenvectors. Let ĉt ≡ (ct − c̄s). Since d

dt
ĉt = Psĉt, we know that ĉtn+t =

Υsdiag (exp {Ψst}) Υ−1
s ĉtn+t, using the same reasoning as in the proof of Proposition 6. This shows that

the growth rate of ĉt converges to the maximal element of Ψs, so the growth rate of ct must also converge
to the maximal value of Ψs.
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the ċu = 0 locus are, respectively:

ce =
− (χs − 1)

2 − χ2
sc
u

1− 2χ
(B.96)

ce = χsc
u − (1− χs)2

. (B.97)

Consider the case where 1 − 2χs > 0. Then, the ċe = 0 locus is a downward-sloping line

with negative intercept in cu − ce space. So, the ċe = 0 locus does not pass through the

first quadrant, meaning that it cannot intersect the ċu = 0 locus at a point where ce > 0

and cu > 0. Now, suppose that 1 − 2χs < 0. Then, the ċe = 0 locus is an upward-sloping

line with positive intercept in cu− ce space; the ċu = 0 locus is an upward-sloping line with

negative intercept in cu− ce space. So, for these lines to intersect with ce > 0 and cu > 0, it

must be the case that the ċu = 0 locus is steeper than the ċe = 0 locus. That is, a positive

steady state requires:

χs > −
χ2
s

1− 2χs
. (B.98)

But this holds if, and only if, χs > 1; in other words, the unemployed must have a higher

average quality than the employed. I will show that this will not be the case. In the limit,

as the amount of time in state s grows long, d
dt x̄

e/x̄e = d
dt x̄

u/x̄u. The laws of motion for x̄e

and x̄u imply that χs is characterized by:

α+ δ + λ

(
es

1− es
− 1

)
+ λχs = λ

(
es

1− es

)
(1− ζ)

1

χs
, (B.99)

where es ≡ θSq(θs)
θSq(θs)+λ

is the limiting value of the employment rate. Hence:

0 = λχ2
s +

[
α+ δ + λ

(
es

1− es
− 1

)]
χs − λ

(
es

1− es

)
(1− ζ) . (B.100)

The above quadratic has a unique positive root given by:
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χs =
−
[
α+ δ + λ

(
es

1−es − 1
)]

+

√[
α+ δ + λ

(
es

1−es − 1
)]2

+ 4λ2
(

es
1−es

)
(1− ζ)

2λ
.

(B.101)

We see that χs R 1 if, and only if:

√[
α+ δ + λ

(
es

1− es
− 1

)]2

+ 4λ2

(
es

1− es

)
(1− ζ) R λ+ α+ δ + λ

es
1− es

⇐⇒

√[
α+ δ + λ

(
es

1− es
− 1

)]2

+ 4λ2

(
es

1− es

)
(1− ζ) R α+ δ + λ

(
es

1− es
+ 1

)
⇐⇒

[
α+ δ + λ

(
es

1− es
− 1

)]2

+ 4λ2

(
es

1− es

)
(1− ζ) R

[
α+ δ + λ

(
es

1− es
+ 1

)]2

⇐⇒ λ2

(
es

1− es
− 1

)2

+ 4λ2

(
es

1− es

)
(1− ζ) R 4 (α+ δ)λ

+λ2

(
es

1− es
+ 1

)2

⇐⇒ 0 R α+ δ

+λ

(
es

1− es

)
ζ. (B.102)

Thus, χs < 1, so ιs > 0.

It remains to show that ι1 < ι0 if e0 is sufficiently close to one. This will follow from

a continuity argument. We know that in an economy with full employment (es = 1),

all agents accumulate general human capital at the same constant rate, so ce must be

constant, implying that ιs = 0. We also know that for any non-stochastic economy with

some unemployment, ιs > 0. Also, ιs is a continuous function of θsq (θs), es, and χs.

Without loss of generality, we can write ιs as a continuous function of es, since we can

write both χs and θsq (θs) as a continuous function of es. Thus, local to es = 1, ιs must

be decreasing in es. This implies that if e0 is sufficiently close to one, then ι1 < ι0 because

e0 < e1.
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B.10 Theorem 12

Claim. Suppose that ε (θ) is a constant ε. If ε = η, then:

vs (k, xe, xu) = Gs

(
xe,

k

xe

)
+Hs

(
xe,

k

xe

)
+ Us (xu) , (B.103)

and the values of market tightness chosen by the planner coincide with the values of market

tightness in the competitive equilibrium.

Proof. I conjecture that:

vs (k, xe, xu) = ωksk + ωesx
e + ωus x

u. (B.104)

Under this conjecture, the first-order condition (7.3) becomes:

κ =
(
ωks + ωes − ωus

)
(1− ε) q (θ) . (B.105)

This implies that the planner makes θ constant within each productivity regime s. Denote

this maximizing value θs. Plugging the conjecture into the Bellman equation, evaluated at

the maximum, yields:

r
(
ωksk + ωesx

e + ωus x
u
)

= zsk + (b− κθs)xu + ωks [(α+ ρ− λ) k + θsq (θs)x
u]

+ωes [(α− λ)xe + θsq (θs)x
u]

+ωus [λ (1− ζ)xe − [δ + θsq (θs)]x
u]

+β
[(
ωk1−s − ωks

)
k +

(
ωe1−s − ωes

)
xe +

(
ωu1−s − ωus

)
xu
]

=
[
zs + ωks (α+ ρ− λ) + β

(
ωk1−s − ωks

)]
k

+
[
b− κθs + θsq (θs)

(
ωks + ωes − ωus

)
− ωus δ + β

(
ωu1−s − ωus

)]
xu

+
[
ωes (α− λ) + ωus λ (1− ζ) + β

(
ωe1−s − ωes

)]
xe (B.106)
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Evidently:

rωks = zs + ωks (α+ ρ− λ) + β
(
ωk1−s − ωks

)
(B.107)

rωes = ωes (α− λ) + ωus λ (1− ζ) + β
(
ωe1−s − ωes

)
(B.108)

rωus = b− κθs + θsq (θs)
(
ωks + ωes − ωus

)
− ωus δ + β

(
ωu1−s − ωus

)
. (B.109)

Notice that we can use the first-order condition to simplify the last of the above equations:

rωus = b− κθs
1− ε

(1− ε) +
θs

1− ε
(1− ε) q (θs)

(
ωks + ωes − ωus

)
− δωus + β

(
ωu1−s − ωus

)
= b+

εκ

1− ε
θs +

θs
1− ε

[
(1− ε) q (θs)

(
ωks + ωes − ωus

)
− κ
]
− δωus + β

(
ωu1−s − ωus

)
= b+

εκ

1− ε
θs − δωus + β

(
ωu1−s − ωus

)
. (B.110)

Switching to vector notation, we can solve for the coefficients in terms of market tightness

and primitives:

(r + β) Ωk = z + (α+ ρ− λ) Ωk + βΠΩk (B.111)

(r + β) Ωe = (α− λ) Ωe + λ (1− ζ) Ωu + βΠΩe (B.112)

(r + β) Ωu = b1S×1 +
εκ

1− ε
θ − δΩu + βΠΩu, (B.113)

where

Π ≡

 0 1

1 0

 (B.114)

Ωl ≡
[
ωl0 ωl1

]′
, l ∈ {k, e, u} . (B.115)
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Thus:

Ωk = [(r − α+ β + λ− ρ) I− βΠ]
−1

z (B.116)

Ωe = λ (1− ζ) [(r − α+ β + λ) I− βΠ]
−1

Ωu (B.117)

Ωu = [(r + δ + β) I− βΠ]
−1

[
b1S×1 +

εκ

1− ε
θ

]
. (B.118)

The above uniquely determines Ωk, but we still need to determine θ in order to determine

Ωe and Ωu. Recall from the proof of Proposition 2:

N1 = [(r − α+ β + λ− ρ) I− βΠ]
−1

z (B.119)

N0 = λ (1− ζ) [(r − α+ β + λ) I− βΠ]
−1

u (B.120)

u = [(r + δ + β) I− βΠ]
−1

[
b12×1 +

ηκ

1− η
θ

]
. (B.121)

In other words, when η = ε, we have Ωk = N1, Ωe = N0, and Ωu = u. Thus, we can write

the planner’s first-order condition as:

κq̃ (θ) = (1− ε)
[
Ωk + Ωe − Ωu

]
= (1− ε)

[
N0 + N1 − u

]
, (B.122)

which is identical to the implicit function that determines market tightness in a competitive

equilibrium. Theorem 2 establishes that the solution to this equation exists and is unique.

Finally, note that:

vs (k, xe, xu) = N1
s k +N0

s x
e + usx

u

=
(
g1
s + h1

s

)
k +

(
g0
s + h0

s

)
xe + usx

u

=

[(
g0
s + g1

s

k

xe

)
+

(
h0
s + h1

s

k

xe

)]
xe + usx

u

= Gs

(
xe,

k

xe

)
+Hs

(
xe,

k

xe

)
+ Us (xu) . (B.123)
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