東京都市大 大学院特別講義 「ITによって進化する公共交通の最前線」 前編:情報技術編

421 views

Published on

東京都市大において、東大生研の若手研究者による連続講義が「大学院特別講義」として行われています。これは、2016年11月23日に情報分野の講義を担当した際の資料です。
https://www.tcu.ac.jp/ttrenkei/news/20160913.html

Published in: Technology
0 Comments
8 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
421
On SlideShare
0
From Embeds
0
Number of Embeds
50
Actions
Shares
0
Downloads
3
Comments
0
Likes
8
Embeds 0
No embeds

No notes for slide

東京都市大 大学院特別講義 「ITによって進化する公共交通の最前線」 前編:情報技術編

  1. 1. H28 IT :
  2. 2. (Twitter @niyalist) ◦ ◦ ◦ ◦ 2008-2010 ◦ 2010-2013 ◦ 2013-
  3. 3. 1: 1. 2. 3. 4.
  4. 4. 2: 1. 2. 3.
  5. 5. 3: 1. 2. 3. Twitter LINE SNS
  6. 6. http://www.keishicho.metro.tokyo.jp/kotsu/jikoboshi/koreisha/koreijiko.html
  7. 7. 2013 CM
  8. 8. / ◦ http://giphy.com/gifs/l41lSVMtkWblDT04M
  9. 9. ◦ ◦ ◦ http://www.wired.com/2014/03/rising-mass-transit-ridership/
  10. 10. IT
  11. 11. LRT BRT Uber Lyft 1
  12. 12. IT ◦ IT ◦ IT ◦
  13. 13. IT ◦ ◦ ◦ ◦
  14. 14. NAVYA ARMA ◦ 15 ◦ 5 13 ◦ ◦ ◦ LIDAR ◦ RTK GPS cm ◦
  15. 15. ◦ 15 ARMA 2 BestMile ◦ EPFL ◦ ◦
  16. 16. EasyMile ◦ 2014 EZ10 ◦ 12 6 ◦ 20km/h 40km/h ◦ 14 ◦ ◦ ◦ :
  17. 17. DeNA EasyMile ◦ Robot Shuttle 2016 8 2016 11
  18. 18. 2016 2 -3 ◦ ◦
  19. 19. IT IT
  20. 20. car2go ◦ ◦ 8 30 ◦ ◦ ◦ ※ ◦ ※ 1 2015 10 http://business.nikkeibp.co.jp/atcl/report/15/110879/102600116/
  21. 21. 2009 2011 SF 2013 2015 CMU 40 2015 2016 2016
  22. 22. Uber UberX ◦ UberPOOL ◦ Uber X ◦ ◦ Lyft Lyft Line
  23. 23. ◦ 27 ◦ Airbnb Uber Lyft ◦ ◦ ◦ ◦ ◦
  24. 24. Kutsuplus 2013 ◦ 5 10 45 ◦ 9 ◦ 3.5 ◦ AALT
  25. 25. http://www.muotoilutarinat.fi/en/project/kutsuplus/
  26. 26. 2015 ◦ 2015 : 15 ◦ 2016 45 ◦ 2017 100
  27. 27. chariot ◦ ◦ 2014 ◦ ◦ 28 100 2016 Ford Smart Mobility ◦
  28. 28. ◦ 31 20 http://www.nakl.t.u-tokyo.ac.jp/odt/index.html
  29. 29. IT
  30. 30. vison
  31. 31. Moovel ◦ ◦ ◦
  32. 32. by 2006 ◦ ◦ JR
  33. 33. ◦ ◦ ◦ 2011 6 2013 2 ◦ 70
  34. 34. 2011 1 ◦ 10 70 100 : 56:44 ◦ 19 ◦ 28 ◦ 53 ◦ 23 ◦ 7 19% 28% 53% PC 28% 携帯電話 31% スマート フォン 36% 専用設置 端末 5%
  35. 35. iPhone, Android
  36. 36. ◦ ◦ ◦ Web ◦ ◦ ◦ ◦ ◦ 1 ◦ 1 ◦ : google maps →
  37. 37. AR AR ◦ ◦ ◦ 次発車まで 5:30 鳥取駅行
  38. 38. → 便利なシステム 見つけたよ。 こんな便利なもの があったのか。 今度使って みようか な。
  39. 39. Twitter ◦ ◦ URL
  40. 40. ◦ 12 14:23 Android
  41. 41. 1. 2. 3. 4.
  42. 42. 1
  43. 43.
  44. 44. ◦ ◦ ◦
  45. 45.
  46. 46. スマートフォンを⽤いた 地下鉄位置情報の実現
  47. 47. ◦ 2013 3 ◦ ◦
  48. 48. GPS GPS is not available on subway because we cannot receive GPS signal. 55 ?????? ???
  49. 49. Wi-Fi Wi-Fi Wi-Fi 56 ???
  50. 50. : ◦ GPS
  51. 51. 1: / ◦ SubwayPS ◦ ◦ ※ Stockx, T., Hecht, B. and Schoning, J.: SubwayPS: To- wards Smartphone Positioning in Underground Public Transportation Systems, Proc. SIGSPATIAL, pp. 93– 102 (2014).
  52. 52. 2: → → / Takamasa Higuchi, Hirozumi Yamaguchi, and Teruo Higashino Tracking Motion Context of Railway Passengers by Fusion of Low-Power Sensors in Mobile Devices. In ISWC, 2015
  53. 53. 1: ◦ 281 ◦
  54. 54. ◦ ◦ ◦ ◦ ◦ ◦ OS
  55. 55. SmartKompano ◦ ◦ GPS
  56. 56. ◦ ◦ OS GPS Wi-Fi iOS 8.1 ◦ ◦
  57. 57. 300m / ◦ 20
  58. 58. iPhone 5S 24 ◦ ◦ ◦ ◦
  59. 59. Background Activity ◦ Moves
  60. 60. ◦ 5 ◦ ◦
  61. 61. 2: ◦ ◦
  62. 62. 0 5 10 15 20 25 30 35 40 45 50 0 10 20 30 40 50 60 70 80 Altitude[m] Time[sec] iPhone6-A iPhone6-B iPhone6 Plus
  63. 63. : , , , " ", , 56(1), pp.260-272, 2015 1 .
  64. 64. Time [hPa]
  65. 65. 1: / ◦ 10 (13 ) Time
  66. 66. Time → →
  67. 67. Time / 6 9 ◦
  68. 68. 2: /
  69. 69. 2: ※ ◦ ◦ 38.6m 10.9m 11.6m 15.2m 11.7m -4.0m -10.9m -3.2m -12.4m 10.3m -2.6m -8.3m -1.8m ※
  70. 70. / 80
  71. 71. Swift Swift Swift
  72. 72. / 4 3 82 Line Stations Time [min.] 25 50 14 30 18 38 21 30
  73. 73. 1: / Recall is 85% to 97%, precision is 67% to 92% 83 Line Precision Recall F-measure Asc 0.913 0.973 0.942 Desc 0.864 0.973 0.914 Asc 0.917 0.929 0.916 Desc 0.735 0.857 0.791 Asc 0.788 0.912 0.845 Desc 0.801 0.947 0.866 Asc 0.669 0.952 0.786 Desc 0.775 0.937 0.846 Total 0.808 0.945 0.836
  74. 74. 2: Using actual estimated motion state. n is the number of the station used for estimation. Because of motion state errors, accuracy rate is low. 84 Line Accuracy rate n = 2 n = 3 n = 4 n = 5 Asc 0.348 0.515 0.619 0.667 Desc 0.290 0.455 0.571 0.633 Asc 0.333 0.818 0.833 0.778 Desc 0.333 0.424 0.367 0.333 Asc 0.392 0.583 0.644 0.714 Desc 0.373 0.646 0.533 0.619 Asc 0.281 0.352 0.431 0.417 Desc 0.427 0.537 0.510 0.521 Total 0.327 0.498 0.527 0.553
  75. 75. 86
  76. 76. ACM SIGSPATIAL Satoshi Hyuga, Masaki Ito, Masayuki Iwai, Kaoru Sezaki, "Estimate a User's Location Using Smartphone's Barometer on a Subway", 5th International Workshop on Mobile Entity Localization and Tracking in GPS-less Environments (MELT 2015), Nov. 2015.
  77. 77. ◦ 2 ◦ ◦ ◦ / ◦ / ◦

×