A proposal of
new concurrency model
for Ruby 3

Koichi Sasada ey heroku
kol@heroku.com

Presentation resource

*http://atdot.net/~kol/diary
*Presentation slide (in English)
*Japanese script

People love “Concurrency”

‘g} Masatoshi SEK| @m_seki relaxing the GVL

Charlie Gracie @crgracie

' 5&l dRuby in the last century. n Improved scalability by

JA

ErRuby: Ruby on Erlang/OTP ¥ = *_ concurrent-ruby and how it is

K, i Hsiang @jaliifive 24 making Rails concurrent
Vipul A M @vipulnsward

How to create multiprocess & Ruby Concurrency compared

server on Windows with Ruby Anil Wadghule @anildigital

Ritta Narita @narittan

(at least, there are two-
parallel sessions)

Why people love (to discuss)
“Concurrency”?

* Performance by “Parallel” execution to utilize
multiple-cores

* Ruby has thread system, but MRI doesn’t permit
to allow parallel execution.

About this presentation

*Show “Why difficult multi-threads programs”

*Propose new concurrent and parallel mechanism

idea named “Guild”
* For Ruby 3

Koichi Sasada

*A programmer living in Tokyo, Japan

*Ruby core committer since 2007
*YARV, Fiber, ... (Ruby 1.9)
*RGenGC, RincGC (Ruby 2...)

PROGRAMMING

Language

Koichi is an Employee

salesforce heroku

Difficulty of
Multi-threads programming

Programming language evolution

* Trade-off: Performance v.s. Safety/Easily
* Performance: making faster programs

e Safety: making bug-free programs
* Easily: making programs with small efforts

Two example
C language

*String manipulation with pointers
*Memory management without GC

String manipulation with pointers

*C: Using raw pointers to manipulate strings
* Good: all-purpose and fast
* Bad: Error-prone
* Generates strange behavior, such as abnormal termination
* Ruby: Wrap with String class
* Good: Easy to use
* Bad: slower than C in some cases

Object management without GC

*C: Free memory objects manually
* Good: full control (target, timing and so on)
* Bad: Error-prone
* double-free/memory-leak, ...
* Ruby: Automatic collection with GC
* Good: nothing to care about object collection
* Bad: introduce some overhead

Ruby chose “safety/easily” approach

*Ruby encourage “Happy Programming”
*Reduce programmer’s cost
*Nowadays computer is enough faster

*Implementation techniques overcome
performance penalties

Do you want to program without GC?

Muilti-threads programming is difficult

*Introduce data race, race condition
* Introduce deadlock, livelock Difficult to make

« Difficulty on debugging because of correct (bug-free)
nondeterministic behavior programs
e difficult to reproduce same problem

o Difficult to make
* Difficult to tune performance fast programs

Data race and race condition

* Bank amount transfer example

* Quoted from Race Condition vs. Data Race
http://blog.regehr.org/archives/490

def transferl (amount, account_from, account_to)
if (account_from.balance < amount) return NOPE
account_to.balance += amount
account_from.balance -= amount
return YEP

end

Data race

* “account to.balance += amount” has Data-race

e Assume two threads (T1 and T2) invoke this methods with
same bank accounts

interleave two threads (T1: amount = 100, T2: amount = 200)
T1:tl1 = account_to.balance #t1 =10
T2:t2 = account_to.balance #t2 =10
T2: account_to.balance =t2 + 200 #=> 210
T1: account_to.balance =t1 + 100 #=> 110 (expected: 310)

Race condition

*To avoid data-race with the lock
*But there is another problem yet

Lock with “Thread.exclusive”

def transfer2 (amount, account_from, account_to)
if (account_from.balance < amount) return NOPE
Thread.exclusive{ account_to.balance += amount }
Thread.exclusive{ account_from.balance -= amount }
return YEP

end

Race condition

*To avoid data-race with the lock
*But there is another problem yet

T1 amount = 100, T2 amount = 200, account_from.balance = 250

T1
T2
T2
T2
T1
T1

. if (account_from.balance (== 250) < 100) return NOPE # OK, go through

. if (account_from.balance (== 250) < 200) return NOPE

: Thread.exclusive{ account_to.balance += 200 }

. Thread.exclusive{ account_from.balance -= 200 } #=> 250-200 => 50

: Thread.exclusive{ account_to.balance += 100 }

. Thread.exclusive{ account_from.balance -= 100 } #=> 50 - 100 => negative number!!

Final solution

* Lock whole of method

def transferl (amount, account_from, account_to)
Thread.exclusive{
if (account_from.balance < amount) return NOPE
account_to.balance += amount
account_from.balance -= amount
return YEP
}

end

Another example
Multi-thread quiz

* What happen on this program?

ary =1[1, 2, 3]
tl = Thread.new({

ary.concat [4, 5, 6] (1) [1, 2, 3]

}

t2 = Thread.new{ (2) [1’ 2,3,4,5, 6]
p ary # what’s happen? (3) (1) or (2)

}.join

Another example
Multi-thread quiz

* Answer: (4) depends on an interpreter

arv=[12,3] On MRI, (3) is correct

tl = Thread.new({
ary.concat [4, 5, 6]

} It will shows
t2 = Thread.new({ [1, 2, 3] or
what’s h ?
}Jpo?r:v whnat's nappen [1’ 2’ 3’ 4’ 5’ 6]

(depends on thread
switching timing)

Another example
Multi-thread quiz

* Answer: (4) depends on an interpreter

ary = (1, 2, 3]
tl = Thread.new{
ary.concat [4, 5, 6]

}
£2 = Thread.new| It can cause Java

p ary # what’s happen? exception because

Join .

) “Array#concat” is not
thread safe

On JRuby:

On JRuby ...

similar program
h = Hash.new(0)
NA =1 000
10 _000.times{
ary =]
(1..10).each{
Thread.new{
NA.times{|i|
ary.concat [i]

}
}

}
t2 = Thread.new{

s = ary.dup
}.join

}

Unhandled Java exception: java.lang.NullPointerException

java.lang.NullPointerException: null
rbinspect at org/jruby/RubyBasicObject.java:1105
inspect at org/jruby/RubyObiject.java:516
inspectAry at org/jruby/RubyArray.java:1469
inspect at org/jruby/RubyArray.java:1497
cacheAndCall at org/jruby/runtime/callsite/CachingCallSite.java:293
call at org/jruby/runtime/callsite/CachingCallSite.java:131
block in t.rb at t.rb:17
yieldDirect at org/jruby/runtime/CompiledIRBlockBody.java:156
yieldSpecific at org/jruby/runtime/IRBlockBody.java:73
yieldSpecific at org/jruby/runtime/Block.java:136
times at org/jruby/RubyFixnum.java:291
cacheAndCall at org/jruby/runtime/callsite/CachingCallSite.java:303
callBlock at org/jruby/runtime/callsite/CachingCallSite.java:141
call at org/jruby/runtime/callsite/CachingCallSite.java:145
<top> at t.rb:3
invokeWithArguments at java/lang/invoke/MethodHandle.java:599
load at org/jruby/ir/Compiler.java:111
runScript at org/jruby/Ruby.java:833
runScript at org/jruby/Ruby.java:825
runNormally at org/jruby/Ruby.java:760
runFromMain at org/jruby/Ruby.java:579
doRunFromMain at org/jruby/Main.java:425
internalRun at org/jruby/Main.java:313
run at org/jruby/Main.java:242
main at org/jruby/Main.java:204

jruby 9.1.2.0 (2.3.0) 2016-05-26 7357c8f OpenJDK 64-Bit Server VM 24.95-b01 on 1.7.0_101-b00 +jit [linux-x86_64]

On 8 hardware threads machine

Difficulty of multi-threads programs

*We need to synchronize all sharing mutable
objects correctly
* We need to know which methods are thread-safe.
* Easy to track all on small program
* Difficult to track on big programs, especially on
programs using gems

*We need to check all of source codes, or believe
library documents (but documents should be correct)

* Multi-threads prog. requires “completeness”

Difficulty of multi-threads programs (cont.)

*For debugging, it is difficult to find out the bugs

* Backtrace may not work well because the problem
may be placed on another line.

* Bugs don’t appear frequently with small data

* Difficult to reproduce issues because of
nondeterministic behavior

FYI:
Why MRI Array

concat is thread-safe?

* MRI uses GVL (Giant/Global VM Lock) to control
thread switching timing and C methods (such as
Array#concat) are working atomically.

*GVL prohibits parallel thread execution (BAD),
however it avoids several severe issues (GOOD).

Thread programming:
Performance tuning issue

al=[];a2 =] Serial program:
NA =10 000 000

t1 = Thread.new{
NA.times{|i| al <<} real Om8.568s

}.ioin user 0m37.816s
t2 = Thread.new{ sys 0m5.530s

NA.times{|i| a2 <<i }

}join on JRuby

Thread programming:
Performance tuning issue

al=[];a2=]

NA =10 000 000

tl = Thread.new{
NA.times{|i| al <<i}

}

t2 = Thread.new{
NA.times{|i| a2 <<i }

}
tl.join; t2.join

Parallel program
(2 threads):

real 0m6.411s

user 0m20.527s
sys 0m7/.798s

Thread programming:
Performance tuning issue

al=[];a2={] .
NA =10 000 000 Parallel program with
ml, m2 = Mutex.new, Mutex.new d UseleSS IOCk 1

tl = Thread.new{ (2 threads).

NA.times{|i| ml.synchronize{ al << i }}

}
t2 = Thread.new{

NA.times{|i| m2.synchronize{ a2 <<i }} real Om 10.2645
}
t1.join; t2.join user 0m38.370s
sys 0m4.406s

Thread programming:
Performance tuning issue

al=[];a2=]
NA =10 000 000
m = Mutex.new
tl = Thread.new{
NA.times{|i| m.synchronize{ al <<i }}

}
t2 = Thread.new{

NA.times{|i| m.synchronize{ a2 <<i }}

}
tl.join; t2.join

Parallel program with
a useless lock 2

(2 threads):

real 0m15.163s

user 0m45.317s
sys 0m9.658s

Performance tuning issue

_____Executiontime _

Serial program 8.568s
Parallel program 6.411s
Parallel program with a 10.264s
useless lock 1

Parallel program with a 15.163s

useless lock 2

Thread programming:
Performance tuning issue

We need to use just correct number locks

Not enough - unexpected behavior
Too much - performance penalty

FY1: synchronization mechanism

* Many synchronization mechanisms...
* Mutual exclusion (Mutex), monitor, critical section
* Transactional memory (optimistic lock)
* Atomic instructions
* Synchronized Queue

* Research on many lightweight lock algorithms
*They assume we can use them correctly

Overcome thread difficulty

Key idea

Problem:
Easy to share mutable objects

ldea:

Do not allow to share mutable objects
without any restriction

Study from other languages

*Shell script with pipes, Racket (Place)
* Copy mutable data between processes w/ pipes

*Erlang/Elixir
* Do not allow mutable data

*Clojure
* Basically do not allow mutable data
* Special data structure to share mutable objects
* Note that it can share mutable objects on Java layer

NOTE: we do not list approaches using “type system”

Don’t you know
Elixir language?

rrrrrrrrrrrrrrrrrrrrrr

Programming Elixir 1.2 | e,
by Dave Thomas

?l‘ R 7|:|7 S22 Elixir
H—-BEHEHIR 2016/08/19

You can buy it TODAY!!
H AU (ZABA1BRBSLLNTT

Summary of approaches

 Communication with copied data (shell scripts)
* Good: we don’t need locks
* Bad: copy everything is slow

* Prohibit mutable objects
* Good: we don’t need locks
* Bad: Ruby utilizes many “write” operations. Unacceptable.

* Provide special data structure to share mutable objects

* Good: we don’t need locks (who don’t use such special data
structures)

* Bad: Difficult to use special data structures.

Background was finished

Our goal for Ruby 3

*We need to keep compatibility with Ruby 2.
* We can make parallel program.
* We shouldn’t consider about locks any more.

* We can share objects with copy, but copy
operation should be fast.

*\We should share objects if we can.

* We can provide special objects to share mutable
objects like Clojure if we really need speed.

“Guild”

New concurrency model for Ruby 3

Guild: New concurrency abstraction

* Guild has at least one thread (and a thread has
at least one fiber)

Guild Guild
Thread Thread Thread -
Fib :
iber Cbar Fiber
Fiber Fiper
J

Threads in different guilds can run in
Parallel

* Threads in different guilds can run in parallel
* Threads in a same guild can not run in parallel

because of GVL (or GGL: Giant Guild Lock)

Acquire GGL

G1:T1 m—) ————>

Acquire GGL

Guild and objects:
All objects have their own membership

* All of mutable objects should belong to only one
Guild (all mutable objects are member of one guild)

* Other guilds can not access objects

Guild 1 NG 4 Guild 2 b
00 =zl0®

Object membership

Only one guild can access mutable object
- We don’t need to consider about locks

Because:

NO data races and NO race conditions
(if all guilds use only one thread)

Inter guilds communication

*“Guild::Channel” to communicate each guilds

*TWOo communhnication methods

1. Copy
2. Transfer membership or Move in short

Copy using Channel

*Guild::Channel#ttransfer(obj) send deep copied
object(s) to a destination guild.

* dRuby and multi-process system use this kind of
communication

Copy using Channel

channel.transfer(o1l) ol = channel.receive

02 02
03 03

0O2:Data 0O2:Data

~_ | O3:Data Seagmm O3:Data

Move using Channel
New technique!!]

* Guild::Channel#transfer_membership(obj) change
the membership of object(s)
 Leave from the source guild
* Join to the destination guild

* Prohibit accessing to left objects
e Cause exceptions and so on
*ex) obj=“foo”
ch.transfer_membership(obj)
obj.upcase #=> Error!!
p(obj) #=> Error!!

Move using Channel

channel.transfer_membership(o1) ol = channel.receive

02

0O2:Data

Move using Channel

channel.transfer_membership(o1) ol = channel.receive

Guildl - Guild?2 h

‘ channel >
From Guild1 perspective, MOVE $ —
transferred objects are invalidated

Sharing immutable objects

 Immutable objects can be shared with any
guilds
*al =[1, 2, 3].freeze: al is Immutable object
*a2 =[1, Object.new, 3].freeze: a2 is not immutable

*\We only need to send references
*very lightweight, like thread-programming

* Numeric objects, symbols, true, false, nil are
immutable (from Ruby 2.0, 2.1, 2.2)

Sharing immutable objects
We can share reference to immutable objects

channel.transfer(o1l) ol = channel.receive

0O2:Data

Use-case 1: master — worker type

def fib(n) ... end
g fib = Guild.new(script: %q{
ch = Guild.default_channel

while n, return_ch = ch.receive Main ch Fibonacci
return_ch.transfer fib(n)

end Guild <: Guild
}H eturn_ch

n, return_ch

ch = Guild::Channel.new Answer of fib(n)
g fib.transfer([3, ch])
o ch.receive NOTE: Making other Fibonacci guilds,

you can compute fib(n) in parallel

Use-case 2: pipeline

result_ch = Guild::Channel.new
g pipe3 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj3(obj)
Guild.argv[0].transfer_membership(obj)
end
}, argv: [result_ch])
g_pipe2 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj2(obj)
Guild.argv[0].transfer_membership(obj)
end
}, argv: [g_pipe3])
g_pipel = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_objl(obj)
Guild.argv[0].transfer_membership(obj)
end

}, argv: [g_pipe2])
obj = SomeClass.new

g _pipel.transfer_membership(obj)
obj = result_ch.receive

Move
and modify

and modify

Pipe 2
Guild

Move
and modify

Use-case:
Bank example

g_bank = Guild.new(script: %q{
while account_from, account_to, amount,
ch = Guild.default_channel.receive
if (Bank[account_from].balance < amount)
ch.transfer :NOPE
else
Bank[account_to].balance += amount
Bank[account_from].balance -= amount
ch.transfer :YEP
end
end

)

Only bank guild maintains bank data

Bank
Guild

requests

Other Other
guilds guilds

Jse-case:
ntroduce special data structure

* |deas of special data
structure to share
mutable objects Pl
e Use external RDB

* In process/external
Key/value store

e Software transactional

memory Other Other
T guilds guilds

Summary of use cases

* Making multiple workers and compute in parallel
* Requests and responses are communicate via channels
* You can send it with copy or move
* Maybe web application can employ this model

* Making Pipeline structures and compute in parallel
e Each task has own Guild
» Receive target object, modify it and send it next pipeline
* You will send it with move (transfer membership)
* It will help applications like applying several filters for input data

* Own responsibility by one Guild
» All accesses are managed by one responsible Guild
* |f you want to share mutable objects, we need special data structures
» External RDBs or key/value stores are also good idea for this purpose

Communication strategy

[Upper is better]
* Passing immutable objects
* Copy mutable objects

*|f you have performance problem, move
(transfer membership) mutable objects

*|f you have performance problem too, use
special data structure to share mutable objects

Compare between
Thread model and Guild model

*On threads, it is difficult to find out which objects
are shared mutable objects

*On Guilds, there are no shared mutable objects

* If there are special data structure to share mutable
objects, we only need to check around this code

- Encourage “Safe” and “Easy” programming

Compare between
Thread model and Guild model

* On threads, inter threads communication is very fast.

* On guilds, inter guilds communication introduce
overhead

* “Move” (transfer membership) technique can reduce
this kind of overheads

Trade-off: Performance v.s. Safety/Easily
Which do you want to choose?

Digression: The name of “Guild”

* “Guild” is good metaphor for “object’s
membership”

* Check duplication

* First letter is not same as other similar abstractions
* For variable names
* P is for Processes, T is for Threads, F is for Fibers

* There are no duplicating top-level classes and
modules in all of rubygems

Implementation of “Guild”

*How to implement inter Guilds communication
*How to isolate process global data

How to implement inter Guilds
communication

*Copy
* Move (transfer membership)

Copy using Channel

channel.transfer(o1l) ol = channel.receive

02 02
03 03

0O2:Data 0O2:Data

~_ | O3:Data Seagmm O3:Data

Copy using Channel

Implementation
channel.transfer(o1l) ol = channel.receive

O2:Data

We can use CoW
technique for data

Copy using Channel

Implementation

channel.transfer(o1l) ol = channel.receive

02 02
03 03

0O2:Data . 0O2:Data
) Move/Join

O3:Data

Seagmm O3:Data

Move using Channel

channel.transfer_membership(o1) ol = channel.receive

02

0O2:Data

Move using Channel

channel.transfer_membership(o1) ol = channel.receive

Guildl - Guild?2 h

‘ channel >
From Guild1 perspective, MOVE $ —
transferred objects are invalidated

Move using Channel
mplementation

channel.transfer_membership(o1)

Guildl

(2) Invalidate originals

=

deep copy

(1)%
o

©
\

Rannel

)

0l = channel.receive

é Guild2 A

Move using Channel

mplementation
channel.transfer_membership(o1)

Guildl

a

(2) Invalldate orlglnals annel

4

_ \M {3) Viove/Join

0l = channel.receive

é Guild?2 A

@

Ruby global data

* Global variables (Sfoo) keep C
e Change them to Guild local variables Ompa

* Class and module objects
* Share between guilds

e Class variables

* Change them to guild local. So that it is guild/class local variables h RUby 2

* Constants
* Share between guilds

* However if assigned object is not a immutable object, this constant is accessed only by setting guilds. If other
guilds try to access it, them cause error.

* Instance variables of class and module objects
* Difficult. There are several approaches.
* Proc/Binding objects
* Make it copy-able with env objects or env independent objects

* ObjectSpace.each_object
* OMG

Interpreter process global data

GC/Heap
* Share it. Do stop the world parallel marking- and lazy concurrent sweeping.
* Synchronize only at page acquire timing. No any synchronization at creation time.

Inline method cache
* To fill new entry, create an inline cache object and update atomically.

Tables (such as method tables and constant tables)
* Introduce mutual exclusions.

Current working directory (cwd)

* Each guild should have own cwd (using openat and so on).
Signal

* Design new signal delivery protocol and mechanism
C level global variables

* Avoid them.
* Main guild can use C extensions depends on them

Current thread
* Use TLS (temporary), but we will change all of C APIs to receive context data as first parameter in the future.

Performance evaluation

*On 2 core virtual machine
e Linux on VirtualBox on Windows 7

*Now, we can’t run Ruby program on other than
main guild, so other guilds are implemented by C
code

Performance evaluation
Simple numeric task in parallel

Fibonacci
: , Execution
Main _-+ Fibonacci time (sec)
Guild ! Fibonacci Single-Guild 19.45

\ Fibonacci Multi-Guild 10.45
Guild

Total 50 requests to compute fib(40)
Send 40 (integer) in each request

Performance evaluation
Copy/Move

sum
Main =% sum
Guild = .

\ sum
Guild

Execution
time (sec)

Single-Guild 1.00
Multi/ref 0.64
Multi/move -
Multi/copy -

Too slow!!
Because “move” need to

Total 100 requests to compute sum of array check all of elements
Send (1..10 000 _000).to_a in each request

Performance evaluation
Copy/Move

sum
Main =% sum

sum

\ sum
Guild

Execution
time (sec)

Single-Guild 1.00
Multi/ref 0.64
Multi/move 0.64

If we know this array only has immutable objects,
we don’t need to check all elements => special data structure

Check our goal for Ruby 3

* OK: Only in main guild, it is compatible.

* We can make parallel program. Sa‘

* OK: Guilds can run in parallel.

* We shouldn’t consider about locks any more.
* OK: Only using copy and move, we don’t need to care locks.

* We can share objects with copy, but copy operation should be fast.
* OK: Move (transfer membership) idea can reduce overhead.

* We should share objects if we can.
* OK: We can share immutable objects fast and easily.

* We can provide special objects to share mutable objects like Clojure
if we really need speed.

* OK: Yes, we can provide.

* We need to keep compatibility with Ruby 2. . "‘\ed\o
\S

Ssummary

*Introduce “why threads are very difficult”

*Propose new concurrency abstraction “Guild” for
Ruby 3

* Not implemented everything yet, but | show key
ideas and preliminary evaluation

Thank you for your attention

Koichi Sasada

<kol@heroku.com> 7 ¢

heroku

Approach comparison

Heap

Communication
Mutable objects

Communication
Frozen object

Lock
ISeq

Class/Module

Process/MVM Place (Racket) Guild Thread
(copy/move)

Separate Separate Share Share

Copy Copy Copy/Move Share

Copy Share (maybe) Share Share

Don’t need Don’t need (mostly) Don’t need Required

Copy Share Share Share

Copy Copy (fork) Share Share

