
A proposal of 

new concurrency model

for Ruby 3

Koichi Sasada
ko1@heroku.com



Presentation resource

•http://atdot.net/~ko1/diary
•Presentation slide (in English)
•Japanese script



People love “Concurrency”



Concurrent

RubyKaigi

(at least, there are two 

parallel sessions)



Why people love (to discuss) 
“Concurrency”?
•Performance by “Parallel” execution to utilize 
multiple-cores

•Ruby has thread system, but MRI doesn’t permit 
to allow parallel execution.



About this presentation

•Show “Why difficult multi-threads programs”

•Propose new concurrent and parallel mechanism 
idea named “Guild”
• For Ruby 3



Koichi Sasada

•A programmer living in Tokyo, Japan

•Ruby core committer since 2007
•YARV, Fiber, … (Ruby 1.9)
•RGenGC, RincGC (Ruby 2…)



Koichi is an Employee



Difficulty of
Multi-threads programming



Programming language evolution

•Trade-off: Performance v.s. Safety/Easily
•Performance: making faster programs

• Safety: making bug-free programs
• Easily: making programs with small efforts



Two example
C language
•String manipulation with pointers

•Memory management without GC



String manipulation with pointers

•C: Using raw pointers to manipulate strings
•Good: all-purpose and fast
•Bad: Error-prone

• Generates strange behavior, such as abnormal termination

•Ruby: Wrap with String class
•Good: Easy to use
•Bad: slower than C in some cases



Object management without GC

•C: Free memory objects manually
•Good: full control (target, timing and so on)
•Bad: Error-prone

• double-free/memory-leak, …

•Ruby: Automatic collection with GC
•Good: nothing to care about object collection
•Bad: introduce some overhead



Ruby chose “safety/easily” approach

•Ruby encourage “Happy Programming”
•Reduce programmer’s cost
•Nowadays computer is enough faster
•Implementation techniques overcome 
performance penalties

Do you want to program without GC?



Difficult to make
correct (bug-free)

programs

Muilti-threads programming is difficult

• Introduce data race, race condition

• Introduce deadlock, livelock

•Difficulty on debugging because of 
nondeterministic behavior
•difficult to reproduce same problem

•Difficult to tune performance
Difficult to make

fast programs



Data race and race condition

•Bank amount transfer example
•Quoted from Race Condition vs. Data Race 

http://blog.regehr.org/archives/490 

def transfer1 (amount, account_from, account_to)
if (account_from.balance < amount) return NOPE
account_to.balance += amount
account_from.balance -= amount
return YEP

end



Data race

•“account_to.balance += amount” has Data-race
• Assume two threads (T1 and T2) invoke this methods with 

same bank accounts

# interleave two threads (T1: amount = 100, T2: amount = 200)
T1: t1 = account_to.balance # t1 = 10
T2: t2 = account_to.balance # t2 = 10
T2: account_to.balance = t2 + 200 #=> 210
T1: account_to.balance = t1 + 100 #=> 110 (expected: 310)



Race condition

•To avoid data-race with the lock

•But there is another problem yet
# Lock with “Thread.exclusive”
def transfer2 (amount, account_from, account_to)
if (account_from.balance < amount) return NOPE
Thread.exclusive{ account_to.balance += amount }
Thread.exclusive{ account_from.balance -= amount }
return YEP

end



Race condition

•To avoid data-race with the lock

•But there is another problem yet

# T1 amount = 100, T2 amount = 200, account_from.balance = 250
T1: if (account_from.balance (== 250) < 100) return NOPE # OK, go through
T2: if (account_from.balance (== 250) < 200) return NOPE
T2:  Thread.exclusive{ account_to.balance += 200 }
T2:  Thread.exclusive{ account_from.balance -= 200 } #=> 250-200 => 50
T1:  Thread.exclusive{ account_to.balance += 100 }
T1:  Thread.exclusive{ account_from.balance -= 100 } #=> 50 - 100 => negative number!!



Final solution

•Lock whole of method

def transfer1 (amount, account_from, account_to)
Thread.exclusive{
if (account_from.balance < amount) return NOPE
account_to.balance += amount
account_from.balance -= amount
return YEP

}
end



Another example
Multi-thread quiz
•What happen on this program?

ary = [1, 2, 3]
t1 = Thread.new{
ary.concat [4, 5, 6]

}
t2 = Thread.new{
p ary # what’s happen?

}.join

(1) [1, 2, 3]
(2) [1, 2, 3, 4, 5, 6]
(3) (1) or (2)



Another example
Multi-thread quiz
•Answer: (4) depends on an interpreter

ary = [1, 2, 3]
t1 = Thread.new{
ary.concat [4, 5, 6]

}
t2 = Thread.new{
p ary # what’s happen?

}.join

On MRI, (3) is correct

It will shows
[1, 2, 3] or
[1, 2, 3, 4, 5, 6]
(depends on thread 
switching timing)



Another example
Multi-thread quiz
•Answer: (4) depends on an interpreter

ary = [1, 2, 3]
t1 = Thread.new{
ary.concat [4, 5, 6]

}
t2 = Thread.new{
p ary # what’s happen?

}.join

On JRuby:

It can cause Java 
exception because 
“Array#concat” is not 
thread safe



On JRuby …
# similar program
h = Hash.new(0)
NA = 1_000
10_000.times{

ary = []
(1..10).each{

Thread.new{
NA.times{|i|

ary.concat [i]
}

}
}
t2 = Thread.new{

s = ary.dup
}.join

}

Unhandled Java exception: java.lang.NullPointerException

java.lang.NullPointerException: null
rbInspect at org/jruby/RubyBasicObject.java:1105

inspect at org/jruby/RubyObject.java:516
inspectAry at org/jruby/RubyArray.java:1469

inspect at org/jruby/RubyArray.java:1497
cacheAndCall at org/jruby/runtime/callsite/CachingCallSite.java:293

call at org/jruby/runtime/callsite/CachingCallSite.java:131
block in t.rb at t.rb:17

yieldDirect at org/jruby/runtime/CompiledIRBlockBody.java:156
yieldSpecific at org/jruby/runtime/IRBlockBody.java:73
yieldSpecific at org/jruby/runtime/Block.java:136

times at org/jruby/RubyFixnum.java:291
cacheAndCall at org/jruby/runtime/callsite/CachingCallSite.java:303

callBlock at org/jruby/runtime/callsite/CachingCallSite.java:141
call at org/jruby/runtime/callsite/CachingCallSite.java:145
<top> at t.rb:3

invokeWithArguments at java/lang/invoke/MethodHandle.java:599
load at org/jruby/ir/Compiler.java:111

runScript at org/jruby/Ruby.java:833
runScript at org/jruby/Ruby.java:825

runNormally at org/jruby/Ruby.java:760
runFromMain at org/jruby/Ruby.java:579

doRunFromMain at org/jruby/Main.java:425
internalRun at org/jruby/Main.java:313

run at org/jruby/Main.java:242
main at org/jruby/Main.java:204

jruby 9.1.2.0 (2.3.0) 2016-05-26 7357c8f OpenJDK 64-Bit Server VM 24.95-b01 on 1.7.0_101-b00 +jit [linux-x86_64]
On 8 hardware threads machine



Difficulty of multi-threads programs

•We need to synchronize all sharing mutable 
objects correctly
•We need to know which methods are thread-safe.
• Easy to track all on small program
•Difficult to track on big programs, especially on 

programs using gems

•We need to check all of source codes, or believe 
library documents (but documents should be correct)

•Multi-threads prog. requires “completeness”



Difficulty of multi-threads programs (cont.)

•For debugging, it is difficult to find out the bugs
•Backtrace may not work well because the problem 

may be placed on another line.
•Bugs don’t appear frequently with small data
•Difficult to reproduce issues because of 

nondeterministic behavior



FYI: 
Why MRI Array#concat is thread-safe?
•MRI uses GVL (Giant/Global VM Lock) to control 
thread switching timing and C methods (such as 
Array#concat) are working atomically.

•GVL prohibits parallel thread execution (BAD), 
however it avoids several severe issues (GOOD).



Thread programming:
Performance tuning issue
a1 = []; a2 = []
NA = 10_000_000
t1 = Thread.new{

NA.times{|i| a1 << i }
}.join
t2 = Thread.new{

NA.times{|i| a2 << i }
}.join

Serial program:

real    0m8.568s

user    0m37.816s

sys     0m5.530s

on JRuby



Thread programming:
Performance tuning issue
a1 = []; a2 = []
NA = 10_000_000
t1 = Thread.new{

NA.times{|i| a1 << i }
}
t2 = Thread.new{

NA.times{|i| a2 << i }
}
t1.join; t2.join

Parallel program

(2 threads):

real    0m6.411s

user    0m20.527s

sys     0m7.798s



Thread programming:
Performance tuning issue
a1 = []; a2 = []

NA = 10_000_000

m1, m2  = Mutex.new, Mutex.new

t1 = Thread.new{

NA.times{|i| m1.synchronize{ a1 << i }}

}

t2 = Thread.new{

NA.times{|i| m2.synchronize{ a2 << i }}

}

t1.join; t2.join

Parallel program with 
a useless lock 1
(2 threads):

real    0m10.264s
user    0m38.370s
sys     0m4.406s



Thread programming:
Performance tuning issue
a1 = []; a2 = []

NA = 10_000_000

m = Mutex.new

t1 = Thread.new{

NA.times{|i| m.synchronize{ a1 << i }}

}

t2 = Thread.new{

NA.times{|i| m.synchronize{ a2 << i }}

}

t1.join; t2.join

Parallel program with 
a useless lock 2
(2 threads):

real    0m15.163s
user    0m45.317s
sys     0m9.658s



Performance tuning issue

Execution time

Serial program 8.568s

Parallel program 6.411s

Parallel program with a 
useless lock 1

10.264s

Parallel program with a 
useless lock 2

15.163s



Thread programming:
Performance tuning issue

We need to use just correct number locks

Not enough → unexpected behavior
Too much → performance penalty



FYI: synchronization mechanism

•Many synchronization mechanisms…
•Mutual exclusion (Mutex), monitor, critical section
• Transactional memory (optimistic lock)
•Atomic instructions
• Synchronized Queue
•…
•Research on many lightweight lock algorithms

•They assume we can use them correctly



Overcome thread difficulty



Key idea

Problem:

Easy to share mutable objects

Idea:

Do not allow to share mutable objects
without any restriction



Study from other languages
•Shell script with pipes, Racket (Place)
•Copy mutable data between processes w/ pipes

•Erlang/Elixir
•Do not allow mutable data

•Clojure
•Basically do not allow mutable data
• Special data structure to share mutable objects
•Note that it can share mutable objects on Java layer

NOTE: we do not list approaches using “type system”



Don’t you know
Elixir language?



Programming Elixir 1.2
by Dave Thomas

邦訳：プログラミングElixir
笹田耕一・鳥井雪共訳 2016/08/19

You can buy it TODAY!!
サイン会は明日13時らしいです



Summary of approaches
•Communication with copied data (shell scripts)
• Good: we don’t need locks
• Bad: copy everything is slow

•Prohibit mutable objects
• Good: we don’t need locks
• Bad: Ruby utilizes many “write” operations. Unacceptable.

•Provide special data structure to share mutable objects
• Good: we don’t need locks (who don’t use such special data 

structures)
• Bad: Difficult to use special data structures.



Background was finished



Our goal for Ruby 3

•We need to keep compatibility with Ruby 2.
•We can make parallel program.
•We shouldn’t consider about locks any more.
•We can share objects with copy, but copy 
operation should be fast.
•We should share objects if we can.
•We can provide special objects to share mutable 
objects like Clojure if we really need speed.



“Guild”
New concurrency model for Ruby 3



Guild: New concurrency abstraction

•Guild has at least one thread (and a thread has 
at least one fiber)

Guild

Thread

Fiber

Guild

Thread

Fiber

Guild

Thread

Fiber

Fiber

Thread

Fiber



Threads in different guilds can run in 
Parallel
• Threads in different guilds can run in parallel
• Threads in a same guild can not run in parallel 

because of GVL (or GGL: Giant Guild Lock)

G1:T1

G1:T2

G2:T3

Acquire GGL

Acquire GGL



Guild and objects:
All objects have their own membership
•All of mutable objects should belong to only one 
Guild (all mutable objects are member of one guild)

•Other guilds can not access objects

Guild 1 Guild 2

obj
obj

obj

obj

obj
Can’t access
(read/write)

NG!!



Object membership

Only one guild can access mutable object

→ We don’t need to consider about locks

Because:
NO data races and NO race conditions 
(if all guilds use only one thread)



Inter guilds communication

•“Guild::Channel” to communicate each guilds

•Two communication methods
1. Copy
2. Transfer membership or Move in short



Copy using Channel

•Guild::Channel#transfer(obj) send deep copied 
object(s) to a destination guild.

•dRuby and multi-process system use this kind of 
communication



Copy using Channel

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

COPY

channel.transfer(o1) o1 = channel.receive

O2:Data

O3:Data

O2:Data

O3:Data



Move using Channel
[New technique!!]
•Guild::Channel#transfer_membership(obj) change 

the membership of object(s)
• Leave from the source guild
• Join to the destination guild

•Prohibit accessing to left objects
• Cause exceptions and so on
• ex) obj = “foo”

ch.transfer_membership(obj)
obj.upcase #=> Error!!
p(obj) #=> Error!!



Move using Channel

Guild1 Guild2

o2
o3

o1
channel

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data



Move using Channel

Guild1 Guild2

channel

o2
o3

o1

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data

-
-

-

From Guild1 perspective, 
transferred objects are invalidated



Sharing immutable objects

• Immutable objects can be shared with any 
guilds
• a1 = [1, 2, 3].freeze: a1 is Immutable object
• a2 = [1, Object.new, 3].freeze: a2 is not immutable

•We only need to send references
• very lightweight, like thread-programming

•Numeric objects, symbols, true, false, nil are 
immutable  (from Ruby 2.0, 2.1, 2.2)



Sharing immutable objects
We can share reference to immutable objects

Guild1 Guild2

o2
o3

o1

channel

channel.transfer(o1) o1 = channel.receive

O2:Data O3:Data

Ref to 
o1

If o1 is immutable, any Guild can read o1

read

Ref to 
o1

read



Use-case 1: master – worker type
def fib(n) ... end
g_fib = Guild.new(script: %q{

ch = Guild.default_channel
while n, return_ch = ch.receive

return_ch.transfer fib(n)
end

})

ch = Guild::Channel.new
g_fib.transfer([3, ch])
p ch.receive

Main 
Guild

Fibonacci 
Guild

ch

return_ch

n, return_ch

Answer of fib(n)

NOTE: Making other Fibonacci guilds,
you can compute fib(n) in parallel



Use-case 2: pipeline
result_ch = Guild::Channel.new
g_pipe3 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj3(obj)
Guild.argv[0].transfer_membership(obj)

end
}, argv: [result_ch])
g_pipe2 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj2(obj)
Guild.argv[0].transfer_membership(obj)

end
}, argv: [g_pipe3])
g_pipe1 = Guild.new(script: %q{
while obj = Guild.default_channel.receive
obj = modify_obj1(obj)
Guild.argv[0].transfer_membership(obj)

end
}, argv: [g_pipe2])

obj = SomeClass.new

g_pipe1.transfer_membership(obj)
obj = result_ch.receive

Main 
Guild

Pipe 1
Guild

obj

Obj’
Move
and modify

Pipe 2
Guild

Obj’’

Move
and modify

Pipe 3
Guild

Obj’’’

Obj’’’

Move
and modify

Move



Use-case:
Bank example

Bank
Guild

g_bank = Guild.new(script: %q{
while account_from, account_to, amount,

ch = Guild.default_channel.receive
if (Bank[account_from].balance < amount)
ch.transfer :NOPE

else
Bank[account_to].balance += amount
Bank[account_from].balance -= amount
ch.transfer :YEP

end
end

})
…

Other 
guilds

Other 
guilds

requests

Only bank guild maintains bank data



Use-case:
Introduce special data structure
• Ideas of special data 

structure to share 
mutable objects
• Use external RDB
• In process/external 

Key/value store
• Software transactional 

memory
• …

??

Other 
guilds

Other 
guilds



Summary of use cases
• Making multiple workers and compute in parallel

• Requests and responses are communicate via channels
• You can send it with copy or move
• Maybe web application can employ this model

• Making Pipeline structures and compute in parallel
• Each task has own Guild
• Receive target object, modify it and send it next pipeline
• You will send it with move (transfer membership)
• It will help applications like applying several filters for input data

• Own responsibility by one Guild
• All accesses are managed by one responsible Guild
• If you want to share mutable objects, we need special data structures
• External RDBs or key/value stores are also good idea for this purpose



Communication strategy

[Upper is better]
•Passing immutable objects
•Copy mutable objects
• If you have performance problem, move 
(transfer membership) mutable objects
• If you have performance problem too, use 
special data structure to share mutable objects



Compare between 
Thread model and Guild model
•On threads, it is difficult to find out which objects 
are shared mutable objects
•On Guilds, there are no shared mutable objects
• If there are special data structure to share mutable 

objects, we only need to check around this code

→ Encourage “Safe” and “Easy” programming



Compare between 
Thread model and Guild model
•On threads, inter threads communication is very fast.
•On guilds, inter guilds communication introduce 

overhead
• “Move” (transfer membership) technique can reduce 

this kind of overheads

Trade-off: Performance v.s. Safety/Easily
Which do you want to choose?



Digression: The name of “Guild”

•“Guild” is good metaphor for “object’s 
membership”
•Check duplication
• First letter is not same as other similar abstractions

• For variable names
• P is for Processes, T is for Threads, F is for Fibers

• There are no duplicating top-level classes and 
modules in all of rubygems



Implementation of “Guild”

•How to implement inter Guilds communication

•How to isolate process global data



How to implement inter Guilds 
communication
•Copy

•Move (transfer membership)



Copy using Channel

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

COPY

channel.transfer(o1) o1 = channel.receive

O2:Data

O3:Data

O2:Data

O3:Data



Copy using Channel
Implementation

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

(1) Make
deep copy

channel.transfer(o1) o1 = channel.receive

O2:Data

O3:Data

O2:Data

O3:Data



Copy using Channel
Implementation

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

(2) Move/Join

channel.transfer(o1) o1 = channel.receive

O2:Data

O3:Data

O2:Data

O3:Data

We can use CoW
technique for data



Move using Channel

Guild1 Guild2

o2
o3

o1
channel

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data



Move using Channel

Guild1 Guild2

channel

o2
o3

o1

MOVE

channel.transfer_membership(o1) o1 = channel.receive

O2:Data

O3:Data

-
-

-

From Guild1 perspective, 
transferred objects are invalidated



Move using Channel
Implementation

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

(1) Make
deep copy

channel.transfer_membership(o1) o1 = channel.receive

O2:Data O3:Data

-
-

-
(2) Invalidate originals



Move using Channel
Implementation

Guild1 Guild2

o2
o3

o1
channel

o2
o3

o1

(3) Move/Join

channel.transfer_membership(o1) o1 = channel.receive

O2:Data O3:Data

-
-

-
(2) Invalidate originals



Ruby global data
• Global variables ($foo)

• Change them to Guild local variables

• Class and module objects
• Share between guilds

• Class variables
• Change them to guild local. So that it is guild/class local variables

• Constants
• Share between guilds
• However if assigned object is not a immutable object, this constant is accessed only by setting guilds. If other 

guilds try to access it, them cause error.

• Instance variables of class and module objects
• Difficult. There are several approaches.

• Proc/Binding objects
• Make it copy-able with env objects or env independent objects

• ObjectSpace.each_object
• OMG



Interpreter process global data
• GC/Heap

• Share it. Do stop the world parallel marking- and lazy concurrent sweeping.

• Synchronize only at page acquire timing. No any synchronization at creation time.

• Inline method cache

• To fill new entry, create an inline cache object and update atomically.

• Tables (such as method tables and constant tables)

• Introduce mutual exclusions.

• Current working directory (cwd)

• Each guild should have own cwd (using openat and so on).

• Signal

• Design new signal delivery protocol and mechanism

• C level global variables

• Avoid them.

• Main guild can use C extensions depends on them

• Current thread

• Use TLS (temporary), but we will change all of C APIs to receive context data as first parameter in the future.



Performance evaluation

•On 2 core virtual machine
• Linux on VirtualBox on Windows 7

•Now, we can’t run Ruby program on other than 
main guild, so other guilds are implemented by C 
code



Performance evaluation
Simple numeric task in parallel

Main 
Guild

Fibonacci 
GuildFibonacci 

GuildFibonacci 
GuildFibonacci 

Guild

Total 50 requests to compute fib(40) 
Send 40 (integer) in each request

Execution
time (sec)

Single-Guild 19.45

Multi-Guild 10.45



Performance evaluation
Copy/Move

Main 
Guild

sum

sum

sum

sum
Guild

Total 100 requests to compute sum of array
Send (1..10_000_000).to_a in each request

Execution
time (sec)

Single-Guild 1.00

Multi/ref 0.64

Multi/move 4.29

Multi/copy 5.16

Too slow!!
Because “move” need to
check all of elements



Performance evaluation
Copy/Move

Main 
Guild

sum

sum

sum

sum
Guild

Execution
time (sec)

Single-Guild 1.00

Multi/ref 0.64

Multi/move 0.64

If we know this array only has immutable objects, 
we don’t need to check all elements => special data structure



Check our goal for Ruby 3

• We need to keep compatibility with Ruby 2.
• OK: Only in main guild, it is compatible.

• We can make parallel program.
• OK: Guilds can run in parallel.

• We shouldn’t consider about locks any more.
• OK: Only using copy and move, we don’t need to care locks.

• We can share objects with copy, but copy operation should be fast.
• OK: Move (transfer membership) idea can reduce overhead.

• We should share objects if we can.
• OK: We can share immutable objects fast and easily.

• We can provide special objects to share mutable objects like Clojure
if we really need speed.
• OK: Yes, we can provide.



Summary

• Introduce “why threads are very difficult”

•Propose new concurrency abstraction “Guild” for 
Ruby 3
•Not implemented everything yet, but I show key 

ideas and preliminary evaluation



Thank you for your attention

Koichi Sasada
<ko1@heroku.com>





Approach comparison

Process/MVM Place (Racket) Guild
(copy/move)

Thread

Heap Separate Separate Share Share

Communication
Mutable objects

Copy Copy Copy/Move Share

Communication
Frozen object

Copy Share (maybe) Share Share

Lock Don’t need Don’t need (mostly) Don’t need Required

ISeq Copy Share Share Share

Class/Module Copy Copy (fork) Share Share


