Communication and Detection Theory

Signal and Information Processing Laboratory Institut für Signal- und Informationsverarbeitung

Spring Semester 2016 Prof. Dr. A. Lapidoth

Practice Exam

http://www.isi.ee.ethz.ch/teaching/courses/cdt

Problem 1

Transforming an Energy-Limited Signal

Let \mathbf{v} be an energy-limited signal of self-similarity function $R_{\mathbf{v}\mathbf{v}}$, and let \mathbf{p} be the signal

$$p(t) = Av(\alpha t), \quad t \in \mathbb{R},$$

where A and α are real numbers (not necessarily positive) and $\alpha \neq 0$. Is **p** energy-limited? If so, relate its self-similarity function R_{pp} to R_{vv} .

Problem 2

Bandlimited Signals and Bandwidth

For every $\lambda \in (0,1)$ let $\check{\mathbf{g}}_{\lambda}$ be the Inverse Fourier Transform of \mathbf{g}_{λ} , where

$$g_{\lambda}(f) = \begin{cases} 0 & \text{if } f < -\lambda W \text{ or } f > (1 - \lambda)W, \\ \frac{1}{\lambda W}(f + \lambda W) & \text{if } -\lambda W \le f \le 0, \\ -\frac{1}{(1 - \lambda)W}(f - (1 - \lambda)W) & \text{if } 0 < f \le (1 - \lambda)W, \end{cases}$$

and where W is a fixed positive constant.

- (i) Plot \mathbf{g}_{λ} for a λ of your choice.
- (ii) For which values of λ , if any, is $\check{\mathbf{g}}_{\lambda}$ bandlimited to W Hz?
- (iii) For which values of λ , if any, is $\check{\mathbf{g}}_{\lambda}$ bandlimited to W/4 Hz?
- (iv) What is the bandwidth of $\check{\mathbf{g}}_{\lambda}$? Express your answer in terms of λ and W.
- (v) Which λ minimizes the bandwidth of $\check{\mathbf{g}}_{\lambda}$? What is the corresponding minimal bandwidth?

Consider \mathbf{h}_{λ} and \mathbf{u}_{λ} defined for $f_{c} > 0$ by

$$h_{\lambda}(f) = g_{\lambda}(f - f_c) + g_{\lambda}(f + f_c), \quad f \in \mathbb{R},$$

and

$$u_{\lambda}(f) = q_{\lambda}(|f| - f_{c}), \quad f \in \mathbb{R}.$$

Let $\check{\mathbf{h}}_{\lambda}$ and $\check{\mathbf{u}}_{\lambda}$ be the Inverse Fourier Transforms of \mathbf{h}_{λ} and \mathbf{u}_{λ} .

(vi) For which positive values of f_c is $\check{\mathbf{h}}_{\lambda}$ a passband signal around f_c ? For which positive values of f_c is $\check{\mathbf{u}}_{\lambda}$ a passband signal around f_c ?

For the remainder assume that $\check{\mathbf{h}}_{\lambda}$ and $\check{\mathbf{u}}_{\lambda}$ are passband signals around f_c .

- (vii) What is the bandwidth of $\check{\mathbf{h}}_{\lambda}$ around f_{c} ? What is the bandwidth of $\check{\mathbf{u}}_{\lambda}$ around f_{c} ?
- (viii) For which values of λ , if any, is $\check{\mathbf{h}}_{\lambda}$ a real passband signal around $f_{\rm c}$? For which values of λ , if any, is $\check{\mathbf{u}}_{\lambda}$ a real passband signal around $f_{\rm c}$?

Problem 3

Smoothing a PAM Signal

Let (X(t)) be the result of mapping the IID random bits D_1, \ldots, D_K to the real numbers X_1, \ldots, X_N using **enc**: $\{0,1\}^K \to \mathbb{R}^N$ and then mapping these symbols to the waveform

$$X(t) = A \sum_{\ell=1}^{\mathsf{N}} X_{\ell} \, g(t - \ell \mathsf{T}_{\! \mathrm{s}}), \quad t \in \mathbb{R},$$

where A > 0, where **g** is an energy-limited pulse shape, and where $T_s > 0$ is the baud period. Define the stochastic process (Y(t)) as

$$Y(t) = \frac{1}{17} \int_{t}^{t+17} X(\tau) d\tau, \quad t \in \mathbb{R}.$$

Can (Y(t)) be viewed as a PAM signal? If so, of what pulse shape?

Problem 4

Hypothesis Testing

Let the binary random variable H take on the values 0 and 1 equiprobably. Let \mathbf{W} be a standard Gaussian 3-vector that is independent of H. Consider the problem of guessing H based on the observation \mathbf{Y} , where conditional on H = 0,

$$Y = AW$$
.

and conditional on H=1,

$$\mathbf{Y} = \mathsf{B}\mathbf{W}$$
.

where A and B are the deterministic matrices

$$\mathsf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \alpha & 0 \\ 0 & 0 & \beta \end{pmatrix} \quad \text{and} \quad \mathsf{B} = \begin{pmatrix} 0 & 0 & \beta \\ 0 & \alpha & 0 \\ 1 & 0 & 0 \end{pmatrix},$$

and where α and β are positive real numbers and $\beta \neq 1$.

(i) If you must guess H based on exactly two out of the three components of

$$\mathbf{Y} = (Y^{(1)}, Y^{(2)}, Y^{(3)})^\mathsf{T},$$

which two components would you choose in order to minimize the probability of error? Why?

- (ii) Determine the conditional densities $f_{\mathbf{Y}|H=0}$ and $f_{\mathbf{Y}|H=1}$.
- (iii) Find a one-dimensional sufficient statistic for guessing H based on \mathbf{Y} .
- (iv) Describe an optimal decision rule for guessing H based on \mathbf{Y} .
- (v) Compute the Bhattacharyya Bound on the optimal probability of error $p^*(\text{error})$.
- (vi) Compute $\lim_{\beta\to\infty} p^*(\text{error})$.

Problem 5

A Guessing Rule

Let the received waveform (Y(t)) be

$$Y(t) = X s(t) + N(t), \quad t \in \mathbb{R},$$

where **s** is a real, deterministic, integrable signal that is bandlimited to W Hz, X is a RV taking on the values ± 1 equiprobably, and (N(t)) is noise.

- (i) Consider a decoder that guesses "X = +1" if $(\mathbf{Y} \star \mathbf{h})(0)$ is positive and guesses "X = -1" otherwise. Here \mathbf{h} is some real, deterministic, integrable signal that is bandlimited to W_c Hz. What is the probability of error of this decoder under the assumption that (N(t)) is white Gaussian noise of PSD $N_0/2$ with respect to $\max\{W, W_c\}$? Express your answer using the \mathcal{Q} -function, \mathbf{s} , \mathbf{h} , and N_0 .
- (ii) Find an **h** (of whichever bandwidth you like) that minimizes the probability of error.
- (iii) Evaluate the probability of error when $s(t) = A \operatorname{sinc}^2(Wt)$ for all $t \in \mathbb{R}$ and the frequency response of \mathbf{h} closely resembles that of an ideal unit-gain LPF of cutoff frequency W_c . Which choice of W_c minimizes the probability of error?
- (iv) Suppose now that X takes on the values $\pm 1, \pm 3$ equiprobably, and consider the guessing rule

Guess =
$$\begin{cases} +3 & \text{if } (\mathbf{Y} \star \mathbf{h})(0) > \alpha, \\ +1 & \text{if } \alpha \ge (\mathbf{Y} \star \mathbf{h})(0) > 0, \\ -1 & \text{if } 0 \ge (\mathbf{Y} \star \mathbf{h})(0) > -\alpha, \\ -3 & \text{if } -\alpha \ge (\mathbf{Y} \star \mathbf{h})(0), \end{cases}$$

where α is some real number. Assume that $(\mathbf{s} \star \mathbf{h})(0) > 0$. Which choice of α minimizes the probability of error?