
Solving the Dating Problem with the SENPAI Protocol

Abstract
The SENPAI protocol (Secure ENcrypted Protocol for Af-
fection Information protocol) builds on work by [1] to allow
efficient secure two-party computation on a problem of gen-
eral interest with security against covert adversaries, while
avoiding the overhead of zero-knowledge proofs. We will
discuss historical attempts to solve the problem under dis-
cussion, followed by an explanation of the SENPAI protocol
and its security properties.

1. Introduction
The Dating Problem is an extremely difficult computational
problem that has plagued humanity since time immemorial.
The problem concerns two agents Alice and Bob (or Alex
and Bob, or Alice and Beatrice), each of whom may or may
not have a crush on the other. Each is initially unaware of
the other’s feelings, and if they have a crush, they would
like to know whether the other does as well; however, each
would like to reveal their crush only if the other shares the
interest. This problem is of widespread interest and appli-
cability; for example, a solution to the Dating Problem is a
hitherto unremarked-on prerequisite for the Stable Marriage
Algorithm.

This problem, once thought intractable, can in fact be
solved efficiently using cryptographic methods. A protocol
providing security against semi-honest adversaries was pre-
sented as early as 2008 in a paper by Scott Aaronson. In this
paper, Aaronson suggests that zero-knowledge proofs could
be used to remove the semi-honesty assumption; however,
this poses serious challenges for any practical implementa-
tion of the protocol. We have now augmented Aaronson’s
protocol with a few extra protections to create the SENPAI

[Copyright notice will appear here once ’preprint’ option is removed.]

protocol, which is efficient, easily-implemented, and maxi-
mally resistant against covert adversaries.

In Section 2, we briefly outline historical solutions to the
Dating Problem, and discuss their advantages and disadvan-
tages. In Section 3, we present Aaronson’s protocol and the
SENPAI protocol, along with an analysis of its security prop-
erties. In Section 4, we discuss extensions of the protocol and
possibilities for future work.

2. Historical Approaches
Dating has been a difficult problem for people and cultures
throughout the centuries; many, many methods have been
proposed as solutions. We will offer a sample of past at-
tempts before explaining and demonstrating SENPAI.

2.1 The Arranged Marriage Protocol
The Arranged Marriage Protocol (AMP) is one of the oldest
solutions to the dating problem, perhaps older than even
cryptography. AMP is explained in detail in [3], but we will
briefly outline the protocol here.

1. All participants agree to give up on finding a party that
they have an interest in.

2. Each participant designates a neutral party (a ”parent”)
to negotiate on their behalf and arbitrarily decide on
pairings.

3. Each participant is matched with an equally unsatisfying
partner.

This protocol, while guaranteeing perfect security (since
no participant’s actual preferences are involved at any stage),
is somewhat lacking in terms of effectiveness; the proba-
bility of obtaining the desired result drops rapidly as com-
munity size increases, and as wealth of one’s actual desired
partner decreases.

2.2 The Just Man Up And Ask Protocol
The Just Man Up And Ask Protocol (JMAP) is often pro-
posed as a naı̈ve solution to the Dating Problem. In JMAP, if
Alice has a crush on Bob, she simply tells him, and asks for
his response. This protocol is certainly effective in the case
where both parties’ responses are Yes; they will learn the
other’s response quickly and efficiently, with a minimum of
overhead and no third-party involvement. However, if Bob’s

1



answer is No, Alice has now unnecessarily leaked her Yes
response to Bob. This scenario leads to non-negligible awk-
wardness for both parties with high probability, and thus the
degree of risk posed by this protocol is clearly unacceptable.

There is also the issue that the JMAP protocol is funda-
mentally asymmetrical, posing greater risks for the initiator
than for the recipient. Thus, there is not necessarily any good
way to decide who should initiate a JMAP exchange, as both
parties would prefer not to be the initiator. This has histori-
cally often been resolved by widespread standards designat-
ing all agents as either initiators or recipients. However, this
approach breaks down when both parties are designated re-
cipients; this is known as the Lesbian Sheep Problem. For
further information, see [7].

2.3 The Meddling Friend Protocol
The Meddling Friend Protocol (MFP) protocol consists of
Alice and Bob each revealing their preferences to a trusted
third party, Trent, who then informs them if they have a mu-
tual crush. [10] provides one of many sample implementa-
tions.

Unfortunately, this protocol is completely dependent on
the trustworthiness of Trent, as they receive all of Alice
and Bob’s information and are entirely free to manipulate
the results of the protocol. If Trent has been compromised,
perhaps by a nation-state adversary, Alice and Bob’s love
life will be completely in the hands of a malicious attacker.
Thus, unless Alice and Bob can find a third party who they
both trust completely, the security of this protocol is quite
poor.

2.4 The Start Out As Friends Protocol
The Start Out As Friends Protocol (SOAP), as presented by
[9], is summarized in Figure 1. In this protocol, Alice and
Bob participate in many exchanges over a long period, trans-
ferring pieces of information that provide only incremental
evidence of their responses. Over time, each party can be-
come more and more confident in the other’s answer, until
the probability of a mismatch is low enough that a JMAP
exchange becomes feasible.

Unfortunately, the runtime of this protocol may be inordi-
nately long in some cases, and deriving evidence from the in-
dividual transmissions can be difficult. There are also highly
complex failure modes when dealing with a malicious ad-
versary, as Munroe illustrates in his paper.

2.5 The You’ve Got Mail Protocol
The You’ve Got Mail Protocol (YGMP), based on origi-
nal work by [8] and refined by [4], involves Alice and Bob
performing a SOAP/JMAP exchange over a pseudonymous
channel, and then revealing their actual identities to each
other if the JMAP is successful. The pseudonymity elimi-
nates many of the risks of JMAP, and reduces the problem to
simply confirming each other’s actual identities, which can

Figure 1. SOAP and its failure modes

be done safely without leaking any sensitive information in
and of itself.

However, YGMP introduces many new issues. Due to
the necessity of pseudonymity, it is difficult to ensure with
any reasonable probability that one is carrying out the proto-
col with the correct partner, and of course an MITM attack
(Matchmaker-In-The-Middle) is almost impossible to pre-
vent.

Furthermore, if Alice is interested in both Bob and Clara,
conducts YGMP exchanges with each of them, and re-
ceives a Yes from Bob’s pseudonym and a No from Clara’s
pseudonym, she is now unable to reveal her identity, as she
has no way of knowing whether she’s revealing herself to
the person she received a No from.

All in all, the YGMP, while it provides a clever workaround
to some of the difficulties of SOAP/JMAP, is too problematic
in many other respects.

2.6 The Shoe Locker Protocol
The Shoe Locker Protocol (SLP) has been investigated ex-
tensively by Japanese researchers. SLP is in some sense a
compromise between JMAP and YGMP. It proceeds simi-
larly to JMAP, except that the initiator communicates using
a pseudonym, revealing their identity only if they receive a

2



favorable answer. That is, if Alice is the initiator, she sends
Bob a pseudonymous message declaring her Yes response.
Bob then responds, and learns Alice’s identity if and only if
his answer is Yes. (This is commonly accomplished by in-
structing the recipient to come to a specific meeting place if
their answer is Yes, where the initiator is waiting to reveal
themselves.)

Reducing the pseudonymity to one side of the exchange
removes some of the problems inherent in YGMP, while still
avoiding some of the risks of JMAP. However, while the ini-
tiator knows the recipient’s identity, it is vital for this pro-
tocol that the recipient be initially unaware of the initiator’s
identity. Thus, the recipient may respond favorably, only to
find that the initiator was not the person they expected, re-
sulting in the same failure mode as standard JMAP. A mali-
cious initiator could even refuse to reveal their identity after
learning the recipient’s reply, resulting in some of the recipi-
ent’s information being leaked. Furthermore, as noted by [5],
a security-conscious recipient may react extremely poorly to
an attempted SLP exchange.

3. The SENPAI Protocol
Having examined historical protocols for resolving the Dat-
ing Problem, we find that they all fail in one way or another
at the basic goal of the problem: Alice and Bob should each
learn the logical AND of their responses, and nobody should
learn any other information. In particular, Alice should learn
Bob’s response only if her own response is Yes, and vice
versa; and no third parties should learn anything about Alice
and Bob’s responses. In this section, we present the protocol
of [1], which achieves this goal for semi-honest participants.
We then examine the ways in which dishonest participants
can cheat, and present our SENPAI protocol, which builds
on Aaronson’s protocol to provide maximal security against
covert attackers.

3.1 Aaronson’s Protocol
Aaronson’s protocol consists of the following steps:

1. Alice generates an RSA modulus N , whose factors she
knows, and reveals N to Bob.

2. Alice generates two residues x and y modulo N . x con-
sists of 0 (with some suitable padding scheme applied),
and y consists of Alice’s response (0 if her response is
No, 1 if her response is Yes).

3. Alice takes x3 and y3 modulo N , and sends both of these
to Bob.

4. Bob chooses a random residue r modulo N , computes
x3r3 or y3r3 modulo N depending on his response (using
x if his response is No, y if his response is Yes), and sends
the result back to Alice.

5. Alice takes the cube root modulo N of the value she
receives, producing either xr or yr, and sends the result
back to Bob.

6. Bob divides by r, learning the logical AND of their
responses, and shares the result with Alice.

3.2 Analysis of Aaronson’s Protocol
It is easy to see that Aaronson’s protocol functions correctly
when conducted between semi-honest parties, who will try
to learn as much as they can but will carry out the protocol
correctly. Bob, not knowing Alice’s RSA private key, is
unable to take cube roots modulo N , so he can’t learn y
from Alice’s initial message. Then, Alice learns either xr
or yr, but not knowing r, she is unable to distinguish these,
so she doesn’t learn Bob’s response. Finally, Bob learns the
value of whichever of x or y he chose; thus, he will get a 1
if and only if Alice put a 1 in y (her response was Yes), and
he chose y (his response was Yes). Therefore, the protocol
correctly reveals the AND of Alice and Bob’s responses and
no other information, without any third parties involved.

However, since Bob learns the result before Alice, it is
absolutely trivial for Bob to cheat, learning Alice’s response
regardless of either of their responses. Bob simply needs
to input a 1 into the protocol (choose y), and then at the
end, report to Alice that the result of the protocol was a
0, regardless of the true result. Since Bob inputted a 1, he
learns Alice’s response; but Alice always receives the result
she would get if Bob put in a 0, so she doesn’t learn his true
response.

3.3 Motivation for the SENPAI Protocol
We have set out to design a protocol that eliminates these
avenues for cheating. Alice must learn Bob’s response if and
only if her response is Yes, and vice versa, with neither of
them learning any other information, even if one of them
violates the rules of the protocol. In his presentation of the
original protocol, Aaronson suggests that zero-knowledge
proofs can be used to prevent cheating. However, we find
this approach unsatisfying, partly because zero-knowledge
proofs would make the protocol much more unwieldy and
time-consuming, and partly because we have no clue how
to actually implement ZKP in this context. We would like
to find a simpler, more efficient way to augment Aaronson’s
protocol to prevent cheating. First, though, we will address
exactly what kinds of cheating it’s possible to prevent, and
what kinds it makes sense to prevent.

We note that no matter how a dating protocol is con-
structed, it can at best provide security against covert ad-
versaries; that is, adversaries who are willing to cheat only
if they won’t get caught. An adversary who is willing to get
caught cheating is unstoppable: They can simply input a Yes,
perform the protocol honestly (learning the other person’s
response), and then if the result is Yes, simply “take back”
their Yes response. Thus, we will only aspire to prevent un-
detectable cheating, since that’s ultimately all we can do.

Also, we observe that even if Bob violates Aaronson’s
protocol as we described above, this is only useful to Bob
under certain circumstances. In particular, if the true result

3



of the protocol is a 0, there is absolutely no reason for Bob
to tell Alice it was a 1: If Alice’s bit was 0, then she catches
Bob cheating, and if Alice’s bit was 1, then this is equivalent
to Bob just submitting a 1 and performing the protocol hon-
estly. Thus, there’s no need to detect fake 1s sent by Bob;
we just need to detect fake 0s. In other words, we just need
a way for Bob to prove that the output of the protocol was
really a 0. We now present our modified SENPAI protocol,
which neatly accomplishes this goal, preventing any unde-
tectable cheating on the part of either participant.

3.4 The Protocol
The SENPAI protocol proceeds along more or less the same
lines as Aaronson’s protocol. However, before generating x
and y, Alice chooses a random bitstring s, long enough that
it can’t be reasonably guessed. Then, x consists of 0 and s
(with some padding scheme), and if y is 0, then y likewise
consists of 0 and s. s thus becomes a sort of certificate,
proving that one has somehow obtained a 0. For reasons that
will become clear shortly, Alice commits to s with a bit-
commitment protocol, and sends the commitment to Bob.
The protocol proceeds as normal, and if Bob gets a 0 at the
end, he will then also have s. In this case, he verifies that
s matches the commitment, and then sends s back to Alice,
proving that the 0 is genuine. Finally, regardless of the result,
Alice reveals x to Bob (again, we will explain soon why this
is necessary); Bob checks that this x contains an s matching
the committed value, and that its cube modulo N is the value
for x3 he was given earlier.

3.5 Analysis
We now see that Bob can only learn s by learning the value
of x, or of y if y contains 0. Since Alice won’t accept a 0
result without Bob showing her s, it is now impossible for
Bob to cheat if Alice carries out her side of the protocol
correctly.

However, if we aren’t careful, it’s now possible for Alice
to learn Bob’s response while appearing to input a 0: she
can put s into x and some s′ 6= s into y, and then determine
Bob’s response by seeing which value he sends back. Having
Alice commit to s and Bob verify x ensures that if Alice
wishes to cheat in this way without Bob catching her, she’ll
need to put the s she committed to in x. Then, if Bob’s
response is 0, she’ll learn that it’s 0, and Bob will be none
the wiser; but if Bob’s response is 1, he’ll discover that
the s′ in y doesn’t match the value Alice committed to, so
he’ll catch her cheating. We thus see that this is equivalent
to Alice inputting a 1, playing the protocol honestly, and
then “changing her mind” if Bob’s response is also 1; since,
as we’ve said, it’s impossible to prevent this attack, our
algorithm provides the maximum possible security against
covert adversaries.

4. Further Work
4.1 Ternary Responses
Thus far in this paper, we have assumed that the presence or
absence of a crush is a simple, binary phenomenon: Either
Alice is interested in Bob, or she isn’t. However, this fails to
account for some of the nuance of real-world relationships;
it may be the case that Alice would be open to dating Bob if
he asked her, but wouldn’t proactively pursue a relationship
with Bob otherwise. In other words, a more complete model
would include a “Maybe” answer in addition to Yes and
No; we would then like our protocol to return a 1 if one
participant has a Yes and the other has at least a Maybe, and
return a 0 otherwise.

We claim that this can be accomplished with a fairly sim-
ple modification to the SENPAI protocol. Alice simply needs
to generate 3 values instead of 2; call these x, y, and z. These
will be set to 0, 0, 0 if Alice’s answer is No, 0, 0, 1 if her an-
swer is Maybe, and 0, 1, 1 if her answer is Yes; as before,
the 0 values will also include a certificate s which Alice
chooses and commits to. The protocol proceeds analogously,
with Bob choosing one of x3, y3, or z3 depending on his an-
swer, and ultimately learning x, y, or z, once again verifying
s and x. We henceforth refer to this augmented protocol as
SENPAI-MTT (More Than Two).

Unfortunately, SENPAI-MTT does not have quite the
same security properties as the original SENPAI protocol.
It is possible for Alice to submit all 0s, putting s into x and
z but putting some other s′ into y. In this case, Alice is able
to determine whether Bob’s answer is a Maybe, and will
only get caught cheating if this is indeed the case. Unlike
similar potential attacks with the original SENPAI protocol,
there is no equivalent attack in which Alice carries out the
protocol honestly and ”changes her mind” if necessary; this
is a genuine violation of our requested property of perfect
covert security. We note that this is not a very powerful at-
tack; worst-case, Alice secretly learns that Bob’s answer is
either Yes or No, but not which one. We believe that this
is the only practical attack on SENPAI-MTT; users should
exercise their own judgment as to whether the potential in-
formation leakage is acceptable.

4.2 Practical Issues
As is noted in [1], if Alice simply suggests to Bob that
they carry out a SENPAI exchange, this in and of itself is
indicative of interest on Alice’s part. Thus, the only non-
awkward way to actually use the SENPAI protocol is to
assemble large groups of people, and have every pair of
people carry out the protocol.

The ideal situation would be to have everyone (for some
definition of everyone) perform SENPAI exchanges in this
fashion. This minimizes the amount of metadata leakage
relating to participants’ social networks, and maximizes the
likelihood that participants will actually have a chance to
conduct the protocol with their crushes. However, in a group

4



of n people, this requires every single participant to perform
O(n) work, regardless of the number of people they are
actually interested in. Also, unless everyone in the group
is online at the same time, a server may need to act as
an intermediary, storing intermediate transmissions to be
passed on to clients at the next opportunity.

As the size of “everyone” grows, all of this eventually
becomes unfeasible. This could be resolved if there were
some way of only performing computation for one’s actual
crushes; the work of [2] on covert two-party computation
may offer a solution, but their paper was kind of confusing
and we only skimmed it. For now, our recommended usage
of the SENPAI protocol is for groups of 10–20 friends to
organize parties where people will gather at a specific time
and conduct the protocol among all pairs of attendees.

An unavoidable issue with group SENPAI exchanges is
the problem of love triangles. If Alice, Bob, and Charlie
are all part of a SENPAI party, and it turns out that Alice
and Charlie are both interested in Bob and Bob is interested
in both of them, awkwardness ensues. The authors’ recom-
mended solution is polyamory; in cases where this is not
possible, another option is for each person to conduct their
SENPAI exchanges serially, and after a successful exchange,
change their answers for all of the remaining partygoers to
No.

However, this means that the order in which exchanges
take place can now influence the results; Alice now needs to
order the other participants by how attracted she is to each of
them, and conduct her exchanges in that order. This can po-
tentially result in unsatisfiable ordering constraints: If Alice,
Bob, and Charlie are all interested in each other, but Alice
prefers Bob to Charlie, Bob prefers Charlie to Alice, and
Charlie prefers Alice to Bob, there’s no ordering of SEN-
PAI exchanges that can satisfy everyone’s preferences. We
remark that this situation is just generally shitty, and seri-
ously, what do you expect us to even do here? We observe
that no stable relationship exists in this scenario, and reiter-
ate our recommendation of polyamory to resolve issues with
group SENPAI exchanges. In practice, the ordering of ex-
changes can be determined by which participants are quick-
est to select their preferences and initiate the protocol; in
other words, first come first served.

4.3 Quantum Adversaries
Because the SENPAI protocol as presented above relies
heavily on RSA encryption, it is of course possible for Bob
to cheat if he has access to a quantum computer: he can
simply use the work of [11] to obtain y from y3, and im-
mediately learn Alice’s input before he has even chosen his
own input. Fortunately, the particular choice of RSA is not
crucial to the protocol; any partially homomorphic cryp-
tosystem will work equally well. The key feature of RSA
is that Bob can manipulate the encrypted values of x and y
in such a way that Alice can decrypt them to obtain values
that tell her nothing, but Bob can then extract the original x

or y from those decrypted values. Thus, a future version of
the SENPAI protocol might use a lattice-based cryptosystem
such as that of [6] to provide quantum-resistant homomor-
phic encryption.

5. Conclusion
We believe that the SENPAI protocol is a significant im-
provement on the dating protocols commonly in use today,
and is more simple and practical to implement than the orig-
inal protocol proposed by [1]. We hope to see significant
adoption of the SENPAI protocol once a few kinks are ironed
out and an efficient, secure implementation is achieved.

5



References
[1] S. Aaronson. 6.080/6.089 Great Ideas in Theoretical Computer

Science. MIT, Cambridge, Massachusetts, 2008.

[2] L. von Ahn, N. J. Hopper, J. Langford. Covert Two-Party
Computation. In 37th STOC, pp. 513–522, ACM Press, 2005.

[3] J. Bock, S. Harnick, J. Stein. Fiddler on the Roof. 1964.

[4] D. Ephron, N. Ephron, T. Hanks, M. Ryan. You’ve Got Mail.
Warner Bros. Entertainment Inc., Burbank, California, 1998.

[5] S. Gatoh, Y. Takemoto. Full Metal Panic? Fumoffu. Fuji
Television, Tokyo, Japan, 2003.

[6] C. Gentry. Fully homomorphic encryption using ideal lattices.
Symposium on the Theory of Computing (STOC), 2009, pp.
169-178.

[7] H. A. Landman. The Problem of Lesbian Sheep. Fort Collins,
January 2004. http://www.polyamory.org/˜howard/
Poetry/lesbian_sheep.html.

[8] M. László. Parfumerie. Pest Theatre, Budapest, Hungary,
1937.

[9] R. Munroe. Friends. May 2008. https://xkcd.com/
513/.

[10] W. Shakespeare. Much Ado About Nothing. London, 1623.

[11] P. W. Shor. Polynomial-Time Algorithms for Prime Fac-
torization and Discrete Logarithms on a Quantum Computer.
arXiv:quant-ph/9508027v2.

6

http://www.polyamory.org/~howard/Poetry/lesbian_sheep.html
http://www.polyamory.org/~howard/Poetry/lesbian_sheep.html
https://xkcd.com/513/
https://xkcd.com/513/

	Introduction
	Historical Approaches
	The Arranged Marriage Protocol
	The Just Man Up And Ask Protocol
	The Meddling Friend Protocol
	The Start Out As Friends Protocol
	The You've Got Mail Protocol
	The Shoe Locker Protocol

	The SENPAI Protocol
	Aaronson's Protocol
	Analysis of Aaronson's Protocol
	Motivation for the SENPAI Protocol
	The Protocol
	Analysis

	Further Work
	Ternary Responses
	Practical Issues
	Quantum Adversaries

	Conclusion

