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The widespread belief that the effective action is convex and has a flat bottom un-
der broken global symmetry is shown to be wrong. We show spontaneous symmetry
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spontaneously broken symmetry cannot be superposed, and that translational invariance
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1. INTRODUCTION

The effective action Γ[⟨φ(x)⟩] is one of the most funda-
mental objects in quantum field theory. Much has been
said about it under broken global symmetry. For simplic-
ity, we here use the language of a field theory with one
scalar field φ, symmetric under the operation φ → −φ.
Let the field has the non-zero vacuum expectation value
|⟨φ⟩| = φsp. It is widely believed that: “Because of (A)
its downward convexity, (B) the effective action has a
flat bottom for |⟨φ⟩| < φsp. (C) States in the flat bottom
are realized as a linear superposition of the vacua | ±Ω⟩,
where ⟨±Ω|φ(x)| ± Ω⟩ = ±φsp.”
We will show, however, that all the points (A), (B)

and (C) are wrong.1 Based on this misunderstanding,
it has been thought that there is contradiction, and the
resolution has been attempted. Its history is concisely
summarized in the recent article by Argyres et al. (2009).
See also Delamotte (2012, sec. 2.2.5) and Einhorn and
Jones (2007) for recent cases where convexity is assumed.
The origin of this fallacy probably comes from the sim-

ilarity of the effective action with the free energy in sta-
tistical mechanics. For example, consider Ising ferromag-
net where temperature T is < Tc, the critical tempera-
ture, so there is spontaneous magnetization M = ±Msp,
where M is the total magnetization. Let F (β, h) be the
free energy, where β = 1/T and h the external field, and
its Legendre transform C(β,M) := F + hM. C plays

∗ phys.anh@z2.skr.jp; http://z2.skr.jp/phys/
1 Almost ubiquitously Symanzik (1970) is cited, presumably in-
tending the attribution of the point (A). However, Symanzik
explicitly excludes the “flat-bottom” region from the discussion.
See its appendix.

a role similar to the effective potential V(⟨φ⟩), which is
the density of the effective action with uniform vacuum
configuration.

In fact, although F is always convex,2 C is not for
|M | < Msp. It’s because it is the region of phase co-
existence, and there the cost of domain wall formation
arises. So the non-convexity of C is of order O(L) in the
2-dimensional Ising model, where L is the linear extent
of the system.

Oddly enough, this fact has already been known for
long in the communities of mathematics oriented statis-
tical mechanics and Monte Carlo simulation.3 Still, the
integral understanding of non-convexity is lacking.4 As
a result, arguments on non-convexity is often too much
detailed and technical, obscuring the essence. In the rest
areas of physics, non-convexity is barely known, not to
mention field theorists, leading to confusion.

As we will show, spontaneous symmetry breaking al-
ways accompanies non-convexity, which is never zero. We
will further prove that the order of non-convexity is al-

2 Do not confuse it with (exotic) non-convex F which has been of
recent interest. For examples, see Sethna (2006).

3 One of important uses of C in the phase coexistence region is to
obtain the interface free energy, for example in Wulff construc-
tion. For reviews, see Abraham (1986) and Miracle-Sole (2013).
The interface free energy calculation is an old subject also in
Monte Carlo simulation. (Binder, 1982)

4 For example Ioffe (1994, sec. 1) says to the effect that the C/V
is strictly convex and has a flat bottom, but the decay rate of
exp(−βC) is of interface order in the 2-dimensional Ising model.
This statement is correct, but generality and accuracy are not
sufficient. In a Monte Carlo simulation article, (Nogawa et al.,
2011, sec IV. A) at one hand it is said that there is a maximum
in the free energy, while on the other hand the free energy is
convex, showing some confusion.
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ways o(V ), i.e. strictly smaller than the volume, includ-
ing the cases of continuous symmetry, in which domain
wall cannot form.
Non-convexity is therefore indispensable to understand

the correct vacuum in quantum field theory, or the cor-
rect equilibrium in statistical mechanics. We here em-
phasize that non-convexity itself is so easy that it should
be learned even by undergraduate students. For example
Landau’s theory of phase transition is a standard topic in
textbooks of statistical physics. It is wrongly explained
to be a theory with defect by its non-convexity. We will
be able to see how it can be correctly understood.
For quantum field theory, two important consequences

of non-convexity will be also shown. One is the impos-
sibility of superpositions like λ| + Ω⟩ + (1 − λ)| − Ω⟩,
the point (C) mentioned above. This point has remained
ambiguous to date. The other one is the spontaneous
breakdown of the translational invariance inside the re-
gion of non-convexity. These two are true for general
systems. Although nothing sure can be said except for
the Ising model/the quantum theory with one scalar field,
the region of non-convexity seems to introduce topologi-
cal defects naturally.
This paper is organized as follows. First in section 2 we

study the statistical mechanics of lattice systems. To be
concrete, we first draw on an exact result on Ising model
before obtaining general results. As an application, in
section 2.2.3 we will examine the first-order phase tran-
sition at |M | = Msp. We will find a slight shift of the
transition point, and obtain a result more general than
already known one. Precise degree of non-convexity in
general lattice systems is stated in section 2.2.4.
In section 3 we study how the results on lattice models

are recast into field theory. We will see that the conven-
tional notion of linear superposition can be too näıve in
thermodynamic limit. In section 4, as another applica-
tion of the non-convexity of the free energy, we model the
phase coexistence of lattice systems, and obtain a simple
system which obeys the Born rule. Section 5 gives the
conclusion.

2. STATISTICAL MECHANICS OF LATTICE SYSTEMS

2.1. 2-dimensional Ising model results

In this section we study spontaneous symmetry break-
ing of lattice systems. We include some basic notes so
that it will be readable also to students. Rather than
stating general results from the beginning, until section
2.2.3 we take up the 2-dimensional square Ising ferromag-
netic model. It has its own right, since it is an exceptional
case where the explicit dependence of the free energy on
the magnetization is known. While it is not as complete
as Onsager’s solution, it is remarkable, since in the lat-
ter the dependence on the external field is unknown. We

think it deserves to be known by every physicist.
We define our model together with relevant symbols

as:

Z(β, h) :=
∑

{σi=±1}

exp(−βE(h)), (1)

E(h) := −J
∑
n.n.

σiσj − hM, (2)

M :=
∑
i

σi, (3)

m := M/V, (4)

V := L2, (5)

βF (β, h) := − logZ, (6)

βC(β,m) := β(F + hM)

= − log
∑

{
∑

σi=M}

exp(βJ
∑
n.n.

σiσj). (7)

Let the interaction be nearest-neighbor, and m the per-
spin magnetization. When T < Tc, the system exhibits
the spontaneous magnetization m = ±msp(T ) at zero
field limit h = ±0. C(β,m) is the free energy when (β,m)
are the variables that specify the state of the system, so
F (h = ±0) = C(m = ±msp). We will often present state-
ments and equations which are exactly correct and/or
meaningful only in thermodynamic limit L → ∞, but
readers will have no difficulty understanding them.

The case where |m| < msp is of our interest. Its en-
tire region corresponds to h = 0. (Consider vapor-liquid
coexistence of water.) As we will see, it is the region of
phase coexistence, but we call it more generally as the
“region singular with respect to the external field”, or
RSEF.

We want to write down C. To this end, notice Z(h =
0) =

∑
m exp(−βC(m)), so P (m′) := exp(−βC(m′))/Z

is the probability that m takes the value m′ when (T, h =
0) are specified. This is exactly the inverse of deriving
grand canonical ensemble from canonical ensemble. For-
tunately the explicit formula of P is obtained for the
2-dimensional Ising model for free and periodic bound-
aries in thermodynamic limit, at least for low enough
temperature. (Shlosman, 1989) To rewrite it for C, first
let

Cin(m) := C(msp)+{
aLT

√
msp − |m| for mf < |m| < msp,

aLT
√
msp −mf = const. for |m| < mf

(8)

where mf > 0 and a > 0 are finite constants dependent
on β and the boundary condition. Then for |m| < msp,

C(m) =Cin(m),

C+(m) :=C(m)− C(msp).
(9)
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We have expressed C in two steps because Cin is defined
only in the RSEF, while C is defined in the entire (T,m)
domain. Consider Cin as a pure mathematical function,
while C the free energy, a physical entity.
It is now obvious that the claims (A), the convexity

of C, and (B), the “flat bottom” are illusions. C is not
always downward convex. We here clarify the flaw in
the proof of C’s convexity: F is convex inside any finite
interval of h, and this fact has to be used to prove C’s
convexity. But the RSEF corresponds to one point h =
0. Thus F ’s convexity does not imply that C is always
convex.
An intuitive interpretation of C+ is desirable. (Shlos-

man, 1989) To avoid unnecessary complication, we take
the free boundary. When |m| < mf (“flat region” here-
after), the system consists of two domains, the plus-spin
rich phase and minus- rich one, separated by a straight
wall, running parallel to the two system edges. (Although
2-dimensional, we use the word domain wall.) As long as
m stays in the flat region, the wall can shift but remains
straight, and C does not change. When mf < |m| < msp,
the smaller domain favors to be a droplet5 at a cor-
ner to lower the free energy. We immediately recog-
nize that (i) the RSEF is a phase coexistence region, (ii)
L
√
msp − |m| is of the order of the wall length l and C+

can be written = sl, where s is the interface free energy
per unit length, and (iii) the flatness of C means the
wall’s thickness is finite, or the wall is “sharp”, so does
not interact with the boundaries. (When the boundary
is periodic, there are two walls, and they don’t interact
with each other.) For general boundaries the shape of
the domain is determined by “Wulff construction” For
reviews, see Abraham (1986) and Miracle-Sole (2013).
There is a phase transition at |m| = mf which is some-

times called droplet-strip transition. It is obviously first-
order; both domains discontinuously change their geome-
tries, and both sides of the transition point have the
metastable branch.

2.2. Normalization—first encounter

To understand non-convexity correctly, we have to be
careful about the normalization of variables. This is the
key to our entire argument.
All extensive variables scales as V , or put differently,

are O(V ). So it is tempting to consider “free energy per
spin” c(m) := C(m)/V. Aside from its finiteness, c has
another advantage over C that it’s differentiable with m:

5 The word “droplet” is a standard nomenclature. Here the droplet
is sole and macroscopic, and in equilibrium. It is also used in
non-equilibrium nucleation in usual first-order phase transitions,
where there are many droplets, and the growth of initially mi-
croscopic droplets to macroscopic size is studied.

C was originally defined for M , a discrete variable, but
we would like to define ∂C/∂M and to expect it to be
= h. There is no problem by defining it as (C(M + n)−
C(M))/n (n ∈ Z), since → ∂C/V ∂m as L → ∞. This
means ∂c/∂m = h. Then c(m) = c(msp) throughout
the RSEF since it corresponds to h = 0. It is of course
consistent with the explicit formula (8) of Cin. So c(m)
is indeed differentiable and globally convex.

Notice at the same time C+(m) → +∞ when |m| <
msp. It has to be so, because P (m) ∝ exp(−βC(m)). In
words, it is necessary in order for spontaneous symmetry
breaking to happen.

The conclusion of this short section is: c(m) = c(msp)
inside the RSEF means c does not contain the informa-
tion on the RSEF. Sticking to c’s convexity is the same
as considering F (β, h) and neglecting the RSEF. Correct
normalization is to consider C+/L.

Two pedagogical notes are in order: (i) By the
“Maxwell construction” the flat-bottomed C can be ob-
tained. It is equivalent to divide the system into the do-
mains of different phases, and to ignore the domain wall
free energy. It will not be much problematic, or rather
better e.g. when considering bulk equilibrium in chem-
ical reaction. (ii) The free energy is equivalent to the
partition function, in the sense that in the free energy all
information of the system is contained. (Prosaically plug
exp(−βF ) in place of Z, and you’re done.) Unnecessary
approximation of the free energy throws away some infor-
mation. In field theory, the counterparts of free energies
are generating functionals of connected diagrams.

2.3. Phase transition at |m| = msp

Next we have a close look at the phase transition at
∆m := msp − |m| = 0. It is not necessary to understand
non-convexity, and uninterested readers can skip this sec-
tion.

Because we are using the extensive variable M (in fact
m, a normalized one), the transition looks continuous.
More precisely, it is clearly first-order when approached
from the outside of the RSEF, as |m| ↘ msp, by not
showing any sign of transition beforehand, and the tran-
sition happens suddenly at ∆m = 0. After the system
passes the transition point, it can go to the metastable
branch, too. On the other hand, inside the RSEF there
is the relation C+ ∝ ∆m1/2 which looks like scaling
laws, just like continuous transitions. This is partly
expected, because phase coexistence terminates at the
point ∆m = 0, or put differently cannot extend over that
point. So there must be a singularity, and by definition,
C+ = 0 at ∆m = 0. There cannot be latent heat and
metastability after passing the transition point...

In reality this transition is not continuous and accom-
panies discontinuity. First let us write:

C(m) = Cout(m) for m > msp. (10)



4

Then Cout is regular at m = msp:

Cout(m) := C(msp) + L2(c2∆m2 + c3∆m3 + ...), (11)

where c2 = (∂m/∂h)−1|h=0, and c2, c3 = O(1). Notice
that Cout is defined inside of RSEF too, so compare it
with Cin. Then aLT∆m1/2 > c2L

2∆m2, i.e. Cin > Cout
for small enough ∆m > 0. Therefore the true transition
happens at |∆m| = ∆mt, slightly inside the RSEF, where
∆mt = aTc−1

2 L−2/3, or at |M | = Mt where Msp −Mt ∝
L4/3. Although ∆mt → 0 in thermodynamic limit, this
shift is observable since Msp −Mt → ∞. So at the tran-
sition point the big one droplet appears/disappears all
of a sudden, and this discontinuity is inevitable even if
the extensive variable M is utilized. Latent heat must
be there, too. In order to avoid discontinuity completely,
E or S, the entropy, has to be used instead of T . Also
notice that C+ ∝ ∆m1/2 represents a (small) metastable
branch for 0 < ∆m < ∆mt.
The above shift of the transition point was first proved

rigorously by Biskup et al. (2002, 2003). They also
showed it by a physical argument which is applicable to
general vapor-liquid like transitions, which shares much
with our argument. Although they treat it more deeply,
ours can be applicable to more general systems, and in
fact we will do so in the next section. Similar shift is ob-
served for other systems, for example in a Monte Carlo
study of Potts model. (Nogawa et al., 2011) The shift is
an important factor for simulations because it is a finite
size effect.
Another pedagogical remark: If Cout is regular, why

does not it extend into the RSEF, like analytic contin-
uation? It’s because Cin < Cout in the RSEF.6 7 Or Cin
emerges and masks Cout, so to say. Still, Cout naturally
extends into the RSEF, and describes the metastable
branch—it is a realm of non-equilibrium theory and not
part of the Boltzmann’s statistical mechanics. We omit
this subject.

6 Equation (7) can be rewritten as −βC(m) =
log

∑
ν exp(−βCν(m)), where Cν(m) := Eν(m) − TSν(m),

Eν(m) is the energy of the ν-th level with m, and exp(Sν(m))
is the number of states in the ν-th level with m. Because
C = O(V ), only the vicinity of the Cν ’s minimum can
contribute in thermodynamic limit.

7 More note on analyticity: In general free energy is a patchwork
of regular functions. For example, consider the system with a
sole ground state at E = 0, and exp(aN)-fold excited states at
E = ϵN . Then Z = 1 + exp((a − ϵβ)N). This Z is analytic for
finite N , but in “thermodynamic limit” N → ∞,

F =

{
F− := 0 for aT < ϵ,

F+ := (ϵ− aT )N for aT > ϵ.

Notice both F± are analytic for all T , but the smaller one is
“chosen”. They get cut and sewn together at aT = ϵ. If a
singularity of F has nothing to do with that of F±, then it is the
first-order transition point.

2.4. Non-convexity and spontaneous symmetry breaking;
general lattice systems

We consider spontaneous symmetry breaking of gen-
eral lattice theories. Although there may be multiple
fields and conjugate extensive variables, we suppress la-
bels to distinguish them, and continue to use the same
symbols with the former ones; meaning must be clear.
Let the dimensionality be d, V = Ld, and the symmetry
is spontaneously broken at h = 0. When the symmetry is
continuous, domain walls cannot form, and so the RSEF
is not a region of phase coexistence.

The precise magnitude of non-convexity is as follows:

Theorem (Magnitude of non-convexity). Suppose there
is spontaneous symmetry breaking, being |m| = msp un-
der zero external field. For |m| < msp, (i) C(m) −
C(msp)

L→∞→ +∞, because it is necessary for spon-
taneous symmetry breaking to happen. (ii) C(m) −
C(msp) = o(V ), because it is equivalent to ∂c/∂m =
h = 0.

The following two points should be common, but other
cases are not denied completely: (i) If we write C = Cout
outside of the RSEF, Cout is regular at m = msp. (ii)
Inside the RSEF, C = Cin and Cin has a singularity at
m = msp.

We then study the shift of transition point from
Msp, generalizing the previous section. Let Cout(m) =
C(msp)+V (c2∆m2+ c3∆m3+ ...), and C(m) = Cout(m)
outside the RSEF. Let ϵ > 0 be such that 0 <
C+/Ld−ϵ < ∞ inside the RSEF in thermodynamic limit.
We now assume a scenario where C+’s dependence on
Ld−ϵ comes exclusively from M ’s power inside the RSEF,
i.e.

C+ ∝ Ld−ϵ ∝ (Msp −M)(d−ϵ)/d = (Ld∆m)1−ϵ/d. (12)

In this case, Cin is upward convex and Cin is bigger than
Cout for 1 ≫ |∆m| > 0. The transition point then lies al-

ways inside the RSEF at |∆m| = ∆mt ∝ L−dϵ/(d+ϵ) L→∞→
0 or at |M | = Mt where Msp −Mt ∝ Ld2/(d+ϵ) L→∞→ ∞.
This conclusion is slightly more general than Biskup et al.
(2002), by relating the order of Cin’s singularity with the
shift of the transition point. When there is a domain
wall, ϵ is likely to be = 1, but can be other values for
continuous symmetries.

2.5. General phase equilibria

We also consider non-lattice systems quickly. As we
already stated, in general phase equilibria like chemical
one, the free energy in extensive variables is not convex
by the order of interface. The interface free energy has
to be positive; otherwise, bubbles would form and phases
would mix. Pedagogical: When there is no spontaneous
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symmetry breakdown, there are non-zero external fields,
so the free energy per volume under phase coexistence is
linear, but not constant.

3. QUANTUM FIELD THEORY

3.1. Quantum theory of one scalar field

It should already be clear that in quantum field the-
ory under spontaneous broken symmetry, the effective
action Γ[⟨φ(x)⟩] is not convex. However conversion from
a lattice theory to quantum field theory has some non-
trivial points, if straightforward. Again, normalization is
the point. To set up a necessary language, we start this
section by studying a theory with one scalar field.
We first remember how to obtain the φ4-theory from

the Ising model of d-dimension:8 Convert the spin vari-
ables {σi} to real-valued variables {φi} by Hubbard-
Stratonovich transform and take some more steps to
clean up. Notice the condition

∑
σi = M is mapped

to the equation ∑
φi = M, (13)

since T∂ logZ/∂hi = ⟨σi⟩ = ⟨φi⟩ (with appropriate
normalization), where brackets are vacuum expectation
value and hi is the per-site external field. Equation
(13) is an operator identity, because Z is the generating
functional. Finally Fourier-expand φi and retain only
low-frequency modes. Then the constraint (13) becomes
M̃ :=

∫
ddxφ.

We have to deal with the obstacle that m was spec-
ified in the lattice system. This obviously corresponds
to non-uniform vacuum. We continue to use L to mean
the system’s linear extent. To let the symmetry break
spontaneously we have to take L → ∞. Two cases are
possible: (i) If you keep the domain wall near the ori-
gin, then the wall gets stretched into a straight line, with
the boundary conditions say ⟨φ⟩ → ±φsp as x1 → ±∞,
and the original condition of m has vanished. Or (ii) if
the domain wall is sent infinitely far as L → ∞, we get
the theory ⟨φ⟩ = ±φsp, namely the theory with uniform
vacuum, even though we started from the lattice theory
inside the RSEF. This is not intriguing. In both cases,
we assumed that we can neglect the constraint about∫
dxφ(x), which is nonlocal. This must be no problem

insofar as there are only finite excitations. Variant mod-
els in which the system edge is there, e.g. where y is
limited to ≥ 0, are also possible.9

8 This is a standard procedure. See for example Altland and Si-
mons (2010, Chap. 4).

9 In this case, renormalization at the system boundary is necessary.
For reviews on surface/interface renormalization see e.g. Diehl
(1986) and Jasnow (1986)

The condition on M in the lattice theory seems to have
disappeared in the field theory. It is because the purposes
of the theories are different—in field theories global quan-
tities like total magnetization are not of much concern,
and correlation functions are of prime importance. When
the non-convexity of the Landau theory of phase transi-
tion is concerned for instance, you can focus on Γ with
proper normalization. The situation is actually the same
in lattice theories; M is irrelevant to calculate correlation
functions in thermodynamic limit.

The vacuum with a wall is usually considered to be
a topological condition. In the present discussion it
was naturally introduced as the normalization condition
which was originally there in the lattice theory.

We now explicitly demonstrate the non-convexity. We
take Minkowski spacetime, but it applies to Euclidean
cases too with obvious modification. Let the space di-
mensionality be d − 1, T :=

∫
dt, V := T

∫
dd−1x, and

the Lagrangian density L have the potential U :

L[J ] := 1

2
(∂µφ)

2 − U(φ) + φJ, (14)

where U(φ) = U(−φ). We define Γ as:

e−iΓ[⟨φ⟩J ] :=∫
Dφ exp

(
i

∫
dd x(L[J ]− ⟨φ(x)⟩JJ(x))

)
,

(15)

⟨φ(x′)⟩J := −i
δ

δJ(x′)
log

∫
Dφ exp(i

∫
dd xL[J ]),

(16)

so that Γ takes the minimum for |⟨φ(x)⟩| = φsp := ⟨φ⟩+0.
Γ is related to the vacuum energy Evac by:

Γ = TEvac. (17)

(Symanzik (1970); for an introduction, see Weinberg
(1996, Sec 16.3))

We now calculate the vacuum energy when a wall is
present at the classical level.10 Let U take the absolute
minimum Umin at ±φsp. We impose the boundary con-
dition φ(x) → ±φsp as x1 → ±∞, and uniform in time
and other spatial directions. (The argument when the
boundary condition is spatially uniform and temporarily
non-uniform is essentially the same.) Then the Hamil-
tonian H :=

∫
dd−1xL has the minimum value, or the

vacuum energy

Evac := Ld−2

∫ φsp

−φsp

dξ
√
2V (ξ) + Ld−1Umin, (18)

10 See Bogomolny (1976). For an introduction see also Weinberg
(1996, sec. 23.1). Under spontaneous breakdown of spacetime
symmetry, counting the number of Goldstone bosons is tricky.
See Low and Manohar (2002).
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with the vacuum field configuration which satisfies

∂

∂x1
φ =

√
2V (φ). (19)

The first term of the right hand side of equation (18) is
the non-convex part. What is important here is a mere
dimensional analysis and quantum correction should not
alter the conclusion.

3.2. General field theory; spontaneous breakdown of
translational invariance

As we saw in the previous section, Γ is O(V ), but the
non-convexity is of order o(V ). This is necessarily so for
any quantum field theory with spontaneous symmetry
breakdown, as we saw in the case of lattice theories.
Now we prove that the translational invariance is spon-

taneously broken inside the region singular with the ex-
ternal field, namely the region where Γ is non-convex.
We use the notation of the theory with one scalar field,
but it obviously applies to any symmetry.
If the vacuum configuration ⟨φ⟩ inside the non-convex

region were temporarily and spatially uniform, then
Γ[⟨φ⟩] > Γ[φsp], by definition of the spontaneously sym-
metry breakdown. But then the left hand side would be
bigger than the right hand side by the order O(V ). This
is a contradiction. □
This can be paraphrased as: By controlling ⟨φ⟩, spon-

taneously symmetry breakdown as |⟨φ⟩| = φsp is lost,
but it has changed its guise as the spontaneous break-
down of the translational invariance. We failed to prove
this result for statistical mechanics.

3.3. (Seeming) breakdown of linearity in thermodynamic
limit

It is clear (was already from the discussion of lattice
systems) that the statement (C), the states in the non-
convex region are linear superpositions of the pure-phase
vacua, is wrong.
There is one important corollary: different vacua of

spontaneously broken symmetry cannot be superposed.
In thermodynamic limit, such thing can happen. It is be-
cause: (i) If it were possible to add the two vacua | ±Ω⟩,
then spontaneous symmetry breaking couldn’t happen,
by allowing intermediate states. (ii) | ± Ω⟩ belong to
two different theories, described by to two different La-
grangians L[±0]. These two explanations would sound
somewhat heuristic without our result, but we can now
be confident.
With the last explanation (ii) at hand, a more accurate

statement will be: You can not even think of adding
| ± Ω⟩, which belong to different theories.
Of course, in spontaneous symmetry breaking only one

vacuum is believed to be chosen. Still, this point has not

met with a firm, clear consensus to date; Weinberg (1996,
Sec 16.3) claims the superposition of different vacua. See
also Argyres et al. (2009) and references therein for the
confusion on this point. We have finally settled it.

In fact, denial of superposition of | ± Ω⟩ to that effect
was already indicated by Coleman (1985, Chap 5) and by
Weinberg (1996, Sec 19.1) under different contexts, each
of which is physically insightful, if not rigorous. The for-
mer discusses the instability of large systems under small
perturbation, and the latter the requirement of cluster
decomposition.

Once it is shown, it may seem a trivial matter, but it
will have serious influence over the discussion of quantum
measurement. There are manifold “interpretations”, but
usually linearity is considered to be never broken. That’s
why some people proposed theories which can be cat-
egorized as “dynamical reduction models”—those who
work in this direction believe that the wave function in-
deed collapses, and because the Schrödinger equation is
strictly linear, they modify it to induce collapses. Nei-
ther do proponents of decoherence programs think that
linearity can be violated. For reviews, see Bassi and
Ghirardi (2003); Bassi et al. (2013); Laloë (2001); and
Schlosshauer (2005).

Our result indicates that pure quantum theory intrinsi-
cally has a room for non-linearity—to be more accurate,
what can be superposed is not self-evident in thermo-
dynamic limit. Arguments based on systems with finite
degrees of freedom are invalid.

4. A MODEL OF RANDOM WALK OF DOMAIN WALL

4.1. Definition and result

As another application of the non-convex free energy
of the 2-dimensional Ising model given in equation (8),
we consider a simple, abstract model which simulates the
fluctuation of a rigid domain wall.

Suppose the “wall” is initially in the flat region (i.e.
|M | < Mf) and then the total magnetization is allowed
to variate “quasi-statically”. Consider a one dimensional
lattice whose points are denoted by x ∈ {−Mf ,−Mf +
1, ...,Mf},Mf ∈ N. The wall randomly walks on this
lattice. Call the regions left and right to the wall as “spin-
plus phase” and “-minus” one, respectively. At each time
step the wall moves to one of the neighbor points with
equal probabilities 1/2. When the wall reaches an end
point x = ±Mf so getting out of the flat region, then the
wall rolls down the slope of the free energy irreversibly,
and the system ends up in a uniform state.

This simplest model is unique in the following point:
If the wall is initially at x, or equivalently the plus region
shares v := (x + Mf)/2Mf part of the system’s whole
volume 2Mf , then the probability that the final state is
the plus phase is v, which is easy to prove.
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This immediately allows to be made more abstract and
more general: Suppose (i) each spin can take q states,
(ii) there can be arbitrary number of walls and (iii) when
any of two walls meet, or a wall reaches the system edge,
they are annihilated. The boundary can be periodic, but
it does not matter. Again, the probability that i-th state
domain is the only survivor is proportional to its vol-
ume. To prove it, notice that the state can be expressed
as a point on the lattice on a surface of q-simplex, where
xi ∈ {0, 1, ..., N} and

∑
xi = N. The state hops to one

adjacent point with equal probabilities. Once one coor-
dinate xi gets 0, it will be opted out, and the system will
be in (q − 1)-simplex, and so on.
The above models satisfy two important conditions of

quantum measurement, the irreversible collapse of the
state and the Born rule, and we imagined that (i) the
time development is deterministic, (ii) randomness is
brought about by noise, and (iii) large degrees of free-
dom (thermodynamic limit) is necessary.

4.2. Discussion

Probably a pure mathematical model which obeys the
Born rule and is equivalent to ours has already been re-
ported; they are the simplest models of random walk,
after all. (Possibly underneath any theory which obeys
the Born rule our model might be hidden.) But by the
present models we would like to encourage to take the
Copenhagen interpretation more seriously: In finite sys-
tems, time evolution is unitary, but in thermodynamic
limit, it is not always so. Admittedly we cannot hint at
anything on the model’s relation to quantum mechanics.

5. CONCLUSION

We studied lattice statistical mechanics and quantum
field theory under spontaneously broken symmetry, and
found that the free energy and the effective action are not
convex. The order of non-convexity is found to be strictly
smaller than the system’s volume, but it has to diverge.
For lattice systems, the first-order transition at |m| =
msp was studied; there is a slight shift of the transition
point, and we showed it in a way which may be applicable
when the symmetry is continuous. For quantum field
theory, we proved that the translational invariance breaks
in the non-convex region. We proved that different vacua
of spontaneously broken symmetry can not be added,
which has been ambiguous. We also modeled the phase
coexistence of the Ising model, and obtained a simple
model which obeys the Born rule.
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