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For Noble Gases, Energy is Positive for the Gas Phase, Negative for the Liquid Phase
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An independent researcher without any research affiliation

We found from experimental data that for noble gases, energy is positive for the gas phase, and negative for the liquid,
at least almost exactly. The line £ = E| in the supercritical region is found to lie close to the Widom line.

Nature of the cited experimental data—As “experimental”
data, we rely on NIST Chemistry WebBook data on fluids."
In fact it’s not true experimental data, but the output of the
program “REFPROP” which computes model equations, of
which parameters are fit to the result of experiments done in
various conditions, ranging from low to high temperature and
pressure, and near and far from the critical point. In addition,
models differ from substance to substance. Thus accurate er-
ror estimate is not available.? However, we are sure of our
qualitative conclusions.

The lower bound of the temperature at that REFPROP pro-
vides data is Ty, the triple point temperature, and for He, the
A-point temperature.

The sign of the energy determines the phase—What distin-
guishes the gas phase from the liquid phase? For noble gases,
we declare that it’s the sign of the energy E:

E > 0 for gases, E < 0 for liquids. &)

It’s because a gas is an unbound state, so it cannot be E < 0;
otherwise, it would condense. Similarly, if £ > 0, a liquid
could not be a bound state. Of course, this argument is mean
field theoretic—at best. Actually it’s too crude, and we cannot
justify it logically. However, as we will see from experimen-
tal data, it is almost correct, if not exact. This fact somehow
seems to have been unnoticed,>* 7 despite its simplicity and
decisive power. If we write E = K + U, where K is the kinetic
energy and U is the interaction energy, the rule = can be re-
stated as K = |U|. Laxer explanations like “K > |U| for gases,
K < |U| for solids, and K = |U| for liquids” are on the other
hand common.

We now define the zero of the energy. For noble gases, we
safely ignore internal states, i.e. thermal excitation of elec-
trons.® Then the natural definition is to take E = 3/2NkgT at
dilute limit, and we use this in this letter. For molecules, the
internal degrees of freedom, namely ro-vibrational modes, ex-
ist. Intermolecular interactions depend on the internal states,
or in other words, it is not possible to define the quantity U
separate from internal states.

If = is correct on the saturation curve (gas-liquid coexis-
tence curve), it is clear that it extends to the almost entire
(T, p) range, where p is pressure, except the supercritical re-
gion, where gas and liquid are no longer distinct. It’s because
specific heat is positive, and on the isotherm 0E/dp < 0 if the
pressure is not too high (but in that case probably the system
crystallizes), since the more dilute a fluid is, atoms feel the
less attractive force. We are not sure for the region T < T,
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Fig. 1. (Color online) The energy of 5 noble gases and H, on the satura-

tion curve. The upper curve is of the gas phase, and the lower of the liquid.
Horizontal dashed line is for E = 0. Inset shows the E. and T, for these 6
fluids, and the line is for E = —0.4NkpT.

for which REFPROP doesn’t provide the data.

In Fig. 1 we show the experimental data of the energy
of gas and liquid on the saturation curve for 5 noble gases.
We calibrated the zeros of energy from the data at p =
OMPa,® T = T., the critical temperature. At these points,
|C,/(3/2Nkg) — 1| < 1073 for all available substances, where
C, is the constant-volume specific heat, so this extrapolation
is acceptable. The energy in the plot is so scaled that the en-
ergy of liquid at the triple point is —1.!” As it can be seen, Z
is satisfied except the vicinity of the critical point. Helium is
the worst case, where it only holds for 7/T, < 0.98, and for
the rest, as far as 7/T, < 0.994. Considering the inherent un-
certainty of REFPROP data and experimental difficulty, this
agreement is remarkable.

In this figure, the curve for H, is included, because for
T < T, internal excitations are almost frozen.'” From the
WebBook it’s not clear if it is true equilibrium hydrogen, or
“normal hydrogen”, i.e. the 3:1 mixture of orthohydrogen and
parahydrogen. Even if it is normal hydrogen, our claim re-
mains valid. In that case, an orthohydrogen molecule should
be considered as stable, not an excited state of parahydrogen,
so still the zero of the energy is determined as E = 3/2NkgT
atT = T.,p = 0. The claim E applies not only to pure sub-
stances, but also to mixtures.

Helium is to some extent a quantum fluid on the saturation
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curve, since /l3p = 0.57 ~ 1 at the critical point, where A is the
thermal de Broglie wavelength and p is the number density.
But it’s common to both classical and quantum mechanics that
boundness is determined by the sign of the energy, so it is not
necessary to modify = for this case.

If E is exact, it means E, the energy at the critical point, is
equal to 0. In any case, the situation is that E > E, for gas,
and E < E, for liquid for all available REFPROP data.

In the inset of Fig. 1 we plot E, and T, of the same 6 fluids,
together with the line E = —0.4NkgT, which is “fit by eye.”
We’re tempted to say that this fit is satisfactory, so indeed
E. # 0, but we avoid to draw any conclusion. For example
in dilute limit experiments the contribution from the atom’s
interaction with the container wall becomes more significant.

The line E = E, in the supercritical region and Widom
line—For this dozen years or so, the notion of the “Widom
line”'? has been discussed. It’s defined as the line of sharp
maximum of C,, the constant pressure specific heat, in the
supercritical region, starting from the critical point. More pre-
cisely, the C,, divergence at the critical point does not form a
round peak, but on each isothermal and isobaric line near the
critical point, a sharp C, maximum exists, and by connect-
ing those maxima, a “ridge” is formed, and it is the Widom
line. It is also characterized as the collection of maxima of
various thermodynamic response functions. Even though the
validity of the Widom line notion is questioned,'? there is no
problem as long as we consider an area close enough to the
critical point.

We can not tell if E, is exactly = 0, but the question if
the line E = E, is still meaningful in the supercritical region
is natural, possibly representing a crossover, dividing liquid-
like and gas-like behavior.'” As shown in Fig. 2, we found
that the line £ = E, lies near the Widom line, in the region of
low enough temperature where the Widom line can be recog-
nized without ambiguity. This fact does not seem to be known
before. We plotted also the line of C, maximum. When the
system moves far away from the critical point, C,, maximum
disappears, and the Widom line may not be well-defined there.
In that region, the line E = E, departs from the C,, maximum
line. We give the plots of xenon and neon in Fig. 2, but our
result applies to hydrogen, argon and krypton, too. We cannot
assert anything on Helium: Data close enough to the critical
point are not provided by REFPROP; for the region with data,
the line £ = E. and C, maximum do not agree well, and C,
maximum cannot be observed.

Discussion and outlook—The rule E , which we judge al-
most correct, raises many questions. First of all, is it exact?
Experimental verification will be difficult, so computer simu-
lation should prove it—rather, a disproof will be easier than
a proof. If correct, it must be so for any short-ranged interac-
tions, independent of dimensionality.'> Then it can be used
for precision check in simulation, and for calibration in ex-
perimental data analysis.

If the claim E is exact, then K = |U| at the critical point.
This indicates symmetry. Even if not exact, we can say there
is approximate symmetry. What symmetry is it precisely? Are
there any system for which exactly E. = 0? If E. # 0, how
can it be calculated theoretically? (In that case, E. = 0 can
be used as the mean-field, zeroth-order value.) The property
E implies 0E/ON — 0 in thermodynamic limit at the critical
point. Intuitively E being = 0 is the edge of boundness, and
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Fig. 2. (Color online) The lines of C, and C;, maximum and E = E_ in the
supercritical region for neon and xenon.

is also the point where a dimensionful constant vanishes, so it
seems to be related to the scale invariance of the critical point.
Howeve the condition of £ = 0 is not sufficient, since the line
of states £ = 0 do exist in the supercritical region too.

As we cautioned, the statement = is very rough. It also
treats the energy from the viewpoint of mechanics, but the
energy of a fluid is a thermodynamic quantity, the (canoni-
cal) ensemble average, which is not conserved. Definition of
boundness is very involved, if ever possible, for a many-body
case. At the same time, treatment in microcanonical, or dy-
namical system theory may be possible.

Yet, Z’s incisive simpleness allows a clear understanding,
or new definitions of gas and liquid. For example, consider the
solution of solute A and solvent B. Then A is gaseous inside
the solution, and B is liquid. Let us write the Hamiltonian H
schematically as:

H =Ky + Kp+ Ugp + Upp + Uys,

where K, is the kinematic energy of A particles, Ugap is the
potential between A and B particles, and so on. Now integrate
out B’s variables. Then we obtain the effective Hamiltonian
H.¢ which looks like:

Her = Kpert + ., Ui,
i

where U, is the i-body effective potential, which is = 0 when
all particles are infinitely apart from each other. Then A is
gaseous means {(Kgaer) + Xi»o{(U;) > 0, where the bracket is
the thermal average. But since the whole system is still liquid,
Dis0lUi) < —(Kaet) < 0. (So, —(Uy) is similar to to the work
function of metals, although in the current case the tempera-
ture is finite.) If A and B demixes so that the A-rich phase and
the B-rich phase coexist, then A is gaseous in B-rich phase
and liquid in A-rich one, and so on. It seems almost obvious,
in reality a mere heuristic though, that the critical point of bi-
nary fluid consolution belongs to the same universality class
as the gas-liquid’s one.

A still easier example is the theory of dilute solutions,
found in every textbook of thermodynamics. When the au-
thor was a student, he felt the appearance of the gas constant
R was sudden and absurd. “Interaction is strong, the ideal gas
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has nothing to do here, no?” It is the consequence of ther-
mal average,'® but we have an alternative view. In fact, so-
lute is a gas trapped in the solvent, and in dilute limit, it be-
comes an ideal gas, because the interaction between solute
molecules can be neglected. The mean free path of the bare
solute molecule does not matter.

The rule E imposes a limit on the spinodal curve, too. The
spinodal curve is difficult to define theoretically. In textbooks,
it is often explained mean-field theoretically as “the” inflec-
tion point of (the metastable branch of) free energy.!” More
careful definition is as the occurrence of negative compress-
ibility for all wavelengths,'® but it still suffers from that it
may not be well defined due to metastability. We know how-
ever that the supercooling of gas and superheating of liquid
cannot exceed the line £ = 0. It is only a necessary condi-
tion, but the energy of the system is always defined. At the
very least it explains that the two spinodal curves do exist for
gas-liquid transition.

In molecular fluids, ro-vibrational degrees of freedom mix
with intermolecular interactions. In = translational degrees of
freedom are concerned, so to extend = to molecular fluids,
we have to extract and separate them from internal degrees of
freedom. It must be possible, since critical points exist also
for molecular fluids, but we don’t know how to do it.

The assertion Z also hints something on the notion of clus-
ter and percolation, which is easiest to describe from the
standpoint of Monte Carlo simulation.'” “Cluster algorithms”
in general update all variables in a group, called cluster, but
we call it “updating cluster” (UC). There is another cluster,
which percolates at the critical point, which we call PC. PC
is used to locate the critical point in “invaded cluster algo-
rithm”. In Ising model, PC is the set of parallel spins which
are connected. It is also generalized for example to Widom-
Rowlinson model, but not for general fluids. UC is a subset
of PC, and it has to satisfy detailed-balance. It is usually cho-
sen to make the algorithm most efficient, but it is not neces-
sary. Because percolation is deeply connected to criticality,
the current situation where PC is lacking for general systems
is unsatisfactory. Our questions are, how to define PC for gen-
eral systems, and does UC have a physical meaning beyond a
mere computational utility? By answering that, it may be pos-
sible to obtain more insight on opaque relations between the
lattice-gas model and fluids.

In physics, models, even toy models, have served to make
various advances, and we inevitably pose this question: Is
there any one-particle, central force system, classical or quan-
tum, which has a phase transition at 7 = T, and for T =
T.,E =z 07 For classical cases, natural order parameters are
(1/ry and (U).

The fact = also suggests the energy may be an order pa-
rameter. What we have discovered recently is that the energy
difference AE on the saturation curve is universal, by being
o« (T, — T)*, where the exponent a is independent of sub-
stances, including molecular fluids.”” We pointed out that E
is a quantity that can be defined purely in mechanics, without
thermodynamics. But not only AE, but also A1/V, the density
difference, is an order parameter along the saturation curve,
as known very well, and V is a pure mechanical quantity, too.
Some mysterious symmetry may be hidden.
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