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Misunderstanding that the Effective Action is Convex under Broken Symmetry,
Studied via Ising Model

ASANUMA Nobu-Hiko*

An independent researcher without any research affiliation

The widespread belief that the effective action is convex and has a flat bottom under broken symmetry is shown to
be wrong. To draw concrete results we center on the 2-dimensional Ising model, and there it is shown that the exact
transition point is not at |M| = M, but slightly shifted, and even though the extensive variable M, the magnetization, is
used, discontinuity appears. A simple model of phase coexistence is found to obey the Born rule.

Much has been said about the effective action I'[{¢(x))] un-
der broken symmetry where the field has the vacuum expec-
tation value (@) = +¢g, # 0. For simplicity, we here use the
language of a field theory with one scalar field ¢. At its core
lies the belief: “Because of (A) its downward convexity, (B)
the effective action has a flat bottom for [{p)| < ¢sp. (C) States
in the flat bottom are realized as a linear superposition of the
vacua | £ Q), where (+Q|p(x)| £ Q) = ¢, But as we will
see, all the points (A), (B) and (C) are wrong. Being unaware
of it, numerous confused reports have been done.?

Instead of quantum field theories, we switch to statistical
mechanics for a while. Unless otherwise stated, we use the 2-
dimensional square Ising ferromagnetic model with nearest-
neighbor interaction of which volume is V = L?. Even though
it has always been the best studied model, we will see its un-
derstanding is inadequate. We fix the temperature 7 = 1/8
lower than the critical temperature 7, so that the model ex-
hibits spontaneous magnetization m = =+mg,(T) under zero
external field. Our model is, together with relevant symbols,
defined as:

Z(B.hy = ) exp(-BH(h)),

{oi==1}
H(h) := =] )" oj0; = hM,
M = Z gy,
m:=M/V,

BF(B,h) :=—logZ,
BD(B, m) := B(F + hM)

=—10g Z o BUH+hM)
(X oi=M}

D(B,m), the Legendre transform of the free energy F(B,h),
plays a role similar to the effective potential V({¢)), which is
the effective action with spatially uniform vacuum configura-
tion. It is the free energy when (8, m) are the variables that
specify the state of the system, and F(h = +0) = D(m =
+mg,). We will often present statements and equations which
are exactly correct and/or meaningful only in thermodynamic
limit, but readers will have no difficulty understanding them.
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The case where |m| < myp, i.e. the region singular with re-
spect to the external field (RSEF hereafter), is of our interest.
To write down D, we notice Z(h = 0) = 3, exp(-8D(m)), so
P@m’) := exp(—BD(m’))/Z is the probability that m takes the
value m’ when (7, h) are specified. Fortunately the analytic
formula of P is obtained for the 2d Ising model for free and
periodic boundaries in thermodynamic limit, at least for low
enough temperature.® It can be rewritten for D as:

D*(m) := D(m) — D(myp)

_JaLT yJmg, — |m|
~\aLtT \/msp — mg = const.

where m; > 0 and a > 0 are finite constants dependent on 8
and the boundary condition. It is now obvious that the claims
(A), the convexity of D, and (B), the “flat bottom™ are illu-
sions. D is not always downward convex.

To understand it better, we have to be careful about the nor-
malization of variables. Even though M is discrete, we would
like to define dD/OM and to expect it to be = h. There is no
problem by defining it as (D(M + n) — D(M))/n (n € Z), since
— 0D/VOm as L — oo. Or dd/0m = h, where d := D*/V.
But d is = 0 throughout the RSEF. So even though d is dif-
ferentiable and globally convex, it is a “boring” quantity, con-
taining less information than D.

It is odd that non-convexity has already been known for
long in statistical mechanics, but it has been misunderstood
to be an artifact of finite systems, and that convexity (of d)
is recovered in thermodynamic limit. It is true that d — 0
as L — oo inside the RSEF irrespective of the dimensionality
and the broken symmetry, (in general there are multiple ex-
ternal fields &, and M; = O0F/0h,, but that does not matter)
because it is what Legendre transform should satisfy. But that
ought not to be confused with the fact that D is not convex.
Rather, D™ is, and has to be > 0, and it dictates the physics in
the RSEF. This fact has also been well known in the field of
Monte Carlo simulations. After all, if D were flat-bottomed,
how could symmetry break spontaneously? To summarize,
D*(m| > mg),D,M = O(L*),D*(Im| < mg,) = o(L*) and
m = O(L), where O and o are Landau’s symbols.

We here clarify the flaw in the proof of D’s convexity: F
is convex in & inside the intervals where F is regular in h,
and this fact has to be used to prove D’s convexity. Thus F’s
convexity does not imply that D is convex in the RSEF, which

for ms < |m| < mygp, )

for |m| < my,
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corresponds to one, singular point 4 = 0.

An intuitive understanding of the D*’s equation is desir-
able.® First take the free boundary. When |m| < m; (“flat re-
gion” hereafter), the system consists of two domains, the plus-
spin rich phase and minus rich one, separated by a straight
wall, running parallel to the two system edges, with D™ = sL,
where s is the surface free energy per unit length. (Although
2-dimensional, we use the word domain wall.) As long as m
stays in the flat region, the wall can shift but remains straight,
and D does not change. When my < |m| < myp,, the smaller
domain favors to be a droplet® at a corner to lower the en-
ergy. If the boundary is periodic, the domains in the flat region
are strips with two walls, and the droplet can form anywhere.
We immediately recognize that (i) the RSEF is a phase co-
existence region, (ii) L +/mg, — |m| is of the order of the wall
length, and (iii) the flatness of D means the wall’s thickness
is finite, or the wall is “sharp”, so does not interact with the
boundaries, or with the other wall under periodic boundary.
For general boundaries the shape of the domain is determined
by “Wulff construction”.®

The phase transition at |m| = m¢ is sometimes called
droplet-strip transition. It is obviously first-order; both do-
mains discontinuously change their geometries, and both
sides of the transition point have the metastable branch. It
also lacks universality: The situation that D is constant in the
flat region is specific to rectangular systems, and is not true
for general geometries. (On the other hand, the sharpness of
the wall is common to any case.) There may exist geometries
without droplet-strip transition point altogether. At the same
time, it is noteworthy that D for rectangular systems has a
continuous symmetry, by being constant, which connects the
states of different m’s. So even though we control m by hand,
there may exist something similar to Goldstone boson. This
continuous symmetry is also marked by its sudden termina-
tion at |m| = m;.

Next we consider the phase transition at u := mg, —[m| = 0.
Let us compute the energy inside the RSEF:

+
aﬁ_Dlp = b,ul/zv
B
where b depends on S but not on w. Here, the derivative with
B is taken by fixing p, or equivalently by first fixing m and
mg,(Bo), and by putting By = § after the differential. (If m and
mgp(B) are fixed in the derivative, E* diverges as 12 This
definition must be wrong.)

Because we are using the extensive variable m, the transi-
tion looks continuous and there is no latent heat. More pre-
cisely, it is first-order when approached from the the opposite
limit |m| N\, mgp,, by not showing any sign of transition before-
hand, and the transition happens suddenly at u = 0. After the
system passes the transition point, it can go to the metastable
branch, too. On the other hand, inside the RSEF there are re-
lations D*, E* o« p'/? which look like scaling laws, just like
continuous transitions. This is partly expected, because phase
coexistence terminates at the point u = 0, or put differently
cannot extend over that point, so there must be a singularity,
and by definition, D*, E* =0 atu = 0.

In reality this transition is not continuous and accompanies
discontinuity, and as we will see, it is inevitable. For m > myg,

E*(m) := E(m) — E(myy) = @)

D is regular, so
D(m) = D(mg) + L*(co4” + c3® + .., 3)

where ¢; = 0h/Om|;,=o = O(1). This equation should also
describe the metastable branch inside the RSEF. By compar-
ing this expression with Eq. (1), inside the RSEF aLTu'/? >
coL?u? for small enough ¢ > 0, and the true transition point
U is found slightly inside the RSEF, at u, = aTcg'L‘zB, or
Mg, —|M,| oc L*3. This was rigorously proven in Ref. 9, but we
were able to obtain it easily by Eq. (1), giving another physi-
cal interpretation. Although g, — 0 in thermodynamic limit,
this shift is observable since My, — |M;| — oo. Latent heat is
there, too. (If not, special symmetry is hidden.) In words, even
if p is put to O from the inside of the RSEF, the big one droplet
disappears all of a sudden, and this discontinuity is neces-
sary even if the extensive variable M is utilized. Also notice
D* o u!'/? represents a metastable branch for 0 < u < ;.
This is not an exceptional, isolated case. Consider a general
system with the dimension k. When the symmetry is contin-
uous, domain walls cannot form,'" but anyway as we stated
D* should be o« L*~¢ for some € > 0 inside the RSEF. So one
likely scenario is that D* o« (Mg —|M =&k = (Lku)'=¢/* For
the cases this assumption holds, D" is upward convex at least
for 1 > u, and this D* is bigger than the regular branch as
u — 0. The transition point then lies always inside the RSEF

at gy oc L6+ 7257 0 o Mg, — [M,| o LF/6+0) "2

We move on to the issue of bulk order parameters. In Ising
models the total magnetization M or its per spin value m is
almost always employed, but it loses the meaning as an or-
der parameter in the RSEF because it is not what the system
shows in response, but at our disposal. However, impose free
boundary (we postpone the periodic boundary case) and de-

fine
1 2
Fo= — E (),

brackets meaning the thermal average. Then r does not de-
pend on m (remember that the wall’s thickness is finite), thus
r = mfp. So, even inside the RSEF, there still is an order pa-
rameter which measures the magnitude of spontaneous mag-
netization, and depends only on 7. The r’s independence of
m must be the consequence of the symmetry that all states in
the RSEF correspond to & = 0, but we fail to derive r in that
way.

Here the fact that symmetry of inversion along the x- and
y-axes is broken in equilibrium is used. This can be proved
by adding for example an x-symmetry breaking term uY' to
the Hamiltonian, where T := ), x;07, x; is the x-coordinate
of the site 7, and u is an external field. We need the case of
u — £0. Do Legendre transform from u to the conjugate ex-
tensive variable Y and plot the free energy. By an argument
similar to that of D vs M, the states of the extrema of Y are
favored, since the second domain wall accompanies interme-
diate states.

There is extra intricacy for periodic boundary, namely
translational invariance. For Ising models with free m, in other
words where (7', h) are the independent variables, it is known
for d > 3 equilibrium translational invariance is broken un-
der various boundary conditions.® In rigorous proofs, typical
situations are such that +/— spin is favored at x = 0 or = L,
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or antiperiodic in x-direction, and the rest boundaries are free
or periodic. In d = 2, translational invariance is preserved.
In general, translational invariance breakdown is more likely
for fixed m than free m because wall’s deviation is more re-
stricted, and for our case where m is the input, we give two
simple (handwaving) arguments to suggest translational in-
variance breakdown. Let us consider a 2L X L system so that
the wall runs along y-direction. The first is based on the linear-
ity of correlation functions: For any translationally invariant
equilibrium of a 2d system with free m, there exists @ such
that any correlation function (o7,...0,) can be expressed as
a{oy,...00)+ + (1 —a)oy,...0,)-, where (0',)+ = Mg, 8 But
when m is fixed to 0, (o"(0, y)o (L, y)) = —m cannot be a lin-
ear sum of (0(0, y)o(L,y)): = mg,. (Strlctly speaking, in the
argument of free m the spins of correlation functions are fixed,
while for fixed m we considered spins’ separation which de-
pends on L.) In the second, we borrow notations from field
theories, and again take the case m = 0. Let |s) symbolically
mean the state where (slp(x)|s) = ¢ for s < x < s+ L,
and = —¢g, otherwise. The problem is, roughly speaking, if
the equilibrium is unique, being = f dx|x), or each of |x) is
one of the equilibria. Add to Hamiltonian a translational in-
variance breaking term —& ft h dxp(x) for any ¢, and see if the
limit € — 0 depends on ¢ or not. For any finite &£ > 0, however
small, the state |x) costs energy o |x — #|L but the entropy gain
of translational invariance preservation is oc log L, so [|¢) is the
only equilibrium.

These are not proofs, but if translational invariance is bro-
ken under periodic boundary, then r is again = mgp for any m,
so it really is a good order parameter, and unlike d which is
also constantly = 0, 7 is not trivial. We also ask this question:
We specify m, so there is no more spontaneous breakdown of
the symmetry of m being = +my,. Has it changed its guise to
the breakdown of translational invariance?

Finally we would like to come back to field theory, i.e. the
continuum limit. First remember how to get ¢*-field theory
from the Ising model:'? Convert the spin variables {0} to
real-valued variables {¢;} by Hubbard-Stratonovich transform
and take some more steps to clean up. Notice the condition
> 0; = M is mapped to Y, ¢; = M, since TdlogZ/oh; =
(o) = (¢;) (with appropriate normalization), where &; is a
per-site external field, and since Z is the generating functional.
Then Fourier-expand ¢; and retain only low-frequency modes.

We have to deal with the obstacle that m was specified in
the lattice system. We continue to use L to mean the system’s
linear extent. We look at four options in turn: (i) Keep L finite.
In this case, M is finite, but there is no phase transition, even
if the “mass”, i.e. the quadratic term in Lagrangian is nega-
tive. Although D has a maximum at m = O, this case is not
interesting. (ii) This is not a field theory, but what if L is finite
and render the lattice spacing to 0? Then the wall is a singular
line, and {@(x)¢(y)) = O for x # y. This theory is unusable.
(iii)) Let L — oo, and keep the wall near the origin. In this
limit, the domain wall gets stretched into a straight line, with
the boundary conditions, say (¢) — ¢, as x! — +oo, and
the original condition of m has vanished. (iv) Still L — oo, and
also send the domain wall infinitely far. Then we get the the-
ory {¢) = ¢, even though we started from the lattice theory
inside the RSEF. This is not intriguing. In cases (iii) and (iv),
we assumed that we can neglect the constraint f dxp(x) =: M,

which is nonlocal. This must be no problem insofar as there
are only finite excitations. Variant models in which the system
edge is there, so e.g. y is limited to > 0, are also possible.!?
We elaborate the case (iii) above. To be general, let the spa-
tional dimensionality be d and the Hamiltonian H have the

potential V:
H = fdd (2(1 2¢+V(¢)]

where V(¢) takes the absolute minimum 0 at +¢g,. We im-
pose the boundary condition ¢(x) — ¢, as x!' = +oo. At
the classical level, H has the minimum value, or the vacuum
energy,

sp
Eye := L' f dé~2V(€) > 0,
~P5p
with the field which satisfies
0
Pl V2V(e),

and uniform in time and other spatial directions.'” For uni-
form vacuum, I' = TE,,. where T := fdt and Ey = 0.19
Assuming that this expression of I' is valid when a wall is
present, I' oc TL4~! > 0 — this assumption is plausible, since
it conforms to the result of the lattice statistical mechanics we
saw. Then at least in these field theories, but probably gener-
ally, I does not have the flat bottom.

The vacuum with a wall is usually considered to be a topo-
logical condition. In the present discussion it was naturally
introduced as the normalization condition which was origi-
nally there in the lattice theory, but has become invisible in
the continuum theory.

‘We have skipped the discussion of the breakdown of trans-
lational invariance on quantization, but anyway it is clear that
the statement (C), the realization of the flat bottom by linear
superposition of the vacua |££2) that give (£Qp| £ Q) = ¢,
is wrong. Even if translational invariance is preserved, the
vacuum will be a superposition of states with a wall, and the
vacuum energy is higher by the order L¢~!. It must also be
mentioned that the two uniform vacua | + Q) cannot be added,
because they belong to two different Lagrangians L[J = +0],
where J is the source coupling to ¢.

A model of domain wall motion under random external
field—We model the fluctuation of a rigid domain wall, ini-
tially in the flat region and then exposed to a random external
field. Consider a one dimensional lattice whose points are de-
noted by x € {—Ms,—M;s + 1,..., Ms}, My € N. The “wall”
randomly walks on this lattice. Call the regions “left” and
“right” to the wall as “spin-plus phase” and “-minus” one,
respectively. At each time step the wall moves to one of the
neighbor points with equal probabilities 1/2. When the wall
reaches an end point x = +M; so getting out of the flat re-
gion, then “spontaneous symmetry breaking” happens “irre-
versibly,” and the system ends up in a uniform state. This
simplest model is unique in that if the wall is initially at x,
or equivalently the plus region shares v := (x + M)/2M; part
of the system’s whole volume 2Mj, then the probability that
the final state is the plus phase is v, which is easy to prove.

This immediately allows to be made more abstract and gen-
eral: Suppose each spin can take g states, and there can be ar-
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bitrary number of walls, where if any of two walls meet they
are annihilated. The boundary can be periodic, but it does not
matter. Again, the probability that i-th state domain is the only
survivor is proportional to its volume. (To prove it, notice that
the state can be expressed as a point on the lattice on a surface
of g-simplex, where x; € {0,1,...,N} and ), x; = N.) This
model satisfies two important conditions of quantum mea-
surement, the collapse of the state and the Born rule, and we
imagined that (i) the time development is deterministic, (ii)
randomness is brought about by noise, and (iii) large degrees
of freedom (thermodynamic limit) is necessary.

Discussion and outlook—Textbook explanations of Lan-
dau’s theory of phase transition are also confused regarding
convexity. It is now an easy task to rewrite them.

As for the transition at |m| = mg, some questions are in
order: First we don’t know the order of magnitude of its en-
ergy gap in L. And by using energy (or entropy) as the inde-
pendent variable instead of 7, the transition can be observed
continuously. Usually in such cases phase coexistence occur,
but it is unlikely in the current case. What exactly happens?
We also note that in Ref. 9 it is shown (not rigorous but in a
physically plausible way) that in gas-liquid transitions in gen-
eral, there appears a model independent function that is re-
lated to the above mentioned shift of the transition point into
the RSEF. In our recent paper'® we discovered a new univer-
sality that the energy difference and the latent heat along the
gas-liquid coexistence curve are well described by power laws
AE o« (T,—T)*, TAS « (T.—T)"?, where a and b are constants
independent of fluids. This transition is a classical one among
other first-order transitions, but awaits more exploration.

Probably a pure mathematical model which obeys the Born
rule and is equivalent to ours has already been reported, but
the discussion here motivates to take the Copenhagen inter-
pretation more seriously. Admittedly we cannot hint at any-
thing on the model’s relation to quantum mechanics, and its
relevance to Ising/Potts models is weak; reasonable will be
the criticism that we normalized “volume” arbitrarily, by us-
ing My, not M,. However, when discussing quantum mea-
surement the stability of thermodynamic limit vacuum has
scarcely, if not never, been considered in explicit conjunc-
tion with a model which yields the Born rule.!” The Copen-
hagen interpretation is unpopular because linearity is thought
to be never violated. In our opinion it is not obvious at all; in
fact, we refuted the RSEF as the superposition of {¢) = +¢s,
vacua, which has not been questioned before. Discussions
based on finite systems should be invalid, for the same rea-
son that phase transitions can only happen in thermodynamic
limit. The importance of the correct understanding of vacuum
can never be underestimated.

We had to limit ourselves to the 2d Ising model for con-
crete results, but thorough investigation of the nature of the
RSEEF of other lattice models is called for. The case of the 2d
Ising model we considered is the most basic of all, and yet our
brief and simple tour already opens a way to deep insight. Of
course, theories with continuous symmetry are by no means

less interesting, but more challenging. Our result raises inter-
est in many other directions.

To summarize, we studied the Ising model and quantum
scalar field theory under broken symmetry. In the lattice the-
ory M, the total magnetization, is not restricted, and we can
specify the state of the system with it. The transition point

is not located at |M| = My, but slightly smaller, and the use
of the extensive variable M can not avoid discontinuity. M
corresponds to f dx{yp) in field theory, but spatially uniform
vacua with [{¢)| < ¢y, are prohibited, and the spatial configu-
ration of the vacuum needs to be specified explicitly. (Stable)
vacua with a domain wall are allowed. The effective action of
field theory, and its counterpart in statistical mechanics, are
not convex in the region of phase coexistence when appropri-
ately normalized.
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