目的:ガウス関数の微分
共分散行列 (バンド幅行列) を用いて表された多次元 (多変量) で異方性のガウス関数 (ガウス分布; 正規分布) の微分 (勾配) を考えます。微分したいガウス関数の形は
だとします。ただし
共分散行列を
ちなみにバンド幅が によって表された
を中心とする 1 次元のガウス関数
の微分は
などでも紹介されている通り、
となります。今回はこれの
準備:指数部にベクトル・行列が含まれるときのベクトルによる微分
を
ベクトル、
を
対称行列とするとき、
が成り立ちます。この公式自体は様々な記事やウェブサイトで紹介されているので、ウェブ検索をかけるとすぐに見つかります。
この公式と合成関数の微分の公式 (Chain Rule) を用いることで、
という関係式を導くことができます。この式は
では公式として紹介されています。ちなみにベクトルによる微分の Chain Rule は
で証明が紹介されています。
導出:式変形と結果
上記で導いた関係式と再び合成関数の微分の公式 (Chain Rule) を用いると
が得られます。また、冒頭で紹介した 1 次元のガウス関数の微分の関係式
も、得られた式において
おまけ:二階微分(ヘッセ行列)
上記で得られた結果をさらに用いて、ガウス関数の ヘッセ行列 (Hessian Matrix) を求めます。
ベクトル を引数とするスカラー関数
のヘッセ行列
は
で説明されている通り、
で計算されます。したがって、ガウス関数のヘッセ行列は
となります。途中、
で示されている結果などと矛盾しないことが分かります。
最後に
この記事には間違いがある可能性があります。ここに書かれている数式を用いる場合には必ず自身で再計算して確認してからにしてください。また、もし間違いを見つけた場合には教えてください。