小学校の円の面積の計算の問題でバズっているのを見かけたので便乗してみる。
初増田なのでなんかおかしなことがあったらごめんと先に誤っておく。
そして、わたしは計算が嫌いで物理と数学から逃げ続けた生物系研究者で、特に円周率に対して深い知識があるわけではないことも付け加えておく。
簡単に経緯を説明する。
「半径11センチの円の面積を円周率を3.14として計算した時の答えは、11*11*3.14=379.94は厳密には誤りで、
有効数字3桁で380の方が正しいのではないか?」
(ちなみに、半径11の円の面積を5桁の有効数字で表すと、正確には380.13である。)
円周率3.14は、実際には3.141592…という割り切れない値を3桁で表した概数である。
有効数字3桁で算出された計算結果は、やはり有効数字3桁であるから、正しくは小数点以下一桁目の9を四捨五入して380が正しい。
なお、379.94と回答した場合は、実際の円の面積とは異なる値となる。これをあたかも真の円の面積のように誤解してしまう可能性があるので、
小学生に有効数字の概念を教えるのは難しいので、設問に「上から三桁の概数で答えなさい」と入れれば万事解決
設問に「円周率は3.14とする」と書いてあるので、「円周率は3.1400000…」を仮定して解けば良いのではないか
あるいは、もう円じゃなくて円周率3.14000のなんかの局面を仮定すれば良いのではないか。
そもそも3.14だろうが3.141592(以下略)だろうが大して結果は変わらない(0.19なんて誤差)。これくらいの誤差は無視していい。
なんで理系はこういう細かいことを指摘してドヤ顔しているのか。こういうことをするから小学生は算数を嫌いになる。
私自身は「379.94は誤り」派です。おそらく理系の人の多くはそうだと思いますが。
「379.94でいいじゃん」派の意見もざっとまとめてみましたが、もし足りない点等ありましたら後で追記するので
教えて下さい。
以下に、「379.94は誤り」という意見を支持する理由を書きます。
円周率はπです。いつの時代も、どの世界線でも、関孝和が計算しようがアルキメデスが計算しようがライプニッツが計算しようがオイラーが計算しようが
そろばんで計算しようがスパコンで計算しようが円周率は割り切れません。
アルキメデスは古代ギリシア時代にあって、おそらく円に内接、外接する正96角形の周の長さを求める式から既に円周率が3.14の概数で表せることを導いていました。
しかし、古代から円周率の計算に取り組んできた誰もが、円周率を割り切れる数として扱った人はいないのです。
人類が何百年もの時間をかけて漸く得ることに成功したこの円周率を、「あ。3.140000でいいっすね」とか、たかだか小学校教諭の分際で勝手に変えることはできないのです。
ぶっちゃけ、言語は変わっても、数字の意味は不変です。これは自然界の法則だからです。
仮定はあくまで仮定です。それを元にした結果が解になることはありえません。
例えば、私は生物学者なのですが、「STAP細胞があると仮定して」実験を行って得られた結論は、信用に足るものになるでしょうか?
答えはわかりきっていますよね。
ちなみに、「円周率を3.14として」というのは「円周率を3.14と(近似)して」という意味です。
あと、比較として用いられていた「摩擦係数を0として」というのは仮定ではなくて想定です。地球上では作るのが困難ではありますが、
摩擦係数を0.00に近似できるくらいの環境なら作れるでしょ?その環境を想定してるんです。
それをあろうことかそのまま解にするなど、あってはならないことです。
結論から言うと、私は、小学生が「どれくらいの精度で円の面積を求められるか?」を、
誤解してしまうという点が、「円周率を3.14として有効桁数5桁まで求めてしまう」ことの
最大の欠点だと思うのです。
「んー、円周率3.14。半径11の円なら面積は121×3で363。
これよりちょっと大きいくらいだからまぁ、370くらいかなー?(正確には380です。)」
これくらいの精度で良い人間にとって、0.19(380.13と379.92の差)の違いなんて
もう誤差でしょ。そこに異論は無いのです。
しかし、小学生にとって、小数点以下二桁ってそりゃもうすごい精度ですよ。
半径の長さ11.0 cmと!魔法の数字円周率3.14さえ用いれば!
なんとなんと、数十平方マイクロメートル単位で円の面積が求まってしまう!
→実際には世の中そんなに甘くないわけですよ。
では次に、半径1111 cmの円の面積を円周率3.14で求めてみよう。
すごいですね~、どれだけ桁が増えても小数点以下二桁まで求まります。
ってんなわけあるか!!!!
1111*1111*3.141592654=3877733.79
これが正解。 ね?だいぶ違うでしょ?
でも、有効数字3けたなら、3880000。これならまぁだいたいこんくらいかーってのがわかる。
④−3で、「うわぁ、こいつめっちゃ細かいコト言ってるよ、これだから理系は。。。」
緑色の背景に、なんか動物っぽい白いものが写り込んでいますが、何の動物だかよくわかりません。
円周率3.14を使って半径11の円の面積を379.92と主張することは、この白い物体を「絶対馬だ!」って言っているようなものなんです。
有りもしないもの、本当にそうなのかよくわからないものを「絶対そうなんだから!私見たんだから!」と言っているどこかのOさんのようなものなのです。
私は最初、このツイート見た時、「まぁそんな細かいコト言わなくても。。。」
って思っていました。「379.92でいいじゃん」派的な考えだったわけですね。
その一番の理由は、
「3.14の次の値が1である」ということを知っているからです。
通常の概数だと、「概数で3.14」と言うのは、「3.135から3.144」までを想定してるんだけど、
まぁ大体3.14ってのはあってるんですよね。
でも、読んでいるうちに考えが変わりました。何故かと言うと、
「結構多くの人間が、円周率、有効数字の概念とその問題点を全く理解していない」
ことに気づいたからなんです。
挙句の果てには円周率を「3.140000」と「仮定」すればいいじゃん。
という人まで出てくる始末。
それでこの問題についてよくよく考えてみた結果、
「これはやっぱり、小学校であっても379.92を正解とするのはよくないな。。。」
と思ったんです。
このエントリーを読んでよくわからなかった人も、これだけは覚えていってください。
I. 数学とは、科学とは、世の中の真理を追求する学問であり、
人間に都合よく結果や値を変えることはできない。
πは3にも3.14にもならない。
II. 仮説は検証とセット。検証できない仮説を設定しては行けない。
仮説に基づいた結果を解にしてはいけない。
逆に役に立てるかと思い、書かせていただきました。
オモシロイと思って読んでいただければ幸いです。
こういう議論ができるのって、素敵ですよね。
今後摩擦力や空気抵抗を0と仮定したら殺すからな
問題に出てくる摩擦係数や空気抵抗0は「仮定」じゃないと言ってるのに。 たとえば「仮定」して計算した後で、実験により「検証」しなければならないはず。 言ってる意味わかる?
円周率がπになるのはユークリッド空間だけ。はいろんぱっぱ
「算数」に有効数字どうこういうのって有効数字の意味をまったくわかってないよね。 公式覚えてとりあえず適用してるだけの馬鹿
ただの有効数字の話であれこれいってるやつらがいるのか。
算数の問題だからね。 数学でしか語れない人が文句垂れちゃダメ。