
Type introduction illustrated
for casual haskellers

Takenobu T.

Rev. 0.01.2

to get over the Foldable

WIP

“What is this description ?!”

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

NOTE
 - This document shows one of the mental model.
 - Please see also references.
 - This is written for Haskell, especially ghc7.10/8.0 and later.

1. Introduction

 - Values, Types, Type classes

 - Polymorphic types

 - Type constructors

 - Polymorphic and type constructors

2. more, Types and Type classes

 - Function types

 - Type class operations

3. What is this?

Appendix I – Various types

 - Bool, Char, Int, Float

 - Maybe, List, Either, Tuple

Appendix II – Various type classes

 - Eq, Ord

 - Num

 - Foldable

 - Functor, Applicative, Monad

 - Monoid

 - Traversable

Appendix III – Advanced topics

References

Contents

1. Introduction

Values, Types, Type classes

1. Introduction

Values

References : [B2] Ch.2, [B3] Ch.2

1
2

1.0

1.5

700 3.14

False

True

‘a’

‘h’

‘5’

Types

References : [B2] Ch.2, [B3] Ch.2, [B1] Ch.2, [D2], [B5] Ch.8, [H1] Ch.4

“Int” type

1
2

“Float” type

1.0
1.5

A type is a collection of values which have common property.

700 3.14

“Bool” type

False

True

... ...

“Char” type

‘a’
‘h’

‘5’

...

Type classes

References : [B1] Ch.2, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6, [H1] Ch.4

Int

1
2

Float

1.0
1.5

“Num” type class

A type class is a collection of types which have common operations.

...
700 3.14

Bool

False

True

... ...

Char

‘a’
‘h’

‘5’

...

Polymorphic types

1. Introduction

Proper types

References : [B1] Ch.2, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

Int

1
2

Float

1.0
1.5

700 3.14

Bool

False

True

... ...

Char

‘a’
‘h’

‘z’

...

Proper

types

Polymorphic types

References : [B1] Ch.7, [B3] Ch.3, [B4] Ch.6, [D1] Week 2, [H1] Ch.4

Int

1
2

700

Bool

False

True

...

Char

‘a’
‘h’

‘z’

...

a

Polymorphic

types

Proper

types

Float

1.0
1.5

3.14

...

...

Parametric polymorphism

Polymorphic types restricted with type classes

References : [B1] Ch.2, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6, [D1] Week 4

Int

1
2

Float

1.0
1.5

700 3.14

Bool

False

True

... ...

Char

‘a’
‘h’

‘z’

...

Num a => a

Polymorphic

types

Proper

types

Num type class

...

...

limited with the type class

Polymorphic types

References : [B1] Ch.2, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6, [D1] Week 2, 4

Proper

types

Polymorphic

types

polymorphic

types

with type class

Int

Num a => a

a

Type constructors

1. Introduction

Type constructors

References : [B1] Ch.7

Int

nullary type constructor

Type constructors

References : [B1] Ch.7

unary type constructor

Maybe Int

“Maybe” type constructor takes one type argument (unary).

Type constructors

References : [B1] Ch.7, [H1] Ch.4

nullary unary binary 3-ary

Int Maybe Int Either Int Char (,,) Int Int Float

IO Int

[] Int

State Int Char Float

Int -> Bool (,) Int Char

...

Syntactic sugar

(Int, Char) [Int]

Syntactic sugar

: : :

:

Polymorphic types and type constructors

1. Introduction

Polymorphic types and type constructors

References : [B1] Ch.2, 7, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

Int Maybe Int

Polymorphic

types

Type constructors

?

a

Polymorphic types and type constructors

References : [B1] Ch.2, 7, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

Int Maybe Int

Polymorphic

types

Type constructors

t a

Maybe a

a

Polymorphic types and type constructors

References : [B1] Ch.2, 7, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

[] a Maybe a

t a

Polymorphic

types

...

...

IO a Tree a

...

Polymorphic types and type constructors

References : [B1] Ch.2, 7, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

Maybe Char Maybe Int

Maybe a

Polymorphic

types

Proper

types

...

Maybe Bool Maybe Float

Polymorphic types and type constructors

References : [B1] Ch.2, 7, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

nullary unary binary 3-ary

Int Maybe Int Either Int Char (,,) Int Int Float

[] Int

IO Int

(,) Int Char Float

Int -> Bool State Int Char

a

t a t a b t a b c

Polymorphic

types

Proper

types

...

...

: : :

:

2. more, Types and Type classes

Function types

2. more, Types and Type classes

Function type

References : [B2] Ch.2, [B1] Ch.5, [B3] Ch.7, [B5] Ch.9, [H1] Ch.4

Int

fun

Bool fun :: Int -> Bool

The “->” represents the function type.

Function type with multiple arguments

References : [B2] Ch.2, [B1] Ch.5, [B3] Ch.7

fun

fun :: Int -> Float -> Char -> Bool

Float

Int

Char

Bool

fun

fun :: Int -> Float -> Bool
Int

Float

Bool

f :: Int -> (Float -> Bool)

equivalent to

Function type with same type

References : [B2] Ch.2, [B1] Ch.5, [B3] Ch.7

Int

fun

fun :: Int -> Int -> Int

Function type with function as argument

References : [B2] Ch.2, [B1] Ch.5, [B3] Ch.7

Int -> Int

fun

Bool fun :: (Int -> Int) -> Int -> Bool

Int

Int -> Int

Function type with function as result

References : [B2] Ch.2, [B1] Ch.5, [B3] Ch.7

fun

Int -> Int Int fun :: Int -> (Int -> Int)

Int -> Int

Function type with polymorphic function

References : [B2] Ch.2, [B1] Ch.5, [B3] Ch.7

Polymorphic

types

Proper

types

fun

fun :: Int -> Bool Bool Int

fun

fun :: Char -> Bool Bool Char

fun

fun :: a -> Bool Bool a

Parametric polymorphism

...

Function type for polymorphic function with type class

References : [B2] Ch.2, [B1] Ch.5, [B3] Ch.7

Polymorphic

types

Proper

types

fun

fun :: Int -> Bool Bool Int

fun

fun :: Char -> Bool Bool Char

fun

fun :: Num a => a -> Bool Bool a

limited with the type class

... ...

Type class operations

2. more, Types and Type classes

A type class has the class operations

References : [B1] Ch.2, 7, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

Class a => a

?

class operations

(class methods / common operations)

A type class has the class operations

References : [B1] Ch.2, 7, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

Eq a => a

==

Eq a => a -> a -> Bool
Bool

Eq class has “==“ (equality) operation.

A type class has the class operations

References : [B1] Ch.2, 7, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

Polymorphic

types

Proper

types

==

Eq a => a -> a -> Bool Bool
a

==

Int -> Int -> Bool Bool
Int

==

Char -> Char -> Bool Bool
Char

Each type, that belongs to the type class, must be support the overloaded operations.

Ad-hoc polymorphism (overloading)

...

Declaration of a type class and instances

References : [B1] Ch.2, 7, [B2] Ch.2, [B3] Ch.3, [B4] Ch.6

Proper

types

==

Eq a => a -> a -> Bool Bool
a

==

Int -> Int -> Bool Bool
Int

==

Char -> Char -> Bool Bool
Char

...

Polymorphic

types

class Eq a where

 (==) :: a -> a -> Bool

instance Eq Int where

 (==) = eqInt

instance Eq Char where

 (==) = ...

3. What is this?

What is this ?!

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

foldr = ... ？

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

What is this ?!

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

Foldable t => t a

foldr

a -> b -> b

b

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

a
b b

What is this ?!

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

Foldable t => t a

foldr

a -> b -> b

b

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

a
b b

What is this ?!

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

Foldable t => t a

foldr

a -> b -> b

b

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

a
b b

What is this ?!

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

Foldable t => t a

foldr

a -> b -> b

b

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

a
b b

What is this ?!

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

Foldable t => t a

foldr

a -> b -> b

b

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

a
b b

What is this ?!

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

Foldable t => t a

foldr

a -> b -> b

b

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

a
b b

What is this ?!

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

Foldable t => t a

foldr

a -> b -> b

b

foldr :: Foldable t => (a -> b -> b) -> b -> t a -> b

a
b b

Example of polymorphism on foldr

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

Foldable t => t a

foldr

a -> b -> b

b

[a]

foldr

a -> b -> b

b

Tree a

foldr

a -> b -> b

b

...

Polymorphic

types

Example of polymorphism on foldr

References : [B1] Ch.12, 5, 7, [B2] Ch.6, 2, [B3] Ch.7, 3, [B4] Ch.4, 6

Polymorphic

types

Proper

types

[a]

foldr

a -> b -> b

b

[Char]

foldr

Int

[Int]

foldr

Int

...

Char -> Char -> Int Int -> Int -> Int foldr (+) 0 [1, 2, 3]

foldr (*) 1 [1, 2, 3]

foldr max 0 [1, 2, 3]

 :

example

Appendix I – Various types

Bool, Char, Int, Float types

References : [B2] Ch.2, [B3] Ch.2, [B1] Ch.2, [H1] Ch.6, [S1]

Int

1
2

Float

1.0
1.5

700 3.14

Bool

False

True

... ...

Char

‘a’
‘h’

‘z’

...

...

Maybe type

References : [B1] Ch.7, [S1]

Maybe Int

Just 1

Just 2

Just 700

Maybe Bool

Nothing

Just True

...

Maybe Char

Just ‘a’

Just ‘h’

Just ‘z’
...

Maybe a

Proper

types

Maybe Float

Just 1.0
Just 1.5

Just 3.14
...

Just False

Nothing Nothing Nothing

Polymorphic

types

List type

References : [B1] Ch.1, [B2] Ch.4, [B3] Ch.3, [H1] Ch.6, [S1]

[Int] [Bool] [Char]

[a]

Polymorphic

types

Proper

types

[Float]

[] a

Syntactic sugar

...

[1]

[1, 2]

[700, ..]

[]

[True]

...

[‘a’]
[‘h’]

[‘a’, ‘b’, ‘c’]
...

[1.0]

[1.5, 20.0]

[3.14]
...

[True, False]

[] [] []

...

Either type

References : [B1] Ch.7, [S1]

Either Char Int Either Bool Int Either Float Char

Either a b

Proper

types

Either Int Float

Polymorphic

types

...

Left ‘a’
Right 2

Right 700

Left True

...

Left 1.0

Left 20.0

Right ‘z’
...

Left 1

Right 1.5

Right 3.14
...

Left False

Right 7

...

Tuple (pair) type

References : [B1] Ch.1, [B2] Ch.2, [B3] Ch.3, [H1] Ch.6, [S1]

(Char, Int) (Bool, Int) (Float, Char)

(a, b)

Proper

types

(Int, Float)

Polymorphic

types

(,) a b

Syntactic sugar

...

(‘a’, 2)

(‘b’, 5)

(‘z’, 700)

(True, 1)

...

(1.0, ‘A’)

(20.0, ‘b’)

(3.14, ‘z’)
...

(1, 1.0)

(5, 1.5)

(100, 3.14)
...

(False, 7)

(True, 10)

...

Appendix II – Various type classes

Eq class‘s characteristic operations

References : [B1] Ch.1, [B2] Ch.2, [B3] Ch.3, [H1] Ch.6, [S1]

Eq a => a

==

Bool

/=

The Eq class has equality operations.

Ord class‘s characteristic operations

References : [B1] Ch.1, [B2] Ch.2, [B3] Ch.3, [H1] Ch.6, [S1]

Ord a => a

<

Bool

>

<=

>=

The Ord class has comparison operations.

Num class‘s characteristic operations

References : [B1] Ch.1, [B2] Ch.2, [B3] Ch.3, [H1] Ch.6, [S1]

Num a => a

+

-

*

abs

The Num class has arithmetic operations.

Foldable class‘s characteristic operations

References : [B1] Ch.12, [B2] Ch.6, [B3] Ch.7, [D3], [S1]

Foldable t => t a

foldr

a -> b -> b

b

Functor class‘s characteristic operations

References : [B1] Ch.7, [D3], [H1] Ch.6, [S1]

Functor f => f a

fmap

Functor f => f b

a -> b

[] b

Maybe b

Tree b

IO b

 :

example

fmap :: Functor f => (a -> b) -> f a -> f b

Applicative class‘s characteristic operations

References : [B1] Ch.11, [D3], [S1]

Applicative f => f a

<*>

Applicative f => f b

Applicative f => f (a -> b)

a

pure

Monad class‘s characteristic operations

References : [B1] Ch.12, [B2] Ch.10, [D3], [H1] Ch.6, [S1]

Monad m => m a

>>=

Monad m => m b

Monad m => a -> m b

a

return

Monoid class‘s characteristic operations

References : [B1] Ch.12, [D3], [S1]

Monoid a => a

mappend

mempty

Related topics: monoid laws

References : [B1] Ch.12, [D3], [S1]

binary operation

unit law

associative law

Programmers should satisfy the monoid laws.

mappend

Monoid a => a

mappend

mempty

mappend

mappend mappend

mappend

same

Monoid a => a

Monoid a => a

Traversable class‘s characteristic operations

References : [D3], [S1]

Traversable t => t a

traverse

Traversable t => f (t b)

a -> f b

Appendix III – Advanced topics

Universally quantified types

References : [B5] Ch.23, [H1] Ch.4, [H2] “GHC Language Features”

Int

1
2

700

Bool

False

True

...

Char

‘a’
‘h’

‘z’

...

a

Polymorphic

types

Proper

types

Float

1.0
1.5

3.14

...

...

forall a . a

implicitly quantified with

universal quantification (∀a .)

Maybe Int :: * Either Int Char :: * (,,) Int Int Float :: *

Kinds and type constructors

References : [B1] Ch.7, [B5] Ch.29, [H1] Ch.4

nullary unary binary 3-ary

Int Maybe Int Either Int Char (,,) Int Int Float

IO Int

[] Int

State Int Char Float

Int -> Bool (,) Int Char

...

Maybe :: * -> * Either :: * -> * -> * (,,) :: * -> * -> * -> *
kind

kind kind kind

Int :: *

Type systems

References : [B5] Ch.23, 29, 30

Int Maybe Int

Polymorphic

types

Type constructors

corresponding to System F corresponding to System Fω

corresponding to λω

TAPL [5] Ch.23 TAPL [5] Ch.29

TAPL [5] Ch.30

(Quantified

types)

(Type operators)

t a

Maybe a

a

References

References

[B1] Learn You a Haskell for Great Good! (LYAH)

 http://learnyouahaskell.com/

[B2] Thinking Functionally with Haskell (IFPH 3rd edition)

 http://www.cs.ox.ac.uk/publications/books/functional/

[B3] Programming in Haskell

 http://www.cs.nott.ac.uk/~pszgmh/book.html

[B4] Real World Haskell (RWH)

 http://book.realworldhaskell.org/

[B5] Types and Programming Languages (TAPL)

 https://mitpress.mit.edu/books/types-and-programming-languages

Books

[D1] CIS 194: Introduction to Haskell

 http://www.seas.upenn.edu/~cis194/lectures.html

[D2] Type Systems

 http://dev.stephendiehl.com/fun/004_type_systems.html

[D3] Typeclassopedia

 http://www.cs.tufts.edu/comp/150FP/archive/brent-yorgey/tc.pdf

 https://wiki.haskell.org/Typeclassopedia

Documents

References

[S1] Hoogle

 https://www.haskell.org/hoogle

Search

[H1] Haskell 2010 Language Report

 https://www.haskell.org/definition/haskell2010.pdf

[H2] The Glorious Glasgow Haskell Compilation System (GHC user’s guide)

 https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/index.html

 https://downloads.haskell.org/~ghc/latest/docs/users_guide.pdf

Specifications

References

[A1] What I Wish I Knew When Learning Haskell

 http://dev.stephendiehl.com/hask/

[A2] How to learn Haskell

 https://github.com/bitemyapp/learnhaskell

[A3] Documentation

 https://www.haskell.org/documentation

[A4] A Haskell Implementation Reading List

 http://www.stephendiehl.com/posts/essential_compilers.html

[A5] The GHC reading list

 https://ghc.haskell.org/trac/ghc/wiki/ReadingList

Furthermore readings

