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with A = 1 when a is b x c. The argument above now shows that (5) 
holds with A = 1 for any a and this is (1). 
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86.70 The use of hyperbolic cosines in solving cubic 
polynomials 

Introduction 
The method of extracting one real root of a cubic polynomial has been 

known for some hundreds of years, and has been widely documented. 
However, the extraction of the remaining roots is invariably treated in a less 
satisfactory manner, the implication often being that the corresponding 
quadratic equation should be formed and solved in the conventional way. 
This article improves on this technique by deriving a set of compact 
algebraic formulae based on hyperbolic functions which will evaluate all the 
roots of a cubic polynomial directly, regardless of whether they are real, 
imaginary, complex, or repeated. 

Background 
Given a cubic polynomial of the form 

f(x) = ax3 + bx2 + cx + d 

the standard method of solvingf (x) = 0 is to form the reduced (sometimes 
referred to as 'depressed') cubic equation 

az3 + mz + n = 0 

where z = x + b/3a, then to use one of a number of substitutions to 
evaluate z. The classical substitution is z = p + q, which enables one real 
root, a, to be evaluated using cube roots. However, the evaluation of the 
remaining roots using this technique always involves manipulating complex 
numbers, and is rarely discussed; the easiest solution is to solve the 
quadratic 

f (x) = 
(x - a) 

Nickalls [1] describes a trigonometric technique to solve a cubic with 
three real roots using a substitution based on the cosine function, although 
this yields complex angles when the technique is applied to cubics with 
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complex roots. Nickalls doesn't explore this area, as it's impossible to 
illustrate complex angles graphically-however, an extension of his 
technique is here shown to provide simple algebraic solutions to any cubic, 
regardless of the nature of its roots. 

Solving the cubic 
It is necessary to define the following quantities (similarly to [1]): 

b 2 b2 - 3ac 
XN = YN = (XN), b2 3ac h = 2a63. 

3a- 9a2 
The reduced cubic is then of the form 

az3 - 3a62z + YN = 0 

where z = x - XN. Nickalls showed geometrically that, for h ? 0,* the 
relationship between yN and h determines the nature of the roots of the 
original cubic as shown in the following table: 

Relationship form of the cubic 

I YN/ h | < 1 three real roots (may include a co-incident pair) 

IyN/ h > 1 one real root, two turning points 

(YN/ h) imaginary one real root, no turning points 
(62 negative) 

This article will be primarily concerned with those cases yielding only 
one real root. 

The case where (YNI h) < -1 
We define the solution of the reduced cubic equation to be z = 26 cosht. 

This gives 
2a3 (4 cosh3t - 3 cosh t) + N = 0. 

Crucially, we allow t to be complex, namely 3t = u + iv. Then since 
h = 2a3, we get 

cosh(u + iv) = YN 
h 

Using the identity 
cosh (u + iv) _ cosh u cos v + i sinh u sin v 

this becomes 

YN coshu cosv + i sinhu sinv = Y 
h 

* If h = 0, then 6 = 0 by definition, and the reduced equation becomes trivial. It 
is worth noting that, if YN is also zero, the original cubic will have three co- 
incident real roots. 
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Equating the real and imaginary parts, u = 0 or v = n;r. If u = 0, then 
cosv = -yN/h > 1, which is impossible, so v = nn. Hence 
(-l)ncoshu = -(yN/h) > 1, but coshu > 0 and so n is even. Let n = 2m. 
Hence v = 2mir and u = ? Cosh- (-yN/h). Then 

t Cosh1(YN 2m,i and z = 26cosh + Cosh-1 (-N) + 2m ) . 

This has three different values according as m - 0, 1, 2 (mod 3), as cosh 
is an even function. Hence the roots of the original cubic equation are 

a = XN + 26 cosh ( cosh (- h)) 

, Y = XN - 6[cosh ( cosh-1 (-)? i3 sinh( cosh-1 (-Y)) 3 \ \ h i h 
Thus this technique provides the two complex roots directly. 

The case where (N / h) > +1 

The case of (YN/ h) > +1 is dealt with in a similar way, and yields the 
values of u and v as 

u = cosh 1(Y ), v = r, 3r, 5r, ... 

giving the original cubic's roots as 

a = XN - 26 cosh cosh (YN)) 

/, y = XN + 6[cosh ( cosh-1 )) i\/3 sinh cosh-1' ))l AS Y N [ 3 (h 3 h 

The case where (YN / h) is imaginary 
This case is a little more tricky, although the technique is the same. 

Since 62 < 0, 6 is imaginary, as is h and thus yNlh. If 6 is written as iA 
where A is real, then 

-YN -YN 
h 2a63 

-iYN 
2aA3' 

Further, if we define H = 2aA3, then 

YN iyN 
h H 

To solve for z, we use the usual substitution of z = 26 cosh t, where 
3t = u + iv, and proceed thus: 
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coshu cosv + i sinhu sinv = -N. 
H 

Equating coefficients: 

u - sinhl -( YN V = 32J, 7r, 2I, ... 

from which 

z = 2iA cosh( sinh-1 () + 1 ir) 

z = 2iA cosh(sinh-1 ) + 7iz) 

z = 2iA cosh( sinh1()3 + -i/) 

hence the roots of the original cubic equation are 

a = XN - 2A sinh ( sinh I(Y)) N ~ ~~ 3 H! 

=, y = XN + sinh sinh cosh nh A 
[sinh( 

sinh-1 
( //i3 cosh ( sinh-(1 H1 L 3 \H. \3 Hjr// 

The case of three real roots 
For completion, it's worth mentioning that the above technique can be 

applied where YNI h < 1, and merely reveals Nickall's solutions: 

a = XN + 2 cos ( cos- YN)) 

A y = XN + 26 cos cos (-h) ? 2j) 

Example 1 
Solve the equation: 

3 - 11x2 + 35x - 49 = 0. 

The parameters are: 

11 -520 4 128 
XN= 3, YN 27 and h =27 

Since yNlh < -1, let z = 26 cosht, where cosh3t = -yNIh. Evaluating 
3 cosh-1 (-YN/h) as 0-6931472, the roots are given by: 

a = 1 + 2(4) cosh0-6931472 = 7 

, y = 11 - (cosh 06931472 ? i3 sinh 0-6931472) = 2 ? i13. 
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Example 2 
Solve the equation: 

x3 + X2 _ I1X + 45 = 0. 

The parameters are: 

-1 1316 _ /4 68Vi4 
XN = 3 YN = 

2 6 = and h = 27 3 27 3 27 
Since yN/h > 1, let z = 26 cosh t, where cosh3t = yN/h. Evaluating 

l cosh-' (YN/ h) as 0-6231009, the roots are given by: 

a = - 2 (34) cosh 0-6231009 = -5 

f, y = -3 + ('3)(cosh 06231009 ?: iV3 sinh 06231009) = 2 ? iV5. 

Example 3 
Solve the equation: 

X3 - 5x2 + 19X - 15 = 0. 

The parameters are: 

5 200 .4/2 256x2 
XN = , YN- 6 = and H = 27 3 27 3 27 

Since 62 < 0, let z = 26 cosh t, where cosh3t = -iyNIH. Evaluating 
3 sinh-1 (YN/ H) as 0-1758687, the roots are given by: 

a = 5 - 2(4X) sinh 0-1758687 = 1 

B, y = 3 + (42) (sinh 01758687 ? i/3 cosh 01758687) = 2 ? i/11. 

Reference 
1. R. W. D. Nickalls, A new approach to solving the cubic: Cardan's 

solution revealed, Math. Gaz. 77 (November 1993) pp. 354-359. 
G. C. HOLMES 

Barham, Ipswich IP6 OBD 

86.71 Yet another proof that X2 = t1r2 
The idea behind this proof is to evaluate a certain double integral in two 

ways, one of which gives a numerical answer and the other of which leads to 
an expansion in a series related to X -. The double integral involved is, in 
essence, one of those evaluated in an interesting recent article by Javad 
Mashreghi, [1]; my contribution here is merely to highlight the connection 
with l 1. For brevity, I omit the entirely routine technical justifications of 
each step of the argument. There is, of course, a myriad of other proofs that 

L = 1z2; Robin Chapman has collected 14 of them in a splendid article 
on his website [2]. 
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