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1. Abstract

The harmonic series diverges. But if we delete from it all terms whose denominators

contain any string of digits such as “9”, “42”, or “314159”, then the sum of the remaining

terms converges. These series converge far too slowly to compute their sums directly.

We describe an algorithm to compute these and related sums to high precision. For

example, the sum of the series whose denominators contain no “314159” is approximately

2302582.33386. We explain why this sum is so close to 106 log 10 by developing asymptotic

estimates for sums that omit strings of length n, as n approaches infinity.

2. Introduction and History

The harmonic series
∞∑

s=1

1

s

diverges. Suppose we delete from the series all terms whose denominators, in base 10,

contain the digit 9 (that is, 1/9, 1/19, 1/29, . . .). Kempner [12] proved in 1914 that the

sum of the remaining terms converges. At first glance, this is counter-intuitive because

it appears that we are removing only every tenth term from the harmonic series. If that

were the case, then the sum of the remaining terms would indeed diverge.

This series converges because in the long run, we in fact delete almost everything from

it. We begin by deleting 1/9, 1/19, 1/29, . . .. But when we reach 1/89, we delete 11 terms

in a row: 1/89, then 1/90 through 1/99. When we reach 1/889, we delete 111 terms in a

row: 1/889, then 1/890 through 1/899, and finally 1/900 through 1/999.

Moreover, the vast majority of integers of, say, 100 digits contain at least one “9”

somewhere within them. Therefore, when we apply our thinning process to 100-digit

denominators, we will delete most terms. Only 8×999/(9×1099) ≈ 0.003% of terms with

100-digit denominators will survive our thinning process. Schumer [13] argues that the
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problem is that we tend to live among the set of puny integers and generally ignore

the vast infinitude of larger ones. How trite and limiting our view!

To be more precise: The fractions pi of i-digit numbers not containing “9” or an alter-

native single digit are a geometric decaying sequence. In addition the sum of reciprocals

of all i-digit numbers is smaller than “9” (see also Equation (3)). The sum of recipro-

cals of the survivors amongst them is bounded by 9 pi. Summing over all i results in a

convergent sequence that serves as an upper bound for the sum of the harmonic series

missing “9”. The proof for harmonic series missing any given n-digit integer b 6= 0 carries

over. Here it is enough to construct an upper bound for the fractions not containing

b by dividing the i-digit integers into substrings of length n and use the same argu-

ment. For example the fraction p6 of 6-digit numbers not containing “15” is bounded by

89/90 × (99/100)2 as we have divided the 6-digit numbers in 3 substrings of length 2.

Once a series is known to converge, the natural question is, “What is its sum?” Unfor-

tunately, these series converge far too slowly to compute their sums directly [11, 12].

The problem has attracted wide interest through the years in books such as [1, p. 384],

[4, pp. 81–83], [8, pp. 120–121] and [9, pp. 31–34]. The computation of these sums is

discussed in [2], [6] and [17]. Fischer computed 100 decimals of the sum with “9” missing

from the denominators, but his method does not readily generalize to other digits. His

remarkable result is that the sum is

β0 ln 10 −

∞∑

n=2

10−nβn−1ζ(n)

where β0 = 10 and the remaining βn values are given recursively by

n∑

k=1

(

n

k

)

(10n−k+1 − 10k + 1)βn−k = 10(11n − 10n).

Trott [16, pp. 1281–1282] has implemented Fischer’s algorithm using MATHEMATICA.

In 1979, Baillie [2] published a method for computing the ten sums that arise when we

delete terms containing each of the digits “0” through “9”. The sum with “9” deleted is

about 22.92067. But the sum of all terms with denominators up to 1027 still differs from

the final sum by more than 1.

In order to compute sums whose denominators omit strings of two or more digits, we

must generalize the algorithm of [2]. We do that here. We will show how to compute sums

of 1/s where s contains no odd digits, no even digits, or strings like “42” or “314159” or

even combinations of those constraints.

Recently the problem has attracted some interest again. The computation of the sum of

1/s where s does not contain “42” is a problem suggested by Bornemann et al. [5, p. 281].
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Subsequently the problems related to those sums have been discussed in a German-

speaking online mathematics forum1. In 2005 Bornemann presented his solution for the

“42”-problem to Trefethen’s problem solving squad at Oxford. His idea is very similar to

the original approach of Baillie and is covered by our analysis.

Bold print indicates vectors, matrices or tensors. Sets are in calligraphic print.

3. Recurrence matrices

Let X be a string of n > 1 digits. Let S be the set of positive integers that do not

contain X in base 10. We denote the sum by Ψ, that is,

(1) Ψ =
∑

s∈S

1

s
.

If X is the single digit m, Baillie’s method partitions S into subsets Si. The ith sub-

set consists of those elements of S that have exactly i digits. The following recurrence

connects Si to Si+1:

Si+1 =
⋃

s∈Si

{10s, 10s + 1, 10s + 2, ..., 10s + 9}\{10s + m}

From this, a recurrence formula is derived that allows us to compute
∑

s∈Si+1
1/sk from

the sums
∑

s∈Si
1/sk. If n > 1, there is no simple recurrence relation between Si and

Si+1. However, we can further partition Si into subsets for j = 1, 2, . . . , n in a way that

yields a recurrence between Sj
i+1 and the sets S1

i , . . . ,Sn
i . Once we have done this, we

have

Ψ =

n∑

j=1

∞∑

i=1

∑

s∈S
j
i

1

s
.

The subsets are chosen so that, when we append a digit d to an element of Sj
i, we get an

(i+1)-digit integer in the dth

j subset of Si+1, that is, S
dj

i+1. It will also be convenient to let

Sj be the union of Sj
i, over all i. We will represent the partition and the corresponding

recurrence with an n × 10 matrix T. The (j, d) entry of T tells us which set we end up

in when we append the digit d to each element of Sj. If the digit d cannot be appended

because the resulting number would not be in S, then we set T(j, d) to 0.

Here is an example that shows how to compute the matrix T for a given string. Let S

be the set of integers containing no “314”. We partition S into three subsets: S1 consists

of the elements of S not ending in 3 or 31. S2 is the set of elements of S ending in 3.

1At http://matheplanet.com/matheplanet/nuke/html/viewtopic.php?topic=9875 a few partici-

pants discuss the computation of the sum of 1/n where n does not contain an even digit. It seems their

solution combines a direct summation and Richardson extrapolation and is of limited accuracy.
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S3 is the set of elements of S ending in 31. The following matrix T shows what happens

when we append the digits 0 through 9 to S1, S2, and S3.

T =











0 1 2 3 4 5 6 7 8 9

1 1 1 1 2 1 1 1 1 1 1

2 1 3 1 2 1 1 1 1 1 1

3 1 1 1 2 0 1 1 1 1 1











.

When we append a 3 to an element of S1, we get an element of S2, so we set T(1, 3) = 2.

Appending any other digit to an element of S1 yields another element of S1, so all other

T(1, ·) = 1. Consider elements of S2. Appending a 1 yields an element of S3; appending

a 3 yields another element of S2. Appending any other digit yields an element of S1. The

only special feature of S3 is that if we append a 4, we get a number ending in 314, which

is not in S, so we set T(3, 4) = 0.

Let us emphasize that the matrix T does not have to be induced by a string X. Indeed

our approach is more general. We can also solve a puzzle stated by Boas [3] asking2 for

an estimate of the sum of 1/s where s has no even digits. Here it is enough to work with

one set S but to forbid that an even integer can be attached. Hence T is

T =

[

0 1 2 3 4 5 6 7 8 9

1 0 1 0 1 0 1 0 1 0 1

]

.

Many more interesting examples are discussed in Section 6.

The recursive relations between the sets S1, . . . ,Sn may also be illustrated by means

of a directed graph. There is a directed edge from Si to Sj if by appending an integer d

to elements of Si we end up in Sj, see Fig. 1. For further analysis we assume only that

the associated direct graph is strongly connected, that is, there are directed paths from

Si to Sj and Sj to Si for any pair i 6= j. Graphs that are not strongly connected can be

induced by more exotic constraints but are not discussed here.

In the next Section, we show how T is used to compute
∑

s∈Si+1
1/sk from the values

of
∑

s∈Si
1/sk.

4. A recurrence formula

It may seem a bit odd to introduce sums of s−k although only the case k = 1 is desired,

but they enable us to exploit the recurrence relations between the aforementioned sets

S1, . . . ,Sn. The idea has been successfully applied in [2]. Let

(2) Ψ
j
i,k =

∑

s∈S
j
i

1

sk
.

2Actually Boas is pointing to problem 3555 published in School Science and Mathematics, April 1975.
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S1

S2

S3

S1

S2

S3

Figure 1. Directed, strongly connected graphs. Left: Graph for the par-

tition induced by the string “314”. Any other string with three distinct

digits would have the same graph. Right: Graph of the partition induced

by the string “333”. Note that the strings “332” and “323” would induce

two alternative graphs not shown here. The graph related to “233” would

match the left graph.

Therefore the sum s−k where s ranges over all i-digit integers is an upper bound for Ψ
j
i,k.

There are at most 10i − 10i−1 of these integers. Every such s is at least 10i−1. Therefore,

(3) Ψ
j
i,k 6

(

10i − 10i−1
) 1

10(i−1)k
=

9

10(i−1)(k−1)
.

Using the new notation the problem is to compute

Ψ =

n∑

j=1

∞∑

i=1

Ψ
j
i,1.

The recursive nature of the sets Sj
i is now used to derive recurrence relations for the

sums Ψ
j
i,k. We introduce a tensor f of dimensions n × n × 10 with

(4) fjlm =

{
1 if T(l, m) = j

0 else
.

This tells us in the sum below to either include a term (fjlm = 1) or not include it

(fjlm = 0). Then

(5) Ψ
j
i,k =

9∑

m=0

n∑

l=1

fjlm

∑

s∈Sl
i−1

(10s + m)
−k

.

By construction of f the sum runs over all index pairs (l, m) such that T(l, m) = j, which

indicates that
{
10s + m, s ∈ Sl

i−1

}
⊂ Sj

i.
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Although Equation (5) is the crucial link to the recurrence matrices it is of no computa-

tional use. It is still a direct computation of Ψ
j
i,k. We should avoid summing over a range

of integers in subsets Sl
i−1. Using negative binomial series3 we observe

(10s + m)−k = (10s)−k

∞∑

w=0

(−1)w

(

k + w − 1

w

)

( m

10s

)w

where 00 = 1 and define:

c(k, w) = (−1)w

(

k + w − 1

w

)

.

We replace the term (10s + m)
−k in Equation (5) and get

Ψ
j
i,k =

9∑

m=0

n∑

l=1

fjlm

∑

s∈Sl
i−1

(10s)−k

∞∑

w=0

c(k, w)
( m

10s

)w

=

9∑

m=0

n∑

l=1

fjlm

∞∑

w=0

10−k−wc(k, w)mw
∑

s∈Sl
i−1

s−k−w

by reordering the sum. To simplify the notation we introduce

a(k, w, m) = 10−k−wc(k, w)mw

and write therefore

(6) Ψ
j
i,k =

9∑

m=0

n∑

l=1

fjlm

∞∑

w=0

a(k, w, m)Ψl
i−1,k+w.

Again it may seem odd that we have replaced the finite summation (5) in s by an

infinite sum in w. But the infinite sum decays so fast in w that truncation enables us to

approximate (6) much faster than evaluating the sums of Equation (5).

5. Truncation and Extrapolation

We step into the numerical analysis of the problem. So far we have only reformulated

the summation by introducing the partial sums Ψ
j
i,k. The ultimate goal is the efficient

computation of Ψ =
∑

i,j Ψ
j
i,1. We use the following scheme:

For i 6 2 the sums Ψ
j
i,k (k > 1 is needed in the next step) are computed directly as

suggested in Equation (2).

For i > 2 a recursive evaluation of (6) is used. The indices i and w both run from 3

(resp. 0) to infinity. For w we use a simple truncation by neglecting all terms Ψl
i−1,k+w

smaller than an a priori given bound ε, or to be precise: to neglect all terms Ψl
i−1,k+w

3http://mathworld.wolfram.com/NegativeBinomialSeries.html
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where the estimate (3) is smaller than ε, that is, k+w is sufficiently large. In practice we

decrease ε until the first d digits of the result stop changing where d is a desired number

of correct digits.

For the same reason we can neglect for large i all contributions from terms Ψl
i−1,k+w

with k + w > 1. Once the algorithm has achieved that stage it is possible to apply

extrapolation. Equation (6) with w = 0 and k = 1 reads in matrix form

(7)







Ψ1
i,1
...

Ψn
i,1






≈

9∑

m=0

10−1







f11m · · · f1nm

...
...

fn1m · · · fnnm







︸ ︷︷ ︸
An







Ψ1
i−1,1
...

Ψn
i−1,1







since a(1, 0, m) = 10−1 for all m.

At this point the skeptical reader may not believe that the nonnegative matrix An

is a contraction. The associated digraph of An with vertices 1, . . . , n representing the

sets Sj, j = 1, . . . , n and arcij if and only if An(i, j) 6= 0 is exactly the graph illustrating

the recurrence relations between the sets Sj as introduced above, see Fig. 1. We have

assumed that this graph is strongly connected and hence An is irreducible4 and therefore

the Perron-Frobenius Theorem[10, Theorem 8.4.4] applies:

Theorem 1 (Perron-Frobenius). Let A be a nonnegative5 and irreducible matrix.

Then

• there is an eigenvalue λd that is real and positive, with positive left and right

eigenvectors,

• any other eigenvalue λ satisfies |λ| < λd,

• the eigenvalue λd is simple.

The eigenvalue λd is called the dominant eigenvalue of A.

It remains to show that the dominant eigenvalue λd of An is smaller than 1. Consider

the lth column of the matrix






f11m · · · f1nm

...
...

fn1m · · · fnnm






.

By definition of f (4) there is a 1 in row T(l, m) if T(l, m) > 0. All other entries in the

column are zero. Therefore ‖ai‖1 6 1 if we denote by a1, . . . , an the columns of An.

The existence of columns which have no nonzero entry implies that there are columns

of An with ‖ai‖1 < 1. Let x be the right eigenvector of An corresponding to λd. Applying

4A matrix is reducible if and only if its associated digraph is not strongly connected [7, p. 163 ff.].
5A matrix is nonnegative if and only if every entry is nonnegative.
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the triangle inequality

λd‖x‖1 = ‖Anx‖1 6

n∑

i=1

|xi| ‖ai‖1 <

n∑

i=1

|xi| = ‖x‖1

we conclude that λd < 1. Note that we have used the fact that the elements xi of the

positive vector x can not vanish for any index i. If all columns of the nonnegative matrix

An satisfy ‖ai‖1 = 1, the matrix An is called stochastic and (1, . . . , 1) is a left eigenvector

with eigenvalue 1. In this case An is no longer a contraction. This situation occurs once

T contains no zero and hence no integers are deleted at all. This may serve as an unusual

explanation for the divergence of the harmonic series.

Having shown that the spectrum of An lies within the unit disk, we can simplify

(8)

∞∑

i=1







Ψ1
i+K,1
...

Ψn
i+K,1






≈

∞∑

i=1

Ai
n







Ψ1
K,1
...

Ψn
K,1







by a Neumann series
∞∑

k=1

Ak
n = (I − An)−1 − I =: B∞

n

where I is an identity matrix of appropriate dimension. Hence

(9) Ψ ≈

n∑

j=1

K∑

i=1

Ψ
j
i,1 +

∥

∥

∥

∥

∥

∥

∥

B∞
n







Ψ1
K,1
...

Ψn
K,1







∥

∥

∥

∥

∥

∥

∥

1

.

Using the same idea we can also estimate the result of truncating the series after, say,

M + K digits using

(10)
M∑

k=1

Ak
n = (I − AM+1

n )(I − An)−1 − I =: BM
n .

In practice, one would use an eigendecomposition of An in order to determine AM+1
n .

6. Examples

We compute a few sums to a precision of 100 decimals, although if desired, more could

easily be obtained.

First, let us compute the sum originally considered by Kempner [12], namely, where the

digit “9” is missing from the denominators. Here, there is only one set S = S1, namely,

the set of integers that do not contain a “9”. When we append a “9” to an element of
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S, we get a number not in S, so T(1, 9) = 0. When we append any other digit, we get

another element of S, so all other T(1, ·) = 1:

T =

[

0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 1 1 1 1 1 0

]

.

To 100 decimals, the sum is

22.92067 66192 64150 34816 36570 94375 93191 49447 62436 99848

15685 41998 35657 21563 38189 91112 94456 26037 44820 18989 . . . .

In Section 3 we mentioned the sum of 1/s where s has no even digits. The sum is

3.17176 54734 15904 95722 87097 08750 61165 67970 50708 39628

57241 64186 89843 71376 88585 61926 68852 31080 74715 60454 . . . .

Similarly, the sum over denominators with no odd digits can be found using the matrix

T =

[

0 1 2 3 4 5 6 7 8 9

1 1 0 1 0 1 0 1 0 1 0

]

.

In this case the sum is

1.96260 84129 94616 98515 91542 64737 29435 67128 30665 51443

53546 71522 23586 65760 95274 32927 13468 24171 73826 12704 . . . .

In Section 3, we gave the matrix T that corresponds to the sum of 1/s where s has no

string “314”. The sum is:

2299.82978 27675 18338 45358 63536 11974 36784 61556 88394 19837

51645 98202 17625 43309 41712 63285 37992 24266 07454 90945 . . . .

We can also compute the sum of 1/s where s has no string “314159”. Then the sum is:

2302582.33386 37826 07892 02375 60364 84435 61276 86862 90972 08627

80786 90557 30669 81792 73645 44979 47969 47311 14619 12012 . . . .

This sum demonstrates the power of the technique presented here. Using (10) we calculate

that the partial sum of all terms whose denominators have 100000 or fewer digits is about

219121.34825 . . . . This is still only 1/10th as large as the final sum, and illustrates the

futility of direct summation. Notice that this sum is close to 106 log 10. But there is

nothing special about “314159”; we observe similar results for other strings of six digits.

We say more about this in the next section.
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Let S be the set of integers containing no “42”. Compute Ψ in this case is the challenge

recently posed by Bornemann et al. [5]. In this case

T =







0 1 2 3 4 5 6 7 8 9

1 1 1 1 1 2 1 1 1 1 1

2 1 1 0 1 2 1 1 1 1 1







and the sum is given by

228.44630 41592 30813 25414 80861 26250 58957 81629 27539 83036

11859 13460 00045 28607 68650 21430 70480 46117 41443 21741 . . . .

The next example combines various constraints and illustrates the flexibility of our ap-

proach. Let S be the set of integers containing no even digits, no “55” and no “13579”.

Then we define the following partition of S. S2 is the subset of numbers ending in 5 (but

not ending in 135), S3 is the set of numbers ending in 1, S4 is the set of numbers ending

in 13, S5 is the subset of numbers ending in 135 and the elements of S6 end in 1357. All

remaining elements of S are in S1. Following those rules the matrix T is given by

T =























0 1 2 3 4 5 6 7 8 9

1 0 3 0 1 0 2 0 1 0 1

2 0 3 0 1 0 0 0 1 0 1

3 0 3 0 4 0 2 0 1 0 1

4 0 3 0 1 0 5 0 1 0 1

5 0 3 0 1 0 0 0 6 0 1

6 0 3 0 1 0 2 0 1 0 0























.

Here the sum is

3.09084 91496 53806 46825 46563 73157 80175 63888 91119 39765

22149 64013 36906 53946 19395 87929 18235 63131 88124 97325 . . . .

Our algorithm can be easily generalized for other bases than 10. The sum of 1/s where

s has no “0” in base 100 is

460.52520 26385 12471 14293 67535 66415 29497 12569 09908 47934

06016 95672 87250 06818 86421 46967 22875 07176 27582 54794 . . . .

All sorts of other experiments are possible. The interested reader might experiment by

removing from the harmonic series their personal favorite number, such as their birthday

(as a single string, or as a set of three strings), their phone number, etc.
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7. Asymptotic behavior

We now discuss the asymptotic behavior of the sums that arise when we remove from

the harmonic series terms whose denominators contain a string Xn of length n digits.

Data for several random strings of n = 20 digits are given in Table 1. It is striking

that, for each random string Xn, the “normalized” sum, ΨXn
/10n, is very close to log 10 =

2.30258 50929 94045 68401 79914 . . . .

n String Xn ΨXn
/10n

20 21794968139645396791 2.30258 50929 94045 68397 52162

20 31850115459210380210 2.30258 50929 94045 68399 08824

20 67914499976105176602 2.30258 50929 94045 68401 09579

20 98297963712691768117 2.30258 50929 94045 68401 77079

Table 1. Sums for several random 20-digit strings

Table 2 shows what happens for strings that consist of repeated patterns of substrings.

If a string consists of shorter substrings repeated two or more times, we define the period

of the string to be the length of that shortest substring. So, “11111” has period 1, while

“535353” has period 2.

Here, the normalized sums appear to approach different limits. The limits do not

depend on which digits comprise the strings, but instead depend on the periods. When all

digits are identical (period 1), the limit of the normalized sum seems to be (10/9) log 10 =

2.55842 . . . . When the period is 2, the limit seems to be (100/99) log 10 = 2.32584 . . . .

For period 5, it’s (100000/99999) log10 = 2.30260 . . . .

We emphasize that we observe these same limits for other strings of digits. In the

limit, the particular digits in a string do not matter. What matters is the structure of

the strings.

Equation (9) is based on a truncation and is correct in the limit for K → ∞. Never-

theless we fix K to n − 1 and introduce an error term en. In particular n is the only free

parameter left. The error term implies

ΨXn

10n
=

1

10n







n∑

j=1

n−1∑

i=1

Ψ
j
i,1 +

∥

∥

∥

∥

∥

∥

∥

B∞
n







Ψ1
n−1,1
...

Ψn
n−1,1







∥

∥

∥

∥

∥

∥

∥

1

+ en






.

We observe that for increasing n the first term on the right-hand side converges to zero

due to the slow growth of the double sum. The error term scaled by 10−n representing

the truncated sums Ψl
i,1+w with l = 1, . . . , n, i > n − 1 and w > 0 meets the same fate.
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n String Xn ΨXn
/10n

5 00000 2.55840 22969

10 0000000000 2.55842 78808 48652

15 000000000000000 2.55842 78811 04492 64603

20 00000000000000000000 2.55842 78811 04495 20443 88506

20 11111111111111111111 2.55842 78811 04495 20435 05433

20 44444444444444444444 2.55842 78811 04495 20442 19551

20 99999999999999999999 2.55842 78811 04495 20443 88506

4 4242 2.32542 92748

10 4242424242 2.32584 35278 62555

16 4242424242424242 2.32584 35282 76813 40798 19419

20 42424242424242424242 2.32584 35282 76813 82219 89695

20 09090909090909090909 2.32584 35282 76813 82221 85405

5 12345 2.30250 59575

10 1234512345 2.30260 81180 53596

15 123451234512345 2.30260 81190 75226 21998

20 12345123451234512345 2.30260 81190 75236 43628 01912

Table 2. Sums for strings of periods 1, 2, and 5

We need a more practical notation for the vector we take the 1-norm of and introduce

ψ
n
n−1 =







Ψ1
n−1,1
...

Ψn
n−1,1






.

We observe that ‖ψn
n−1‖1

is exactly the sum over all positive integers with exactly n − 1

digits. Not a single integer has been deleted at this stage yet. Hence ‖ψn
n−1‖1

converges

to log 10 because

‖ψn
n−1‖1

−−−→
n→∞

∫10n

10n−1

1

t
dt = log 10.

The same is true

‖ψn
k+n‖1

−−−→
n→∞

log 10

for any fixed k > 0. Here we delete amongst integers of length k+n those which contain

a certain string of length n. Hence the number of integers we delete is bounded no matter
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how large n is. But the contribution from these deleted integers converges to zero for

increasing n.

Equation (8) reveals what in numerical linear algebra is called a power iteration [15].

Note that any vector with nonnegative entries and positive norm can never be orthog-

onal to the dominant eigenvector of An. Hence the vectors ψn
k+n quickly line up with

the dominant eigenvector of An for increasing k. Contributions in other directions are

damped more quickly. The factor of amplification of the “asymptotic eigenvector” ψ is

therefore given by the dominant eigenvalue of B∞
n . Hence

0 = lim
k→∞

lim
n→∞

(

ΨXn
/10n −

1

10n
‖B∞

nψ‖1

)

= lim
n→∞

(

ΨXn
/10n − log 10

λB∞
n

10n

)

.

If λAn
< 1 is the dominant eigenvalue of An, then λB∞

n
= 1/(1 − λAn

) − 1 is the largest

eigenvalue of B∞
n . Both matrices share their eigenvectors and therefore

0 = lim
n→∞

(

ΨXn
/10n − log 10

1/(1 − λAn
) − 1

10n

)

= lim
n→∞

(

ΨXn
/10n − log 10

1/(1 − λAn
)

10n

)

.

Note that does not imply that ΨXn
/10n converges. We have proved:

Theorem 2. Let ΨXn
be the sum of 1/s where s does not contain the substring Xn.

Let An be the matrix defined in (7). Then

lim
n→∞

(

ΨXn
/10n −

1/(1 − λAn
)

10n

)

= 0

where λAn
is the dominant eigenvalue of An.

It all boils down to locating this dominant eigenvalue or getting some good estimates

for it. At least for special cases this is simple:

Lemma 1. Let Xn be any string of n digits that are all the same. Let ΨXn
be the

sum of 1/s where s does not contain the substring Xn. Then

lim
n→∞

ΨXn
/10n =

10

9
log 10.
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Proof. If all digits in Xn are the same then the n × n matrix An has the form

An =
1

10

















9 9 · · · · · · 9

1 0 0

0 1
...

. . .
...

1 0

















,

assuming that S1 is the set of integers not ending in the integer d. S2 is ending in d, S3

is ending in dd and so on.

An analysis of the characteristic polynomial of An shows that any eigenvalue of λ is a

solution of the equation

(11) λn(1 − λ) =
9

10n+1
.

The term on the right hand side might be interpreted as a perturbation of the homoge-

neous equation with a root at λ = 1. This root is moving on the real line towards the

origin such that the factor (1 − λ) is still larger than 9/10n+1 balancing the fast decay of

λn. Hence

(12) lim
n→∞

λB∞
n

10n
= lim

n→∞

1

(1 − λAn
)10n

=
10

9
lim

n→∞
λn
An

by utilizing (11).

It remains to show that although λAn
< 1 we get limn→∞ λn

An
= 1. If λ > n

n+1
the

graph of λn(1 − λ) is monotonic decreasing. But for λ = 10n−1
10n , λn(1 − λ) is still larger

than 9/10n+1 and hence λAn
> λ. Yet limn→∞ λn = 1 and we get desired result. Therefore

lim
n→∞

Ψ/10n = log 10 lim
n→∞

λB∞
n

/10n =
10

9
log 10.

�

We now consider the more general case of periodic strings of period p > 1.

Lemma 2. Let Xn be any string of n digits having period p. Let ΨXn
be the sum of

1/s where s does not contain the substring Xn. Then

lim
n→∞

ΨXn
/10n =

10p

10p − 1
log 10.

Proof. The matrix An mildly depends on the structure of the digits in the periodic

substring of length p but in all cases the characteristic polynomial is given by

pn(λ) = g(λ) −
1

λ
(g(λ) − 1)
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where

g(λ) =

v∑

m=0

10mp λmp =
1 − 10(v+1)pλ(v+1)p

1 − 10pλp
.

A complete proof based on the block structure of An (the pattern of An can be solely

described by the leading p × p block) is omitted here. Hence for any eigenvalue

1/(1 − λ) = g(λ).

In the spirit of (12)

lim
n→∞

λB∞
n

10n
= lim

n→∞

g(λAn
)

10n
=

10p

10p − 1
lim

n→∞
λn
An

.

For λ = 10n−1
10n we have pn(λ) < 0, but pn(λ) → ∞ for λ → ∞. Hence there is a root

larger than λ. Therefore limn→∞ λn
An

= 1 which finishes the proof. �

Lemma 3. Let Xn be any string of n digits with no periodic pattern. Let ΨXn
be the

sum of 1/s where s does not contain the substring Xn. Then

lim
n→∞

ΨXn
/10n = log 10.

Proof. This can be interpreted as the limit of the result of Lemma 2 for p → ∞. �

8. Conclusions

We have derived an algorithm able to cope with various constraints on the set of

integers deleted from the harmonic series. The algorithm relies on truncation and ex-

trapolation and avoids direct summation for large integers with more than 2 digits.

Embedding the problem in the language of linear algebra we draw on nothing beyond

eigenvalues and eigenvectors to give an asymptotic analysis of the problem.

Our MATHEMATICA implementation can be downloaded from the webpage of the

first author6. It fits on one page and runs in less than 5 seconds to produce 10 digits.

This is a model for good scientific computing that has recently been put forward by

Trefethen [14].

This paper may provide some opportunities for further exploration. It might be good

fun to derive an algorithm for the inverse problems. What set of simple constraints might

one apply in order to make the sum as close as possible to a given number? The Nth

partial sum of the harmonic series is never an integer [9, p. 24]. What about partial

sums of the series we consider here? And are these sums rational, irrational, algebraic,

or transcendental?

6http://web.comlab.ox.ac.uk/oucl/people/thomas.schmelzer.html
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